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INTRODUCTION

Leaf traits influence multiple components of plant fit-
ness, including the responses of growth, reproduction 
and survival to environment, and thereby contribute 
mechanistically to determining species’ environmental 
distributions (Lavorel & Garnier, 2002; Shipley et al., 
2017; Stahl et al., 2014; Violle et al., 2007). As traits 
jointly contribute to multiple functions (La Riva et al., 
2016; Sack & Buckley, 2020; Yin et al., 2018) (Figure S1), 

adaptation across resource gradients results in a com-
plex network of trait correlations (Freschet et al., 2015; 
Stearns, 1989) arising from, and reflecting, multiple si-
multaneous selective processes in adaptation or commu-
nity assembly. Traits may be selected in ensemble due to 
structural allometries—such as when traits are linked 
with cell, organ or whole plant size. Alternatively, traits 
may be correlated due to functional trait coordination 
or trade-offs (Niinemets & Sack, 2006; Sack et al., 2013). 
For example, associations are often found among traits 
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Abstract

Variation in the architecture of trait networks among ecosystems has been rarely 

quantified, but can provide high resolution of the contrasting adaptation of the 

whole phenotype. We constructed leaf trait networks (LTNs) from 35 structural, 

anatomical and compositional leaf traits for 394 tree species in nine forests from 

tropical to cold-temperate zones in China. Our analyses supported the hypothesis 

that LTNs would increase in modular complexity across forests in parallel with 

species-richness and climatic warmth and moisture, due to reduced phenotypic 

constraints and greater opportunities for niche differentiation. Additionally, we 

found that within LTNs, leaf economics traits including leaf thickness would 

have central importance, acting as hub traits with high connectivity due to their 

contributions to multiple functions. Across the continent, the greater species 

richness and trait diversity observed in forests under resource-rich climates enable 

greater complexity in whole phenotype structure and function as indicated by the 

trait network architecture.
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related to the ‘leaf economic spectrum’ (LES) (Croft 
et al., 2017; Reich, 2014; Wright et al., 2004). Given the 
convenience of simplifying variables using principal 
component analyses, as exemplified by the LES, many 
studies have reduced multiple traits into few axes of 
variation (Diaz et al., 2004, 2016; Westoby et al., 2002; 
Wright et al., 2004). However, complex network analy-
sis (Newman, 2003), which has been applied to gene and 
protein interactions (Zhu et al., 2007), social connec-
tions (Girvan & Newman, 2002), microbial communities 
(Wang et al., 2018), transportation systems (Wang et al., 
2011), and other fields, can provide higher resolution of 
the correlative architecture of suites of traits across en-
vironments (He et al., 2020; Mason & Donovan, 2015; 
Messier et al., 2017; Poorter et al., 2014; Sack et al., 2013; 
Schneider et al., 2017). Here we tested hypotheses for the 
variation of leaf trait networks (LTNs) with unprece-
dented analysis of traits, species, and ecosystems across 
a continental-scale climatic gradient.

Several key predictions arise from ecophysiological 
theory for how LTN properties should vary across com-
munities associated with contrasting climates. A looser 
overall trait network, i.e., with lower connectivity may 
indicate that plants adapt to low resource availability or 
stressful conditions in part by constraining certain traits 
associated with stress tolerance to a relatively narrow 
range of values, such that these traits will tend to be un-
correlated with the rest of the integrated phenotype, due 
to having fewer correlations with each other and/or with 
other traits that vary independently of stress tolerance. 
Additionally, we hypothesised that trait correlations 
would be fewer and thus LTNs more stereotypical, that 
is, simpler, in systems with limited resources (e.g. light, 
nutrients, or water) which are on average (though not 
universally) more species-poor than resource-rich sys-
tems, and have lower overall trait diversity on average, 
by analogy with the typically reported correlation of 
species-richness and functional trait diversity (Cornwell 
& Ackerly, 2009; Cornwell et al., 2006). By contrast, we 
expected a greater diversity in the configuration of trait 
correlations (Li et al., 2015; Mason & Donovan, 2015) in 
species of high resource systems, consistent with their 
contrasting strategies and occupation of more niches. 
Thus, based on theory, we expected simpler LTNs that are 
less differentiated into clusters for communities of colder 
or more arid biomes. Notably, this hypothesis is based on 
generalised patterns and exceptions are to be expected. 
The relationship of species-richness with resource avail-
ability may be humpbacked and some resource-poor 
habitats have relatively high species-richness (Petersen 
et al., 2020; Rice & Westoby, 1983); and stress tolerant 
plants may show strong variation in several traits related 
to specific stress tolerance mechanisms, for example, 
carnivory in low N soils (Paniw et al., 2017), CAM pho-
tosynthesis in arid conditions (Christin & Wood, 2016). 
However, the relationships of species-richness and trait 
variation with resource availability over a broad range 

of climate types at large scales is consistent with previous 
reports in the literature (Chauvet et al., 2017; Cornwell & 
Ackerly, 2009; Kreft & Jetz, 2007; Le Bagousse-Pinguet 
et al., 2017).

However, the few studies that have so far tested plant 
trait networks have not enabled any conclusive test of 
these hypotheses. A recent study of 10 plant traits based 
on a compiled global trait database, including size-
related traits and economic traits, grouping species by 
regions, found no overall trend in LTN modularity from 
tropical to polar regions, although considering only the 
woody species, those of polar regions did show simpler 
LTNs than other communities (Flores-Moreno et al., 
2019). Yet, the LTN calculations in that study were sub-
ject to substantial uncertainty, as the analysis utilised a 
database compiled from studies using nonstandardised 
sampling and measurement methods, made at sites po-
tentially far from their modeled mean climates, and in-
volved gap filling of many missing trait datapoints, all of 
which would have reduced the precision of LTNs and the 
analysis of their potential shifts.

There has also been controversy surrounding the 
importance of specific traits within LTNs. Some have 
hypothesised that in general, leaf economics traits, in-
cluding leaf thickness, would be central within LTNs. 
Leaf thickness contributes to multiple functional pro-
cesses, being closely anatomically linked with the size of 
cells, the number of cell layers (John et al., 2017) and the 
thickness of the cuticle (John et al., 2013), and thicker 
leaves would be expected to have greater area-based light 
absorption, nitrogen allocation, water transport and 
carbon fluxes per leaf area (Sack et al., 2003), as well as 
higher leaf mass per area (LMA) (Niinemets, 2001), and 
thus mechanical strength (Onoda et al., 2011). However, 
recent studies have provided mixed evidence, with leaf 
thickness and water content resolved as hub traits in ep-
iphytes and herbs in a study of 2882 species of vascular 
epiphytes vascular epiphytes and non-epiphytic herbs 
(Hietz et al., 2021), foliar nutrients (N, P, K, Mg) in the 
52 tree species across 1000–3000 m elevations (Homeier 
et al., 2021) and stem specific length and biomass allo-
cation traits in herbaceous perennial plants, rather than 
leaf economic traits including LMA and mass-based leaf 
nitrogen concentration, in a study did not consider leaf 
thickness and other associated traits (Kleyer et al., 2019).

To test these hypotheses for diverse forests arrayed 
along a climatic gradient, we quantified the LTNs and 
their parameters for 35 leaf traits of 394 tree species from 
the boreal zone to the tropics. We quantified five LTN-
level parameters representing the network topological 
connectivity and complexity, and for each trait within 
the networks, four parameters representing trait con-
nectivity and centrality (Table 1). We hypothesised that 
communities of colder or drier climates would have sim-
pler, less dense LTNs with lower modularity, consistent 
with their lower species diversity, stronger constraints 
on given traits, and reduced possibilities for functional 
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differentiation among niches (Table 1) (Liu et al., 2019; 
Yin et al., 2018). We also conducted tests of the depen-
dency of calculated LTN parameters on the number of 
species in a community and on the number of traits con-
sidered, conducting simulations in which different num-
bers of species or traits were sampled from the total pool, 
hypothesising that all else being equal, LTNs for forests 
containing more species were more likely to resolve sig-
nificant correlations, and thus to have greater connec-
tivity, and potentially, higher complexity, as would LTNs 
based on a greater set of diverse traits. Furthermore, we 
considered the structure of trait organisation, hypothe-
sising, by analogy to gene or protein networks (Zhu et al., 
2007), that traits would assemble in LTNs according to 
pre-defined structural scales or functional processes—
that is, leaf economics and light harvesting traits, leaf 
size and anatomy traits, stomatal traits, and carbohy-
drate and energy traits. Finally, we hypothesised that 
generally across communities, leaf economics traits and 
in particular thickness and its associated traits would 
have disproportionate associations with other traits, and 
thus special importance in LTNs, with high connectiv-
ity and centrality within modules (Table 1). Overall, we 
quantified the architecture of LTNs across diverse for-
ests at the continental scale to determine the climate-
dependence of the organisation of traits of biological 
significance.

M ETHODS

Site description

The north-south transect of eastern China is the 15th 
standard transect of the International Geosphere-
Biosphere Programme and spans from a tropical rain-
forest in the south to a cold-temperate coniferous 
forest in the north, covering almost all forest types in 
the Northern Hemisphere (Zhang & Yang, 1995). This 
transect provides a robust platform to quantify the eco-
logical and evolutionary determinants of plant environ-
mental distributions at a large scale. Representatives of 
nine common forest types were selected along the tran-
sect, from 18.7–51.8°N, ranging in mean annual tempera-
ture (MAT, oC) from –4.4–20.9°C and in mean annual 
precipitation (MAP, mm) from 482–2449  mm (Figures 
S2 and S3, and Table S1).

Field sampling

Sampling was conducted from July–August 2013, within 
the growing season for all the forests. In each forest, four 
experimental plots (30 × 40 m) were established (Li et al., 
2018). We collected fully expanded, sun-exposed leaves 
from four mature and healthy individuals of each of 394 
tree species by three methods (see Figure S4). At each 

plot, soil samples (0–10  cm) were collected randomly 
from 30–50 points using a soil sampler (6-cm diameter), 
and then mixed thoroughly (Zhang et al., 2018; Zhao 
et al., 2016).

Leaf trait measurement

We compiled data that were previously published in 
separate studies on trait-environment relationships, in-
cluding 35  leaf traits, representing leaf economics and 
light harvesting traits, leaf size and anatomy traits, sto-
matal traits and carbohydrate and energy traits (Table 
S2, including symbols and units). Given our inclusion of 
four chlorophyll (Chl) traits, for comprehensiveness, we 
tested the influence of removing Chl a and Chl b, leaving 
only total Chl and the Chl a/b ratio, thus reducing the 
number of traits from 35 to 33; all results were substan-
tively similar, and thus all 35 traits were utilised in the 
analyses presented.

Leaf trait network analysis

To calculate the LTNs, leaf traits were considered as 
network nodes and trait correlations were considered as 
edges. A correlation coefficient matrix of species mean 
values for all leaf traits within each forest community 
was calculated; the strength of trait–trait relationships 
was described using the absolute value of Pearson cor-
relation coefficients (|r|). To avoid spurious correla-
tions among leaf traits, we set significance thresholds of 
|r| > 0.2 and p < 0.05 (Kleyer et al., 2019; Poorter et al., 
2014) and an adjacency matrix A = [ai,j] where ai,j ϵ [0,1] 
was calculated by assigning 1 to relationships that were 
above the significance threshold and 0 to those below the 
threshold. These LTNs were visualized using the igraph 
package in R (version 3.3.1, R Development Core Team 
2016).

Calculation of LTN-level parameters

To describe the overall topology of LTNs, we used 
three parameters to quantify the ‘connectivity’ of the 
LTN, that is, the overall inter-relatedness of all traits—
the edge density (ED), the diameter (D), average path 
length (AL); and two parameters for the ‘complexity’ 
of the LTN configuration, i.e., the differentiation into 
clusters—the average clustering coefficient (AC), and 
the modularity (Q) (summarised in Table 1; illustrated 
in Figure S5 and calculated in Appendix A). LTNs with 
high D and AL are ‘looser’, that is, they have an overall 
high level of independence among traits. A high AC sig-
nifies fewer clusters, and a lower LTN complexity. The 
Q of the LTN represents the degree of separation among 
modules (Figure S6). The calculated trait modules for 
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the nine forests are shown in Figure 1 and Table S3 and 
Appendix B.

Calculation of LTN trait-level parameters

To describe the importance of traits within LTNs, we 
used two parameters to quantify the ‘connectedness’ 
of each trait—the degree (k) and closeness (C); and two 
parameters to signify the ‘centrality’ of each trait—the 
betweenness (B), and the clustering coefficient (CC) 
(summarised in Table 1; illustrated in Figure S5, and cal-
culated in Appendix A) (Deng et al., 2012). Traits with 
the highest k were ‘hub traits’, and with high C were thus 
closely connected to other traits, and with high B repre-
sent central, ‘mediator traits’. Moreover, the CC of traits 

was considered as another index of trait centrality within 
the network.

Quantifying the relative 
connectivity of leaf traits within classes 
representing functional processes

To test the hypothesis that LTNs would be organised 
into modules corresponding to given structural scales 
and/or functional processes, the 35 measured leaf traits 
were classified into four categories defined a priori: leaf 
economics and light harvesting traits, leaf size and anat-
omy traits, stomatal traits, and carbohydrate and en-
ergy traits (Table S2). We quantified the organisation of 
traits within these classes, and whether this organisation 

F I G U R E  1   Increasing connectivity and complexity of leaf traits networks (LTNs) across forests from cold-temperate to tropical zones, 
with species-richness and mean annual temperature and precipitation increasing from panel (a) to (i). The nine forests distributed from North 
to South along the North–South Transect of Eastern China (NSTEC): (a) Huzhong (HZ), (b) Liangshui (LS), (c) Changbai (CB), (d) Dongling 
(DL), (e) Taiyue (TY), (f) Shennongjia (SN), (g) Jiulian (JL), (h) Dinghu (DH), and (i) Jianfengling (JF). In each panel, LTNs are divided into 
different modules, as indicated by node colour and coloured surrounding lines and regions. The differentiation into modules is described 
in ‘Calculation of LTN-level parameters’, with detailed results are shown in Table 1 and Table S3. Black lines represent edges (correlations) 
between nodes of the same modules, and the red lines represent edges between nodes of different modules
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shifted across ecosystems. Thus we defined (1) for each 
trait category the ‘category trait connectivity’ as the 
numbers of connections relative to total number of trait-
pairs within the category, and (2) the ‘overall LTN cat-
egory trait connectivity’, as the overall numbers of trait 
correlations within categories relative to total number 
of trait-pairs across the whole LTN, and (3) the ‘overall 
LTN across-category trait connectivity’, as the overall 
numbers of correlations among traits of different pre-
defined categories across the whole LTN relative to the 
total number of trait-pairs across the whole LTN. We 
tested whether these ratios were significantly higher than 
the ratio of significant correlations relative to total cor-
relations tested across the LTN. Furthermore, we tested 
whether these two parameters varied across nine forests 
in association with climate using least squares regres-
sion, with log-transformation.

Soil and climate data

Soil total nitrogen (STN, g kg−1) was determined using 
an elemental analyzer (Vario Analyzer, Elementar, 
Germany). Climate variables, that is, mean annual 
temperature (MAT) and precipitation (MAP), were ex-
tracted at 1  ×  1  km spatial resolution using the inter-
polation software ANUSPLIN (He et al., 2014) based 
on 740  climate stations of the China Meteorological 
Administration from 1961–2007.

Data analysis, including simulated networks 
to test for the intrinsic dependence of 
LTN parameters on species-richness and 
trait numbers

The LTN-level parameters and trait-level parameters, 
and the category and overall LTN category trait connec-
tivities were calculated using the ‘Igraph’ package in R.

Ordinary least square regression was used to test the 
relationships of network parameters with latitude, and 
with climate and soil variables. Spearman rank correla-
tion was used to quantify similarity of the rank of trait-
level parameters (k, C, B and CC) among the nine sites.

To test the dependence of LTN-level parameters in-
trinsically on the numbers of species and numbers of 
traits, we conducted simulations based on the entire 
dataset combining species from all communities. We 
randomly sampled species numbers from 10 to 394, and 
trait numbers from 10 to 35 by sampling with replace-
ment, and for each combination of species and trait 
number, 500 LTNs were determined and their LTN-level 
parameters were calculated. We plotted the average val-
ues of LTN-level parameters against numbers of traits 
and species considered.

To test whether the observed trends of LTN param-
eters with climate differed from those for simulations 

based on sampling species sets of different sizes from a 
random species pool, we compared the slopes of the least 
square regressions of parameters versus climate for the 
observed parameters, the simulated parameters based 
on randomly sampling communities with different spe-
cies richness, and tested whether the slopes overlapped 
in their confidence intervals.

To further test the robustness of climatic trends of 
LTN-level parameters, we conducted two sets of sim-
ulations. First, we tested the potential dependence of 
the climate association of LTN-level parameters on the 
number of leaf traits. Thus, for each site at their spe-
cific species richness, we subsampled 27–34 leaf traits 
of the 35 measured, determined LTNs, calculated ED, 
D, AL, AC and Q (500 iterations), then we tested the 
association of average simulated LTN-level parame-
ters with climate. Second, to further clarify whether, 
all else being equal, the species richness would affect 
the climate association of LTN parameters, we used 
the species number of the coniferous forest, which had 
the lowest species number (n = 15), and thus randomly 
sampled 15  species for each of the other forests (500 
iterations) and determined LTN-level parameters, then 
we tested the association of average LTN-level param-
eters with climate.

To test the generality of the importance of given traits 
with LTNs across forests, we tested the relationships 
across traits between the ‘stability’ of each LTN-trait 
level parameter across the nine forests and the mean 
value of the LTN-trait-level parameter, considering sta-
bility as the inverse of the coefficient of variation (Zhang 
et al., 2017):

where i is a node parameter (i.e. k, C, B or CC), and SDi 
is the standard deviation of parameter i among nine sites. 
Traits with higher stability maintain their relative impor-
tance in the network topology more robustly across the 
range of forests sampled across the climatic gradient. Thus, 
a positive relationship across the measured traits of trait 
stability with the mean LTN parameter value would sig-
nify that those traits that are on average important within 
the LTN across the forests also tend to maintain their im-
portance within the networks of the different forests.

RESU LTS A N D DISCUSSION

Latitudinal and climatic trends of leaf trait 
network complexity

Our analysis provided a new level of resolution of com-
plexity in the organisation of species’ traits within an 
across ecosystems. Beyond quantifying the variation of 
the traits, or even the numbers of associations among 

(1)stabilityi =
Meani

SDi
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traits, network analysis breaks new ground in the iden-
tification of configurations and modularity of these 
associations, and their functional categories. As hy-
pothesised, the leaf trait networks (LTNs) shifted across 
forests of the Northern Hemisphere with climate, from 
simpler networks with lower connectivity for the conif-
erous forests with lower species diversity in the higher 
latitude cold temperate zone, to greater complexity and 
connectivity for tropical rainforests (Figure 1; Table 
S4, and Appendix B). Thus, both the diameter (D) and 
average path length (AL) were correlated with latitude, 
indicating the greater connectivity of LTNs from cold-
temperate forests to tropical forests (Figure S7). These 
latitudinal patterns were strongly related to climate, that 
is, to mean annual temperature and rainfall (Figure 2), 
and partially with increasing soil nitrogen concentration 
(Figure S8). Moreover, we found that average clustering 
coefficient (AC) also increased with latitude (Figures S7 
and S8), suggesting increasing trait differentiation into 
clusters within the LTNs from coniferous to tropical 
forests. Notably, the same climatic trends of D, AL and 
AC were observed when calculating LTNs for simulated 
forests with subsampled numbers of traits (Table S5). 
Across the forests, the network edge density (ED) and 
modularity (Q) were statistically independent of latitude, 
climate, and soil nitrogen concentration (Figures S9).

As hypothesised, the LTN parameters were strongly 
sensitive to forest species richness, when simulating for-
ests with different species numbers drawn from the pool 

of all species across the nine forests. Thus, when sim-
ulating forests with higher species numbers, the LTNs 
increased in edge density, and decreased in diameter, av-
erage path length and average clustering coefficient, and 
showed a decreased followed by an increase in modular-
ity; all parameters eventually approached stable values, 
though typically only after forests were simulated with 
more than 10–100  species (Figures 10a–e). Similarly, 
when simulating forest LTNs with increasing numbers of 
randomly sampled traits, the edge density, the diameter, 
average path length average clustering coefficient and 
modularity decreased, though with diminishing slope, 
and only a weak effect of further traits above 35 (Figure 
S11a–e). These effects indicate that more diverse commu-
nities, with higher species numbers, are more likely to 
show significant correlation between traits, and thus to 
result in networks of greater connectivity and complex-
ity. Further the consideration of additional traits would 
further resolve trait network connectivity and complex-
ity. Notably, the specific traits considered would be im-
portant; our simulations considered randomly sampled 
traits across our diverse suite of measured variables. The 
influence of including additional traits would depend on 
which traits were included, and their intrinsic relation-
ships with other traits. For example, if additional traits 
were included that were intrinsically highly correlated 
with others within the network, this would be expected 
to especially increase network connectivity, and also the 
modularity, if the newly included traits were correlated 
disproportionately with some but not others within the 
network.

We tested whether the higher species numbers in 
lower latitude forests could account for the observed 
relationships of forest LTN parameters with latitude 
if all species were drawn randomly from a single pool 
(Figure S12). Such a finding would be analogous to the 
well-recognised dependence of ecosystem processes on 
species-richness due to its representation of functional di-
versity, often referred to as the ‘sampling’ effect (Loreau 
& Hector, 2001). We tested the differences between the 
observed relationships of LTN parameters and climate 
and the trends arising due simply to species-richness in 
simulated forests based on randomly sampling species 
from the total species pool, and found that the observed 
trends could be explained by species richness (Figures 
S12–S14; Table S6). To further test the role of species rich-
ness in determining variation in LTN parameters across 
forests across latitudes, we sampled randomly from each 
forest 15  species, that is, the number of species in the 
most species-poor community, and calculated LTNs for 
each forest. This simulation reversed the climatic trend 
for diameter, modularity, and lower edge density (Figure 
S15). This analysis confirmed that species-richness is the 
principal mediator of the relationship of LTN parame-
ters to climate. Therefore, the assembly of fewer species 
in stressful ecosystems, within given niches, and over-
all, can explain the effect of climate on LTN parameters, 

F I G U R E  2   The relationships between network diameter (a and 
d), average path length (b and e) and average clustering coefficient 
(c and f) of the leaf trait networks and environmental factors 
across nine forests across a continental climatic gradient. In each 
panel, only regressions with p < 0.05 in the direction hypothesized 
are presented. The red lines were fitted using linear regression. 
Shaded areas indicate 95% confidence intervals. MAT: mean annual 
temperature; MAP: mean annual precipitation
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reflecting stronger constraints on trait diversity and thus 
on phenotype complexity. This mechanism for shift-
ing trait architecture with climate is analogous to the 
‘sampling’ effect of increasing functional diversity with 
higher species richness explaining higher productivity 
in more species-rich ecosystems (Cornwell & Ackerly, 
2009; Cornwell et al., 2006). Thus, as shown by our em-
pirical data and simulations, the numbers of tree species 
of given forests across a latitudinal gradient are in the 
range that will importantly influence LTN parameters, 
with more species-rich forests showing more connected 
and complex networks. These findings indicate that the 
shift of LTN parameters with climate can be explained 
at least in part as a consequence of the increase in func-
tional diversity in parallel with greater species richness.

We found strong evidence for the organisation of 
traits by functional class, similarly to gene or protein   
systems (Zhu et al., 2007), as shown by our tests of ‘cat-
egory trait connectivity’. Thus, across all forests, the 
category trait connectivity was higher than the between-
category trait connectivity (paired t-test; p  <  0.05). 
Furthermore, the connectivity of traits within categories 
varied across ecosystems (Table S7). This analysis re-
sulted in the same empirical tendency as the test for LTN 
complexity (Q and AC) across forests, that is, supporting 
greater trait complexity in LTNs at lower latitudes and 
with moister, warmer climates; the ‘category trait con-
nectivity’ was lower in coniferous forests and higher in 
tropical rainforests (log-transformed data; Figure S16; 
Table S7). Thus, the greater complexity of LTNs at lower 

F I G U R E  3   Variation in leaf trait network trait-level parameters among nine forests across a continental climatic gradient. Abbreviations: 
LDMC, leaf dry matter content; SLA, specific leaf area; LT, leaf thickness; LD, Leaf tissue density; C, leaf carbon concentration; N, leaf 
nitrogen concentration; Fe, leaf iron concentration; K, leaf potassium concentration; Mg, leaf magnesium concentration; P, leaf phosphorus 
concentration; C/N, the ratio of carbon to nitrogen concentration; N/P, the ratio of nitrogen concentration and phosphorus concentration; Chl 
a, leaf chlorophyll a concentration; Chl b, leaf Chlorophyll b concentration; Chl, total chlorophyll concentration; Chl a/b, The ratio of Chl a to 
Chl b; LA, leaf area; LDM, leaf dry mass; UE, upper epidermal cells width; PT, palisade tissue thickness; ST, sponge tissue thickness; PT/ST, 
the ratio of palisade to spongy tissue thickness; LE, lower epidermal cells width; VD, vessel diameter. PL, stomatal pore length; SW, stomatal 
width; SA, stomatal area; SL, stomatal length; SD, stomatal density; SAF, stomatal area fraction; SC, starch concentration; SSC, soluble sugar 
concentration; NSC, Non-structural carbohydrate concentration; SC/NSC, the ratio of SC to NSC; LCV, leaf caloric value. * The traits belong 
to multiple categories traits. LDM, SLA, LT, and LD are both in categories of leaf economics and light harvesting traits and leaf size and 
anatomy traits
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latitudes was resolved whether considering trait cluster-
ing using the designation of network modules ‘blind’ to 
a priori trait categories, or considering trait clustering 
into pre-determined trait functional classes. The greater 
association of traits within categories in warmer, wetter 
climates can be explained by the higher species numbers 
and associated wider ranges of trait values (Sack et al., 
2003). Notably, even if communities varying in climate 
had comparable species richness, the adaptation and 
plasticity of traits for tolerance in stressful environments 
might also cause shifts in networks with climate analo-
gous to those we found in this study, a hypothesis requir-
ing testing in future studies.

Identification of connected and central traits 
within LTNs

We found strong support for the hypothesis that certain 
traits are disproportionately important in their associa-
tions with other traits. We tested for generality in the im-
portance of given traits within the LTNs across the diverse 
forests, that is, the traits’ connectedness and centrality. 
Traits with high degree (k) and closeness (C) can be con-
sidered ‘hub traits’ within the networks. As hypothesised, 

leaf economics traits, including leaf thickness and asso-
ciated traits (i.e. the thickness of spongy mesophyll, ST 
and specific leaf area, SLA), were especially important as 
LTN hubs, with higher k and C, as expected from their 
allometric associations, relationships with biochemical 
traits relating to carbon or water fluxes per area, and 
leaf economics. Thus, area-based foliar concentration of 
nitrogen (N) and chlorophyll a and b (Chl a and Chl b) 
would be positively related to leaf thickness and/or nega-
tively related to SLA (Figure 3). Leaf thickness-related 
traits including spongy and palisade thickness, also had 
higher betweenness (B); such traits would act as bridges in 
the trait network by connecting other traits belonging to 
different modules (Figure 3).

Across the forests, the traits maintained their hier-
archy in terms of k and C in the LTNs, indicating the 
existence of conserved elements of LTN architecture 
across the climatic gradient. Thus, leaf thickness and ni-
trogen concentration were typically high in degree and 
closeness, and upper and lower epidermal cell thickness 
were typically low in these parameters. By contrast, trait 
rankings for betweenness and clustering coefficients 
were not well maintained across forests (Tables S8–S11). 
Further, across forests, the “stability” of LTN trait-level 
parameters, i.e., the traits’ general importance in the 

F I G U R E  4   Relationship between the degree (a), closeness (b), betweenness (c), clustering coefficient (d) and their stability in the leaf trait 
networks across nine forests across a continental climatic gradient. The red lines were fitted using linear regressions, and only significant 
regressions (p < 0.05) are shown. Shaded areas indicate 95% confidence intervals
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networks for the nine forests, was related to the average 
importance of the trait in the network; the stability coef-
ficient for given parameters was related to the mean pa-
rameter value for k, C, and CC, though not B (Figure 4). 
Thus, traits with higher importance in the LTN more 
consistently hold their place as LTNs shift along climatic 
gradients. As traits with lower values of LTN trait-level 
parameters are more variable in their roles within the 
network, we concluded that the connections among key 
traits and between key traits and other traits are more 
robust than those among peripheral traits.

Implications and challenges in assessing LTNs

The adaptation and/or assembly of multiple plant traits 
across environments was clarified with their correlative 
architecture quantified at high resolution by the analysis 
of LTNs. In recent years, trait correlations have become 
a key focus in assessing global trends in plant adapta-
tion, leading to improved parameterisation of ecosystem 
and earth system models, although traditional methods, 
such as principal component analysis (Diaz et al., 2016) 
or focusing on well-recognised suites of specific traits, 
such as the leaf economics spectrum tend to identify 
very few dimensions of trait covariation (Wright et al., 
2004). Though numerous studies have explored how 
traits correlate with climate across gradients, few tests 
have been made of how the strength of trait correlations 
individually, or as a network, shift across climates. As 
a supplement to other trait analyses (such as bivariate 
correlations or principal components analyses), LTNs 
enable important additional clarity and improved con-
sideration of the wider range of key plant traits. LTNs 
have been used in several previous studies to conceptu-
alise and visualise the relationship among plant traits 
(Mason & Donovan, 2015; Poorter et al., 2014; Sack et al., 
2013; Schneider et al., 2017), and very recently param-
eters been extracted to quantify trait network patterns 
(Flores-Moreno et al., 2019; Kleyer et al., 2019; Messier 
et al., 2017). Our study shows that across the continent, 
the architecture of the phenotype shifts to greater com-
plexity in resource-rich climates, reflecting the greater 
species richness and functional diversification. This re-
sult indicates a great potential of trait network param-
eters to highlight the shifts in the total phenotype across 
communities, in response to climate, and highlighted the 
degree that overall phenotype integration at community 
scale it is modulated by species richness.

Leaf economic traits, and in particular leaf thickness-
related traits, have been previously hypothesised as hub 
traits within LTNs (Flores-Moreno et al., 2019; Niinemets 
& Sack, 2006; Sack et al., 2003), and our study provides 
a unique test supporting this hypothesis. This result was 
not found in networks constructed using traits across or-
gans and life stages (Kleyer et al., 2019); our positive result 
suggests that resolving hub traits depends on the inclusion 

of sufficiently numerous and diverse organ-specific traits 
sampled across levels of organisation (i.e. anatomy, 
composition, pigments, etc.). Additional methodological 
improvements in our study also would contribute to the 
resolution of specific important hub traits, including sam-
pling many species with standard methodology.

Analysis of LTNs strongly supported the overall 
hypothesis that relatively species-poor communities 
of colder and more arid climates represent a narrower 
range of integrated phenotypes, resulting in a less con-
nected and simpler trait network topology, with fewer 
correlations among traits. By contrast, communities in 
the tropics showed greater LTN connectivity and com-
plexity, related to greater species numbers, consistent 
with greater functional diversity and differentiation into 
a greater number of niches. Notably, our finding con-
trasted with that of a previous study based on a compiled 
global database, which reported no shift of trait network 
parameters with climate (Flores-Moreno et al., 2019). 
That study had focused on few plant size-related traits 
and economic traits across environmental gradients and 
growth forms; while these types of traits are widely mea-
sured and available due to their important functions, 
their inter-relationships tend to be conservative. Our 
findings suggest that trait network analysis has greater 
potential to resolve variation among ecosystems when 
including traits that capture a wide range of aspects of 
the phenotype that are important to function and to eco-
logical adaptation. Future studies can extend the trait 
network approach to other traits of other organs, and 
can test LTN parameters will shift with the consider-
ation of intraspecific trait variability. This approach has 
great potential for including additional complexity, and 
showing how it scales up to influencing trait covariation 
at high resolution. We note that trait network topology 
and calculated parameters will depend on the traits in-
cluded. The selection of traits may influence the struc-
ture of LTNs, to an extent that requires further study 
in future work. It is important to evaluate the ability of 
LTNs to disentangle the importance of given traits and 
their topology for contrasting types of traits sets. A leaf 
trait is more likely to be a hub if many leaf traits are in-
cluded in a network; likewise, an economic trait is more 
likely to be a hub if many economic traits are included. 
Thus, a design such as used in this study, focusing on 
traits across levels of organisation for a key organ, would 
be well-suited to identify key central traits, and the over-
all network topology across diverse traits.

Our study resolved for the first time climatic trends in 
LTNs. We attribute this result to the greater quantity of 
data than previous analyses, the matching of measured 
plants with their native climate, and the standard measure-
ment protocols at all sites. While extensive plant trait data-
bases exist, such as TRY (https://www.try-db.org) (Kattge 
et al., 2011, 2020), and sPlot database (https://www.idiv.de/
en) (Bruelheide et al., 2018, 2019), the usefulness of trait 
networks will motivate greater efforts for well-matched 

https://www.try-db.org
https://www.idiv.de/en
https://www.idiv.de/en


1452  |      LEAF TRAIT NETWORK ALONG A CLIMATIC GRADIENT 

consistently collected data, such that these databases will 
fulfil their promise for constructing trait networks glob-
ally. Indeed, while our study highlighted shifts with cli-
mate, this transect of forests across the continent mainly 
varies in temperature (Zhang & Yang, 1995), and further 
LTN studies extending across a greater number and types 
of communities occupying different climates are needed to 
further test the generality of hub traits and to disentangle 
associations of LTN parameters with temperature from 
other environmental conditions.
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A PPEN DI X A

CA LCU LAT ION OF LT N-LEV EL A N D 
T R A I T- LEV EL PA R A M ET ERS

Calculation of LTN-level parameters

The edge density (ED) describes the density of the con-
nected edges between nodes in a network, that is, the 
proportion of actual connections among traits out of all 
possible connections.

where L is the number of edges in the network, and n is the 
number of node traits.

D refers to the maximum shortest path distance be-
tween any two traits, and AL the mean shortest path 
between all traits. A path is a sequence of traits, each 
connected by edges with the next; the shortest path is 
that between two traits with the fewest intervening traits.

where dij is the shortest distance between focal node 
trait vi and node trait vj, and n is the number of traits in 
the LTN. LTNs with high D and AL are ‘looser’, that is, 
they have an overall high level of independence among 
traits.

The AC was defined as the average of the clustering 
coefficient (CCs, see Eq. A9) of all traits in the LTN. 
Thus, the AC quantifies the average probability across 
each trait in the network, that the traits to which it is 
connected are themselves inter-connected (Armbruster 
et al., 2014); a high AC signifies fewer clusters, and a 
lower LTN complexity.

where li is the number of links between traits that are re-
lated to trait vi, and ti is the number of traits that are related 
to trait vi.

The Q of the LTN represents the degree of separation 
among modules, where modules are distinguished using 
the following iterated steps. First, we calculated the edge 
betweenness score of each edge, where the edge between-
ness score was the number of shortest paths through a focal 
trait-trait connection, and the Q value was calculated as:

where t is the iteration number, m is the number of edges, 
Aij is the element of the A adjacency matrix in row i and 
column j, ki is the degree of i, kj is the degree of j, and τ is 
1 if j and i are in the same module and 0 otherwise. Then, 
we removed the edge with the highest edge betweenness 
score and recalculated the Q value, and recalculated the 
edge betweenness of the edges. We then repeated this 
process; as edges with highest edge betweenness are re-
moved the graph becomes a dendrogram (Figure S6A). 
The final Q  =  max {Qt}, indicating particularly satis-
factory splits (Newman & Girvan, 2004). Then the den-
drogram was transformed into a modular trait network 
(Figure S6B). The calculated trait modules for the nine 
forests are shown in Figure 1 and Table S3.

Calculation of LTN trait-level parameters

To describe the importance of traits within LTNs, we used 
two parameters to quantify the ‘connectedness’ of each 
trait—the degree (k) and closeness (C); and two param-
eters to signify the ‘centrality’ of each trait—the between-
ness (B), and the clustering coefficient (CC) (summarized 
in Table 1; illustrated in Figure S5) (Deng et al., 2012). For 
each trait, k is defined as the number of edges connecting 
to other traits (i.e. the number of significant correlations 
with other traits). Leaf traits with the highest k were con-
sidered to be ‘hub traits’ in the LTN.

where aij is 1 given a significant relationship between traits 
vi and vj.

C is defined as the reciprocal of the mean of the short-
est path between a trait and all other traits in the LTN. 
Leaf traits with high C are thus closely connected to the 
other LTN traits.

where dij is the shortest distance between traits vi and vj, 
and n is the number of LTN traits.

B is defined by considering the shortest paths through 
edges between each trait-pair in the network, and count-
ing the numbers of these shortest paths that pass through 
each given trait. Traits with high B represent central, 
‘mediator traits’.

(A1)ED =
2L

n ⋅ (n − 1)

(A2)D = max
{

dij
}

(i ≠ j)

(A3)AL =
1

n ⋅ (n − 1)

∑

i≠ j

dij
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1

n

n
∑
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)

(A5)
Qt =

∑

��

Aij −
ki ⋅kj

2m

�

⋅ �

�

2m

(A6)ki =
∑
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∑

jk

(j, i, k)



      |  1455LI et al.

where σ ( j, i, k) is the number of shortest paths between 
traits vj and vk across the node vi.

Finally, the CC of traits was considered as another 
index of trait centrality within the network. The CC of 
a trait represents the degree of inter-connectivity of the 
traits to which it is connected; if the traits to which the 
focal trait are connected are themselves fully connected, 
then the CC of the focal trait is 1, whereas a focal trait 
that is connected to traits that are not themselves inter-
connected has a CC of 0.

where li is the number of links between traits connected 
to focal trait vi, and ti is the number of traits connected to 
focal trait vi.

A PPEN DI X B

LEA F TR A I T N ET WOR KS OF N I N E SI T E

1.	 Leaf traits network (LTN) of Huzhong

2.	 Leaf traits network (LTN) of Liangshui

3.	 Leaf traits network (LTN) of Changbai

(A9)CCi =
2li

ti
(

ti − 1
)
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4.	 Leaf traits network (LTN) of Dongling

5.	 Leaf traits network (LTN) of Taiyue

6.	 Leaf traits network (LTN) of Shennongjia

7.	 Leaf traits network (LTN) of Jiulian
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8.	 Leaf traits network (LTN) of Dinghu 9.	 Leaf traits network (LTN) of Jianfengling
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