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SUMMARY

Model selection is crucial to high-dimensional learning and inference for contemporary big
data applications in pinpointing the best set of covariates among a sequence of candidate inter-
pretable models. Most existing work assumes implicitly that the models are correctly specified or
have fixed dimensionality. Yet both features of model misspecification and high dimensionality
are prevalent in practice. In this paper, we exploit the framework of model selection principles
under the misspecified generalized linear models presented in Lv and Liu (2014) and investigate
the asymptotic expansion of the posterior model probability in the setting of high-dimensional
misspecified models. With a natural choice of prior probabilities that encourages interpretability
and incorporates the Kullback-Leibler divergence, we suggest the high-dimensional general-
ized Bayesian information criterion with prior probability for large-scale model selection with
misspecification. Our new information criterion characterizes the impacts of both model mis-
specification and high dimensionality on model selection. We further establish the consistency
of covariance contrast matrix estimation and the model selection consistency of the new infor-
mation criterion in ultra-high dimensions under some mild regularity conditions. The numerical
studies demonstrate that our new method enjoys improved model selection consistency compared
to its main competitors.
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1. INTRODUCTION

With rapid advances of modern technology, big data of unprecedented size, such as genetic
and proteomic data, fMRI and functional data, and panel data in economics and finance, are
frequently encountered in many contemporary applications. In these applications, the dimen-
sionality p can be comparable to or even much larger than the sample size n. A key assumption
that often makes large-scale learning and inference feasible is the sparsity of signals, meaning
that only a small fraction of covariates contribute to the response when p is large compared to n.
High-dimensional modeling with dimensionality reduction and feature selection plays an impor-
tant role in these problems, e.g., Fan & Lv (2010); Biihlmann & van de Geer (2011); Fan & Lv
(2018). A sparse modeling procedure typically produces a sequence of interpretable candidate
models, each involving a possibly different subset of covariates. An important question is how
to compare different models in high dimensions when models are possibly misspecified.

The problem of model selection has been studied extensively by many researchers in the past
several decades. Among others, well-known model selection criteria include the Akaike infor-
mation criterion (AIC) (Akaike, 1973, 1974) and Bayesian information criterion (BIC) (Schwarz,
1978), where the former is based on the Kullback-Leibler divergence principle of model selec-
tion and the latter is originated from the Bayesian principle of model selection. A great deal
of work has been devoted to understanding and extending these model selection criteria to dif-
ferent model settings; see, for example, Bozdogan (1987); Foster & George (1994); Konishi &
Kitagawa (1996); Ing (2007); Chen & Chen (2008); Chen & Chan (2011); Liu & Yang (2011);
Ninomiya & Kawano (2016); Eguchi (2017); Hsu et al. (2019). Fong & Holmes (2020) studied
the links between the cross-validation and Bayesian model selection. The connections between
the Akaike information criterion and cross-validation have been investigated in Stone (1977);
Hall (1990); Peng et al. (2013) for various contexts. In particular, Fan & Tang (2013) showed
that classical information criteria such as Akaike information criterion and Bayesian information
criterion can no longer be consistent for model selection in ultra-high dimensions and proposed
the generalized information criterion (GIC) for tuning parameter selection in high-dimensional
penalized likelihood, for the scenario of correctly specified models. See also Barber & Candes
(2015); Biihlmann & van de Geer (2015); Candes et al. (2018); Shah & Biihlmann (2018); Fan
et al. (2020, 2019) for some recent work on high-dimensional inference for feature selection.

Most existing work on model selection and feature selection usually make an implicit assump-
tion that the model under study is correctly specified or of fixed dimensions. Given the practical
importance of model misspecification, White (1982) laid out a general theory of maximum like-
lihood estimation in misspecified models for the case of fixed dimensionality and independent
and identically distributed observations. Cule et al. (2010) also studied the maximum likelihood
estimation of a multi-dimensional log-concave density when the model is misspecified. Recently,
Lv & Liu (2014) investigated the problem of model selection with model misspecification and
originated asymptotic expansions of both Kullback-Leibler divergence and Bayesian principles
in misspecified generalized linear models, leading to the generalized Akaike information crite-
rion (GAIC) and generalized Bayesian information criterion (GBIC), for the case of fixed dimen-
sionality. A specific form of prior probabilities motivated by the Kullback-Leibler divergence
principle led to the generalized Bayesian information criterion with prior probability (GBIC)).
Yet both features of model misspecification and high dimensionality are prevalent in contempo-
rary big data applications. Thus an important question is how to characterize the impacts of both
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model misspecification and high dimensionality on model selection. We intend to provide some
partial answers to this question in the paper.

Let us first gain some insights into the challenges of the aforementioned problem by con-
sidering a motivating example. Assume that the response Y depends on the covariate vec-
tor (X1, ..., X,)T through the functional form Y = f(X1) + f(X2 — X3) + f(X4 — X5) +¢,
where f(z) = x3/(z% + 1) and the remaining setting is the same as in Section 4.2. Consider
sample size n = 200 and vary dimensionality p from 100 to 3200. Without any prior knowledge
of the true model structure, we take the linear regression model

y=2Z08+c¢ ey

as the working model and apply some information criteria to hopefully recover the oracle
working model, where y is an n-dimensional response vector, Z is an n X p design matrix,
B=(B,-.. ,BP)T is a p-dimensional regression coefficient vector, and ¢ is an n-dimensional
error vector. Following Candes et al. (2018) , we define the oracle working model 91y as the
Markov blanket for Y, that is, 91j is the smallest subset of indices such that Y is independent
of Xmg conditional on Ximo; see Lauritzen (1996) and Pearl (2014). In this example, the or-
acle working model consists of the first five covariates. When p = 100, the traditional Akaike
information criterion and Bayesian information criterion, which ignore model misspecification,
tend to select a model with size larger than five. In contrast, GBIC,, in Lv & Liu (2014) selects
the oracle working model around 60% of the time. However, when p is increased to 3200, these
methods fail to select such a model with significant probability and the prediction performance
of the selected models deteriorates. This motivates us to study the problem of model selection
in high-dimensional misspecified models. In contrast, our new method can recover the oracle
working model with significant probability in this challenging scenario.

The main contributions of our paper are threefold. First, we provide the asymptotic expansion
of the posterior model probability in high-dimensional misspecified generalized linear models,
which involves delicate and challenging technical analysis. Motivated by the asymptotic expan-
sion and a natural choice of prior probabilities that encourages interpretability and incorporates
Kullback-Leibler divergence, we suggest the high-dimensional generalized Bayesian informa-
tion criterion with prior probability (HGBIC),) for large-scale model selection with misspecifi-
cation. Second, our work provides rigorous theoretical justification of the covariance contrast
matrix estimator that incorporates the effect of model misspecification and is crucial for practi-
cal implementation. Such an estimator is shown to be consistent in the general setting of high-
dimensional misspecified models. Third, we establish the model selection consistency of our new
information criterion HGBIC,, in ultra-high dimensions under some mild regularity conditions. In
particular, our work provides important extensions to the studies in Lv & Liu (2014) and Fan &
Tang (2013) to the cases of high dimensionality and model misspecification, respectively. The
aforementioned contributions make our work distinct from other studies on model misspecifica-
tion including Biihlmann & van de Geer (2015); Hsu et al. (2019); Shah & Biihlmann (2018).
Since Lv & Liu (2014) is closely related to our paper, we want to reiterate the main differences
between these two works. First, the study in Lv & Liu (2014) has focused on fixed dimensional-
ity. Hence, our model selection criterion differs from that in Lv & Liu (2014) in how it penalizes
the model complexity as discussed in Section 2.2. Although both criteria rely on the estimation of
the covariance contrast matrix, the consistency result of the covariance contrast matrix estimator
in Lv & Liu (2014) does not allow model misspecification. We establish the consistency of the
estimator for the covariance contrast matrix even under model misspecification in Section 3.3.
Finally, in light of the new consistency result, we further provide a model selection consistency
theorem for our model selection criterion, which result was missing in Lv & Liu (2014).
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2. LARGE-SCALE MODEL SELECTION WITH MISSPECIFICATION
2.1.  Model misspecification

The main focus of this paper is investigating ultra-high dimensional model selection with
model misspecification in which the dimensionality p can grow nonpolynomially with sample
size n. Let Z be the n x p design matrix with all available covariates. We denote by 21 an arbi-
trary subset with size d of all p available covariates and X = (x1,...,2,)” the corresponding
n x d fixed design matrix given by the covariates in model 9. Assume that conditional on the
covariates in model 92, the response vector Y = (Y1,...,Y,)7 has independent components
and each Y; follows distribution G, ; with density g, ;, with all the distributions G/, ; unknown
to us in practice. Denote by g, = [ [}, gn,; the product density and G,, the corresponding true
distribution of the response vector Y.

Since the collection of true distributions {G), ; }1<i<n is unknown to practitioners, one often
chooses a family of working models to fit the data. One class of popular working models is
the family of the generalized linear models McCullagh & Nelder (1989) with a canonical link
and natural parameter vector § = (61, ...,0,)T with 6; = a:;frﬁ, where x; is a d-dimensional
covariate vector and 5 = (1, .. ., ﬁd)T is a d-dimensional regression coefficient vector. Let 7 >
0 be the dispersion parameter. Then under the working model of the generalized linear models,
the conditional density of response y; given the covariates in model 91 is assumed to take the
form

Ini(yi) = exp{yibi — b(0;) + c(yi, 1)}, 2

where b(-) and c(+,-) are some known functions with b(-) twice continuously differentiable
and b”(-) bounded away from 0 and oco. F,, denotes the corresponding distribution of the n-
dimensional response vector y = (y1, ..., %)’ with the product density f,, = [T, fn, assum-
ing the independence of components. Since the generalized linear model is chosen by the user,
the working distribution F}, can be generally different from the true unknown distribution G,,.

For the generalized linear models in (2) with natural parameter vector 6, let us define two
vector-valued functions b(#) = {b(61),...,b(0,)}" and u(0) = {V'(01),...,b'(6,)}", and a
matrix-valued function () = diag{b”(61),...,b"(6,)}. The basic properties of the general-
ized linear models give the mean vector E(y) = p(6) and the covariance matrix cov(y) = X(6)
with § = X 5. The product density of the response vector y can be written as

Fuly; B.7) = [ [ fri(wi) = exp{y" XB = 1"6(XB) + > e(yi, )} 3)
=1 =1

where 1 represents the n-dimensional vector with all components being one. Since the gener-
alized linear models is only our working model, (3) results in the quasi-log-likelihood function
White (1982)

Un(y; B,7) =log fuly; B,7) = y" XB —1T0(XB) + > elys, 7). 4)

=1

Hereafter we treat the dispersion parameter 7 as a known parameter and focus on our main
parameter of interest 5. Whenever there is no confusion, we will slightly abuse the notation and
drop the functional dependence on 7.

The quasi-maximum likelihood estimator for the parameter vector /3 in our working model of
the generalized linear models (2) is defined as Bn = Argmaxg pa ?n(y, B), which is the solution
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to the score equation

U (8) = 9n(y, 8)/08 = X {y — p(XB)} = 0. (5)

For the linear regression model with p(X 3) = X 3, such a score equation becomes the familiar
normal equation X7y = X7 X 3. Such a vector 3 is called quasi-maximum likelihood estimator
when the model is misspecified. Hereafter, we call 8 maximum likelihood estimator for simplic-
ity since we do not know whether the model is misspecified or not in practice. The Kullback—
Leibler divergence (Kullback & Leibler, 1951) of our working model F,, from the true model
Gy, is defined as I{gn; fn(-, 3)} = E{loggn(Y)} — E{¢,(Y, 5)} with the response vector ¥’
following the true distribution G,,. As in Lv & Liu (2014), we consider the best working model
that is closest to the true model under the Kullback-Leibler divergence. Such a model has pa-
rameter vector 3, o = arg ming g, I {gn; fn(:, B)}, which solves the equation

X™EY) - p(Xxp)}=0. (6)

We see that equation (6) is simply the population version of the score equation given in (5).

Following Lv & Liu (2014), we introduce two matrices, Fisher information in outer product
form and in Hessian form. These matrices play a key role in model selection with model mis-
specification. Under the true distribution Gy, we have cov (X7Y) = X7 cov(Y) X. Computing
the score equation at 3,, o, Fisher information matrix in outer product form is defined by

By, = cov{¥,(8,,0)} = cov (XTY) = XTeov(Y)X (7)

with cov(Y') = diag{var(Y1), ..., var(Y,)} by the independence assumption and under the true
model. Under the working model F,, it holds that cov (X”Y) = XT%(X 3)X. The Fisher in-
formation matrix in Hessian form is defined by

_ agl{gm fn('a ﬁ)} - _E { 82671(1/7 ﬁ)
32 02
and denote by A, = A,(f3,, ). Hence we see that matrices A, and B,, are the covariance ma-

trices of XY under the best working model F(B,,0) and the true model G, respectively.
To account for the effect of model misspecification, we define the covariance contrast matrix
H,=A4A, I B,, as revealed in Lv & Liu (2014). Observe that A,, and B,, coincide when the best
working model and the true model are the same. In this case, H,, is an identity matrix of size d.

An(B) } = XTS(XB)X, (8)

2.2. High-dimensional generalized Bayesian information criterion with prior probability

Given a set of competing models {9, : m =1,..., M}, a popular model selection pro-
cedure using Bayesian principle of model selection is to first put nonzero prior probability
o, on each model 9M,,,, and then choose a prior distribution pgy,, for the parameter vec-
tor in the corresponding model. We use d,,, = |90,,| to denote the dimensionality of candidate
model 901, and suppress the subscript m for conciseness whenever there is no confusion. As-
sume that the density function of gy, . is bounded in R = R%m and locally bounded away
from zero in a shrinking neighborhood of f3,, ;. The Bayesian principle of model selection is
to choose the most probable model a posteriori; that is, choose the model 9,,, such that
mo = arg maxXy,eq1,.. mry S(Y, Mim; Fr), where

S(y, My: Fy) = log / can,, exp{ln(y, B) Yy, (6) ©)

with the log-likelihood ¢, (y, ) as defined in (4) and the integral over R%m.
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The choice of prior probabilities cuy,, is important in high dimensions. Lv & Liu (2014) sug-
gested the use of prior probability agy,, o< e~Pm for each candidate model 901,,,, where the quan-
tity D,, is defined as D,,, = E[I{gn; fu(:, Bnm)} — I{gn; fn(*, Bpm,o)}] With the subscript m
indicating a particular candidate model. The motivation is that the further the maximum likeli-
hood estimator Bnm is away from the best misspecified generalized linear models F, (-, 5, .0
the lower prior probability we assign to that model. In the high-dimensional setting when di-
mensionality p can be much larger than sample size n, it is sensible to also take into account
the complexity of the space of all possible sparse models with the same size as 91,,. Such an
observation motivates us to consider a new prior probability of the form

o, X p_de_Dm (10)

with d = [9,,|. The complexity factor p~¢ is motivated by the asymptotic expansion of

{p!/(p—d)'} . In fact, an application of Stirling’s formula yields log{p!/(p — d)!} ! ~
—dlogp = log(p~?) up to an additive term of order o(d) when d = o(p). The factor of
[p!/{(p — d)'d'}]~! was also exploited in Chen & Chen (2008) who showed that using the term
[p!/{(p — d)!d!}]~7 with some constant 0 < 7 < 1, the extended Bayesian information criterion
can be model selection consistent for the scenario of correctly specified models with p = O(n")
for some positive constant  satisfying 1 — (2x)~! < 7. A different way of integrating the num-
ber of candidate models into the prior was considered in Szulc (2012) when the model under
study is correctly specified. Moreover, we add the term d! to reflect a stronger prior on model
sparsity. See also Fan & Tang (2013) for the characterization of model selection in ultra-high
dimensions with correctly specified models.

A similar normalization term can also be found in some fully Bayesian methods; see, e.g.,
Castillo et al. (2015) for more details. However, the fully Bayesian methods need to specify
the distribution of parameter /3, whereas our method only puts some prior probabilities on the
candidate models 9t,,, and the distribution pgy,, () of parameter 5 given model 2, does
not need to be specified. Furthermore, fully Bayesian approaches require posterior computation,
which may limit their use in high dimensions; see, e.g., George (2000).

The asymptotic expansion of the posterior model probability in Theorem 1 to be presented
in Section 3.2 motivates us to introduce the high-dimensional generalized Bayesian information
criterion with prior probability (HGBIC),) for large-scale model selection with misspecification.

DEFINITION 1. We define HGBIC,, = HGBIC,(y, M, ; F},) of model My, as
HGBIC, = —20n(y, B,,) + 2(log p")| My | + tr(Hy) — log | Hyl, (11)
where IjA[n is a consistent estimator of H,, and p* = pnt/?
and log determinant of the matrix.

. Here, consistency is in terms of trace

In correctly specified models, H,, = A, ! B,, = I, and so the term tr(H,) — log |H,| in (11)
is asymptotically close to |90t,,| when H n 18 a consistent estimator of H,,. Thus compared to the
Bayesian information criterion with factor logn, the HGBIC,, contains a larger factor of order
log p when dimensionality p grows nonpolynomially with sample size n. This leads to a heavier
penalty on model complexity, similarly to that in Fan & Tang (2013).

As shown in Lv & Liu (2014), the HGBIC,, defined in (11) can also be viewed as a sum of three
terms: the goodness of fit, model complexity, and model misspecification; see Lv & Liu (2014)
for more details. Furthermore, HGBIC,, is also related to Takeuchi’s information criterion TIC =

—20p(y, Bn) + 2tr(H,,) in Takeuchi (1976), which contains similar model misspecification term
tr(H,,), but lacks any model complexity term.



Large-scale model selection with misspecification 7

Our new information criterion HGBIC, provides an important extension of the original
model selection criterion GBIC, = —2/,(y, 8,)) + (log n)|My| + tr(H,) — log |Hy| in Ly &
Liu (2014), which was proposed for the scenario of model misspecification with fixed dimen-
sionality, by explicitly taking into account the high dimensionality of the whole feature space.
Moreover, in view of (11) and the definition of p*, HGBIC), has an additional model complexity
term 2(log p)|9M,,, .

3. ASYMPTOTIC PROPERTIES OF HGBIC,,
3.1.  Technical assumptions

We list the technical assumptions required to prove the main results and the asymptotic prop-
erties of the maximum likelihood estimator with diverging dimensionality. Denote by Z the full
design matrix of size n x p whose (i, j)th entry is x;;. For any subset 90, of {1,...,p}, Zon,,
denotes the submatrix of Z formed by columns whose indices are in 91,,,. When there is no con-
fusion, we drop the subscript and use X = Zyy,, for fixed 9. For theoretical reasons, we restrict
the parameter space to By which is a sufficiently large convex and compact set of RP. We consider
parameters with bounded support. Namely, we define B(9,,,) = {3 € By : supp(f) = My, }
and B = Ujgy,,,|< g B(My,) where the maximum support size K is taken to be o(n). Moreover,
we assume that ¢y < b”(Z3) < ¢, for any B € B where c is some positive constant.

We use the following notation. For matrices, || - ||2, || - [|c0» and || - || denote the matrix op-
erator norm, entrywise maximum norm, and matrix Frobenius norm, respectively. For vectors,
| - |l2 and || - ||oc denote the vector Lo-norm and maximum norm, and (v); represents the ith
component of vector v. Denote by Apin(+) and Apax(+) the smallest and largest eigenvalues of a
given matrix, respectively.

Assumption 1. There exists some positive constant c¢; such that for each i =1,...,n,
pr(|Wi| > t) < c1 exp(—c; 't) for any t > 0, where W = (W1,...,W,)T =Y — E(Y). The
variances of Y; are bounded below uniformly in ¢ and n.

Assumption 2. Let u; and uz be some positive constants and m,, = O(n"!) a diverging
sequence. We have the following bounds max{HE(Y)Hoo,supﬁeB |u(ZB)|loo} < My, and

n E sz)_ Xﬁn,
Z¢:1([ ( V{iﬁm :

2
Jhil? ) = O(n"2). For simplicity, we also assume that m,, diverges faster

than log n.

Assumption 3. Let K = o(n) be a positive integer. There exist positive constants co and
ug such that, for any 9, C {1,...,p} such that |DN,,| < K, c» < /\min(nleg;thgmm) <
)\max(n_lthm Zan,,) < ¢; ', and || Z|| s = O(n*3). For simplicity, we assume that columns of
Z are normalized: " | :p?j =nforallj=1,...,p.

Assumption 1 is a standard tail assumption on the response variable Y. This assumption en-
sures that the sub-exponential norm of the response is bounded. Assumptions 2 and 3 have their
counterparts in Fan & Tang (2013). However, Assumption 2 is modified to deal with model
misspecification. More specifically, the means of the true distribution and fitted model, as well
as their relations, are assumed in Assumption 2. The first part simultaneously controls the tail
behavior of the response and fitted model. The second part ensures that the mean of the fitted
distribution does not deviate from the true mean too significantly. We would like to point out that
such an assumption does not limit the generality of model misspecification since the misspecifi-
cation considered in the paper is due to the distributional mismatch between the working model
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8 E. DEMIRKAYA ET AL.

and the underlying true model. Even in the misspecified scenario, the fitted mean vector from
the working model can approximate the true mean vector under certain regularity conditions.
Assumption 3 is on the design matrix X. The first part is important for the consistency of the
maximum likelihood estimator Bn and the uniqueness of the population parameter. Assumptions
2 and 3 also provide bounds for the eigenvalues of A, () and B,,. See Fan & Tang (2013) for
further discussions on these assumptions.

For the following assumptions, we define a neighborhood around §, ,. Let
6n = mn(logp)'/2 = O{n*1(logp)*/?}. We define the neighborhood N, (d,) = {8 € R :
|(n=tB,)Y2(B — Brolll2 < (n/d)=1/25,}. We assume that (n/d)~'/26,, converges to zero so
that N, (dy,) is an asymptotically shrinking neighborhood of 43, .

Assumption 4. Assume that the prior density relative to the Lebesgue measure o on RY,
w{h(8)} = dum,, /dpoth(B)} satisfies inf gy o5 ) w{h(B)} > cs and supg gy m{h(B)} <
c3 !, where c3 is a positive constant, and h(8) = (n~'B,,)'/23.

Assumption 5. Let V,(5) = BﬁlﬂAn(ﬁ)Bﬁlﬂ, Vi =Va(Bro) = By Y?4,B,%, and

‘7,1(51, e Be) = B;l/QAn(Bl, .. ,Bd)Bgl/Q, where ﬁn(ﬂl, ..., B4) is the matrix whose jth
row is the corresponding row of A,(f3;) for each j =1,...,d. There exists some sequence

pn(6r) such that p, (3, )82d converges to zero, Maxg 3 e, (s) H‘7n(517 ey Ba) = Valle <
pn(én), and maxBeNn(%n) maXH)\min{Vn(ﬁ) - Vn}’v ’Amax{vn(ﬁ) - Vn}H S pn(én)

Similar versions of Assumptions 4 and 5 were imposed in Lv & Liu (2014). Under Assump-
tion 4, the prior density is bounded above globally and bounded below in a neighborhood of
B0~ This assumption is used in Theorem 1 for the asymptotic expansion of the posterior model

probability. Assumption 5 is on the continuity of the matrix-valued function V,, and ‘~/n in a
shrinking neighborhood N;,(24,,) of f3,, 5. The first and second parts control the expansions of
expected log-likelihood and score functions, respectively. Assumption 5 ensures that the remain-
ders are negligible in approximating S(y, 9M,,; F},). Some detailed discussion on Assumption
5 is provided in Section D of the Supplementary Material. See also Lv & Liu (2014) for more
discussions on these assumptions.

3.2.  Asymptotic expansion of the Bayesian principle of model selection

We now provide the asymptotic expansion of the posterior model probability with the prior
introduced in Section 2.2. As mentioned earlier, the Bayesian principle chooses the model that
maximizes S(y,M,,; Fy,) given in (9). To ease the presentation, for any 3 € R?, we define a
quantity

0y, B) = a(y, B) — €y, Br),s (12)

which is the deviation of the quasi-log-likelihood from its maximum. Then from (9) and (12),
we have

S(yv Mo Fn) = fn(ya En) + log Eﬂﬂﬁm {Un(ﬁ)n} + 10g am,, (13)

where U, () = exp{n~1¢%(y, 3)}. With the choice of the prior probability in (10), it is clear
that

log agy,, = —Dy, — dlogp. (14)
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Aided by (13) and (14), some delicate technical analysis unveils the following expansion of
S (y, My F, n)

THEOREM 1. Assume that Assumptions 1-5 hold and let agy,, = Cp~e™Pm with C >0
some normalization constant. If (n/d)~'/25, = o(1), then we have with probability tending to
one,

- . 1 1
(.M Fy) = £0(0.B,) — (Qogp") M| — Stx(EE,) + 1+ log ||
+log(Ceyq) + o(fin), (15)

where H,, = A; 1B, p* = pnt/2, fin = max{tr(A 1B,),1}, c3 < ¢4 < cgl, and c3 is the pos-
itive constant given in Assumption 4.

Theorem 1 lays the foundation for investigating high-dimensional model selection with model
misspecification. Based on the asymptotic expansion in (15), our new information criterion
HGBIC,, in (11) is defined by replacing the covariance contrast matrix H,, with a consistent
estimator H,,. The HGBIC,, naturally characterizes the impacts of both model misspecification
and high dimensionality on model selection. A natural question is how to ensure a consistent
estimator for H,,. We address such a question in the next section.

3.3.  Consistency of covariance contrast matrix estimation
For practical implementation of HGBIC,, it is of vital importance to provide a consistent es-
timator for the covariance contrast matrix H,. To this end, we consider the plug-in estimator
I;Tn = ﬁg 1§n with En and B\n defined as follows. Since the maximum likelihood estimator
Bn provides a consistent estimator of /3, o in the best misspecified generalized linear models
F (-, B 0), a natural estimate of matrix A, is

Ay = An(B,) = XTS(XB,)X

When the model is correctly specified, the following simple estimator

with o denoting the componentwise product gives an asymptotically unbiased estimator of the
matrix B,,.

THEOREM 2. Assume that Assumptions 1-3 hold, nflAn(B) is Lipschitz in operator norm
in the neighborhood Ny (d,), d = O(n"), and logp = O(n"?) with constants satisfying 0 <
k1 <1/4,0<u3<1/4—kK1, 0<ug<1—4r; — 4u3, 0<u1 < 1/2—2/@1—U3, and 0 <
Ko < 1—4Kr1 —2u; — 2U3 Then the plug-in estimator Hn = A 1B satisfies that tr(H ) =
tr(Hy) + op(1) and log |Hy| = log |H,| + op(1) with significant probability 1 — O(n=0 +

1—802"/,% . .. . . .
P ), where § is some positive constant and y, is a slowly diverging sequence such that
YrTn (K20~ log p)t/2 — 0.

Theorem 2 improves the result in Lv & Liu (2014) in two important aspects. First, the consis-
tency of the covariance contrast matrix estimator was justified in Lv & Liu (2014) only for the
scenario of correctly specified models. Our new result shows that the simple plug-in estimator
f[n still enjoys consistency in the general setting of model misspecification. Second, the result in
Theorem 2 holds for the case of high dimensionality. These theoretical guarantees are crucial to
the practical implementation of the new information criterion HGBIC,. Our numerical studies in
Section 4 reveal that such an estimate works well in a variety of model misspecification settings.
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3.4.  Model selection consistency of HGBIC,,

We further investigate the model selection consistency property of information criterion
HGBIC,. Assume that there are M = o(n?) sparse candidate models 901y, ..., 9y, where § is
some sufficiently large positive constant. At first glance, such an assumption may seem slightly
restrictive since it rules out an exhaustive search over all p!/{(p — d)!d!} possible candidate
models. However, our goal in the paper is to provide practitioners with some tools for comparing
a set of candidate models that are available to them. In fact, the set of sparse models under model
comparison in practice can be often smaller, e.g., polynomial instead of exponential in sample
size, even under the ultra-high dimensional setting. One example is that people may apply dif-
ferent algorithms each of which can lead to a possibly different model. Another example is the
use of a certain regularization method with a sequence of sparse models generated by a path
algorithm, which will be demonstrated in our numerical studies. For each candidate model 91,,,,
we have the HGBIC,, criterion as defined in (11)

HGBICH(Mn) = —20n (Y, Brgn) + 2(10g ) [ M| + tr(Hpm) —log [Hpml,  (16)

where H,, ,,, is a consistent estimator of H,, ,,, and p* = pnt/2. Assume that there exists an oracle

working model in the sequence {9, : m = 1,..., M} that has support identical to the set of all
important features in the true model. Without loss of generality, suppose that 901; is such oracle
working model.

THEOREM 3. Assume that all the assumptions of Theorems 1-2 hold and the population ver-
sion of HGBIC,, criterion in (16) is minimized at 9y such that for some positive sequence A,,
slowly converging to zero,

min {HGBIC;(M,,,) — HGBIC;(M1)} > A, (17)

with HGBIC,(M) = =200 (y, By mo) + 2(log p*) M| + tr(Hpm) — log |[Hpm|- Then it
holds that

mg} {HGBIC,(M,,) — HGBIC,(M1)} > A,,/2

for large enough n with asymptotic probability one.

Theorem 3 formally establishes the model selection consistency property of the new infor-
mation criterion HGBIC,, for large-scale model selection with misspecification in that the oracle
working model can be selected among a large sequence of candidate sparse models with signif-
icant probability. Such a desired property is an important consequence of results in Theorems
1 and 2. Furthermore, assumption (17) is intrinsically necessary for this kind of theorem. For
any model selection criteria, when the models are indistinguishable at the population level, the
criteria cannot differentiate them in the sample version. Theorem 3 ensures that the gap in the
population version is preserved in the sample version giving a slight leeway.

4. NUMERICAL STUDIES
4.1. Setup

We now investigate the finite-sample performance of the information criterion HGBIC), in com-
parison to the information criteria such as the Akaike information criterion (AIC), Bayesian in-
formation criterion (BIC), extended Bayesian information criterion (EBIC) (Chen & Chen, 2008),
generalized information criterion (GIC) (Fan & Tang, 2013), generalized Akaike information cri-
terion (equivalently Takeuchi information criterion), generalized Bayesian information criterion
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(GBIC), and GBIC), in high-dimensional misspecified models via three simulation examples: a
multiple index model (Section 4.2), a logistic regression model with interaction effects (Section
B in the Supplementary Material), and a Poisson regression model with interaction effects (Sec-
tion C in the Supplementary Material). For each candidate model 901,,,, the EBIC and GIC criteria
are defined as

EBIC(IL,,) = <20, By) + (g9 + o (o). 18)

GIC(Myn) = —200 (Y, Bpm) + (log ) (log log p)[D,,]. (19)

4.2.  Multiple index model
The first model we consider is the following multiple index model

Y = f(B1X1) + f(B2Xo + B3X3) + f(BaXs + B5X5) + ¢, (20)

where the response depends on the covariates X;’s only through the first five ones in a nonlinear
fashion and f(z) = 23/(2? + 1). Here the rows of the n x p design matrix Z are sampled as in-
dependent copies from N (0, I,,), and the n-dimensional error vector € ~ N (0, 0%1,,). We set the
true parameter vector 8, = (1,-1,1,1,—-1,0,..., 0)” and o = 1. We vary the dimensionality p
from 100 to 3200 while keeping the sample size n fixed at 200. We would like to investigate the
behavior of different information criteria when the dimensionality increases. Although the data
was generated from model (20), we fit the linear regression model (1). This is a typical example
of model misspecification. Since the first five variables are independent of the other variables,
the oracle working model is My = supp(8,) = {1, ..., 5}. Due to the high dimensionality, it is
computationally prohibitive to implement the best subset selection. Thus we first applied Lasso
followed by least-squares refitting to build a sequence of sparse models and then selected the
final model using a model selection criterion. In practice, one can apply any preferred variable
selection procedure to obtain a sequence of candidate interpretable models.

We report the consistent selection probability (the proportion of simulations where selected
model M = M), the sure screening probability Fan & Lv (2008); Fan & Fan (2008) (the pro-
portion of simulations where selected mode M > M), and the prediction error E(Y — zTB)Q
with 3 an estimate and (z,Y) an independent observation for z = (X, ..., X,)T. To evaluate
the prediction performance of different criteria, we calculated the average prediction error on
an independent test sample of size 10,000. The results for prediction error and model selection
performance are summarized in Table 1. In addition, we calculate the average number of false
positives for each method in Table 2.

From Table 1, we observe that as the dimensionality p increases, the consistent selection prob-
ability tends to decrease for all criteria except the newly suggested HGBIC,,, which maintains at
least 95% consistent selection probability throughout all dimensionalities considered. Generally
speaking, generalized Akaike information criterion improved over Akaike information criterion,
and GBIC, GBIC,, performed better than BICin terms of both prediction and variable selection.
The high-dimensional information criteria EBICand GICoutperformed the traditional Akaike in-
formation criterion and BIC. In particular, the model selected by our new information criterion
HGBIC,, delivered the best performance with the smallest prediction error and highest consistent
selection probability across all settings.

An interesting observation is the comparison among GBIC,,, GIC, and HGBIC, in terms of
model selection consistency property. While GBIC), is comparable to HGBIC,, when the dimen-
sionality is not large (e.g., p = 100), the difference between these two methods increases as the
dimensionality increases. In the case when p = 3200, HGBIC,, has 95% of success for consistent
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Table 1. Average results over 100 repetitions for Example 4.2 with all entries multiplied by 100.

Consistent selection probability with sure screening probability in parentheses
p AIC BIC EBIC GIC GAIC GBIC GBIC), HGBIC),, Oracle
100 0(100) 29(100) 70(100) 66(100) 0(100) 33(100) 57(100) 100(100)  100(100)
200  0(100) 6(100)  57(100)  59(100)  0(100) 9(100)  32(100) 99(100)  100(100)
400  0(100) 1(100)  57(100) 68(100) 0(100) 3(100)  13(100) 99(100)  100(100)
800  0(100) 0(100)  51(100) 64(100) 0(100) 0(100)  10(100) 98(100)  100(100)
1600  0(100) 0(100)  39(100)  59(100)  0(100) 0(100) 9(100) 98(100)  100(100)
3200 0(100) 0(100)  43(100) 64(100) 0(100) 0(100)  4(100) 95(99)  100(100)
Mean prediction error with standard error in parentheses
100 151(2) 126(2) 122(1) 122(1)  137(2) 126(2) 123(1) 119(1) 119(1)
200 166(2) 131(2) 121(1) 121(1)  139(2) 130(2) 124(1) 117(1) 117(1)
400 181(3) 140(2) 124(1) 123(1)  146(2) 139(2) 129(2) 120(1) 119(1)
800 187(2) 149(2) 127(1) 125(1)  151(2) 147(2) 136(2) 121(1) 121(1)
1600  185(2) 154(2) 128(2) 124(1)  152(2) 152(2) 137(2) 119(1) 119(1)
3200 178(2) 151(2) 123(1) 120(1)  146(2) 150(2) 134(2) 117(1) 116(1)

selection, while GBIC), has a success rate of only 4%. This confirms the necessity of including
the log p* factor with p* = pnl/ 2 in the model selection criterion to take into account the high
dimensionality, which is in line with the results in Fan & Tang (2013) for the case of correctly
specified models. On the other hand, due to the lack of consideration of model misspecifica-
tion, GICis still outperformed by the newly proposed HGBIC,, throughout all dimensionalities
considered.

Table 2. Average false positives over 100 repetitions for Example 4.2.

P AIC BIC EBIC GIC GAIC GBIC GBIC, HGBIC,
100 1535 184 049 058 7.05 1.75 0.86 0.00
200 2430 353 076 070 743 3.07 1.39 0.01
400 3146 558 0.73 053 832 5.1 1.98 0.01
800 34.12 721 0.87 0.60 826 6.20 2.58 0.02
1600 3441 874 123 056 7.65 7.58 3.12 0.02
3200 3341 864 093 048 7.25 8.28 3.26 0.04

We further study a family of model selection criteria induced by the HGBIC,, and characterized
as follows

HGBIC) (M) = ~20n (1, B ) + € {20008 5 M| + 61(Frn) — 08 | Fral }, 1)

where ( is a positive factor controlling the penalty level on both model misspecification and
high dimensionality. HGBIC),  with ( = 1 reduces to our original HGBIC,. Here we examine the
impact of the factor ¢ on the false discovery proportion and the true positive rate for the selected
model M compared to the oracle working model M. In Figure 1, we observe that as ( increases,
the average false discovery proportion drops sharply as it gets close to 1. In addition, we have
the desired model selection consistency property (with the false discovery proportion close to 0
and true positive rate close to 1 when ¢ € [1, 1.5]. This figure demonstrates the robustness of the
introduced HGBIC,, ¢ criteria.
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Fig. 1. The average false discovery proportion (left panel)

and the true positive rate (right panel) as the factor ¢ varies

for Example 4.2 when p = 200 (black solid), p = 800 (red
dashed), and p = 3200 (green dot-dash).

0.25
1

True positive rate
0.90 0.95
| |
/

False discovery proportion
0.10
|

T T T T T T T T T T T T T T
0.5 1.0 15 2.0 25 3.0 35 0.5 1.0 15 2.0 25 3.0 3.5

Factor Factor

ACKNOWLEDGEMENT

The authors sincerely thank the editor, associate editor, and referees for comments that signif-
icantly improved the paper. This work was supported by the U.S. National Science Foundation,
a grant from the Simons Foundation, and Adobe Data Science Research Award. Demirkaya and
Feng contribute equally to this work.

SUPPLEMENTARY MATERIAL

Supplementary material available online contains additional numerical studies, examples to
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