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SUMMARY

Model selection is crucial to high-dimensional learning and inference for contemporary big 20

data applications in pinpointing the best set of covariates among a sequence of candidate inter-
pretable models. Most existing work assumes implicitly that the models are correctly specified or
have fixed dimensionality. Yet both features of model misspecification and high dimensionality
are prevalent in practice. In this paper, we exploit the framework of model selection principles
under the misspecified generalized linear models presented in Lv and Liu (2014) and investigate 25

the asymptotic expansion of the posterior model probability in the setting of high-dimensional
misspecified models. With a natural choice of prior probabilities that encourages interpretability
and incorporates the Kullback–Leibler divergence, we suggest the high-dimensional general-
ized Bayesian information criterion with prior probability for large-scale model selection with
misspecification. Our new information criterion characterizes the impacts of both model mis- 30

specification and high dimensionality on model selection. We further establish the consistency
of covariance contrast matrix estimation and the model selection consistency of the new infor-
mation criterion in ultra-high dimensions under some mild regularity conditions. The numerical
studies demonstrate that our newmethod enjoys improved model selection consistency compared
to its main competitors. 35
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1. INTRODUCTION

With rapid advances of modern technology, big data of unprecedented size, such as genetic
and proteomic data, fMRI and functional data, and panel data in economics and finance, are40

frequently encountered in many contemporary applications. In these applications, the dimen-
sionality p can be comparable to or even much larger than the sample size n. A key assumption
that often makes large-scale learning and inference feasible is the sparsity of signals, meaning
that only a small fraction of covariates contribute to the response when p is large compared to n.
High-dimensional modeling with dimensionality reduction and feature selection plays an impor-45

tant role in these problems, e.g., Fan & Lv (2010); Bühlmann & van de Geer (2011); Fan & Lv
(2018). A sparse modeling procedure typically produces a sequence of interpretable candidate
models, each involving a possibly different subset of covariates. An important question is how
to compare different models in high dimensions when models are possibly misspecified.

The problem of model selection has been studied extensively by many researchers in the past50

several decades. Among others, well-known model selection criteria include the Akaike infor-
mation criterion (AIC) (Akaike, 1973, 1974) and Bayesian information criterion (BIC) (Schwarz,
1978), where the former is based on the Kullback–Leibler divergence principle of model selec-
tion and the latter is originated from the Bayesian principle of model selection. A great deal
of work has been devoted to understanding and extending these model selection criteria to dif-55

ferent model settings; see, for example, Bozdogan (1987); Foster & George (1994); Konishi &
Kitagawa (1996); Ing (2007); Chen & Chen (2008); Chen & Chan (2011); Liu & Yang (2011);
Ninomiya & Kawano (2016); Eguchi (2017); Hsu et al. (2019). Fong & Holmes (2020) studied
the links between the cross-validation and Bayesian model selection. The connections between
the Akaike information criterion and cross-validation have been investigated in Stone (1977);60

Hall (1990); Peng et al. (2013) for various contexts. In particular, Fan & Tang (2013) showed
that classical information criteria such as Akaike information criterion and Bayesian information
criterion can no longer be consistent for model selection in ultra-high dimensions and proposed
the generalized information criterion (GIC) for tuning parameter selection in high-dimensional
penalized likelihood, for the scenario of correctly specified models. See also Barber & Candès65

(2015); Bühlmann & van de Geer (2015); Candès et al. (2018); Shah & Bühlmann (2018); Fan
et al. (2020, 2019) for some recent work on high-dimensional inference for feature selection.

Most existing work on model selection and feature selection usually make an implicit assump-
tion that the model under study is correctly specified or of fixed dimensions. Given the practical
importance of model misspecification, White (1982) laid out a general theory of maximum like-70

lihood estimation in misspecified models for the case of fixed dimensionality and independent
and identically distributed observations. Cule et al. (2010) also studied the maximum likelihood
estimation of a multi-dimensional log-concave density when the model is misspecified. Recently,
Lv & Liu (2014) investigated the problem of model selection with model misspecification and
originated asymptotic expansions of both Kullback–Leibler divergence and Bayesian principles75

in misspecified generalized linear models, leading to the generalized Akaike information crite-
rion (GAIC) and generalized Bayesian information criterion (GBIC), for the case of fixed dimen-
sionality. A specific form of prior probabilities motivated by the Kullback–Leibler divergence
principle led to the generalized Bayesian information criterion with prior probability (GBICp).
Yet both features of model misspecification and high dimensionality are prevalent in contempo-80

rary big data applications. Thus an important question is how to characterize the impacts of both
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model misspecification and high dimensionality on model selection. We intend to provide some
partial answers to this question in the paper.

Let us first gain some insights into the challenges of the aforementioned problem by con-
sidering a motivating example. Assume that the response Y depends on the covariate vec- 85

tor (X1, . . . , Xp)T through the functional form Y = f(X1) + f(X2 �X3) + f(X4 �X5) + ",
where f(x) = x3/(x2 + 1) and the remaining setting is the same as in Section 4.2. Consider
sample size n = 200 and vary dimensionality p from 100 to 3200. Without any prior knowledge
of the true model structure, we take the linear regression model

y = Z� + " (1)

as the working model and apply some information criteria to hopefully recover the oracle 90

working model, where y is an n-dimensional response vector, Z is an n⇥ p design matrix,
� = (�1, . . . ,�p)T is a p-dimensional regression coefficient vector, and " is an n-dimensional
error vector. Following Candès et al. (2018) , we define the oracle working model M0 as the
Markov blanket for Y , that is, M0 is the smallest subset of indices such that Y is independent
of XMc

0
conditional on XM0

; see Lauritzen (1996) and Pearl (2014). In this example, the or- 95

acle working model consists of the first five covariates. When p = 100, the traditional Akaike
information criterion and Bayesian information criterion, which ignore model misspecification,
tend to select a model with size larger than five. In contrast, GBICp in Lv & Liu (2014) selects
the oracle working model around 60% of the time. However, when p is increased to 3200, these
methods fail to select such a model with significant probability and the prediction performance 100

of the selected models deteriorates. This motivates us to study the problem of model selection
in high-dimensional misspecified models. In contrast, our new method can recover the oracle
working model with significant probability in this challenging scenario.

The main contributions of our paper are threefold. First, we provide the asymptotic expansion
of the posterior model probability in high-dimensional misspecified generalized linear models, 105

which involves delicate and challenging technical analysis. Motivated by the asymptotic expan-
sion and a natural choice of prior probabilities that encourages interpretability and incorporates
Kullback–Leibler divergence, we suggest the high-dimensional generalized Bayesian informa-
tion criterion with prior probability (HGBICp) for large-scale model selection with misspecifi-
cation. Second, our work provides rigorous theoretical justification of the covariance contrast 110

matrix estimator that incorporates the effect of model misspecification and is crucial for practi-
cal implementation. Such an estimator is shown to be consistent in the general setting of high-
dimensional misspecified models. Third, we establish the model selection consistency of our new
information criterion HGBICp in ultra-high dimensions under some mild regularity conditions. In
particular, our work provides important extensions to the studies in Lv & Liu (2014) and Fan & 115

Tang (2013) to the cases of high dimensionality and model misspecification, respectively. The
aforementioned contributions make our work distinct from other studies on model misspecifica-
tion including Bühlmann & van de Geer (2015); Hsu et al. (2019); Shah & Bühlmann (2018).
Since Lv & Liu (2014) is closely related to our paper, we want to reiterate the main differences
between these two works. First, the study in Lv & Liu (2014) has focused on fixed dimensional- 120

ity. Hence, our model selection criterion differs from that in Lv & Liu (2014) in how it penalizes
the model complexity as discussed in Section 2.2. Although both criteria rely on the estimation of
the covariance contrast matrix, the consistency result of the covariance contrast matrix estimator
in Lv & Liu (2014) does not allow model misspecification. We establish the consistency of the
estimator for the covariance contrast matrix even under model misspecification in Section 3.3. 125

Finally, in light of the new consistency result, we further provide a model selection consistency
theorem for our model selection criterion, which result was missing in Lv & Liu (2014).
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2. LARGE-SCALE MODEL SELECTION WITH MISSPECIFICATION

2.1. Model misspecification
The main focus of this paper is investigating ultra-high dimensional model selection with130

model misspecification in which the dimensionality p can grow nonpolynomially with sample
size n. Let Z be the n⇥ p design matrix with all available covariates. We denote by M an arbi-
trary subset with size d of all p available covariates and X = (x1, . . . , xn)T the corresponding
n⇥ d fixed design matrix given by the covariates in model M. Assume that conditional on the
covariates in model M, the response vector Y = (Y1, . . . , Yn)T has independent components135

and each Yi follows distribution Gn,i with density gn,i, with all the distributions Gn,i unknown
to us in practice. Denote by gn =

Qn
i=1 gn,i the product density and Gn the corresponding true

distribution of the response vector Y .
Since the collection of true distributions {Gn,i}1in is unknown to practitioners, one often

chooses a family of working models to fit the data. One class of popular working models is140

the family of the generalized linear models McCullagh & Nelder (1989) with a canonical link
and natural parameter vector ✓ = (✓1, . . . , ✓n)T with ✓i = xTi �, where xi is a d-dimensional
covariate vector and � = (�1, . . . ,�d)T is a d-dimensional regression coefficient vector. Let ⌧ >
0 be the dispersion parameter. Then under the working model of the generalized linear models,
the conditional density of response yi given the covariates in model M is assumed to take the145

form

fn,i(yi) = exp{yi✓i � b(✓i) + c(yi, ⌧)}, (2)

where b(·) and c(·, ·) are some known functions with b(·) twice continuously differentiable
and b00(·) bounded away from 0 and 1. Fn denotes the corresponding distribution of the n-
dimensional response vector y = (y1, . . . , yn)T with the product density fn =

Qn
i=1 fn,i assum-

ing the independence of components. Since the generalized linear model is chosen by the user,150

the working distribution Fn can be generally different from the true unknown distribution Gn.
For the generalized linear models in (2) with natural parameter vector ✓, let us define two

vector-valued functions b(✓) = {b(✓1), . . . , b(✓n)}T and µ(✓) = {b0(✓1), . . . , b0(✓n)}T , and a
matrix-valued function ⌃(✓) = diag{b00(✓1), . . . , b00(✓n)}. The basic properties of the general-
ized linear models give the mean vector E(y) = µ(✓) and the covariance matrix cov(y) = ⌃(✓)155

with ✓ = X�. The product density of the response vector y can be written as

fn(y;�, ⌧) =
nY

i=1

fn,i(yi) = exp{yTX� � 1T b(X�) +
nX

i=1

c(yi, ⌧)}, (3)

where 1 represents the n-dimensional vector with all components being one. Since the gener-
alized linear models is only our working model, (3) results in the quasi-log-likelihood function
White (1982)

`n(y;�, ⌧) = log fn(y;�, ⌧) = yTX� � 1T b(X�) +
nX

i=1

c(yi, ⌧). (4)

Hereafter we treat the dispersion parameter ⌧ as a known parameter and focus on our main160

parameter of interest �. Whenever there is no confusion, we will slightly abuse the notation and
drop the functional dependence on ⌧ .

The quasi-maximum likelihood estimator for the parameter vector � in our working model of
the generalized linear models (2) is defined as b�n = argmax�2Rd `n(y,�), which is the solution
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to the score equation 165

 n(�) = @`n(y,�)/@� = XT {y � µ(X�)} = 0. (5)

For the linear regression model with µ(X�) = X�, such a score equation becomes the familiar
normal equationXT y = XTX�. Such a vector � is called quasi-maximum likelihood estimator
when the model is misspecified. Hereafter, we call � maximum likelihood estimator for simplic-
ity since we do not know whether the model is misspecified or not in practice. The Kullback–
Leibler divergence (Kullback & Leibler, 1951) of our working model Fn from the true model 170

Gn is defined as I{gn; fn(·,�)} = E{log gn(Y )}� E{`n(Y,�)} with the response vector Y
following the true distribution Gn. As in Lv & Liu (2014), we consider the best working model
that is closest to the true model under the Kullback–Leibler divergence. Such a model has pa-
rameter vector �n,0 = argmin�2Rd I{gn; fn(·,�)}, which solves the equation

XT {E(Y )� µ(X�)} = 0. (6) 175

We see that equation (6) is simply the population version of the score equation given in (5).
Following Lv & Liu (2014), we introduce two matrices, Fisher information in outer product

form and in Hessian form. These matrices play a key role in model selection with model mis-
specification. Under the true distribution Gn, we have cov

�
XTY

�
= XT cov(Y )X . Computing

the score equation at �n,0, Fisher information matrix in outer product form is defined by 180

Bn = cov{ n(�n,0)} = cov
�
XTY

�
= XT cov(Y )X (7)

with cov(Y ) = diag{var(Y1), . . . , var(Yn)} by the independence assumption and under the true
model. Under the working model Fn, it holds that cov

�
XTY

�
= XT⌃(X�)X . The Fisher in-

formation matrix in Hessian form is defined by

An(�) =
@2I{gn; fn(·,�)}

@�2 = �E

⇢
@2`n(Y,�)

@�2

�
= XT⌃(X�)X, (8)

and denote by An = An(�n,0). Hence we see that matrices An and Bn are the covariance ma-
trices of XTY under the best working model Fn(�n,0) and the true model Gn, respectively. 185

To account for the effect of model misspecification, we define the covariance contrast matrix
Hn = A�1

n Bn as revealed in Lv & Liu (2014). Observe that An and Bn coincide when the best
working model and the true model are the same. In this case, Hn is an identity matrix of size d.

2.2. High-dimensional generalized Bayesian information criterion with prior probability
Given a set of competing models {Mm : m = 1, . . . ,M}, a popular model selection pro- 190

cedure using Bayesian principle of model selection is to first put nonzero prior probability
↵Mm on each model Mm, and then choose a prior distribution µMm for the parameter vec-
tor in the corresponding model. We use dm = |Mm| to denote the dimensionality of candidate
model Mm and suppress the subscript m for conciseness whenever there is no confusion. As-
sume that the density function of µMm is bounded in RMm = Rdm and locally bounded away 195

from zero in a shrinking neighborhood of �n,0. The Bayesian principle of model selection is
to choose the most probable model a posteriori; that is, choose the model Mm0 such that
m0 = argmaxm2{1,...,M} S(y,Mm;Fn), where

S(y,Mm;Fn) = log

Z
↵Mm exp{`n(y,�)}dµMm(�) (9)

with the log-likelihood `n(y,�) as defined in (4) and the integral over Rdm .
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The choice of prior probabilities ↵Mm is important in high dimensions. Lv & Liu (2014) sug-200

gested the use of prior probability ↵Mm / e�Dm for each candidate modelMm, where the quan-
tity Dm is defined as Dm = E[I{gn; fn(·, b�n,m)}� I{gn; fn(·,�n,m,0)}] with the subscript m
indicating a particular candidate model. The motivation is that the further the maximum likeli-
hood estimator b�n,m is away from the best misspecified generalized linear models Fn(·,�n,m,0),
the lower prior probability we assign to that model. In the high-dimensional setting when di-205

mensionality p can be much larger than sample size n, it is sensible to also take into account
the complexity of the space of all possible sparse models with the same size as Mm. Such an
observation motivates us to consider a new prior probability of the form

↵Mm / p�de�Dm (10)

with d = |Mm|. The complexity factor p�d is motivated by the asymptotic expansion of
{p!/(p� d)!}�1. In fact, an application of Stirling’s formula yields log{p!/(p� d)!}�1 ⇡210

�d log p = log(p�d) up to an additive term of order o(d) when d = o(p). The factor of
[p!/{(p� d)!d!}]�1 was also exploited in Chen & Chen (2008) who showed that using the term
[p!/{(p� d)!d!}]�� with some constant 0 < �  1, the extended Bayesian information criterion
can be model selection consistent for the scenario of correctly specified models with p = O(n)
for some positive constant  satisfying 1� (2)�1 < �. A different way of integrating the num-215

ber of candidate models into the prior was considered in Szulc (2012) when the model under
study is correctly specified. Moreover, we add the term d! to reflect a stronger prior on model
sparsity. See also Fan & Tang (2013) for the characterization of model selection in ultra-high
dimensions with correctly specified models.

A similar normalization term can also be found in some fully Bayesian methods; see, e.g.,220

Castillo et al. (2015) for more details. However, the fully Bayesian methods need to specify
the distribution of parameter �, whereas our method only puts some prior probabilities on the
candidate models Mm, and the distribution µMm(�) of parameter � given model Mm does
not need to be specified. Furthermore, fully Bayesian approaches require posterior computation,
which may limit their use in high dimensions; see, e.g., George (2000).225

The asymptotic expansion of the posterior model probability in Theorem 1 to be presented
in Section 3.2 motivates us to introduce the high-dimensional generalized Bayesian information
criterion with prior probability (HGBICp) for large-scale model selection with misspecification.

DEFINITION 1. We define HGBICp = HGBICp(y,Mm;Fn) of model Mm as

HGBICp = �2`n(y, b�n) + 2(log p⇤)|Mm|+ tr( bHn)� log | bHn|, (11)230

where bHn is a consistent estimator ofHn and p⇤ = pn1/2. Here, consistency is in terms of trace
and log determinant of the matrix.

In correctly specified models, Hn = A�1
n Bn = Id and so the term tr( bHn)� log | bHn| in (11)

is asymptotically close to |Mm| when bHn is a consistent estimator ofHn. Thus compared to the
Bayesian information criterion with factor log n, the HGBICp contains a larger factor of order235

log p when dimensionality p grows nonpolynomially with sample size n. This leads to a heavier
penalty on model complexity, similarly to that in Fan & Tang (2013).

As shown in Lv & Liu (2014), the HGBICp defined in (11) can also be viewed as a sum of three
terms: the goodness of fit, model complexity, and model misspecification; see Lv & Liu (2014)
for more details. Furthermore, HGBICp is also related to Takeuchi’s information criterion TIC =240

�2`n(y, b�n) + 2tr( bHn) in Takeuchi (1976), which contains similar model misspecification term
tr( bHn), but lacks any model complexity term.
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Our new information criterion HGBICp provides an important extension of the original
model selection criterion GBICp = �2`n(y, b�n) + (log n)|Mm|+ tr( bHn)� log | bHn| in Lv &
Liu (2014), which was proposed for the scenario of model misspecification with fixed dimen- 245

sionality, by explicitly taking into account the high dimensionality of the whole feature space.
Moreover, in view of (11) and the definition of p⇤, HGBICp has an additional model complexity
term 2(log p)|Mm|.

3. ASYMPTOTIC PROPERTIES OF HGBICp

3.1. Technical assumptions 250

We list the technical assumptions required to prove the main results and the asymptotic prop-
erties of the maximum likelihood estimator with diverging dimensionality. Denote by Z the full
design matrix of size n⇥ p whose (i, j)th entry is xij . For any subset Mm of {1, . . . , p}, ZMm

denotes the submatrix of Z formed by columns whose indices are inMm. When there is no con-
fusion, we drop the subscript and useX = ZMm for fixedM. For theoretical reasons, we restrict 255

the parameter space toB0 which is a sufficiently large convex and compact set ofRp. We consider
parameters with bounded support. Namely, we define B(Mm) = {� 2 B0 : supp(�) = Mm}
and B = [|Mm|KB(Mm) where the maximum support size K is taken to be o(n). Moreover,
we assume that c0  b00(Z�)  c�1

0 for any � 2 B where c0 is some positive constant.
We use the following notation. For matrices, k · k2, k · k1, and k · kF denote the matrix op- 260

erator norm, entrywise maximum norm, and matrix Frobenius norm, respectively. For vectors,
k · k2 and k · k1 denote the vector L2-norm and maximum norm, and (v)i represents the ith
component of vector v. Denote by �min(·) and �max(·) the smallest and largest eigenvalues of a
given matrix, respectively.

Assumption 1. There exists some positive constant c1 such that for each i = 1, . . . , n, 265

pr(|Wi| > t)  c1 exp(�c�1
1 t) for any t > 0, where W = (W1, . . . ,Wn)T = Y � E(Y ). The

variances of Yi are bounded below uniformly in i and n.

Assumption 2. Let u1 and u2 be some positive constants and emn = O(nu1) a diverging
sequence. We have the following bounds max{kE(Y )k1, sup�2B kµ(Z�)k1}  emn, and
Pn

i=1

⇣
[E(Yi)�{µ(X�n,0)}i]2

var(Yi)

⌘2
= O(nu2). For simplicity, we also assume that emn diverges faster 270

than log n.

Assumption 3. Let K = o(n) be a positive integer. There exist positive constants c2 and
u3 such that, for any Mm ⇢ {1, . . . , p} such that |Mm|  K, c2  �min(n�1ZT

Mm
ZMm) 

�max(n�1ZT
Mm

ZMm)  c�1
2 , and kZk1 = O(nu3). For simplicity, we assume that columns of

Z are normalized:
Pn

i=1 x
2
ij = n for all j = 1, . . . , p. 275

Assumption 1 is a standard tail assumption on the response variable Y . This assumption en-
sures that the sub-exponential norm of the response is bounded. Assumptions 2 and 3 have their
counterparts in Fan & Tang (2013). However, Assumption 2 is modified to deal with model
misspecification. More specifically, the means of the true distribution and fitted model, as well
as their relations, are assumed in Assumption 2. The first part simultaneously controls the tail 280

behavior of the response and fitted model. The second part ensures that the mean of the fitted
distribution does not deviate from the true mean too significantly. We would like to point out that
such an assumption does not limit the generality of model misspecification since the misspecifi-
cation considered in the paper is due to the distributional mismatch between the working model
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and the underlying true model. Even in the misspecified scenario, the fitted mean vector from285

the working model can approximate the true mean vector under certain regularity conditions.
Assumption 3 is on the design matrix X . The first part is important for the consistency of the
maximum likelihood estimator b�n and the uniqueness of the population parameter. Assumptions
2 and 3 also provide bounds for the eigenvalues of An(�) and Bn. See Fan & Tang (2013) for
further discussions on these assumptions.290

For the following assumptions, we define a neighborhood around �n,0. Let
�n = emn(log p)1/2 = O{nu1(log p)1/2}. We define the neighborhood Nn(�n) = {� 2 Rd :
k(n�1Bn)1/2(� � �n,0)k2  (n/d)�1/2�n}. We assume that (n/d)�1/2�n converges to zero so
that Nn(�n) is an asymptotically shrinking neighborhood of �n,0.

Assumption 4. Assume that the prior density relative to the Lebesgue measure µ0 on Rd,295

⇡{h(�)} = dµMm/dµ0{h(�)} satisfies inf�2Nn(2�n)
⇡{h(�)} � c3 and sup�2Rd ⇡{h(�)} 

c�1
3 , where c3 is a positive constant, and h(�) = (n�1Bn)1/2�.

Assumption 5. Let Vn(�) = B�1/2
n An(�)B

�1/2
n , Vn = Vn(�n,0) = B�1/2

n AnB
�1/2
n , and

eVn(�1, . . . ,�d) = B�1/2
n eAn(�1, . . . ,�d)B

�1/2
n , where eAn(�1, . . . ,�d) is the matrix whose jth

row is the corresponding row of An(�j) for each j = 1, . . . , d. There exists some sequence300

⇢n(�n) such that ⇢n(�n)�2nd converges to zero, max�1,...,�d2Nn(�n)
keVn(�1, . . . ,�d)� Vnk2 

⇢n(�n), and max�2Nn(2�n)
max[|�min{Vn(�)� Vn}|, |�max{Vn(�)� Vn}|]  ⇢n(�n).

Similar versions of Assumptions 4 and 5 were imposed in Lv & Liu (2014). Under Assump-
tion 4, the prior density is bounded above globally and bounded below in a neighborhood of
�n,0. This assumption is used in Theorem 1 for the asymptotic expansion of the posterior model305

probability. Assumption 5 is on the continuity of the matrix-valued function Vn and eVn in a
shrinking neighborhood Nn(2�n) of �n,0. The first and second parts control the expansions of
expected log-likelihood and score functions, respectively. Assumption 5 ensures that the remain-
ders are negligible in approximating S(y,Mm;Fn). Some detailed discussion on Assumption
5 is provided in Section D of the Supplementary Material. See also Lv & Liu (2014) for more310

discussions on these assumptions.

3.2. Asymptotic expansion of the Bayesian principle of model selection
We now provide the asymptotic expansion of the posterior model probability with the prior

introduced in Section 2.2. As mentioned earlier, the Bayesian principle chooses the model that
maximizes S(y,Mm;Fn) given in (9). To ease the presentation, for any � 2 Rd, we define a315

quantity

`⇤n(y,�) = `n(y,�)� `n(y, b�n), (12)

which is the deviation of the quasi-log-likelihood from its maximum. Then from (9) and (12),
we have

S(y,Mm;Fn) = `n(y, b�n) + logEµMm
{Un(�)

n}+ log↵Mm , (13)

where Un(�) = exp{n�1`⇤n(y,�)}. With the choice of the prior probability in (10), it is clear320

that

log↵Mm = �Dm � d log p. (14)
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Aided by (13) and (14), some delicate technical analysis unveils the following expansion of
S(y,Mm;Fn).

THEOREM 1. Assume that Assumptions 1–5 hold and let ↵Mm = Cp�de�Dm with C > 0
some normalization constant. If (n/d)�1/2�n = o(1), then we have with probability tending to 325

one,

S(y,Mm;Fn) = `n(y, b�n)� (log p⇤)|Mm|� 1

2
tr(Hn) +

1

2
log |Hn|

+ log(Cc4) + o(eµn), (15)

whereHn = A�1
n Bn, p⇤ = pn1/2, eµn = max{tr(A�1

n Bn), 1}, c3  c4  c�1
3 , and c3 is the pos-

itive constant given in Assumption 4. 330

Theorem 1 lays the foundation for investigating high-dimensional model selection with model
misspecification. Based on the asymptotic expansion in (15), our new information criterion
HGBICp in (11) is defined by replacing the covariance contrast matrix Hn with a consistent
estimator bHn. The HGBICp naturally characterizes the impacts of both model misspecification
and high dimensionality on model selection. A natural question is how to ensure a consistent 335

estimator for Hn. We address such a question in the next section.

3.3. Consistency of covariance contrast matrix estimation
For practical implementation of HGBICp, it is of vital importance to provide a consistent es-

timator for the covariance contrast matrix Hn. To this end, we consider the plug-in estimator
bHn = bA�1

n
bBn with bAn and bBn defined as follows. Since the maximum likelihood estimator 340

b�n provides a consistent estimator of �n,0 in the best misspecified generalized linear models
Fn(·,�n,0), a natural estimate of matrix An is

bAn = An(b�n) = XT⌃(Xb�n)X.

When the model is correctly specified, the following simple estimator

bBn = XTdiag
hn

y � µ(Xb�n)
o
�
n
y � µ(Xb�n)

oi
X

with � denoting the componentwise product gives an asymptotically unbiased estimator of the
matrix Bn. 345

THEOREM 2. Assume that Assumptions 1–3 hold, n�1An(�) is Lipschitz in operator norm
in the neighborhood Nn(�n), d = O(n1), and log p = O(n2) with constants satisfying 0 <
1 < 1/4, 0 < u3 < 1/4� 1, 0 < u2 < 1� 41 � 4u3, 0 < u1 < 1/2� 21 � u3, and 0 <
2 < 1� 41 � 2u1 � 2u3. Then the plug-in estimator bHn = bA�1

n
bBn satisfies that tr( bHn) =

tr(Hn) + oP (1) and log | bHn| = log |Hn|+ oP (1) with significant probability 1�O(n�� + 350

p1�8c2�2
n), where � is some positive constant and �n is a slowly diverging sequence such that

�n emn(K1/2n�1 log p)1/2 ! 0.

Theorem 2 improves the result in Lv & Liu (2014) in two important aspects. First, the consis-
tency of the covariance contrast matrix estimator was justified in Lv & Liu (2014) only for the
scenario of correctly specified models. Our new result shows that the simple plug-in estimator 355

bHn still enjoys consistency in the general setting of model misspecification. Second, the result in
Theorem 2 holds for the case of high dimensionality. These theoretical guarantees are crucial to
the practical implementation of the new information criterion HGBICp. Our numerical studies in
Section 4 reveal that such an estimate works well in a variety of model misspecification settings.
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3.4. Model selection consistency of HGBICp360

We further investigate the model selection consistency property of information criterion
HGBICp. Assume that there are M = o(n�) sparse candidate models M1, . . . ,MM , where � is
some sufficiently large positive constant. At first glance, such an assumption may seem slightly
restrictive since it rules out an exhaustive search over all p!/{(p� d)!d!} possible candidate
models. However, our goal in the paper is to provide practitioners with some tools for comparing365

a set of candidate models that are available to them. In fact, the set of sparse models under model
comparison in practice can be often smaller, e.g., polynomial instead of exponential in sample
size, even under the ultra-high dimensional setting. One example is that people may apply dif-
ferent algorithms each of which can lead to a possibly different model. Another example is the
use of a certain regularization method with a sequence of sparse models generated by a path370

algorithm, which will be demonstrated in our numerical studies. For each candidate modelMm,
we have the HGBICp criterion as defined in (11)

HGBICp(Mm) = �2`n(y, b�n,m) + 2(log p⇤)|Mm|+ tr( bHn,m)� log | bHn,m|, (16)

where bHn,m is a consistent estimator ofHn,m and p⇤ = pn1/2. Assume that there exists an oracle
working model in the sequence {Mm : m = 1, . . . ,M} that has support identical to the set of all
important features in the true model. Without loss of generality, suppose that M1 is such oracle375

working model.

THEOREM 3. Assume that all the assumptions of Theorems 1–2 hold and the population ver-
sion of HGBICp criterion in (16) is minimized at M1 such that for some positive sequence �n

slowly converging to zero,

min
m>1

�
HGBIC⇤

p(Mm)� HGBIC⇤
p(M1)

 
> �n (17)

with HGBIC⇤
p(Mm) = �2`n(y,�n,m,0) + 2(log p⇤)|Mm|+ tr(Hn,m)� log |Hn,m|. Then it380

holds that

min
m>1

{HGBICp(Mm)� HGBICp(M1)} > �n/2

for large enough n with asymptotic probability one.

Theorem 3 formally establishes the model selection consistency property of the new infor-
mation criterion HGBICp for large-scale model selection with misspecification in that the oracle
working model can be selected among a large sequence of candidate sparse models with signif-385

icant probability. Such a desired property is an important consequence of results in Theorems
1 and 2. Furthermore, assumption (17) is intrinsically necessary for this kind of theorem. For
any model selection criteria, when the models are indistinguishable at the population level, the
criteria cannot differentiate them in the sample version. Theorem 3 ensures that the gap in the
population version is preserved in the sample version giving a slight leeway.390

4. NUMERICAL STUDIES

4.1. Setup
We now investigate the finite-sample performance of the information criterion HGBICp in com-

parison to the information criteria such as the Akaike information criterion (AIC), Bayesian in-
formation criterion (BIC), extended Bayesian information criterion (EBIC) (Chen & Chen, 2008),395

generalized information criterion (GIC) (Fan & Tang, 2013), generalized Akaike information cri-
terion (equivalently Takeuchi information criterion), generalized Bayesian information criterion
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(GBIC), and GBICp, in high-dimensional misspecified models via three simulation examples: a
multiple index model (Section 4.2), a logistic regression model with interaction effects (Section
B in the Supplementary Material), and a Poisson regression model with interaction effects (Sec- 400

tion C in the Supplementary Material). For each candidate modelMm, the EBIC and GIC criteria
are defined as

EBIC(Mm) = �2`n(y, b�n,m) + (log n)|Mm|+ log

✓
p

|Mm|

◆
, (18)

GIC(Mm) = �2`n(y, b�n,m) + (log n)(log log p)|Mm|. (19)

4.2. Multiple index model 405

The first model we consider is the following multiple index model

Y = f(�1X1) + f(�2X2 + �3X3) + f(�4X4 + �5X5) + ", (20)

where the response depends on the covariatesXj’s only through the first five ones in a nonlinear
fashion and f(x) = x3/(x2 + 1). Here the rows of the n⇥ p design matrix Z are sampled as in-
dependent copies fromN(0, Ip), and the n-dimensional error vector " ⇠ N(0,�2In). We set the 410

true parameter vector �0 = (1,�1, 1, 1,�1, 0, . . . , 0)T and � = 1. We vary the dimensionality p
from 100 to 3200 while keeping the sample size n fixed at 200. We would like to investigate the
behavior of different information criteria when the dimensionality increases. Although the data
was generated from model (20), we fit the linear regression model (1). This is a typical example
of model misspecification. Since the first five variables are independent of the other variables, 415

the oracle working model isM0 = supp(�0) = {1, . . . , 5}. Due to the high dimensionality, it is
computationally prohibitive to implement the best subset selection. Thus we first applied Lasso
followed by least-squares refitting to build a sequence of sparse models and then selected the
final model using a model selection criterion. In practice, one can apply any preferred variable
selection procedure to obtain a sequence of candidate interpretable models. 420

We report the consistent selection probability (the proportion of simulations where selected
model cM = M0), the sure screening probability Fan & Lv (2008); Fan & Fan (2008) (the pro-
portion of simulations where selected mode cM � M0), and the prediction error E(Y � zT b�)2
with b� an estimate and (z, Y ) an independent observation for z = (X1, . . . , Xp)T . To evaluate
the prediction performance of different criteria, we calculated the average prediction error on 425

an independent test sample of size 10,000. The results for prediction error and model selection
performance are summarized in Table 1. In addition, we calculate the average number of false
positives for each method in Table 2.

From Table 1, we observe that as the dimensionality p increases, the consistent selection prob-
ability tends to decrease for all criteria except the newly suggested HGBICp, which maintains at 430

least 95% consistent selection probability throughout all dimensionalities considered. Generally
speaking, generalized Akaike information criterion improved over Akaike information criterion,
and GBIC, GBICp performed better than BICin terms of both prediction and variable selection.
The high-dimensional information criteria EBICand GICoutperformed the traditional Akaike in-
formation criterion and BIC. In particular, the model selected by our new information criterion 435

HGBICp delivered the best performance with the smallest prediction error and highest consistent
selection probability across all settings.

An interesting observation is the comparison among GBICp, GIC, and HGBICp in terms of
model selection consistency property. While GBICp is comparable to HGBICp when the dimen-
sionality is not large (e.g., p = 100), the difference between these two methods increases as the 440

dimensionality increases. In the case when p = 3200, HGBICp has 95% of success for consistent
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Table 1. Average results over 100 repetitions for Example 4.2 with all entries multiplied by 100.

Consistent selection probability with sure screening probability in parentheses
p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp Oracle
100 0(100) 29(100) 70(100) 66(100) 0(100) 33(100) 57(100) 100(100) 100(100)
200 0(100) 6(100) 57(100) 59(100) 0(100) 9(100) 32(100) 99(100) 100(100)
400 0(100) 1(100) 57(100) 68(100) 0(100) 3(100) 13(100) 99(100) 100(100)
800 0(100) 0(100) 51(100) 64(100) 0(100) 0(100) 10(100) 98(100) 100(100)
1600 0(100) 0(100) 39(100) 59(100) 0(100) 0(100) 9(100) 98(100) 100(100)
3200 0(100) 0(100) 43(100) 64(100) 0(100) 0(100) 4(100) 95(99) 100(100)

Mean prediction error with standard error in parentheses
100 151(2) 126(2) 122(1) 122(1) 137(2) 126(2) 123(1) 119(1) 119(1)
200 166(2) 131(2) 121(1) 121(1) 139(2) 130(2) 124(1) 117(1) 117(1)
400 181(3) 140(2) 124(1) 123(1) 146(2) 139(2) 129(2) 120(1) 119(1)
800 187(2) 149(2) 127(1) 125(1) 151(2) 147(2) 136(2) 121(1) 121(1)
1600 185(2) 154(2) 128(2) 124(1) 152(2) 152(2) 137(2) 119(1) 119(1)
3200 178(2) 151(2) 123(1) 120(1) 146(2) 150(2) 134(2) 117(1) 116(1)

selection, while GBICp has a success rate of only 4%. This confirms the necessity of including
the log p⇤ factor with p⇤ = pn1/2 in the model selection criterion to take into account the high
dimensionality, which is in line with the results in Fan & Tang (2013) for the case of correctly
specified models. On the other hand, due to the lack of consideration of model misspecifica-445

tion, GICis still outperformed by the newly proposed HGBICp throughout all dimensionalities
considered.

Table 2. Average false positives over 100 repetitions for Example 4.2.

p AIC BIC EBIC GIC GAIC GBIC GBICp HGBICp

100 15.35 1.84 0.49 0.58 7.05 1.75 0.86 0.00
200 24.30 3.53 0.76 0.70 7.43 3.07 1.39 0.01
400 31.46 5.58 0.73 0.53 8.32 5.11 1.98 0.01
800 34.12 7.21 0.87 0.60 8.26 6.20 2.58 0.02
1600 34.41 8.74 1.23 0.56 7.65 7.58 3.12 0.02
3200 33.41 8.64 0.93 0.48 7.25 8.28 3.26 0.04

We further study a family of model selection criteria induced by the HGBICp and characterized
as follows

HGBICp,⇣(Mm) = �2`n(y, b�n,m) + ⇣
n
2(log p⇤)|Mm|+ tr( bHn,m)� log | bHn,m|

o
, (21)

where ⇣ is a positive factor controlling the penalty level on both model misspecification and450

high dimensionality. HGBICp,⇣ with ⇣ = 1 reduces to our original HGBICp. Here we examine the
impact of the factor ⇣ on the false discovery proportion and the true positive rate for the selected
model cM compared to the oracle working modelM0. In Figure 1, we observe that as ⇣ increases,
the average false discovery proportion drops sharply as it gets close to 1. In addition, we have
the desired model selection consistency property (with the false discovery proportion close to 0455

and true positive rate close to 1 when ⇣ 2 [1, 1.5]. This figure demonstrates the robustness of the
introduced HGBICp,⇣ criteria.
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Fig. 1. The average false discovery proportion (left panel)
and the true positive rate (right panel) as the factor ⇣ varies
for Example 4.2 when p = 200 (black solid), p = 800 (red

dashed), and p = 3200 (green dot-dash).

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Factor

Fa
ls

e 
di

sc
ov

er
y 

pr
op

or
tio

n

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.

80
0.

85
0.

90
0.

95
1.

00

Factor

Tr
ue

 p
os

iti
ve

 ra
te

ACKNOWLEDGEMENT

The authors sincerely thank the editor, associate editor, and referees for comments that signif-
icantly improved the paper. This work was supported by the U.S. National Science Foundation, 460

a grant from the Simons Foundation, and Adobe Data Science Research Award. Demirkaya and
Feng contribute equally to this work.

SUPPLEMENTARY MATERIAL
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