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Abstract

Variation in the architecture of trait networks among ecosystems has been rarely
quantified, but can provide high resolution of the contrasting adaptation of the
whole phenotype. We constructed leaf trait networks (LTNs) from 35 structural,
anatomical and compositional leaf traits for 394 tree species in nine forests from
tropical to cold-temperate zones in China. Our analyses supported the hypothesis
that LTNs would increase in modular complexity across forests in parallel with
species-richness and climatic warmth and moisture, due to reduced phenotypic
constraints and greater opportunities for niche differentiation. Additionally, we
found that within LTNs, leaf economics traits including leaf thickness would
have central importance, acting as hub traits with high connectivity due to their
contributions to multiple functions. Across the continent, the greater species
richness and trait diversity observed in forests under resource-rich climates enable
greater complexity in whole phenotype structure and function as indicated by the
trait network architecture.
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adaptation across resource gradients results in a com-
plex network of trait correlations (Freschet et al., 2015;

Leaf traits influence multiple components of plant fit-
ness, including the responses of growth, reproduction
and survival to environment, and thereby contribute
mechanistically to determining species’ environmental
distributions (Lavorel & Garnier, 2002; Shipley et al.,
2017; Stahl et al., 2014; Violle et al., 2007). As traits
jointly contribute to multiple functions (La Riva et al.,
2016; Sack & Buckley, 2020; Yin et al., 2018) (Figure S1),

Stearns, 1989) arising from, and reflecting, multiple si-
multaneous selective processes in adaptation or commu-
nity assembly. Traits may be selected in ensemble due to
structural allometries—such as when traits are linked
with cell, organ or whole plant size. Alternatively, traits
may be correlated due to functional trait coordination
or trade-offs (Niinemets & Sack, 2006; Sack et al., 2013).
For example, associations are often found among traits
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related to the ‘leaf economic spectrum’ (LES) (Croft
et al., 2017; Reich, 2014; Wright et al., 2004). Given the
convenience of simplifying variables using principal
component analyses, as exemplified by the LES, many
studies have reduced multiple traits into few axes of
variation (Diaz et al., 2004, 2016; Westoby et al., 2002;
Wright et al., 2004). However, complex network analy-
sis (Newman, 2003), which has been applied to gene and
protein interactions (Zhu et al., 2007), social connec-
tions (Girvan & Newman, 2002), microbial communities
(Wang et al., 2018), transportation systems (Wang et al.,
2011), and other fields, can provide higher resolution of
the correlative architecture of suites of traits across en-
vironments (He et al., 2020; Mason & Donovan, 2015;
Messier et al., 2017; Poorter et al., 2014; Sack et al., 2013;
Schneider et al., 2017). Here we tested hypotheses for the
variation of leaf trait networks (LTNs) with unprece-
dented analysis of traits, species, and ecosystems across
a continental-scale climatic gradient.

Several key predictions arise from ecophysiological
theory for how LTN properties should vary across com-
munities associated with contrasting climates. A looser
overall trait network, i.e., with lower connectivity may
indicate that plants adapt to low resource availability or
stressful conditions in part by constraining certain traits
associated with stress tolerance to a relatively narrow
range of values, such that these traits will tend to be un-
correlated with the rest of the integrated phenotype, due
to having fewer correlations with each other and/or with
other traits that vary independently of stress tolerance.
Additionally, we hypothesised that trait correlations
would be fewer and thus LTNs more stereotypical, that
is, simpler, in systems with limited resources (e.g. light,
nutrients, or water) which are on average (though not
universally) more species-poor than resource-rich sys-
tems, and have lower overall trait diversity on average,
by analogy with the typically reported correlation of
species-richness and functional trait diversity (Cornwell
& Ackerly, 2009; Cornwell et al., 2006). By contrast, we
expected a greater diversity in the configuration of trait
correlations (Li et al., 2015; Mason & Donovan, 2015) in
species of high resource systems, consistent with their
contrasting strategies and occupation of more niches.
Thus, based on theory, we expected simpler LT Ns that are
less differentiated into clusters for communities of colder
or more arid biomes. Notably, this hypothesis is based on
generalised patterns and exceptions are to be expected.
The relationship of species-richness with resource avail-
ability may be humpbacked and some resource-poor
habitats have relatively high species-richness (Petersen
et al., 2020; Rice & Westoby, 1983); and stress tolerant
plants may show strong variation in several traits related
to specific stress tolerance mechanisms, for example,
carnivory in low N soils (Paniw et al., 2017), CAM pho-
tosynthesis in arid conditions (Christin & Wood, 2016).
However, the relationships of species-richness and trait
variation with resource availability over a broad range

of climate types at large scales is consistent with previous
reports in the literature (Chauvet et al., 2017; Cornwell &
Ackerly, 2009; Kreft & Jetz, 2007; Le Bagousse-Pinguet
et al., 2017).

However, the few studies that have so far tested plant
trait networks have not enabled any conclusive test of
these hypotheses. A recent study of 10 plant traits based
on a compiled global trait database, including size-
related traits and economic traits, grouping species by
regions, found no overall trend in LTN modularity from
tropical to polar regions, although considering only the
woody species, those of polar regions did show simpler
LTNs than other communities (Flores-Moreno et al.,
2019). Yet, the LTN calculations in that study were sub-
ject to substantial uncertainty, as the analysis utilised a
database compiled from studies using nonstandardised
sampling and measurement methods, made at sites po-
tentially far from their modeled mean climates, and in-
volved gap filling of many missing trait datapoints, all of
which would have reduced the precision of LTNs and the
analysis of their potential shifts.

There has also been controversy surrounding the
importance of specific traits within LTNs. Some have
hypothesised that in general, leaf economics traits, in-
cluding leaf thickness, would be central within LTNs.
Leaf thickness contributes to multiple functional pro-
cesses, being closely anatomically linked with the size of
cells, the number of cell layers (John et al., 2017) and the
thickness of the cuticle (John et al., 2013), and thicker
leaves would be expected to have greater area-based light
absorption, nitrogen allocation, water transport and
carbon fluxes per leaf area (Sack et al., 2003), as well as
higher leaf mass per area (LMA) (Niinemets, 2001), and
thus mechanical strength (Onoda et al., 2011). However,
recent studies have provided mixed evidence, with leaf
thickness and water content resolved as hub traits in ep-
iphytes and herbs in a study of 2882 species of vascular
epiphytes vascular epiphytes and non-epiphytic herbs
(Hietz et al., 2021), foliar nutrients (N, P, K, Mg) in the
52 tree species across 1000-3000 m elevations (Homeier
et al., 2021) and stem specific length and biomass allo-
cation traits in herbaceous perennial plants, rather than
leaf economic traits including LM A and mass-based leaf
nitrogen concentration, in a study did not consider leaf
thickness and other associated traits (Kleyer et al., 2019).

To test these hypotheses for diverse forests arrayed
along a climatic gradient, we quantified the LTNs and
their parameters for 35 leaf traits of 394 tree species from
the boreal zone to the tropics. We quantified five LTN-
level parameters representing the network topological
connectivity and complexity, and for each trait within
the networks, four parameters representing trait con-
nectivity and centrality (Table 1). We hypothesised that
communities of colder or drier climates would have sim-
pler, less dense LTNs with lower modularity, consistent
with their lower species diversity, stronger constraints
on given traits, and reduced possibilities for functional
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differentiation among niches (Table 1) (Liu et al., 2019;
Yin et al., 2018). We also conducted tests of the depen-
dency of calculated LTN parameters on the number of
species in a community and on the number of traits con-
sidered, conducting simulations in which different num-
bers of species or traits were sampled from the total pool,
hypothesising that all else being equal, LTNs for forests
containing more species were more likely to resolve sig-
nificant correlations, and thus to have greater connec-
tivity, and potentially, higher complexity, as would LTNs
based on a greater set of diverse traits. Furthermore, we
considered the structure of trait organisation, hypothe-
sising, by analogy to gene or protein networks (Zhu et al.,
2007), that traits would assemble in LTNs according to
pre-defined structural scales or functional processes—
that is, leaf economics and light harvesting traits, leaf
size and anatomy traits, stomatal traits, and carbohy-
drate and energy traits. Finally, we hypothesised that
generally across communities, leaf economics traits and
in particular thickness and its associated traits would
have disproportionate associations with other traits, and
thus special importance in LTNs, with high connectiv-
ity and centrality within modules (Table 1). Overall, we
quantified the architecture of LTNs across diverse for-
ests at the continental scale to determine the climate-
dependence of the organisation of traits of biological
significance.

METHODS
Site description

The north-south transect of eastern China is the 15th
standard transect of the International Geosphere-
Biosphere Programme and spans from a tropical rain-
forest in the south to a cold-temperate coniferous
forest in the north, covering almost all forest types in
the Northern Hemisphere (Zhang & Yang, 1995). This
transect provides a robust platform to quantify the eco-
logical and evolutionary determinants of plant environ-
mental distributions at a large scale. Representatives of
nine common forest types were selected along the tran-
sect, from 18.7-51.8°N, ranging in mean annual tempera-
ture (MAT, °C) from —4.4-20.9°C and in mean annual
precipitation (MAP, mm) from 482-2449 mm (Figures
S2 and S3, and Table SI).

Field sampling

Sampling was conducted from July—August 2013, within
the growing season for all the forests. In each forest, four
experimental plots (30 x 40 m) were established (Li et al.,
2018). We collected fully expanded, sun-exposed leaves
from four mature and healthy individuals of each of 394
tree species by three methods (see Figure S4). At each

plot, soil samples (0-10 cm) were collected randomly
from 30-50 points using a soil sampler (6-cm diameter),
and then mixed thoroughly (Zhang et al., 2018; Zhao
et al., 2016).

Leaf trait measurement

We compiled data that were previously published in
separate studies on trait-environment relationships, in-
cluding 35 leaf traits, representing leaf economics and
light harvesting traits, leaf size and anatomy traits, sto-
matal traits and carbohydrate and energy traits (Table
S2, including symbols and units). Given our inclusion of
four chlorophyll (Chl) traits, for comprehensiveness, we
tested the influence of removing Chl a and Chl b, leaving
only total Chl and the Chl a/b ratio, thus reducing the
number of traits from 35 to 33; all results were substan-
tively similar, and thus all 35 traits were utilised in the
analyses presented.

Leaf trait network analysis

To calculate the LTNs, leaf traits were considered as
network nodes and trait correlations were considered as
edges. A correlation coefficient matrix of species mean
values for all leaf traits within each forest community
was calculated; the strength of trait—trait relationships
was described using the absolute value of Pearson cor-
relation coefficients (|Jr|). To avoid spurious correla-
tions among leaf traits, we set significance thresholds of
[r] > 0.2 and p < 0.05 (Kleyer et al., 2019; Poorter et al.,
2014) and an adjacency matrix A = [aiJ] where a;; € [0,1]
was calculated by assigning | to relationships that were
above the significance threshold and 0 to those below the
threshold. These LTNs were visualized using the igraph
package in R (version 3.3.1, R Development Core Team
2016).

Calculation of LTN-level parameters

To describe the overall topology of LTNs, we used
three parameters to quantify the ‘connectivity’ of the
LTN, that is, the overall inter-relatedness of all traits—
the edge density (ED), the diameter (D), average path
length (AL); and two parameters for the ‘complexity’
of the LTN configuration, i.e., the differentiation into
clusters—the average clustering coefficient (4C), and
the modularity (Q) (summarised in Table 1; illustrated
in Figure S5 and calculated in Appendix A). LTNs with
high D and AL are ‘looser’, that is, they have an overall
high level of independence among traits. A high 4C sig-
nifies fewer clusters, and a lower LTN complexity. The
Q of the LTN represents the degree of separation among
modules (Figure S6). The calculated trait modules for
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(@) Temperate coniferous forest

(b)

Temperate conifer broadleaf
mixed forest

(c) Temperate conifer broadleaf
mixed forest

broad-leaved forest

q) Warm temperate deciduous © Warm temperate deciduous ) South subtropical deciduous
broad-leaved forest broad-leaved forest evergreen mixed forest
/_?/ —~
(9) Subtropical evergreen (h) South subtropical monsoon

evergreen broad- leaved forest @

FIGURE 1

Increasing connectivity and complexity of leaf traits networks (LTNs) across forests from cold-temperate to tropical zones,

with species-richness and mean annual temperature and precipitation increasing from panel (a) to (i). The nine forests distributed from North
to South along the North—South Transect of Eastern China (NSTEC): (a) Huzhong (HZ), (b) Liangshui (LS), (c) Changbai (CB), (d) Dongling
(DL), (e) Taiyue (TY), (f) Shennongjia (SN), (g) Jiulian (JL), (h) Dinghu (DH), and (i) Jianfengling (JF). In each panel, LTNs are divided into
different modules, as indicated by node colour and coloured surrounding lines and regions. The differentiation into modules is described

in ‘Calculation of LTN-level parameters’, with detailed results are shown in Table 1 and Table S3. Black lines represent edges (correlations)
between nodes of the same modules, and the red lines represent edges between nodes of different modules

the nine forests are shown in Figure 1 and Table S3 and
Appendix B.

Calculation of LTN trait-level parameters

To describe the importance of traits within LTNs, we
used two parameters to quantify the ‘connectedness’
of each trait—the degree (k) and closeness (C); and two
parameters to signify the ‘centrality’ of each trait—the
betweenness (B), and the clustering coefficient (CC)
(summarised in Table 1; illustrated in Figure S5, and cal-
culated in Appendix A) (Deng et al., 2012). Traits with
the highest k& were ‘hub traits’, and with high C were thus
closely connected to other traits, and with high B repre-
sent central, ‘mediator traits’. Moreover, the CC of traits

was considered as another index of trait centrality within
the network.

Quantifying the relative
connectivity of leaf traits within classes
representing functional processes

To test the hypothesis that LTNs would be organised
into modules corresponding to given structural scales
and/or functional processes, the 35 measured leaf traits
were classified into four categories defined a priori: leaf
economics and light harvesting traits, leaf size and anat-
omy traits, stomatal traits, and carbohydrate and en-
ergy traits (Table S2). We quantified the organisation of
traits within these classes, and whether this organisation
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shifted across ecosystems. Thus we defined (1) for each
trait category the ‘category trait connectivity’ as the
numbers of connections relative to total number of trait-
pairs within the category, and (2) the ‘overall LTN cat-
egory trait connectivity’, as the overall numbers of trait
correlations within categories relative to total number
of trait-pairs across the whole LTN, and (3) the ‘overall
LTN across-category trait connectivity’, as the overall
numbers of correlations among traits of different pre-
defined categories across the whole LTN relative to the
total number of trait-pairs across the whole LTN. We
tested whether these ratios were significantly higher than
the ratio of significant correlations relative to total cor-
relations tested across the LTN. Furthermore, we tested
whether these two parameters varied across nine forests
in association with climate using least squares regres-
sion, with log-transformation.

Soil and climate data

Soil total nitrogen (STN, g kg™') was determined using
an elemental analyzer (Vario Analyzer, Elementar,
Germany). Climate variables, that is, mean annual
temperature (MAT) and precipitation (MAP), were ex-
tracted at 1 x 1 km spatial resolution using the inter-
polation software ANUSPLIN (He et al., 2014) based
on 740 climate stations of the China Meteorological
Administration from 1961-2007.

Data analysis, including simulated networks
to test for the intrinsic dependence of

LTN parameters on species-richness and
trait numbers

The LTN-level parameters and trait-level parameters,
and the category and overall LTN category trait connec-
tivities were calculated using the ‘IGRAPH’ package in R.

Ordinary least square regression was used to test the
relationships of network parameters with latitude, and
with climate and soil variables. Spearman rank correla-
tion was used to quantify similarity of the rank of trait-
level parameters (k, C, B and CC) among the nine sites.

To test the dependence of LTN-level parameters in-
trinsically on the numbers of species and numbers of
traits, we conducted simulations based on the entire
dataset combining species from all communities. We
randomly sampled species numbers from 10 to 394, and
trait numbers from 10 to 35 by sampling with replace-
ment, and for each combination of species and trait
number, 500 LTNs were determined and their LT N-level
parameters were calculated. We plotted the average val-
ues of LTN-level parameters against numbers of traits
and species considered.

To test whether the observed trends of LTN param-
eters with climate differed from those for simulations

based on sampling species sets of different sizes from a
random species pool, we compared the slopes of the least
square regressions of parameters versus climate for the
observed parameters, the simulated parameters based
on randomly sampling communities with different spe-
cies richness, and tested whether the slopes overlapped
in their confidence intervals.

To further test the robustness of climatic trends of
LTN-level parameters, we conducted two sets of sim-
ulations. First, we tested the potential dependence of
the climate association of LT N-level parameters on the
number of leaf traits. Thus, for each site at their spe-
cific species richness, we subsampled 27-34 leaf traits
of the 35 measured, determined LTNs, calculated ED,
D, AL, AC and Q (500 iterations), then we tested the
association of average simulated LTN-level parame-
ters with climate. Second, to further clarify whether,
all else being equal, the species richness would affect
the climate association of LTN parameters, we used
the species number of the coniferous forest, which had
the lowest species number (n = 15), and thus randomly
sampled 15 species for each of the other forests (500
iterations) and determined LTN-level parameters, then
we tested the association of average LTN-level param-
eters with climate.

To test the generality of the importance of given traits
with LTNs across forests, we tested the relationships
across traits between the ‘stability’ of each LTN-trait
level parameter across the nine forests and the mean
value of the LTN-trait-level parameter, considering sta-
bility as the inverse of the coefficient of variation (Zhang
et al., 2017):

Mean;
SD

1)

stability, =

i

where i is a node parameter (i.e. k, C, B or CC), and SD;,
is the standard deviation of parameter ;i among nine sites.
Traits with higher stability maintain their relative impor-
tance in the network topology more robustly across the
range of forests sampled across the climatic gradient. Thus,
a positive relationship across the measured traits of trait
stability with the mean LTN parameter value would sig-
nify that those traits that are on average important within
the LTN across the forests also tend to maintain their im-
portance within the networks of the different forests.

RESULTS AND DISCUSSION

Latitudinal and climatic trends of leaf trait
network complexity

Our analysis provided a new level of resolution of com-
plexity in the organisation of species’ traits within an
across ecosystems. Beyond quantifying the variation of
the traits, or even the numbers of associations among
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FIGURE 2 The relationships between network diameter (a and
d), average path length (b and e) and average clustering coefficient
(c and f) of the leaf trait networks and environmental factors

across nine forests across a continental climatic gradient. In each
panel, only regressions with p < 0.05 in the direction hypothesized
are presented. The red lines were fitted using linear regression.
Shaded areas indicate 95% confidence intervals. MAT: mean annual
temperature; MAP: mean annual precipitation

traits, network analysis breaks new ground in the iden-
tification of configurations and modularity of these
associations, and their functional categories. As hy-
pothesised, the leaf trait networks (LT Ns) shifted across
forests of the Northern Hemisphere with climate, from
simpler networks with lower connectivity for the conif-
erous forests with lower species diversity in the higher
latitude cold temperate zone, to greater complexity and
connectivity for tropical rainforests (Figure 1; Table
S4, and Appendix B). Thus, both the diameter (D) and
average path length (4L) were correlated with latitude,
indicating the greater connectivity of LTNs from cold-
temperate forests to tropical forests (Figure S7). These
latitudinal patterns were strongly related to climate, that
is, to mean annual temperature and rainfall (Figure 2),
and partially with increasing soil nitrogen concentration
(Figure S8). Moreover, we found that average clustering
coefficient (4C) also increased with latitude (Figures S7
and S8), suggesting increasing trait differentiation into
clusters within the LTNs from coniferous to tropical
forests. Notably, the same climatic trends of D, AL and
AC were observed when calculating LTNs for simulated
forests with subsampled numbers of traits (Table S5).
Across the forests, the network edge density (ED) and
modularity (Q) were statistically independent of latitude,
climate, and soil nitrogen concentration (Figures S9).
As hypothesised, the LTN parameters were strongly
sensitive to forest species richness, when simulating for-
ests with different species numbers drawn from the pool

of all species across the nine forests. Thus, when sim-
ulating forests with higher species numbers, the LTNs
increased in edge density, and decreased in diameter, av-
erage path length and average clustering coefficient, and
showed a decreased followed by an increase in modular-
ity; all parameters eventually approached stable values,
though typically only after forests were simulated with
more than 10-100 species (Figures 10a—e). Similarly,
when simulating forest LT Ns with increasing numbers of
randomly sampled traits, the edge density, the diameter,
average path length average clustering coefficient and
modularity decreased, though with diminishing slope,
and only a weak effect of further traits above 35 (Figure
Slla—e). These effects indicate that more diverse commu-
nities, with higher species numbers, are more likely to
show significant correlation between traits, and thus to
result in networks of greater connectivity and complex-
ity. Further the consideration of additional traits would
further resolve trait network connectivity and complex-
ity. Notably, the specific traits considered would be im-
portant; our simulations considered randomly sampled
traits across our diverse suite of measured variables. The
influence of including additional traits would depend on
which traits were included, and their intrinsic relation-
ships with other traits. For example, if additional traits
were included that were intrinsically highly correlated
with others within the network, this would be expected
to especially increase network connectivity, and also the
modularity, if the newly included traits were correlated
disproportionately with some but not others within the
network.

We tested whether the higher species numbers in
lower latitude forests could account for the observed
relationships of forest LTN parameters with latitude
if all species were drawn randomly from a single pool
(Figure S12). Such a finding would be analogous to the
well-recognised dependence of ecosystem processes on
species-richness due to its representation of functional di-
versity, often referred to as the ‘sampling’ effect (Loreau
& Hector, 2001). We tested the differences between the
observed relationships of LTN parameters and climate
and the trends arising due simply to species-richness in
simulated forests based on randomly sampling species
from the total species pool, and found that the observed
trends could be explained by species richness (Figures
S12-S14; Table S6). To further test the role of species rich-
ness in determining variation in LTN parameters across
forests across latitudes, we sampled randomly from each
forest 15 species, that is, the number of species in the
most species-poor community, and calculated LTNs for
each forest. This simulation reversed the climatic trend
for diameter, modularity, and lower edge density (Figure
S15). This analysis confirmed that species-richness is the
principal mediator of the relationship of LTN parame-
ters to climate. Therefore, the assembly of fewer species
in stressful ecosystems, within given niches, and over-
all, can explain the effect of climate on LTN parameters,
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reflecting stronger constraints on trait diversity and thus
on phenotype complexity. This mechanism for shift-
ing trait architecture with climate is analogous to the
‘sampling’ effect of increasing functional diversity with
higher species richness explaining higher productivity
in more species-rich ecosystems (Cornwell & Ackerly,
2009; Cornwell et al., 2006). Thus, as shown by our em-
pirical data and simulations, the numbers of tree species
of given forests across a latitudinal gradient are in the
range that will importantly influence LTN parameters,
with more species-rich forests showing more connected
and complex networks. These findings indicate that the
shift of LTN parameters with climate can be explained
at least in part as a consequence of the increase in func-
tional diversity in parallel with greater species richness.

We found strong evidence for the organisation of
traits by functional class, similarly to gene or protein
systems (Zhu et al., 2007), as shown by our tests of ‘cat-
egory trait connectivity’. Thus, across all forests, the
category trait connectivity was higher than the between-
category trait connectivity (paired ¢-test; p < 0.05).
Furthermore, the connectivity of traits within categories
varied across ecosystems (Table S7). This analysis re-
sulted in the same empirical tendency as the test for LTN
complexity (Q and AC) across forests, that is, supporting
greater trait complexity in LTNs at lower latitudes and
with moister, warmer climates; the ‘category trait con-
nectivity’ was lower in coniferous forests and higher in
tropical rainforests (log-transformed data; Figure S16;
Table S7). Thus, the greater complexity of LTNs at lower
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FIGURE 3 Variation in leaf trait network trait-level parameters among nine forests across a continental climatic gradient. Abbreviations:
LDMC, leaf dry matter content; SLA, specific leaf area; LT, leaf thickness; LD, Leaf tissue density; C, leaf carbon concentration; N, leaf
nitrogen concentration; Fe, leaf iron concentration; K, leaf potassium concentration; Mg, leaf magnesium concentration; P, leaf phosphorus
concentration; C/N, the ratio of carbon to nitrogen concentration; N/P, the ratio of nitrogen concentration and phosphorus concentration; Chl
a, leaf chlorophyll a concentration; Chl b, leaf Chlorophyll b concentration; Chl, total chlorophyll concentration; Chl a/b, The ratio of Chl a to
Chl b; LA, leaf area; LDM, leaf dry mass; UE, upper epidermal cells width; PT, palisade tissue thickness; ST, sponge tissue thickness; PT/ST,
the ratio of palisade to spongy tissue thickness; LE, lower epidermal cells width; VD, vessel diameter. PL, stomatal pore length; SW, stomatal
width; SA, stomatal area; SL, stomatal length; SD, stomatal density; SAF, stomatal area fraction; SC, starch concentration; SSC, soluble sugar
concentration; NSC, Non-structural carbohydrate concentration; SC/NSC, the ratio of SC to NSC; LCV, leaf caloric value. * The traits belong
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latitudes was resolved whether considering trait cluster-
ing using the designation of network modules ‘blind’ to
a priori trait categories, or considering trait clustering
into pre-determined trait functional classes. The greater
association of traits within categories in warmer, wetter
climates can be explained by the higher species numbers
and associated wider ranges of trait values (Sack et al.,
2003). Notably, even if communities varying in climate
had comparable species richness, the adaptation and
plasticity of traits for tolerance in stressful environments
might also cause shifts in networks with climate analo-
gous to those we found in this study, a hypothesis requir-
ing testing in future studies.

Identification of connected and central traits
within LTNs

We found strong support for the hypothesis that certain
traits are disproportionately important in their associa-
tions with other traits. We tested for generality in the im-
portance of given traits within the LT Ns across the diverse
forests, that is, the traits’ connectedness and centrality.
Traits with high degree (k) and closeness (C) can be con-
sidered ‘hub traits’ within the networks. As hypothesised,
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leaf economics traits, including leaf thickness and asso-
ciated traits (i.e. the thickness of spongy mesophyll, ST
and specific leaf area, SLA), were especially important as
LTN hubs, with higher £ and C, as expected from their
allometric associations, relationships with biochemical
traits relating to carbon or water fluxes per area, and
leaf economics. Thus, area-based foliar concentration of
nitrogen (N) and chlorophyll a and b (Chl a and Chl b)
would be positively related to leaf thickness and/or nega-
tively related to SLA (Figure 3). Leaf thickness-related
traits including spongy and palisade thickness, also had
higher betweenness (B); such traits would act as bridges in
the trait network by connecting other traits belonging to
different modules (Figure 3).

Across the forests, the traits maintained their hier-
archy in terms of k and C in the LTNs, indicating the
existence of conserved elements of LTN architecture
across the climatic gradient. Thus, leaf thickness and ni-
trogen concentration were typically high in degree and
closeness, and upper and lower epidermal cell thickness
were typically low in these parameters. By contrast, trait
rankings for betweenness and clustering coefficients
were not well maintained across forests (Tables S8—S11).
Further, across forests, the “stability” of LTN trait-level
parameters, i.e., the traits’ general importance in the
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FIGURE 4 Relationship between the degree (a), closeness (b), betweenness (c), clustering coefficient (d) and their stability in the leaf trait
networks across nine forests across a continental climatic gradient. The red lines were fitted using linear regressions, and only significant
regressions (p < 0.05) are shown. Shaded areas indicate 95% confidence intervals
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networks for the nine forests, was related to the average
importance of the trait in the network; the stability coef-
ficient for given parameters was related to the mean pa-
rameter value for k, C, and CC, though not B (Figure 4).
Thus, traits with higher importance in the LTN more
consistently hold their place as LTNs shift along climatic
gradients. As traits with lower values of LTN trait-level
parameters are more variable in their roles within the
network, we concluded that the connections among key
traits and between key traits and other traits are more
robust than those among peripheral traits.

Implications and challenges in assessing LTNs

The adaptation and/or assembly of multiple plant traits
across environments was clarified with their correlative
architecture quantified at high resolution by the analysis
of LTNs. In recent years, trait correlations have become
a key focus in assessing global trends in plant adapta-
tion, leading to improved parameterisation of ecosystem
and earth system models, although traditional methods,
such as principal component analysis (Diaz et al., 2016)
or focusing on well-recognised suites of specific traits,
such as the leaf economics spectrum tend to identify
very few dimensions of trait covariation (Wright et al.,
2004). Though numerous studies have explored how
traits correlate with climate across gradients, few tests
have been made of how the strength of trait correlations
individually, or as a network, shift across climates. As
a supplement to other trait analyses (such as bivariate
correlations or principal components analyses), LTNs
enable important additional clarity and improved con-
sideration of the wider range of key plant traits. LTNs
have been used in several previous studies to conceptu-
alise and visualise the relationship among plant traits
(Mason & Donovan, 2015; Poorter et al., 2014; Sack et al.,
2013; Schneider et al., 2017), and very recently param-
eters been extracted to quantify trait network patterns
(Flores-Moreno et al., 2019; Kleyer et al., 2019; Messier
et al., 2017). Our study shows that across the continent,
the architecture of the phenotype shifts to greater com-
plexity in resource-rich climates, reflecting the greater
species richness and functional diversification. This re-
sult indicates a great potential of trait network param-
eters to highlight the shifts in the total phenotype across
communities, in response to climate, and highlighted the
degree that overall phenotype integration at community
scale it is modulated by species richness.

Leaf economic traits, and in particular leaf thickness-
related traits, have been previously hypothesised as hub
traits within LTNs (Flores-Moreno et al., 2019; Niinemets
& Sack, 2006; Sack et al., 2003), and our study provides
a unique test supporting this hypothesis. This result was
not found in networks constructed using traits across or-
gans and life stages (Kleyer et al., 2019); our positive result
suggests that resolving hub traits depends on the inclusion

of sufficiently numerous and diverse organ-specific traits
sampled across levels of organisation (i.e. anatomy,
composition, pigments, etc.). Additional methodological
improvements in our study also would contribute to the
resolution of specific important hub traits, including sam-
pling many species with standard methodology.

Analysis of LTNs strongly supported the overall
hypothesis that relatively species-poor communities
of colder and more arid climates represent a narrower
range of integrated phenotypes, resulting in a less con-
nected and simpler trait network topology, with fewer
correlations among traits. By contrast, communities in
the tropics showed greater LTN connectivity and com-
plexity, related to greater species numbers, consistent
with greater functional diversity and differentiation into
a greater number of niches. Notably, our finding con-
trasted with that of a previous study based on a compiled
global database, which reported no shift of trait network
parameters with climate (Flores-Moreno et al., 2019).
That study had focused on few plant size-related traits
and economic traits across environmental gradients and
growth forms; while these types of traits are widely mea-
sured and available due to their important functions,
their inter-relationships tend to be conservative. Our
findings suggest that trait network analysis has greater
potential to resolve variation among ecosystems when
including traits that capture a wide range of aspects of
the phenotype that are important to function and to eco-
logical adaptation. Future studies can extend the trait
network approach to other traits of other organs, and
can test LTN parameters will shift with the consider-
ation of intraspecific trait variability. This approach has
great potential for including additional complexity, and
showing how it scales up to influencing trait covariation
at high resolution. We note that trait network topology
and calculated parameters will depend on the traits in-
cluded. The selection of traits may influence the struc-
ture of LTNs, to an extent that requires further study
in future work. It is important to evaluate the ability of
LTNs to disentangle the importance of given traits and
their topology for contrasting types of traits sets. A leaf
trait is more likely to be a hub if many leaf traits are in-
cluded in a network; likewise, an economic trait is more
likely to be a hub if many economic traits are included.
Thus, a design such as used in this study, focusing on
traits across levels of organisation for a key organ, would
be well-suited to identify key central traits, and the over-
all network topology across diverse traits.

Our study resolved for the first time climatic trends in
LTNs. We attribute this result to the greater quantity of
data than previous analyses, the matching of measured
plants with their native climate, and the standard measure-
ment protocols at all sites. While extensive plant trait data-
bases exist, such as TRY (https://www.try-db.org) (Kattge
et al., 2011, 2020), and sPlot database (https:/www.idiv.de/
en) (Bruelheide et al., 2018, 2019), the usefulness of trait
networks will motivate greater efforts for well-matched
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consistently collected data, such that these databases will
fulfil their promise for constructing trait networks glob-
ally. Indeed, while our study highlighted shifts with cli-
mate, this transect of forests across the continent mainly
varies in temperature (Zhang & Yang, 1995), and further
LTN studies extending across a greater number and types
of communities occupying different climates are needed to
further test the generality of hub traits and to disentangle
associations of LTN parameters with temperature from
other environmental conditions.
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APPENDIX A

CALCULATION OF LTN-LEVEL AND
TRAIT-LEVEL PARAMETERS

Calculation of LTNN-level parameters

The edge density (ED) describes the density of the con-
nected edges between nodes in a network, that is, the
proportion of actual connections among traits out of all
possible connections.

2L

ED=——"—
n-n—1)

(AD)

where L is the number of edges in the network, and n is the
number of node traits.

D refers to the maximum shortest path distance be-
tween any two traits, and AL the mean shortest path
between all traits. A path is a sequence of traits, each
connected by edges with the next; the shortest path is
that between two traits with the fewest intervening traits.

D = max{d;}(i # ) (A2)
S S
AL—n‘(n_l);;dij (A3)

where d; is the shortest distance between focal node
trait v, and node trait v, and n is the number of traits in
the LTN. LTNs with high D and AL are ‘looser’, that is,
they have an overall high level of independence among
traits.

The AC was defined as the average of the clustering
coefficient (CCs, see Eq. A9) of all traits in the LTN.
Thus, the AC quantifies the average probability across
each trait in the network, that the traits to which it is
connected are themselves inter-connected (Armbruster
et al., 2014); a high AC signifies fewer clusters, and a
lower LTN complexity.

S — (A4)

where /; is the number of links between traits that are re-
lated to trait v,, and 7, is the number of traits that are related
to trait v,.

The Q of the LTN represents the degree of separation
among modules, where modules are distinguished using
the following iterated steps. First, we calculated the edge
betweenness score of each edge, where the edge between-
ness score was the number of shortest paths through a focal
trait-trait connection, and the Q value was calculated as:

z [(Az'j - kéf) 'T] (A5)

2m

0r=

where ¢ is the iteration number, m is the number of edges,
A, is the element of the 4 adjacency matrix in row i and
column j, k, is the degree of i, kj is the degree of j, and 7 is
1 if jand i are in the same module and 0 otherwise. Then,
we removed the edge with the highest edge betweenness
score and recalculated the Q value, and recalculated the
edge betweenness of the edges. We then repeated this
process; as edges with highest edge betweenness are re-
moved the graph becomes a dendrogram (Figure S6A).
The final Q = max {Q,}, indicating particularly satis-
factory splits (Newman & Girvan, 2004). Then the den-
drogram was transformed into a modular trait network
(Figure S6B). The calculated trait modules for the nine
forests are shown in Figure 1 and Table S3.

Calculation of LTN trait-level parameters

To describe the importance of traits within LTNs, we used
two parameters to quantify the ‘connectedness’ of each
trait—the degree (k) and closeness (C); and two param-
eters to signify the ‘centrality’ of each trait—the between-
ness (B), and the clustering coefficient (CC) (summarized
in Table 1; illustrated in Figure S5) (Deng et al., 2012). For
each trait, k is defined as the number of edges connecting
to other traits (i.e. the number of significant correlations
with other traits). Leaf traits with the highest k& were con-
sidered to be ‘hub traits’ in the LTN.

ki= X a; (A6)

J#i

where a; is 1 given a significant relationship between traits
v,and v,

Cis defined as the reciprocal of the mean of the short-
est path between a trait and all other traits in the LTN.
Leaf traits with high C are thus closely connected to the
other LTN traits.

n—1
Ci = n—1
Zi:l dii

@#) (A7)

where d . is the shortest distance between traits v, and Vs
and n is the number of LTN traits.

B is defined by considering the shortest paths through
edges between each trait-pair in the network, and count-
ing the numbers of these shortest paths that pass through
each given trait. Traits with high B represent central,
‘mediator traits’.

B; = Z(j’ i,k) (A8)

Jjk
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where 6 (J, i, k) is the number of shortest paths between
traits v, and v, across the node v,.

Finally, the CC of traits was considered as another
index of trait centrality within the network. The CC of
a trait represents the degree of inter-connectivity of the
traits to which it is connected; if the traits to which the
focal trait are connected are themselves fully connected,
then the CC of the focal trait is 1, whereas a focal trait
that is connected to traits that are not themselves inter-
connected has a CC of 0.

CC, = 2l A9
i_ti(li—l) ( )

where /; is the number of links between traits connected
to focal trait v, and ¢, is the number of traits connected to
focal trait v,.

APPENDIX B

LEAF TRAIT NETWORKS OF NINE SITE

1. Leaf traits network (LTN) of Huzhong

3. Leaf traits network (LTN) of Changbai
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4. Leaf traits network (LTN) of Dongling
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7. Leaf traits network (LTN) of Jiulian
5. Leaf traits network (LTN) of Taiyue
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8. Leaf traits network (LTN) of Dinghu
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9. Leaf traits network (LTN) of Jianfengling
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