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a b s t r a c t

This paper studies the theoretical underpinnings of machine learning of ergodic Itô diffusions. The
objective is to understand the convergence properties of the invariant statistics when the underlying
system of stochastic differential equations (SDEs) is empirically estimated with a supervised regression
framework. Using the perturbation theory of ergodic Markov chains and the linear response theory,
we deduce a linear dependence of the errors of one-point and two-point invariant statistics on the
error in the learning of the drift and diffusion coefficients. More importantly, our study shows that
the usual L2-norm characterization of the learning generalization error is insufficient for achieving
this linear dependence result. We find that sufficient conditions for such a linear dependence result
are through learning algorithms that produce a uniformly Lipschitz and consistent estimator in the
hypothesis space that retains certain characteristics of the drift coefficients, such as the usual linear
growth condition that guarantees the existence of solutions of the underlying SDEs. We examine these
conditions on two well-understood learning algorithms: the kernel-based spectral regression method
and the shallow random neural networks with the ReLU activation function.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Model error is inevitable, whether the model is formulated from direct empirical observations or deduced from fundamental physical
rinciples, e.g., conservation laws. In this paper, we study modeling error arising from learning dynamical systems that obey a system
f stochastic differential equations (SDEs) driven by Brownian noise [1–3], which are used in many scientific disciplines. In this context,
he task is to identify the drift and diffusion coefficients from a time series of the SDEs. This inverse problem has been a central topic
f interest for a long time and posted under various names, from parameter estimation, data-driven modeling, closure modeling, and
ately, as a supervised learning task as machine learning becomes popular.

When the function forms are presumed, many classical methods, e.g., moment methods, maximum likelihood, and filtering, can
e used [4]. Along this line, the MCMC-based Bayesian inference [5,6] is an important direction that allows for the estimation of the
istribution of the parameters instead of point estimation in the traditional approaches. Since the same problem can be posed as
supervised learning task, a lot of recent interest has been shifting to machine learning approaches. Among the linear estimators, a
opular approach is the kernel-based method [7–13], whose connection to the parametric modeling paradigm has been studied in [14].
n this direction, many nonparametric models have been proposed, including the orthogonal polynomials [10], wavelets [8], Gaussian
rocesses [9], radial kernels [9], diffusion maps based models [15–17], just to name a few. Beyond the kernel approaches, the neural-
etwork approach has been applied to estimate the drift coefficient [18] with application in biomolecular modeling, and the missing
omponent in the drift term [19] with application to modeling atmospheric flow over topography.
Recurrent neural networks were shown to produce state-of-art numerical performances in learning high-dimensional nonlinear

ynamical systems, even beyond SDEs [19–22]. These empirical successes, however, are not completely understood. Specifically, while
he approximation theory of recurrent neural networks has been studied (see e.g., [23,24]), it remains unclear whether the neural
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etwork model, obtained from a training procedure that involves solving a nonlinear, highly non-convex, optimization problem, can
rovide a convergence guarantee. Reservoir Computing (RC) [25] was introduced as an alternative to the tedious training procedure in
he neural network model. This method, which is effectively a random neural network [26] in the context of recurrent neural network
rchitecture, is based on the premise that fitting randomized function can be as effective yet computationally cheaper than solving the
orresponding nonlinear optimization problem. This class of approach is effectively a conditionally linear estimator since it specifies the
arameters in the activation function by randomly generated weights and trains the outer weights using the linear (ridge-) regression
ethod. This surprisingly simple training procedure was shown to be effective in learning attractors of chaotic dynamical systems

27–29]. Recent theoretical results also shed some lights on its approximation and estimation properties [30,31], and universality in
earning stochastic processes [32].

Building on the above independently reported positive successes, our goal is to understand under which conditions the underlying
tochastic processes, driven by unknown SDEs, can be accurately emulated by a supervised learning procedure. Various metrics can be
sed to quantify the consistency of the estimated dynamics. For example, the (strong) pathwise error convergence that is classically
sed to characterize the numerical discretization error [1] has been used for quantifying the accuracy in learning partially known
ynamics [19]. In the SDE application, they deduced under mild conditions that one can achieve accurate pathwise predictions up to a
inite time with an error bound that is polynomial as a function of the learning error rate. In this paper, we will quantify the error in
he estimation of one-point invariant statistics and two-point correlation statistics. Although these two metrics are commonly used to
mpirically assess the performance of the estimated dynamics through various algorithms [5,12,14,19,33–36], as a means to validate
he consistency of the estimated dynamics, our emphasis is placed on the theoretical analysis. In particular, we will show that the errors
n these statistics will depend linearly on a parameter ϵ that reflects the error in the estimation of drift and diffusion coefficients. This
esult not only guarantees the convergence of the invariant statistical estimation as ϵ → 0, but also provides a means for designing
fficient learning algorithms when the parameter ϵ is specified as a function of the size of training data and other parameters that
haracterize the ‘‘size’’ of the hypothesis space, the strength of the noise, and the step size of the discrete-time series.
Our study will be based on the perturbation theory of ergodic Markov chains [37–39] and the linear response theory [40], which

ill be reviewed in Section 2. In the context of learning, we will specify the perturbation as the error induced by a regression learning
ramework in estimating the drift and diffusion coefficients of SDEs. Our main contribution, which will be discussed in Section 3, is to
educe error bounds of the estimation of one-point and two-point invariant statistics in terms of the error of the learning framework.
eyond these error bounds, the more important aspect of this study is to specify mathematical conditions that allow for the error bounds
o be valid. Practically, these conditions allow one to pre-determine whether the proposed learning method is adequate or whether
t can be adjusted to guarantee a convergent estimation. We will examine the validity of these conditions on two machine learning
ethods. In Section 4, we will discuss a kernel-based spectral regression method. We consider an RKHS induced by the orthonormal
et of eigenfunctions of an integral operator defined over the invariant distribution of the data, which can be empirically estimated
rom the discrete samples. Subsequently, in Section 5, we will discuss a random neural network model of a simple single hidden-
ayer feed-forward neural network with ReLU activation function, which is a simple randomized function approximation relative to
he reservoir computing. In these two sections, we will provide an overview of the generalization errors of these methods adopted in
ur application. This discussion is mainly based on the results in [30,41–44]. For these two machine learning algorithms, we will also
xamine the validity of the Assumption 3.1 that underpins the perturbation theory of Markov chains. In Section 6, we close the paper
ith a summary and some discussions on open issues.

. Existing theory on statistics of perturbed Markov chains

In this section we will review the essential concepts and results in the perturbation theory for Markov chains [37,38] (Section 2.1),
rgodic theory of SDEs [39] (Sections 2.2 and 2.3), and the long-time linear response theory [40] (Section 2.4). The theory involves
oth continuous Markov processes, e.g., Itô diffusions, and discrete Markov chains, e.g., the Euler–Maruyama approximation of the Itô
iffusions. We will use the notation {·(t)}, e.g., {X(t)}, and {·n}, e.g., {Xn}, to denote Markov processes and Markov chains, respectively.
hroughout the paper, ∥ · ∥ always denotes the standard Euclidean norm in Rd.

.1. A perturbation theory for ergodic Markov chains

In this section, we review the perturbation theory for ergodic Markov chains in [37,38]. Let B(Rd) denote the Borel σ -algebra on Rd,
nd {un}

∞

n=0 always denotes a Markov chain from a probability space (Ω,F ,P) to (Rd,B(Rd)). In what follows, we will use the shorthand
otation |f | ≤ V to mean |f (x)| ≤ V (x) for all x ∈ Rd. Our first definition, following [38], focuses on the concept of geometrically ergodic
arkov chains.

efinition 2.1. A Markov chain {un}
∞

n=0 is geometrically ergodic, if:

i. There exists a unique invariant measure, π , on (Rd,B(Rd)).
ii. There exists a measurable function V : Rd

→ [1,+∞) such that

Ex
[V (un)] <∞, ∀n ≥ 0,

where Ex
[·] denotes the expectation under the initial condition u0 = x.

iii. Let G be the set of all measurable functions f with |f | ≤ V . There exists a set G0 ⊂ G containing V such that

sup
f∈G0

⏐⏐Ex
[f (un)] − π (f )

⏐⏐ ≤ RρnV (x), ∀n ≥ 0, (1)

for some constants R ∈ (0,+∞) and ρ ∈ (0, 1). Here, π (f ) :=
∫
fπ (dx).
2
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The inequality in (1), as the key component of the geometrical ergodicity, describes the decay rate of the V -norm distance [37]
between the distribution of un and the invariant measure π as n → +∞. In general, we may consider other probability distances to
haracterize the convergence in (1), e.g., the Wasserstein distance [37]. Here, the set G0 is introduced to rule out certain ‘‘ill-behaved’’
bservables for simplicity. In our later discussions, G0 is either G itself, e.g., in Theorem 2.1, or a set of locally Lipschitz functions, e.g., in
roposition 2.2.
We approximate the geometrically ergodic Markov chain {un} by another perturbed Markov chain {uϵn} (which may not be

geometrically ergodic), where ϵ represents the ‘‘scale’’ of the perturbation. To specify how the approximation error is carried over
to the error of the resulting statistics in the long run, we will state the following perturbation bound, which is a result of the Corollary
3.4 in [37].

Proposition 2.1. Let {un} be a geometrically ergodic Markov chain satisfying the condition in Definition 2.1. We further assume that the
Lyapunov function V satisfies

Ex
[V (u1)] ≤ αV (x)+ β, ∀x ∈ Rd, (2)

with constants α ∈ (0, 1) and β ∈ (0,+∞). Let {uϵn} be a perturbed Markov chain with respect to {un}. We define

γ := sup
x∈Rd

sup
f∈G0

⏐⏐Ex
[f (uϵ1)] − Ex

[f (u1)]
⏐⏐

V (x)
. (3)

f γ ∈ (0, 1− α), then, for any fixed initial condition u0 = uϵ0 = x ∈ Rd, we have,

sup
f∈G0

⏐⏐Ex
[f (uϵn)] − Ex

[f (un)]
⏐⏐ ≤ R(1− ρn)

γ κ

1− ρ
, κ := max

{
V (x),

β

1− γ − α

}
, ∀n ≥ 0, (4)

or some constant R ∈ (0,+∞), where ρ ∈ (0, 1) is defined by (1).

We would like to point out that the original error bound presented by Corollary 3.4 in [37] allows for un and uϵn to have different
initial conditions.

As a direct consequence of Proposition 2.1 and Eq. (1), we have

sup
f∈G0

⏐⏐Ex
[f (uϵn)] − π (f )

⏐⏐ ≤ R
[
(1− ρn)

γ κ

1− ρ
+ ρnV (x)

]
, ∀n ≥ 0, (5)

or some constant R ∈ (0,+∞). The fact that the error bound in (4) depends on γ , defined through the V-norm in (3), provides a
convenient way for characterizing the errors of the estimated transition kernel. Namely, we only need to study the ‘‘one-step’’ error
between the statistics of {u1} and {uϵ1}. When G0 = G , the constant γ in (3) is also used as the upper bound of the V-norm difference
between the transition kernels of {un} and {uϵn} over x ∈ Rd [37].

2.2. The Itô diffusion and its approximations

The key results developed in our paper focus on the case where the underlying dynamical system is an Itô diffusion. In this section,
we review some basic concepts and results related to the Itô diffusion and its approximations. For classical theory of Itô diffusions,
readers may refer to [1–3].

A d-dimensional Itô diffusion is a SDE of the form

Ẋ(t) = b(X(t))+ σ (X(t))Ẇ , X(0) = x, t ≥ 0, (6)

where x ∈ Rd, b : Rd
→ Rd and σ : Rd

→ Rd×m (m ≤ d) are the initial condition, drift and diffusion coefficients, respectively. The
process W in (6) denotes a standard m-dimensional Brownian motion. When m < d, the noise in (6) is degenerate. Itô diffusions with
egenerate noise are common in applications, e.g., Langevin dynamics [3]. Non-degeneracy often makes it convenient to prove certain
roperties of the corresponding Itô diffusions, e.g., the ergodicity [39] and the regularity of the invariant measure [45]. But for the sake
f generality, in our paper, we will consider Itô diffusions with possible degenerate noise. We propose the following assumption on
he coefficients.

ssumption 2.1. The coefficients b and σ in (6) are Borel measurable and satisfy the following conditions:

i. Globally Lipschitz condition: There exists a constant K1 ∈ (0,+∞) such that

∥b(x)− b(y)∥ ≤ K1∥x− y∥, ∥σ (x)− σ (y)∥F ≤ K1∥x− y∥, ∀x, y ∈ Rd.

ii. Linear growth bound: There exists a constant K2 ∈ (0,+∞) such that

∥b(x)∥2 ≤ K 2
2 (1+ ∥x∥2), ∥σ (x)∥2F ≤ K 2

2 (1+ ∥x∥2), ∀x, y ∈ Rd.

Here, ∥ · ∥F denotes the Frobenius norm, that is, ∥σ∥F =
(∑

i,j σ
2
ij

) 1
2 .

We shall henceforth hold fixed a Brownian motion W , and the associated family of σ -algebra {At , t ≥ 0}. Assumption 2.1 (i) ensures
he existence and uniqueness of the {At}-adapted strong solution of (6) [1,2]. In particular, the following lemma provides useful bounds
n the even order moments of the solution to (6).
3
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emma 2.1. Suppose Assumption 2.1 (ii). Then, for any integer p ≥ 1, the solution X(t) of (6) satisfies

Ex [
∥X(t)∥2p

]
≤ e2K2(4p

2
+2p)t (1+ ∥x∥2p), ∀t ≥ 0,

here the constant K2 is the same as in Assumption 2.1.

roof. The proof for d = 1 can be found in [1] (Theorem 4.5.4), which can be directly generalized to higher dimensional cases. □

The Itô diffusion (6) defines a time-continuous Markov process. In practice, we may introduce the corresponding Markov chains
ither by sampling or numerical discretizations. By sampling, we mean the resulting Markov chain {Xn} satisfies Xn = X(nδ), for some
δ > 0. For numerical discretizations, a classical example is the Euler–Maruyama (EM) scheme [1].

For a fixed step size δ > 0, the EM scheme generates a Markov chain {X δn } via,

X δ0 = x, X δn+1 = X δn + δb(X
δ
n )+

√
δσ (X δn )ξn, n = 0, 1, . . . , (7)

here {ξn} denotes a sequence of independent, identically distributed, m-dimensional standard Gaussian random variables. The EM
scheme attains the 1/2-order of strong convergence [1], that is, under Assumption 2.1, there exist constants R,D ∈ (0,+∞) such that

Ex [
∥Xn − X δn∥

2]
≤ ReDnδ(1+ ∥x∥2)δ, n = 0, 1, . . . , (8)

where the constants R,D ∈ (0,+∞) are independent of δ. Moreover, X δn yields similar moment bounds as in Lemma 2.1 (see Theorem
10.2.2 in [1] for details). It is worthwhile to mention that the bounds discussed in Lemma 2.1 and Eq. (8) can be improved under extra
assumptions, e.g., drift coefficients b satisfying dissipative conditions [46].

2.3. The ergodic Itô diffusions

In Section 2.1, we have discussed a perturbation result for ergodic Markov chains. In this paper, the Markov chains are generated
from ergodic Itô diffusions by sampling or numerical discretization. Thus, we need to first inspect the concept of ergodic Itô diffusions
and how they are connected to ergodic Markov chains. The unlisted proofs in this section can be found in [39]. Following [39], we
consider Itô diffusions (6) with additive noise,

Ẋ(t) = b(X(t))+ σẆ , X(0) = x, (9)

where σ ∈ Rd×m (m ≤ d). The fixed constant matrix σ is assumed to have linearly independent column vectors, that is, rank(σ ) = m.
Here, {X(t)} in (9) forms a Markov process on the state space (Rd,B(Rd)). We denote the transition kernel of the Markov process {X(t)}
by

Pt (x, A) := P(X(t) ∈ A | X(0) = x), t ≥ 0, x ∈ Rd, A ∈ B(Rd). (10)

To establish the geometric ergodicity for the system (9), we introduce the following series of assumptions [39].

Assumption 2.2. The transition kernel Pt in (10) satisfies, for some fixed compact set S ∈ B(Rd), the following:

i. For some y∗ ∈ int(S) (the interior of S) and any r > 0, there is a t1 = t1(r) > 0 such that

Pt1 (x,Br (y∗)) > 0, ∀x ∈ S.

ii. For any t > 0 the transition kernel yields a density pt (x, y), that is,

Pt (x, A) =
∫
A
pt (x, y)dy, ∀x ∈ S, A ∈ B(Rd) ∩ B(S),

and pt (x, y) is jointly continuous in (x, y) ∈ S × S.

Here, Br (y∗) denotes the open ball of radius r centered at y∗, and B(S) denotes the sub-σ -algebra on S with respect to B(Rd).

Assumption 2.3. There is a function V : Rd
→ [1,+∞), with limx→∞ V (x) = +∞, and a1, d1 ∈ (0,+∞) such that

L V (x) ≤ −a1V (x)+ d1, ∀x ∈ Rd.

Here L is the generator for (9) given by

L f =
d∑

i=1

bi
∂ f
∂xi

+
1
2

d∑
i,j=1

(σσ⊤)ij
∂2f
∂xi∂xj

,

where (σσ⊤)ij denotes the ij-component of the matrix σσ⊤.

As a direct consequence of Assumption 2.3 and the Dynkin’s formula [2,39], we have

Ex
[V (X(t))] ≤ e−a1tV (x)+

d1
a1

(1− e−a1t ), ∀x ∈ Rd, ∀t ≥ 0,

here Ex
[·] denotes the expectation under (9), with respect to the initial condition X0 = x. When t = δ, we have

Ex
[V (X1)] = Ex

[V (X(δ))] ≤ e−a1δV (x)+
d1
a1

(1− e−a1δ), ∀x ∈ Rd,

that is, the Markov chain {Xn = X(nδ)} satisfies the condition (2) in Proposition 2.1. The following theorem (Theorem 2.5 in [39]),
guaranteeing the geometric ergodicity of the Markov chain {Xn}, is the foundation of our study of the perturbation theory.
4
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heorem 2.1. Let {X(t)} be the Markov process defined in (9) that satisfies Assumptions 2.2 and 2.3 with the compact set S given by

S =

{
x ∈ Rd

| V (x) ≤
2d1

a1(ζ − e−a1δ)

}
,

or some ζ ∈ (e−a1δ/2, 1) and δ > 0. Then there exists a unique invariant measure π . Furthermore, there exist ρ = ρ(ζ ) ∈ (0, 1) and
= R(ζ ) ∈ (0,+∞) such that

sup
f∈G

⏐⏐Ex
[f (Xn)] − π (f )

⏐⏐ ≤ RρnV (x), ∀x ∈ Rd, ∀n ≥ 0,

here G denotes the set of all measurable functions with |f | ≤ V , that is, {Xn} is a geometrically ergodic Markov chain defined in Definition 2.1
ith G0 = G .

In [39], Theorem 2.1 has been applied to a variety of SDEs, including the Langevin dynamics, monotone and dissipative systems, and
tochastic gradient systems. The function V in Assumption 2.3 is called the Lyapunov function of the dynamical system (9). In particular,
e further assume that V is of a polynomial growth rate.

ssumption 2.4. The Lyapunov function V in Assumption 2.3 is of the form V = W ℓ for some ℓ ≥ 1, where W is essentially quadratic,
.e., there exist constants Ci ∈ (0,+∞), i = 1, 2, 3, such that

C1
(
1+ ∥x∥2

)
≤ W (x) ≤ C2

(
1+ ∥x∥2

)
, ∥∇W (x)∥ ≤ C3 (1+ ∥x∥) , ∀x ∈ Rd. (11)

Assumption 2.4 is not only useful in deriving perturbation bounds in Section 3 (see Lemma 3.1 for the details), it also ensures that
ny ‘‘reasonable’’ numerical discretization scheme will inherit the ergodicity of (9) [39]. In particular, we have the following proposition.

roposition 2.2. Let Assumptions 2.1–2.4 hold. Then, there exists δ0 > 0, such that ∀δ ∈ (0, δ0) the Markov chain generated by the
M scheme with step size δ, {X δn } in (7), is geometrically ergodic with invariant measure π̃ δ and with same Lyapunov function V (x) as in
ssumption 2.3. In particular, we define

Gℓ :=
{
f ∈ G

⏐⏐ |f (x)− f (y)| ≤ Cℓ
(
1+ ∥x∥2ℓ−1

+ ∥y∥2ℓ−1)
∥x− y∥, ∀x, y ∈ Rd} ,

as the set ‘‘G0’’ (in Definition 2.1) for {X δn }, where Cℓ > 0 is a fixed constant such that Gℓ contains V (x). We have the following results:

i. There exists a2 = a2(δ) ∈ (0, a1) (a1 and d1 are defined in Assumption 2.3) such that

Ex
[V (X δ1 )] ≤ e−a2δV (x)+

d1
a2
, ∀x ∈ Rd.

ii. There exist R = R(ℓ, δ) ∈ (0,+∞) and D = D(ℓ, δ) ∈ (0,+∞) such that,

sup
f∈Gℓ

⏐⏐Ex
[f (X δn )] − π̃

δ(f )
⏐⏐ ≤ Re−DnδV (x), ∀x ∈ Rd, ∀n ≥ 0.

iii. There exist K = K (ℓ) and ν ∈ (0, 1/2) independent of ℓ, such that

sup
f∈Gℓ

⏐⏐π (f )− π̃ δ(f )⏐⏐ ≤ Kδνπ (V ). (12)

Here, the set Gℓ is well-defined since by Assumption 2.4 and Eq. (11), one has,

∥∇V (x)∥ = ℓW ℓ−1
∥∇W (x)∥ ≤ ℓCℓ−1

2 C3(1+ ∥x∥2)ℓ−1(1+ ∥x∥),

which leads to

|V (x)− V (y)| ≤
∫ 1

0
∥∇V (sx+ (1− s)y)∥∥x− y∥ds ≤ ℓCℓ−1

2 C3(1+ ∥x∥2 + ∥y∥2)ℓ−1(1+ ∥x∥ + ∥y∥)∥x− y∥

≤ Cℓ(1+ ∥x∥2ℓ−1
+ ∥y∥2ℓ−1)∥x− y∥,

or some constant Cℓ = O(22ℓ). Proposition 2.2 is a direct corollary of Theorem 7.3 in [39], whose proof is closely related to the result
n [38].

.4. The long-time linear response theory

So far, all the perturbation bounds introduced only focus on the one-point statistics given an observable f ∈ G0 satisfying |f | ≤ V .
owever, the set of admissible observables G0 is not general enough for our implementation. As a remedy, we will review the long-time
inear response theory, which is justified in [40] in an abstract setting. This will help us capture the leading order term of the error for
ore general observables.
We consider a family of Markov evolution operators {Pϵ

t | t ≥ 0, ϵ ∈ (−ϵ0, ϵ0)} on Rd that characterize the unperturbed dynamics
n (9) and its perturbations. We will specify such Pϵ

t in Section 3. Here, to help readers understand the notations, one can interpret the
arameter ϵ as the strength of the perturbation. In other words, when ϵ = 0, P0

t reduces to the evolution operator of the unperturbed
ynamics, e.g., the Itô diffusion (9). Namely,(

P0
t f
)
(x) =

∫
f (y)Pt (x, dy) = Ex

[f (X(t))],

here the transition kernel Pt is defined in (10). We are interested in the long-time behavior of the perturbed system described by Pϵ
t

or ϵ close to 0, which requires the following assumption [40].
5
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ssumption 2.5. There exists an ϵ0 > 0 such that for all ϵ ∈ (−ϵ0, ϵ0), Pϵ
t yields an invariant probability measure π ϵ on Rd.

When the unperturbed dynamics corresponds to an ergodic Itô diffusion (9), by Theorem 2.1, we know there exists a unique invariant
measure π for P0

t , that is, π
0
= π . But for ϵ ̸= 0, Assumption 2.5 only ensures the existence of the invariant measure. The aim of the

long-time linear response theory is to show that the map

ϵ ↦→ π ϵ(f )

is differentiable at ϵ = 0 for every sufficiently regular observable f : Rd
→ R. We will briefly review the assumptions in [40] that lead

to the desirable result.
Let C∞

c (Rd) be the set of all smooth functions f : Rd
→ R that are compactly supported. Given continuous functions G,H,U : Rd

→

[1,+∞), we set C1
G,H to be the closure of C∞

c (Rd) under the norm

∥f ∥1;G,H := sup
x∈Rd

(
|f (x)|
G(x)

+
∥∇f (x)∥
H(x)

)
, (13)

nd CU to be the weighted space of continuous functions obtained by completing C∞
c (Rd) under the norm

∥f ∥U = sup
x∈Rd

|f (x)|
U(x)

.

he following assumption targets the spectral gap of P0
t as an operator on C1

G,H .

ssumption 2.6. There exist a time t > 0 and a constant λ ∈ (0, 1) such that

∥P0
t f − π (f )∥1;G,H ≤ λ∥f − π (f )∥1;G,H , ∀f ∈ C1

G,H .

Assumption 2.6 also implies that the invariant measure, π , of the unperturbed dynamics (9) is unique [40], that is, Null(I− (P0
t )

∗) =
span{π}, where (P0

t )
∗ denotes the adjoint operator of P0

t . Therefore, by Fredholm theorem, we have Range(I−P0
t ) = Null(I−(P0

t )
∗)⊥,

which means for every function ϕ ∈ C1
G,H centered with respect to π , there exists a unique function ψ ∈ C1

G,H such that

ψ − P0
t ψ = ϕ,

and ψ is also centered with respect to π . We will henceforth use the notation ψ = (I − P0
t )

−1ϕ. Our next assumption concerns the
Fréchet derivative of Pϵ

t with respect to ϵ.

Assumption 2.7. Let C1
G,H be the same as in Assumption 2.6. There exists a continuous function U ≥ G such that, for some fixed t > 0

and every f ∈ C1
G,H , the map ϵ ↦→ Pϵ

t f , viewed as a map from (−ϵ0, ϵ0) to CU , is differentiable on (−ϵ0, ϵ0). Denoting this Fréchet
derivative by ∂Pϵ

t , we furthermore assume that,∂P0
t f

U ≤ C∥f ∥1;G,H , ∀f ∈ C1

G,H ,

for some constant C ∈ (0,+∞) independent of f .

Finally, we assume that we have an a priori bound on the integrability of the invariant measures.

Assumption 2.8. For U in Assumption 2.7 and π ϵ in Assumption 2.5, we have

sup
ϵ∈(−ϵ0,ϵ0)

π ϵ(U) = sup
ϵ∈(−ϵ0,ϵ0)

∫
U(x)π ϵ(dx) <∞.

Assumption 2.8 ensures that observables in CU yield finite first moments with respect to the invariant measures π ϵ for all ϵ ∈

(−ϵ0, ϵ0). We state the following theorem in [40].

Theorem 2.2. Let {Pϵ
t | ϵ ∈ (−ϵ0, ϵ0)} be a family of Markov evolution operators over Rd such that there exist C1 functions

U,G,H : Rd
→ [1,+∞) such that Assumptions 2.5–2.8 hold for some fixed t > 0. Then, the map ϵ → π ϵ(f ) is differentiable at ϵ = 0 for

all f ∈ C1
G,H . In particular, we have

d
d ϵ
π ϵ(f )

⏐⏐⏐
ϵ=0

= Eπ
[
∂P0

t (I − P0
t )

−1 (f − π (f ))
]
, (14)

here the right-hand side, as an expectation with respect to the invariant measure π = π0, is well-defined.

Using Theorem 2.2, we can capture the leading order term of the error |π ϵ(f )− π (f )| for f ∈ C1
G;H . Although the result in Theorem 2.2

s observable-dependent, unlike the error bounds reviewed in Section 2.1, where the inequalities act as uniform bounds for a class of
bservables, Eq. (14) can be applied to more general observables, e.g., observables not controlled by the Lyapunov function V . To some
xtent, we trade the uniformity for generality.
Before we close the section, we would like to point out that the linear response theory can also be applied to the short-time response

f the dynamics subject to perturbations [3]. We list Theorem 2.2 in this paper to prove Proposition 3.2 in Section 3.3.
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. Error bounds of the invariant statistics in learning ergodic Itô diffusions

In Section 2, we have reviewed the concept of geometrically ergodic Markov chain and discussed a series of results and bounds for
rgodic Itô diffusions in a relatively abstract setting. In this section, we reformulate the perturbation theory as a problem in the context
f learning the dynamical system (9). In particular, we will specify the perturbation as the error induced by the statistical learning
Section 3.1) and develop error bounds for both one-point statistics (Section 3.2) and two-point statistics (Section 3.3) based on the
results in Section 2.

3.1. Learning ergodic Itô diffusions

Interpreting the system (9) as the unperturbed dynamics, under the same initial condition, we introduce a family of perturbed
dynamics of the form,

Ẋ ϵ(t) = bϵ(X ϵ(t))+ σϵẆ , X ϵ0 = x, 0 < ϵ ≪ 1, (15)

where bϵ : Rd
→ Rd and σϵ ∈ Rd×m, the perturbed drift and diffusion coefficients, respectively, are parameterized by a parameter

ϵ > 0 corresponding to the ‘‘scale’’ of the perturbation. For simplicity, we assume W in (15) to be the same standard m-dimensional
Brownian motion as in the unperturbed dynamics (9). We should point out that since we are interested in the error bound of the
invariant statistics (rather than the pathwise error between X(t) and X ϵ(t)), the perturbed diffusion coefficients σϵ is defined so that
σϵσ

⊤
ϵ is an estimate of σσ⊤. To gain an intuition of the perturbed dynamics in (15) and develop a proper interpretation of the parameter

ϵ, we introduce the following regression problem in estimating the drift coefficient b of the unperturbed dynamics (9).
Consider the Markov chain, {X δn }, generated by EM discretization of the unperturbed dynamics (9). Based on the numerical scheme

in (7), we define the finite difference process,

Y δn :=
1
δ

(
X δn+1 − X δn

)
= b(X δn )+ δ

−
1
2 σξn. (16)

Since ξn is independent of X δn , we may express the drift coefficient b as the following conditional expectation,

b(x) = E
[
Y δn
⏐⏐ X δn = x

]
, ∀n ≥ 0. (17)

Let µδ denote the joint stationary distribution of the random variable (X, Y ) := (X δn , Y
δ
n ). Eq. (17) suggests that the solution to the

following regression problem

min
h=(h1,...,hd)⊤

E [h], E [h] := Eµδ
[
∥h(X)− Y∥2

]
, hi ∈ L2(Rd, π̃ δ), i = 1, 2 . . . , d, (18)

is an unbiased estimator of b [44]. Furthermore, the covariance matrix of the residual error satisfies

Eµδ
[
(b(X)− Y )(b(X)− Y )⊤

]
= δ−1σσ⊤.

Since the noise has independent components, the residual error is given by E [b] = δ−1 Tr[σσ⊤
], where Tr[·] denotes the standard

matrix trace operation. While this estimator is unbiased, the bias (also known as the approximation error [44]) may appear depending
on the choice of the hypothesis space H , which will be clarified in Sections 4–5.

In practice, the loss function E [h] in (18) is approximated by an empirical loss function,

EN [h] :=
1
N

N∑
i=1

∥h(xi)− yi∥2 , (19)

from i.i.d. samples {xi, yi}Ni=1 of (X, Y ) with stationary distribution µδ . Here, we consider i.i.d. samples only for the convenience of the
theoretical analysis in Sections 4 and 5. Practically, the samples can be obtained by subsampling from the labeled time series {xδn, y

δ
n}n≥0

o reduce the temporal correlation, and thus the sampling error.
We define bϵ and σϵσ⊤

ϵ as follows,

bϵ := argmin
h∈H

EN [h], σϵσ
⊤

ϵ :=
δ

N

N∑
i=1

[
(yi − bϵ(xi)) (yi − bϵ(xi))⊤

]
. (20)

One can see that the sample covariance is a biased estimator of σσ⊤, that is,

Eµδ [σϵσ
⊤

ϵ ] − σσ
⊤
= δEπ̃δ [(b(X)− bϵ(X))(b(X)− bϵ(X))⊤],

where, by Jensen’s inequality, the bias satisfiesEπ̃δ [(b(X)− bϵ(X))(b(X)− bϵ(X))⊤
]

F ≤ Eπ̃δ
[(b(X)− bϵ(X))(b(X)− bϵ(X))⊤


F

]
= Eπ̃δ

[
∥(b(X)− bϵ(X))∥2

]
. (21)

To have a better understanding of the error between σϵσ⊤
ϵ and σσ⊤, we introduce

Di := δ(yi − bϵ(xi))(yi − bϵ(xi))⊤ − σσ⊤
− δEπ̃δ [(b(X)− bϵ(X))(b(X)− bϵ(X))⊤], i = 1, 2, . . . ,N, (22)

hich defines a finite sequence of independent, random, symmetric matrices of mean 0. In particular, subtracting σϵσ⊤
ϵ (20) from σσ⊤

nd using the definition in (22), we deduce that,σσ⊤
− σϵσ

⊤

ϵ


2 =

 1
N

N∑
Di + δEπ̃δ

[
(b(X)− bϵ(X))(b(X)− bϵ(X))⊤

]

i=1 2

7
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 1
N

N∑
i=1

Di


2

+ δ
Eπ̃δ [(b(X)− bϵ(X))(b(X)− bϵ(X))⊤

]
2

≤

 1
N

N∑
i=1

Di


2

+ δEπ̃δ
[
∥(b(X)− bϵ(X))∥2

]
, (23)

here ∥ · ∥2 denotes the matrix 2-norm. Here, we have used the relation in (21) and the fact that ∥A∥2 ≤ ∥A∥F for any matrix A. The
irst term on the right-hand side of Eq. (23) is the error induced by the empirical estimation, can be bounded by the matrix Bernstein
nequality, e.g., Theorem 6.2 in [47], assuming that π̃ δ belongs to the sub-exponential class. Ignoring the parameter δ, we will refer
he second term as the generalization error of the learning algorithm of b. We will provide detailed discussions of this error term in
ections 4–5 for specific learning methods. Based on these observations, we define the parameter ϵ, which corresponds to the ‘‘scale’’
f the perturbation, as the spectral error of the diffusion matrix estimator, σϵσ⊤

ϵ ,

ϵ := ∥σσ⊤
− σϵσ

⊤

ϵ ∥2, (24)

hich is well-defined and is small in high probability for large enough N .
Our goal is to analyze the error bounds of the invariant statistics when the underlying ergodic Itô diffusion (9) is approximated

y the perturbed dynamics in (15). In particular, we would like to understand how the error in the invariant statistics depends on ϵ
n (24) and the generalization error, Eπ̃δ

[
∥(b(X)− bϵ(X))∥2

]
. To develop results toward this direction, we need the following critical

ssumptions on the family of coefficients {bϵ} in (15) and their errors {bϵ − b}. These assumptions not only elucidate the dependence
n ϵ but also are conditions that we need to implement the results reviewed in Section 2.

ssumption 3.1. Consider the unperturbed and the family of perturbed Itô diffusions in (9) and (15), respectively. For any 0 < ϵ ≪ 1
(ϵ defined in (24)), we assume

i. The coefficient bϵ is Borel measurable and satisfies the globally Lipschitz condition as in Assumption 2.1 with uniform Lipschitz
constant with respect to ϵ.

ii. The family of coefficients {bϵ} is a sequence of consistent estimators of b in the space of continuous (vector-valued) functions of
linear growth. That is,

∥bϵ(x)− b(x)∥2 ≤ K 2
3 (1+ ∥x∥2)ϵ2, ∀x ∈ Rd, (25)

for some constant K3 ∈ (0,+∞) independent of ϵ.

Assumption 3.1 (i) ensures that the coefficients bϵ in the perturbed dynamics (15) satisfy Assumption 2.1 with related constants,
including the Lipschitz constants and those constants in the linear growth bound, independent of ϵ. The condition (25) suggests that
ot only bϵ → b as ϵ → 0 on a weighted continuous function space, but it also suggests the following scaling on the generalization

error,

Eπ̃δ
[
∥(b(X)− bϵ(X))∥2

]
≤ K 2

3Eπ̃δ
[
1+ ∥X∥2

]
ϵ2 = O(ϵ2). (26)

This implies that whenever the generalization error is scaled as in (26), which will always be satisfied when the condition (25) is
valid, the spectral error of the diffusion matrix estimator (with error bound in (23)) is dominated by the Monte-Carlo error that can be
controlled by concentration inequalities, instead of the generalization error in learning b.

To deduce the result below, we adopt the notation in Section 2. For δ > 0, let X ϵn and X ϵ,δn denote the Markov chain sampled
rom the perturbed dynamics (15) with X ϵn = X ϵ(nδ) and the discretized Markov chain of (15) generated by EM scheme (7) with step
ize δ, respectively. Here, {X ϵn } and {X ϵ,δn } can be interpreted as the perturbed Markov chains of Xn and X δn , respectively. To employ
he existing theory reviewed in Section 2, recall that Proposition 2.1 in Section 2.1 involves an unperturbed Markov chain {un} and
he corresponding perturbed Markov chain {uϵn}, where {un} is assumed to be geometrically ergodic. While it is obvious that we are
undamentally interested in the case where (un, uϵn) = (Xn, X ϵn ), in practice, we are rarely given a realization of {Xn}. This implies that
hen the drift and diffusion coefficients are estimated, we will not be able to realize samples of X ϵn , the estimated dynamics, that are

ndependent of time discretization, δ > 0, even if one can theoretically write the error bound between of the statistics of Xn and X ϵn
as we shall see below). What is usually available is the time series of {X δn }, obtained e.g., via EM integrator. Given such constraints,
e consider also the case where (un, uϵn) = (X δn , X

ϵ,δ
n ), in which X ϵ,δn denotes the estimated Markov chain with the drift and diffusion

oefficients obtained by learning from the time series {X δn }. By Assumption 2.3 and Proposition 2.2, we know that the Markov chain
X δn } is geometrically ergodic and the condition related to the Lyapunov function (2) is valid for both two cases. Thus, it is enough to
erive the relation between the γ in (3) and the parameter ϵ, which is given by the following lemma.

emma 3.1. Consider the unperturbed ergodic Itô diffusion (9) and the corresponding perturbed dynamics (15) satisfying Assumptions 2.1–
.3 and Assumption 3.1. For the fixed step size δ specified in Theorem 2.1 and all 0 < ϵ ≪ 1, we have

γX := sup
x∈Rd

sup
f∈Gℓ

⏐⏐Ex
[f (X1)] − Ex

[f (X ϵ1 )]
⏐⏐

V (x)
≤ Kϵ,

γXδ := sup
x∈Rd

sup
f∈Gℓ

⏐⏐Ex
[f (X δ1 )] − Ex

[f (X ϵ,δ1 )]
⏐⏐

V (x)
≤ K δϵ,

or some constant K , K δ ∈ (0,+∞) that are independent of ϵ. Here, G is defined as in Proposition 2.2.
ℓ

8
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See Appendix A for the proof. We should point out that in the course of the proof, the linear scaling in (25) is important for balancing
he ϵ scaling that is defined as the spectral error of the estimator σϵσ⊤

ϵ in (24). The proof also suggests that while the scaling of
eneralization error in (26) is necessary for small spectral error bound in (24) as we pointed out right after (26), it is not a sufficient
ondition to achieve the bounds in Lemma 3.1. This issue is due to the discrepancy of topologies defined in the perturbation theory
nd the usual generalization error in machine learning. Specifically, the perturbation theory result used in this paper to achieve the
inear dependence result is defined with a stronger topology than that of the generalization error in learning theory.

.2. One-point statistics

For one-point statistics, we consider an observable f : Rd
→ R with finite first moment, π (|f |) < ∞, and derive error bounds for

Ex
[f (X ϵn )] − π (f )

⏐⏐ and ⏐⏐Ex
[f (X ϵ,δn )] − π (f )

⏐⏐, where π denotes the invariant measure of the unperturbed dynamics (9). By Lemma 3.1, if
he observable f ∈ Gℓ (defined in Proposition 2.2), such bounds can be derived immediately from Proposition 2.1 and they are uniform
or all f ∈ Gℓ. In particular, the following proposition summarizes the corresponding results.

roposition 3.1. Under the same circumstances as in Lemma 3.1, consider the invariant measure of the unperturbed dynamics (9), π . Let
X ϵn } denote the Markov chain of a generic perturbation of size ϵ. Furthermore, we let {X ϵ,δn } denote the Markov chain generated by the EM
ntegration of (15). Then, we have

sup
f∈Gℓ

⏐⏐Ex
[f (X ϵn )] − π (f )

⏐⏐ ≤ R1

[(
ρn
1 +

1− ρn
1

1− ρ1
ϵ

)
V (x)

]
, ∀n ≥ 0,

nd

sup
f∈Gℓ

⏐⏐Ex
[f (X ϵ,δn )] − π (f )

⏐⏐ ≤ R2

[(
ρn
2 +

1− ρn
2

1− ρ2
ϵ

)
V (x)+ δνπ (V )

]
, ∀n ≥ 0, (27)

or some constants R1, R2 ∈ (0,+∞), ρ1, ρ2 ∈ (0, 1), and ν ∈ (0, 1
2 ) (same as in Eq. (12)).

roof. Both inequalities are results of Eq. (5), which is a corollary of Proposition 2.1. By Lemma 3.1, we know Proposition 2.1 holds
or both (un, uϵn) = (Xn, X ϵn ) and (un, uϵn) = (X δn , X

ϵ,δ
n ). To obtain the first inequality, we apply Eq. (5) to X ϵn (with π being the invariant

easure of Xn).
As we have pointed out in the discussion above, while this inequality holds, in practice, we will not have access to X ϵn . As for the

econd inequality, we apply Eq. (5) to X ϵ,δn (with π = π̃ δ being the invariant measure of X δn defined as in Proposition 2.2). The desired
ounds can be obtained using the triangular inequality together with Eq. (12) in Proposition 2.2. Namely,⏐⏐Ex

[f (X ϵ,δn )] − π (f )
⏐⏐ ≤ ⏐⏐Ex

[f (X ϵ,δn )] − π̃ δ(f )
⏐⏐+ ⏐⏐π̃ δ(f )− π (f )⏐⏐

≤R
[
(1− ρn

2 )
γXδκ

1− ρ2
+ ρn

2V (x)
]
+ Kδνπ (V )

o achieve the bound in (27), we use that fact that V (x) ∈ [1,+∞) to replace the term κ in Eq. (5) by V (x), and define R2 =

ax{RK δ, R, K }. □

Essentially, this Proposition suggests that the error in one-point statistics depends linearly on the perturbation size, ϵ, as n → ∞.
t is worthwhile to note this result is stronger than a similar conclusion in [48] since their result assumes a uniform consistency,
upx∈Rd ∥bϵ(x) − b(x)∥ ≤ ϵ, which is stronger than our assumption, a linear error growth in (25). In practice, since the available
ata for training is subjected to numerical discretization error, the error rate is of order O(ϵ, δν), from some ν ∈ (0, 1/2) specified
n Proposition 2.2. We should point out that ϵ will be inversely proportional to the discretization error, δ, as we shall see in Sections
.2.3 and 5.2, where this relation is induced by the noises in the response data (16).

.3. Two-point statistics

For two-point statistics, we consider observables A, B : Rd
→ R with finite second moments, that is, π (A2), π (B2) < ∞. The

wo-point statistics of A and B for the unperturbed dynamics (9) are defined as

kA,B(t) := Eπ [A(X(t))B(X(0))] =
∫∫

A(x)B(x0)Pt (x0, dx)π (dx0). (28)

n applications, the two-point statistics can arise from Fluctuation–Dissipation Theory and is a route to approximate the statistics of
system driven out of equilibrium, e.g., [49–51]. In [52], we have shown that the two-point statistics in (28) are well-defined for all
≥ 0. Formally, under Assumption 2.5, we can define the corresponding two-point statistics for the perturbed dynamics (15), as an

approximation of (28). It is given by

kϵA,B(t) := Eπϵ [A(X ϵ(t))B(X ϵ(0))] =
∫∫

A(x)B(x0)Pϵt (x0, dx)π
ϵ(dx0).

Here, Pϵt denotes the transition kernel (10) of the perturbed dynamics. In terms of the Markov chains Xn and X ϵn , the two-point statistics
reduce to

(kA,B)n := kA,B(nδ) = Eπ [A(Xn)B(X0)], (kϵA,B)n := kϵA,B(nδ) = Eπϵ [A(X ϵn )B(X
ϵ
0 )], ∀n ≥ 0. (29)

The following proposition, as the main result of this section, provides an error bound for the two-point statistics.
9
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roposition 3.2. Under the same circumstances as in Lemma 3.1, for a fixed step size δ > 0, let Assumptions 2.5–2.8 hold for the family
of Markov operators,(

Pϵ
δ f
)
(x) :=

∫
f (y)Pϵδ (x, dy) = Ex

[f (X ϵ(δ))], 0 < ϵ ≪ 1,

induced by the perturbed dynamics (15) with respect to the functions G,H,U (see Theorem 2.2 for the details) satisfying G ≥ V . We further
assume

π ϵ(V 2) <∞,

where V is the Lyapunov function of the unperturbed dynamics. Then, for any observables A ∈ Gℓ ∩ C1
V ,VH/G and B ∈ C1

G/V ,H/V satisfying

π (A2), π (B2), π ϵ(A2), π ϵ(B2) <∞,

the two-point statistics in (29) are well-defined, and⏐⏐(kϵA,B)n − (kA,B)n
⏐⏐ ≤ Rπ ϵ(B2)

1
2 ϵ +

⏐⏐⏐⏐ d
d ϵ
π ϵ(fn)

⏐⏐⏐
ϵ=0

⏐⏐⏐⏐ ϵ + O(ϵ2), fn(x) = B(x)Ex
[A(Xn)], (30)

or some constants R ∈ (0,+∞) independent of A and B. Here, the ϵ-derivative in (30) is well-defined and satisfies Eq. (14) with f = fn and
= δ. Moreover, if we further assume that A is centered with respect to π (π (A) = 0), the error bound in (30) satisfies⏐⏐(kϵA,B)n − (kA,B)n

⏐⏐ ≤ R
[
π ϵ(B2)

1
2 +

1
1− λ

∥B∥1;G/V ,H/V
(
λn∥A∥1;V ,VH/G + ρnπ (G)

)]
ϵ + O(ϵ2), (31)

or some constants R ∈ (0,+∞), λ ∈ (0, 1) (the same as those in Assumption 2.6), and ρ ∈ (0, 1) (the same as in Theorem 2.1) independent
of A and B. The norms in (31) are defined by Eq. (13).

See Appendix B for the proof. In the proof we analyze the two factors that contribute to the error of the two-point statistics: the
transition kernel and the invariant measure, which lead to the first and second terms on the right-hand side of the error bound (30),
espectively. When the observable A is centered with respect to π , suggested by Eq. (31), the leading order term of the error caused
y the invariant measure, goes to zero as n → +∞.
Proposition 3.2 states the error of the two-point statistics between the two sampling Markov chains {Xn} and {X ϵn }. Similar to

Lemma 3.1 and Proposition 3.1, one can extend the error bounds in Proposition 3.2 corresponding to the two discretized Markov chains:
{X δn } and {X ϵ,δn }, where the two-point statistics are defined with respect to the discrete transition kernel. For example, the two-point
statistics of {X δn } are defined as(

kδA,B
)
n := Eπ̃δ

[
A(X δn )B(X

δ
0 )
]
=

∫∫
A(x)B(x0)(Pδ)n(x0, dx)π̃ δ(dx), ∀n ≥ 0,

here A, B ∈ L2(Rd, π̃ δ) and Pδ denotes the transition kernel of {X δn }. Here, (P
δ)n corresponds to the product of the transition kernel,

hat is,

(Pδ)n(x, A) =
∫

(Pδ)n−1(x, dy)Pδ(y, A), ∀A ∈ B(Rd), ∀n ≥ 1.

emark 1. Proposition 3.2 is valid under a series of assumptions, which can be classified into the following three categories.

i. Assumptions on the unperturbed dynamics: Assumptions 2.1–2.4 are proposed to ensure the geometric ergodicity of the
unperturbed dynamics and its numerical discretization.

ii. Assumptions on the perturbed dynamics: Assumption 3.1 is postulated so that the perturbed dynamic is a ‘‘reasonable’’
approximation of the unperturbed dynamics (Lemma 3.1). Assumptions 2.5–2.8 are proposed so that the long-time linear
response theory holds (Theorem 2.2).

iii. Assumptions on the observables: We assume the observables A and B satisfy certain regularity and integrability conditions, so
that the two-point statistics in (29) are well-defined and the long-time linear response theory is applicable to fn in (30). The
regularity assumptions of A and B are not identical. Specifically, A ∈ C1

V ,VH/G while B ∈ C1
G/V ,H/V . In particular, when G ≥ V 2, we

have

G/V ≥ V , H/V ≥ VH/G,

which imply that C1
V ,VH/G ⊂ C1

G/V ,H/V , that is, the regularity assumption of B is weaker than that of A. In practice, it is common
that the observable B is not as regular as the observable A. For example, in the Fluctuation–Dissipation theory (FDT), the linear
response operator defines two-point statistics of the form in (28) between the observable A and the conjugate variable B [53].
The conjugate variable B, produced by a differential operator (a typical example is B = ∇ log(π ) [54]), is often less regular
than A.

Among all the assumptions, the assumptions associated with the long-time linear response theory (Assumptions 2.5–2.8) are
omewhat abstract and difficult to be directly verified. To provide some insight, we give an example here to show how the long-time
inear response theory is applied to a class of Itô diffusions and their perturbations.

xample 3.1. Consider an Itô diffusion (9) satisfying Assumptions 2.1–2.2. If the drift coefficient b in (9) satisfies the dissipative
ondition [39], that is, there exist constants a, d ∈ (0,+∞) such that

⟨b(x), x⟩ ≤ a− d∥x∥2, ∀x ∈ Rd,
10



H. Zhang, J. Harlim and X. Li Physica D 427 (2021) 133022

t

i
p

i

T

hen, Assumptions 2.3–2.4 hold with V (x) = 1+ ∥x∥2ℓ for all ℓ ≥ 1. Moreover, consider the family of Markov operators {Pϵ
t } induced

by the perturbed dynamics in (15) with coefficients satisfying Assumption 3.1, then Assumptions 2.5–2.8 hold for all ϵ small enough
with

G(x) = 1+ αeη∥x∥
2
, H(x) = β−1eη∥x∥

2
, U(x) = G(x)+ e2η∥x∥

2
,

for some positive constants α, β , and η sufficiently small.

The choice of the Lyapunov function is a result of Lemma 4.2 in [39]. Since the perturbation to the drift coefficients bϵ−b is of linear
growth (Assumption 3.1), for ϵ small enough, the drift coefficients bϵ = b+(bϵ−b) of the perturbed dynamics still satisfy the dissipative
condition. Under such observations, the choice of functions G,H and U can be found in the proof of Theorem 4.4 in [40]. In [40], the
authors considered the case where the drift coefficient b is a linear combination of symmetric multi-linear maps, so that they can apply
the long-time linear response theory to the family of Markov operators parameterized by the parameters in the SDEs. In our situation,
the family of Markov operators is parameterized by ϵ in the perturbed dynamics. With the key ingredient, the dissipative condition,
being preserved, the proof in [40] is still valid. It is worthwhile to mention that, given the dissipative condition, Assumption 2.2(i)
can be replaced by the assumption that the dynamics (9) is approximately controllable [39,40]. As for the existence of the invariant
measure π ϵ , one can also consider the stationary Fokker–Planck equation of (15). In our case, since the noise may be degenerate, the
existence of π ϵ can be established by results in [55] with the help of the Lyapunov function.

4. Learning with the kernel-based spectral regression method

In Section 3, we have deduced a linear dependence of the error of the invariant statistics to the error in the estimation of the drift
and diffusion coefficients. Our primary interest here (and in Section 5) is to understand under which conditions can the results in
Section 3 be achieved when existing popular machine learning methods are used to estimate the coefficients b and σσ⊤. Here, we
will focus on the kernel-based spectral regression method [41], whereas, in the next section, we will focus on the single hidden-layer
random neural networks with the ReLU activation functions [30].

In Section 3.1, we have formally proposed a framework for learning ergodic SDEs by solving a regression problem and introduced the
concept of the generalization error, which will be further decomposed into two parts: estimation error (error caused by sampling) and
approximation error (error due to the choice of hypothesis space). In particular, we have pointed out that the coefficients (bϵ, σϵσ⊤

ϵ )
in the approximated system (15) are the empirical estimates defined through (20) for a given sample. Using the notation in (18), our
goal now is to quantify the generalization error defined in (26) induced by bϵ , an estimator obtained from training on a set of i.i.d.
labeled data, sampled from (X, Y ) generated by (16). Through the assumed scaling in (26), this analysis elucidates how the parameter
ϵ depends on the training sample size, the parameters in the hypothesis space, noise amplitude parameter, and step size for the time
discretization.

To simplify the discussion, we will perform the analysis component-wise. Abusing the notation, we refer b : Rd
→ R as a generic

notation for each component of b : Rd
→ Rd. Correspondingly, we now refer to yi := b(xi) + ηi ∈ R as a generic component of a

(d-dimensional vector) sample of Y in (16). Here, ηi denotes a real-valued component of the d-dimensional Gaussian random variable
N (0, δ−1σσ⊤). With this abuse of notation, our training data set is denoted by the labeled data {xi, yi}Ni=1 with (xi, yi) ∈ Rd

× R.
For completeness, we will review some basic concepts of reproducing kernel Hilbert spaces (RKHS) in Section 4.1. Subsequently,

in Section 4.2, we will discuss a data-driven kernel-based spectral regression approach, whose mathematical foundation lies in the
theory RKHSs. While controlling the generalization error bound ϵ is a practical interest, as we pointed out in Section 3.1, this is only a
necessary and not a sufficient condition for achieving the main results (Propositions 3.1 and 3.2) in this paper. Therefore, it is crucial
to understand whether the conditions in Assumption 3.1, the linear growth bound and globally Lipschitz continuity, which are the
necessary conditions to the results in Section 3, can be satisfied (see Corollary 4.1 and Proposition 4.2). We close this section with
some discussions of the advantages and shortcomings of this estimation approach in Section 4.3.

4.1. A brief review of RKHS

For simplicity, we will consider the class of RKHS of the real valued function spaces on Rd, while the argument can be extended to
general locally compact metric spaces [56]. To begin with, recall that a function K : Rd

× Rd
→ R is called a (Mercer) kernel [56,57] if

it is continuous, symmetric and positive semidefinite, i.e.,

Kx := K (·, x) ∈ C(Rd), ∀x ∈ Rd,

and for any finite set of points {xi}Ni=1 ⊂ Rd the matrix

KN :=
1
N

(
K (xi, xj)

)N
i,j=1 ∈ RN×N , (32)

s symmetric positive semidefinite. In the literature, such a matrix (32) is called the empirical kernel [41] of K with respect to the sample
oints {xi}Ni=1 and the map Φ : x → Kx is called the feature map [56,58].
Using the feature map, the RKHS H associated with the kernel K is defined to be the closure of span{Kx : x ∈ Rd

} [57] with the
nner product given by

⟨f , g⟩H :=

M1∑
i=1

M2∑
j=1

cidjK (xi, yj), f =
M1∑
i=1

ciKxi , g =

M2∑
j=1

djKyj .

he reproducing property takes the form

f (x) = ⟨f , K ⟩ , ∀f ∈ H , ∀x ∈ Rd, (33)
x H

11
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hich implies that H consists of continuous functions on Rd. As a result of the reproducing property, RKHS has a remarkable property
hat the H -norm convergence implies pointwise convergence since the evaluation functionals are bounded. Let ∥·∥H denote the norm
n the RKHS H . To develop the orthonormal basis of H for our applications, we propose the following assumption on the kernel.

ssumption 4.1. The kernel K is Hilbert–Schmidt with respect to the nondegenerate probability measure π̃ δ , that is,∫
Rd

∫
Rd
(K (x, y))2dπ̃ δ(x)dπ̃ δ(y) < +∞, (34)

and Kx ∈ L2(Rd, π̃ δ) for all x ∈ Rd. Recall that the available sample points {xi}Ni=1 are drawn from π̃ δ .

As a result of Assumption 4.1, the following integral operator

LK : L2(Rd, π̃ δ) → L2(Rd, π̃ δ), (LKg) (x) =
∫
Rd

K (x, s)g(s)dπ̃ δ(s), (35)

is bounded, compact and positive on L2(Rd, π̃ δ) with countably many positive eigenvalues {λi}∞i=1 [57]. Such type of integral operators
re widely studied in various contexts, e.g., graph Laplacian [59] and diffusion maps [60]. In particular, we have LKg ∈ H for any
∈ L2(Rd, π̃ δ) [57]. Thus, for each positive eigenvalue λi > 0, we can take the eigenfunction ui ∈ L2(Rd, π̃ δ) ∩ H such that

LKui = λiui, ⟨ui, uj⟩π̃δ = δij, ∀i, j ≥ 1,

here ⟨·, ·⟩π̃δ denotes the inner product in L2(Rd, π̃ δ). Note that L2(Rd, π̃ δ) consists of equivalence classes of functions and consequently
t is not an RKHS. The fact that for nonzero eigenvalues, one can pick eigenfunctions in H are critical for our later construction of the
stimates.
To see the connection between the eigenfunctions {ui} and the kernel, we introduce the spectral decomposition of LK [41],

LK =

∞∑
i=1

λi⟨·, uj⟩π̃δuj.

ormally, we can exchange the order of summation and integration in the decomposition above and reach the following representation
f the kernel K ,

K (x, y) =
∞∑
i=1

λiui(x)ui(y). (36)

he relation in (36) is known as the Mercer theorem [56], which is valid even on noncompact domains, e.g., Rd [57]. As a corollary of
he Mercer theorem, {

√
λiui}

∞

i=1 form an orthonormal basis of H . In particular, notice that

Kx =

∞∑
i=1

λiui(x)ui,

and

⟨Kx, Ky⟩H = K (x, y) ⇒
∞∑

i,j=1

√
λiλjui(x)uj(y)⟨

√
λiui,

√
λjuj⟩H =

∞∑
i=1

λiui(x)ui(y),

hich leads to the orthogonality properties,

⟨

√
λiui,

√
λjuj⟩H = δij, ∀i, j ≥ 1.

Since {ui} is the orthonormal basis of (Ker LK )⊥ as a subspace of L2(Rd, π̃ δ), we have the following isometric isomorphism

L
1
2
K : D̄K → H , (37)

where D̄K = (Ker LK )⊥ is the closure of DK = span{ui} in L2(Rd, π̃ δ). Here, L
1
2
K is the square-root of LK satisfying

L
1
2
K ui =

√
λiui, ∀i ≥ 1.

he isomorphism L
1
2
K also reveals the regularity difference between functions in D̄K and functions in H . We should point out that if all

he eigenvalues of LK are positive, then L1/2K is injective and D̄K is dense in L2(Rd, π̃ δ) (e.g., Theorem 4.26 in [56]). This means that any
function f ∈ L2(Rd, π̃ δ) can be approximated with arbitrary precision by a function in the RKHS H , where the convergence is valid in
L2(Rd, π̃ δ). As we shall see later, this fact allows one to quantify the approximation error in term of the finite number of basis functions
used in the numerical approximation of b.

4.2. Spectral regression with integral operators

In Section 4.1, we have reviewed some basic concepts of RKHS. Given a kernel K that satisfies Assumption 4.1, the corresponding
RKHS consists of continuous functions (rather than equivalent classes as in L2(Rd, π̃ δ)) that can be written as linear combinations
(possibly infinite) of either images of feature maps {K } or orthonormal basis functions {

√
λ u }. The latter representation leads to a
xi i i

12
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tatistical learning approach that we shall explore in this section. Throughout the section, H always denotes the RKHS associated with
kernel K that satisfies Assumption 4.1.
We consider the first M (counting multiplicity) eigenvalues of the integral operator LK in (35) satisfying

λ1 ≥ λ2 ≥ · · · ≥ λM > λM+1 ≥ · · · .

Here, we have assumed that there is a spectral gap between modes M and M + 1; that is, λM − λM+1 > 0. While this assumption
will be used to deduce the estimation error, in practice, one can use the spectral gap to empirically determine the number of modes M
in analogous to a dimensionality reduction technique via Principal Component Analysis. Let PM denote the orthogonal projection from
L2(Rd, π̃ δ) onto the span of the first M eigenfunctions {ui}

M
i=1, that is,

PMb =

M∑
i=1

⟨b, ui⟩π̃δui, ∀b ∈ L2(Rd, π̃ δ). (38)

Recall that {uj} form an orthonormal family in L2(Rd, π̃ δ). For any b ∈ L2(Rd, π̃ δ), the L2-convergence of PMb to Pb is clear, where

Pb =

∞∑
i=1

⟨b, ui⟩π̃δui,

is the projection onto D̄K . Moreover, if b ∈ H , such a convergence is valid in H as well.

Lemma 4.1. Let K be a kernel that satisfies Assumption 4.1 and H be the corresponding RKHS. Then H ⊂ L2(Rd, π̃ δ), and ∀b ∈ H , we
have PMb → b as M → ∞ in H and

|b(x)− PMb(x)| ≤ ∥b− PMb∥H K
1
2 (x, x), ∀x ∈ Rd,

here PMb is the projection of b defined in (38).

roof. The inclusion H ⊂ L2(Rd, π̃ δ) is a result of Assumption 4.1 (see e.g. [57]). As a result, ∀b ∈ H the projection PMb in (38) is

well-defined. We first show that Pb = b. By the isometric isomorphism in (37), we have L
−

1
2

K b ∈ D̄K , that is,

L
−

1
2

K b = P
(
L
−

1
2

K b
)
=

∞∑
i=1

⟨L
−

1
2

K b, ui⟩π̃δui =

∞∑
i=1

⟨b, ui⟩π̃δ
√
λi

ui,

hich leads to

b = L
1
2
K L

−
1
2

K b =

∞∑
i=1

⟨b, ui⟩π̃δ
√
λi

L
1
2
K ui =

∞∑
i=1

⟨b, ui⟩π̃δ
√
λi

√
λiui = Pb.

ince {
√
λiui}

∞

i=1 is an orthonormal basis of H , we have

∥b∥2H =

∞∑
i=1

⟨b, ui⟩
2
π̃δ

λi
<∞.

In particular,

b− PMb =

∞∑
i=M+1

⟨b, ui⟩π̃δui =

∞∑
i=M+1

⟨b, ui⟩π̃δ
√
λi

√
λiui,

hich shows that,

∥b− PMb∥2H =

∞∑
i=M+1

⟨b, ui⟩
2
π̃δ

λi
→ 0,

as M → ∞.
By the reproducing property (33), we have ∥Kx∥

2
H = ⟨Kx, Kx⟩H = K (x, x) and

|b(x)− PMb(x)| = |⟨b− PMb, Kx⟩H | ≤ ∥b− PMb∥H ∥Kx∥H = ∥b− PMb∥H K
1
2 (x, x), ∀x ∈ Rd. □

Lemma 4.1 provides a pointwise error bound for the projection PMb in (38) given b ∈ H , which is closely related to the error
condition (25) in Assumption 3.1. In particular, the following corollary clarifies this relation and provides sufficient conditions for
Assumption 4.1.

Corollary 4.1. Let K be a kernel of linear growth bound, that is,

K (x, x) ≤ C(1+ ∥x∥2), ∀x ∈ Rd, (39)

for some constant C ∈ (0,+∞). Then, K satisfies Assumption 4.1 with respect to the probability measure π̃ δ . Moreover, let H be the
corresponding RKHS, we have ∀b ∈ H

|b(x)− PMb(x)|2 ≤ C(1+ ∥x∥2)∥b− PMb∥2H , ∀x ∈ Rd, (40)

which is analogous to Eq. (25) in Assumption 3.1.
13
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roof. To see the kernel K satisfies the Hilbert–Schmidt condition in (34), notice that

(K (x, y))2 = ⟨Kx, Ky⟩
2
H ≤ ∥Kx∥

2
H ∥Ky∥

2
H = K (x, x)K (y, y),

uch that,∫
Rd

∫
Rd
(K (x, y))2dπ̃ δ(x)dπ̃ δ(y) ≤

(∫
Rd

K (x, x)dπ̃ δ(x)
)2

≤ C2
(∫

Rd
(1+ ∥x∥2)dπ̃ δ(x)

)2

< +∞,

here we have used the linear growth bound of the kernel. Here, Eπ̃δ [∥x∥2] <∞ due to the Lyapunov property of the process X δn (see
roposition 2.2 for the details).
On the other hand, ∀x ∈ Rd, we have

∥Kx∥
2
π̃δ

=

∫
Rd
(K (x, y))2dπ̃ δ(y) ≤ K (x, x)

∫
Rd

K (y, y)dπ̃ δ(y) ≤ C2(1+ ∥x∥2)
∫
Rd
(1+ ∥y∥2)dπ̃ δ(y) < +∞,

hat is, Kx ∈ L2(Rd, π̃ δ). Thus, K satisfies Assumption 4.1, and the bound in (40) is a result of Lemma 4.1. □

xample 4.1 (Polynomial kernels). The polynomial kernel of degree-1 [56],

P1(x, y) = x⊤y+ d, d > 0, (41)

aturally satisfies the condition in Corollary 4.1. For functions in the RKHS associated with the polynomial kernel K = P1 (41), we can
hoose the Lipschitz constant to be proportional to the RKHS norm. In particular, by the reproducing property, we have ∀b ∈ H ,

|b(x)− b(y)| = |⟨b, Kx − Ky⟩H | ≤ ∥b∥H ∥Kx − Ky∥H ,

here

∥Kx − Ky∥H = ⟨Kx − Ky, Kx − Ky⟩
1
2
H = (P1(x, x)+ P1(y, y)− 2P1(x, y))

1
2 = ∥x− y∥.

hus, in this case, we have

|b(x)− b(y)| ≤ ∥b∥H ∥x− y∥,

hat is, all b ∈ H are globally Lipschitz with Lipschitz constants ∥b∥H .

In practice, we can employ other type of kernels with linear growth tail. For example, we can implement a mixed-type kernel, by
dding the degree-1 polynomial kernel as in Example 4.1 with kernels that have tail behavior slower than linear growth (mixed-type

kernels have been commonly used, see [61]).

4.2.1. Nyström interpolation
In applications, the projection PMb in (38) is not a practical estimate of b since the eigenfunctions {uj} are unknown in general.

Another issue is that assuming b ∈ H is too optimistic. Of course, if we are given the information such as the linear growth condition
in Assumption 2.1, then we should choose a kernel that also satisfies the condition (as in Corollary 4.1), such as the polynomial kernel
in Example 4.1. Without a priori information, the best we can hope is that b ∈ L2(Rd, π̃ δ)∩C(Rd). To resolve these issues, we first need
to come up with empirical estimates of the projection PM . Then, we should study the properties, including the convergence and the
Lipschitz continuity, of the resulting estimates under a mild assumption that b ∈ L2(Rd, π̃ δ) ∩ C(Rd).

We are going to construct the estimates of the projection PM based on the eigenvalues and eigenvectors of the empirical kernel KN
(32) given by the i.i.d. sample points {xi} according to π̃ δ . Such a spectral projection method (onto the data-driven basis constructed
by eigen-spaces of the kernel integral operator) has been advocated and widely used in many applications. In the context of learning
dynamical systems, see [15–17,62] and the references therein. Assume rN = rank(KN ) ≥ M , and denote {λ̂j}

rN
j=1 as the set of all nonzero

eigenvalues (in descending order, counting multiplicity) of KN with the corresponding normalized eigenvectors {ûj} ⊂ RN , which form
an orthonormal family under the inner product of ⟨·, ·⟩π̃δN :=

1
N ⟨·, ·⟩. Here π̃

δ
N denotes the delta measure corresponding to discrete

amples {xi}Ni=1, that is,

π̃ δN =
1
N

N∑
i=1

δxi .

he main difficulty in relating LK and KN is that they operate on different spaces. To resolve the issue, we follow [41] and introduce
ˆ j ∈ H as

v̂j =
1

N
√
λ̂j

N∑
i=1

(ûj)iKxi , (42)

where (ûj)i denotes the ith component of the eigenvector ûj. Here, the set {v̂j} forms an orthonormal family in H , satisfying(
ûj
)
i =

1√
λ̂

v̂j(xi), i = 1, 2, . . . ,N,

j

14
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hat is, v̂j/
√
λ̂j can be interpreted as the (Nyström) interpolation of the vector ûj in H . To verify the orthogonality, we have

⟨v̂k, v̂k′⟩H =
1

N2
√
λ̂kλ̂k′

N∑
i,j=1

(ûk)i(ûk′ )jK (xi, xj) =
1

N
√
λ̂kλ̂k′

û⊤k KN ûk′ = δkk′ .

o this end, we define the following empirical approximation of PM ,

P̂Mb =

M∑
i=1

⟨b, v̂i⟩H v̂i, (43)

here

⟨b, v̂j⟩H =
1

N
√
λ̂j

N∑
i=1

(ûj)i⟨b, Kxi⟩H =
1√
λ̂j

⟨RNb, ûj⟩π̃δN
, RNb := (b(x1), b(x2), . . . , b(xN ))⊤ .

Here, RN : H → RN is called the sampling operator [41,63] associated with the discrete set {xi}Ni=1. Note that the inner product
⟨RNb, ûj⟩π̃δN

is well-defined for a general function b ∈ L2(Rd, π̃ δ) ∩ C(Rd) (continuity is necessary so that the sampling operator RN is

well-defined). Thus, we can extend the definition of P̂M in (43) to

P̂Mb =

M∑
i=1

⟨RNb, ûi⟩π̃δN

v̂i√
λ̂i

. (44)

Here, the projection P̂M maps functions in L2(Rd, π̃ δ)∩C(Rd) to a finite-dimensional space ĤM := span{v̂i}Mi=1 ⊂ H . We will use Eq. (44),
instead of Eq. (43), as the definition of the empirical estimates P̂Mb with respect to the projection PMb.

4.2.2. Estimation error
Compared with H , the hypothesis space ĤM is of dimension M (the order of the estimates) regardless of the sample size. Note

that ĤM still depends on the samples due to the choice of the basis functions {v̂j} in (42). We should interpret ĤM as the empirical
approximation of the underlying hypothesis space HM := span{

√
λiui}

M
i=1, which is independent of the sample but unknown.

As for our estimation, recall that the training data is given by {xi, yi}Ni=1 with yi = b(xi)+ ηi, where {ηi} are i.i.d. mean zero Gaussian
oise of finite variance. Denoting the random variables ηi ∼ E : Ω → R with Gaussian probability distribution, N (0, R), where
≤ δ−1 max1≤i≤d{(σσ⊤)ii}, and (η1, η2, . . . , ηN ) ∼ EN : Ω → RN , our empirical estimate corresponds to,

P̂M (b+ E) = P̂Mb+ P̂ME, P̂ME(x) =
M∑
i=1

⟨EN , ûi⟩π̃δN

v̂i(x)√
λ̂i

. (45)

Thus, the estimation error PMb− P̂M (b+E) consists of the error introduced by the empirical projection, PMb− P̂Mb and the error induced
by the noise in the observation, P̂ME. Notice that,

∥P̂ME∥2
π̃δ

=

M∑
i=1

⟨EN , ûi⟩
2
π̃δN

≤ ∥EN∥2π̃δN
=

1
N

N∑
i=1

η2i ,

ollows a χ2-distribution of degree N . By the following concentration inequality (e.g., Example 2.11 in [64]),

P

(⏐⏐⏐⏐⏐ 1
NR

N∑
i=1

η2i − 1

⏐⏐⏐⏐⏐ ≥ t

)
≤ 2e−

Nt2
8 , ∀t ∈ (0, 1),

e conclude that for any τ > 0 and N large enough,

∥P̂ME∥2
π̃δ

≤

(
1+

√
8τ
N

)
R, R ≤ δ−1 Tr[σσ⊤

], (46)

with probability greater than 1− 2e−τ . The norm ∥ · ∥π̃δN
is defined with respect to the inner product ⟨·, ·, ⟩π̃δN .

For bounded kernels, the following proposition characterizes the convergence of ∥PMb− P̂M (b+E)∥π̃δ for any b ∈ L2(Rd, π̃ δ)∩C(Rd).

Proposition 4.1. Let b ∈ L2(Rd, π̃ δ)∩ C(Rd) and given the training data {xi, yi}Ni=1 as we previously proposed. Suppose that K is a bounded
kernel satisfying

kmax := sup
x∈Rd

K
1
2 (x, x) <∞,

and let P̂M (b+ E) in (45) be the empirical estimate to the projection PMb in (38). For any τ > 0, we havePMb− P̂M (b+ E)
2

δ
≤

32k2maxτ1∥b∥
2
π̃δN

2
+

(
1+

√
8τ2 )

δ−1 Tr[σσ⊤
], (47)
π̃ (λM+1 − λM ) λ̂rNN N
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ith probability greater than 1− 2e−τ , where τ = min{τ1, τ2}, given the number N of samples satisfies

N >
128k2maxτ1

(λM − λM+1)2
.

Here, {λi}∞i=1 and {λ̂i}
rN
i=1 are the positive eigenvalues of the integral operator LK and the empirical kernel KN , respectively, with rN = rank(KN ).

Proof. We first observe that,PMb− P̂M (b+ E)
2
π̃δ

≤

PMb− P̂Mb
2
π̃δ

+ ∥PME∥2
π̃δ

=

PMb− PM P̂Mb
2
π̃δ

+

(I − PM )P̂Mb
2
π̃δ

+ ∥PME∥2
π̃δ
,

where we have used the Pythagorean theorem to deduce the equality above.
For the first two terms, we have,PMb− PM P̂Mb

2
π̃δ

=

PM (I − P̂M )b
2
π̃δ

≤

⎛⎝ rN∑
i=M+1

⟨RNb, ûi⟩
2
π̃δN

λ̂i

⎞⎠( rN∑
i=M+1

∥PM v̂i∥2π̃δ

)
nd (I − PM )P̂Mb

2
π̃δ

≤

⎛⎝ M∑
i=1

⟨RNb, ûi⟩
2
π̃δN

λ̂i

⎞⎠( M∑
i=1

(I − PM )v̂i
2
π̃δ

)
, i = 1, 2, . . . , rN ,

y Eq. (44). Notice that⎛⎝ rN∑
i=1

⟨RNb, ûi⟩
2
π̃δN

λ̂i

⎞⎠ ≤
1

λ̂rN

rN∑
i=1

⟨RNb, ûi⟩
2
π̃δN

=
1

λ̂rN

∥b∥2
π̃δN
.

inally, by Theorem 12 in [41], we havePMb− P̂Mb
2
π̃δ

≤

∥b∥2
π̃δN

λ̂rN

(
M∑
i=1

∥(I − PM )v̂i∥2π̃δ +
rN∑

i=M+1

∥PM v̂i∥2π̃δ

)
≤

32k2maxτ1∥b∥
2
π̃δN

(λM+1 − λM )2λ̂rNN

ith probability greater than 1− 2e−τ1 . Together with Eq. (46), the proof is completed. □

In the error bound above, we rely on Theorem 12 in [41] that requires the boundedness of the kernel to apply Hoeffding’s inequality.
For general kernels satisfying Assumption 4.1 (not necessarily bounded), one can develop similar but much weaker probability bounds
via Chebyshev’s inequality.

4.2.3. Generalization error
In Section 4.2.2, we have studied the estimation error of the empirical estimate (45) under a model with additive i.i.d. noise. In this

ection, we will study the approximation error and comment on the generalization error in learning the drift coefficients.
For b ∈ L2(Rd, π̃ δ) ∩ C(Rd), we introduce the following decomposition

b− P̂M (b+ E) = (b− Pb)+ (Pb− PMb)  
approximation error

+ (PMb− P̂Mb)+ P̂ME  
estimation error

, (48)

which is commonly defined in learning theory. The approximation error ∥b− PMb∥2
π̃δ

satisfies

∥b− PMb∥2
π̃δ

= ∥b− Pb∥2
π̃δ

+ ∥Pb− PMb∥2
π̃δ
, (49)

since (I − P)b ∈ ker(LK ) and (P − PM )b ∈ ker(LK )⊥. The term ∥b − Pb∥2
π̃δ

on the right-hand side, independent of M , corresponds to
he component of the approximation error induced by the choice of hypothesis space H . This bias is intrinsic in the sense that it only
epends on the choice of the kernel. In particular, ∥b− Pb∥π̃δ = 0 if and only if b ∈ ker(LK )⊥. A sufficient condition would be that the
ntegral operator LK in (35) has only positive eigenvalues. In such a case, H is dense in ker(LK )⊥ with respect to the topology induced
y the norm ∥ · ∥π̃δ . In general, the property of RKHS being dense in a certain function space corresponds to the universality of the
KHS [65].
The term ∥Pb− PMb∥2

π̃δ
describes the approximation error induced by truncation, that is, using HM , instead of H , as the underlying

ypothesis space, which vanishes as the order M → ∞. In particular, we have

∥Pb− PMb∥2
π̃δ

=

∞∑
i=M+1

⟨b, ui⟩
2
π̃δ
,

nd the decay rate of ∥Pb − PMb∥2
π̃δ
, without further assumption on b, is hard to identify. In our application, the drift coefficients b

n (9) is of linear growth bound according to Assumption 2.1. On the other hand, the RKHS associated with a kernel of linear growth
ounds (see Corollary 4.1 for the details) consists of functions of linear growth bounds. Thus, it is reasonable to propose the following
ssumption on b.
16
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ssumption 4.2. Let b be a component of the drift coefficients in (9) satisfying Assumption 2.1. Assume that there exists a kernel
: Rd

× Rd
→ R of linear growth bound (39) and the corresponding RKHS H such that:

i. (Decay rate of the eigenvalue) the positive eigenvalues {λi} of the integral operator LK (35) follow the following decay rate [58],

αi−r
≤ λi ≤ βi−r , α, β, r > 0, i = 1, 2, . . . . (50)

ii. (Existence of the target function) the projection sequence {PMb} ⊂ H converges to a function bH in H .

The decay rate assumption in (50) is related to the effective dimension [58] of the RKHS H with respect to the space L2(Rd, π̃ δ).
Recall that by Corollary 4.1, all kernels of linear growth bound satisfy Assumption 4.1, which leads to the inclusion H ⊂ L2(Rd, π̃ δ).
Since the convergence in H implies the convergence in L2(Rd, π̃ δ), we have

∥Pb− bH ∥π̃δ ≤ ∥Pb− PMb∥π̃δ + ∥PMb− bH ∥π̃δ → 0,

as M → ∞, that is, Pb = bH in L2(Rd, π̃ δ). The function bH is often called the target function of b with respect to the hypothesis space
H [44]. With the convergence PMb → bH in H , we have

∥bH ∥
2
H = lim

M→+∞

∥PMb∥2H =

∞∑
i=1

⟨b, ui⟩
2
π̃δ

λi
<∞.

As a result, we have

∥Pb− PMb∥2
π̃δ

=

∞∑
i=M+1

⟨b, ui⟩
2
≤ λM+1

∞∑
i=M+1

⟨b, ui⟩
2
π̃δ

λi
≤ λM+1∥bH ∥

2
H = O(M−r ), (51)

where we have used the decay rate assumption of the eigenvalues (50).
To conclude, in our notation, the estimator P̂M (b+ E) is a component of bϵ in (20). Particularly, taking L2(Rd, π̃ δ) on (48) and using

(47) and (51), the generalization error is given by,

Eπ̃δ
[
∥b− bϵ∥2

]
= O(M−r )+ O

(
1

(λM+1 − λM )
λ̂−1
rN N−1

)
+ δ−1 Tr[σσ⊤

], (52)

s M,N → ∞, where we have assumed that the error rate is uniform component-wise and LK has only positive eigenvalues such that
b− Pb∥π̃δ = 0. Recall that the first term in (52) is the approximation error and the last two terms are estimation errors, respectively,
hich were derived under various assumptions reported throughout the previous and the current subsections. Importantly, this error
ound is valid only for bounded kernels by the assumption in Proposition 4.1. For (unbounded) kernels, e.g., kernels of linear growth,
ne needs to replace the second error term in (52) with another appropriate rate.

.2.4. Lipschitz continuity
Now, we check the Lipschitz continuity of the estimator P̂M (b+ E), which is one of the fundamental assumptions (Assumption 3.1)

or the statistical error bounds in Propositions 3.1 and 3.2.

roposition 4.2. Let K be a kernel satisfying Assumption 4.1 (not necessarily bounded). We further assume K ∈ C1(Rd
×Rd) such that the

ollowing function

L(x) := sup
z∈Rd

∥∇zKx(z)∥ <∞, ∀x ∈ Rd, (53)

s well-defined. Then, given the data set {xi, yi}Ni=1 as in Proposition 4.1, the order-M spectral regression estimates P̂M (b+ E) in (45) satisfies

sup
x,x′∈Rd,x̸=x′

⏐⏐⏐P̂M (b+ E)(x)− P̂M (b+ E)(x′)
⏐⏐⏐

∥x− x′∥
≤

(
M∑
i=1

λ̂−2
i

) 1
2 (

∥b∥π̃δN + ∥EN∥π̃δN
)
∥L∥π̃δN . (54)

Proof. We rewrite the order-M estimates in (44) as

P̂M (b+ E)(x) =
1
N

M∑
i=1

⟨RNb+ EN , ûi⟩π̃δN

1

λ̂i

N∑
j=1

(
ûi
)
j K (x, xj) =

M∑
i=1

1

λ̂i
⟨RNb+ EN , ûi⟩π̃δN

⟨RNKx, ûi⟩π̃δN
.

hus, for x, x′ ∈ Rd, we have⏐⏐⏐P̂M (b+ E)(x)− P̂M (b+ E)(x′)
⏐⏐⏐ ≤ M∑

i=1

⏐⏐⏐⏐ 1
λ̂i
⟨RNb+ EN , ûi⟩π̃δN

⟨RNKx − RNKx′ , ûi⟩π̃δN

⏐⏐⏐⏐
≤

M∑
i=1

⏐⏐⏐⏐ 1
λ̂i
⟨RNb+ EN , ûi⟩π̃δN

⏐⏐⏐⏐ ∥RNKx − RNKx′∥π̃δN
.

otice that

M∑⏐⏐⏐⏐ 1ˆ ⟨RNb+ EN , ûi⟩π̃δN

⏐⏐⏐⏐ ≤
(

M∑
λ̂−2
i

) 1
2
(

M∑
⟨RNb+ EN , ûi⟩

2
π̃δN

) 1
2

≤

(
M∑
λ̂−2
i

) 1
2 (

∥b∥π̃δN + ∥EN∥π̃δN
)
.

i=1 λi i=1 i=1 i=1

17
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s a result, we have,⏐⏐⏐P̂M (b+ E)(x)− P̂M (b+ E)(x′)
⏐⏐⏐ ≤ (

M∑
i=1

λ̂−2
i

) 1
2 (

∥b∥π̃δN + ∥EN∥π̃δN
)
∥RNKx − RNKx′∥π̃δN

.

y the definition of the function L(x), we have

|Kx(xi)− Kx′ (xi)| =
⏐⏐Kxi (x)− Kxi (x

′)
⏐⏐ ≤ L(xi)∥x− x′∥, i = 1, 2, . . . ,N, ∀x, x′ ∈ Rd.

hus,

sup
x,x′∈Rd,x̸=x′

⏐⏐⏐P̂M (b+ E)(x)− P̂M (b+ E)(x′)
⏐⏐⏐

∥x− x′∥
≤

(
N∑
i=1

λ̂−2
i

) 1
2 (

∥b∥π̃δN + ∥EN∥π̃δN
)( 1

N

N∑
i=1

L(xi)2
) 1

2

=

(
M∑
i=1

λ̂−2
i

) 1
2 (

∥b∥π̃δN + ∥EN∥π̃δN
)
∥L∥π̃δN . □

Here, the function L can be defined for unbounded kernels. For example, for the polynomial kernel P1(x, y) = x⊤y + d, the
orresponding L(x) = ∥x∥. If the kernel K is a radial basis function (RBF) kernel, e.g., Gaussian kernels, the function L in (53) will
educe to a constant function.

Notice that when N → ∞, the upper bound in (54) stays bounded and only depends on the order of the estimates. In particular,
when the kernel is bounded, we have the convergence of the eigenvalue as the sample increases, that is, λ̂i → λi in high probability
as n → ∞ [41]. Under the decay rate assumption in (50), the sum in (54) satisfies (in high probability),(

M∑
i=1

λ̂−2
i

) 1
2

≤

(
M∑
i=1

α−1i2r
) 1

2

= O(Mr+ 1
2 ),

s N → ∞. Thus, the Lipschitz constants of the estimates P̂M (b + E) in (45) is at most of polynomial growth rate with respect to the
rder of the estimates (in high probability) under the infinite sample assumption.

.3. Remarks on the spectral regression approach

The spectral regression approach has several advantages. First, one can impose the characteristics of the functions to be estimated
n the kernel (such as those in Corollary 4.1). Even when the unknown function to be estimated is unbounded, thanks to the integral
perator LK being compact (as an operator from L2(Rd, π̃ δ) to itself) with range in the RKHS H , we are allowed to construct the leading
eigenfunctions in (Ker(LK ))⊥ to characterize the RKHS HM ⊂ H associated with the kernel. One important issue in practice is to

dentify a kernel such that LK is strictly positive such that (Ker(LK ))⊥ = L2(Rd, π̃ δ), which makes the implicit error ∥b−Pb∥2
π̃δ

= 0, and
hence, does not contribute to the approximation error in (49). The difficulty in specifying such a kernel is attributed to the unknown
sampling distribution, π̃ δ .

The Nyström interpolation is a convenient tool for associating the eigenvectors of the empirical kernel KN to the eigenfunctions in H ,
which leads to the desirable projection that defines our estimates. Notice that each approximated eigenfunction in (42) is still a linear
combination of {Kxi}

n
i=1. One advantage of spectral decomposition is that it allows one to separate the effect of finite sample size and

the dimension of the hypothesis space, even when the hypothesis space is empirically constructed by interpolating the eigenvectors
that depend on the data size. This is in contrast to the general kernel ridge-regression approach [58] with hypothesis spaces that
cannot be classified in terms of the dimension. Particularly, when the kernel is radial-type function, there is a lack of ordering in
the corresponding set of features {Kx(·),∀x ∈ Rd

}, which is empirically estimated by {Kxi (·)}
N
i=1. By controlling the dimension of the

hypothesis space (i.e., fixing the number of basis functions used in the representation), we can easily deduce the Lipschitz continuity
as shown in Proposition 4.2.

One practical limitation with the projection-based method is the high computational cost in solving the eigenvalue problem
associated with the empirical kernel KN for large N . While it is desirable to have a small number of basis functions, M , to remedy
this issue, it remains an open question which kernels can induce an RKHS space that can effectively represent the target function with
a small number of basis functions. our experience indicates that a careful choice of kernels that also account for the information from
the labeled data {yi} in addition to just the covariate data, {xi}, is an important direction to pursue in the future study.

5. Learning with ReLU random neural networks

In Section 4, we have discussed the kernel-based spectral regression method in learning the drift coefficients and visited various
issues, including the consistency, the generalization error, and the Lipschitz continuity. In particular, the hypothesis space is the span of
a finite number of eigenfunctions determined by the Nyström interpolation. The orthogonality of the basis functions provides explicit
expressions for the coefficients in minimizing the empirical risk. In this section, we will consider the random neural network (RNN)
model with the ReLU activation function. As it turns out, this hypothesis space is a convex subset of the span of a class of single-
hidden-layer feed-forward networks with randomly generated coefficients. Unlike the spectral method, we determine the estimate by
solving a least-squares problem. Similar to the previous section, we will focus on the issues regarding the generalization error and the
Lipschitz continuity, under the same setting. The results on the approximation error and estimation error are mainly inspired by the

work [30] on random neural networks and the machine-learning theory [42–44], respectively.
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.1. Hypothesis space and the approximation error

Following the notations in Section 4, we recall that b : Rd
→ R denotes a generic component of the drift coefficient, and the available

.i.d. training data {xi, yi}Ni=1 ∼ (X, Y ) satisfies yi = b(xi) + ηi with the Gaussian noise ηi ∼ E. To introduce the hypothesis space, we
efine the random function HA,ζ

W : Rd
→ R by

HA,ζ
W (x) =

M∑
i=1

Wiφ (⟨Ai, x⟩ + ζi) , φ(z) := max{0, z}, (55)

here ζ = (ζ1, ζ2, . . . , ζM )⊤ ∈ RM and A ∈ RM×d (with row vectors Ai) are generated randomly. Given the realization of A and ζ ,
he coefficient vector W ∈ RM is trained via an empirical risk minimization. The function φ in (55) is known as the ReLU activation
unction. We shall point out that there are other choices of activation functions. We restrict to the ReLU to directly use the results
n [30] regarding the approximation error.

In particular, in [30], the approximation error is formulated with respect to a (essentially) compactly supported probability measure.
o fulfill such an assumption, we introduce the following truncation to the invariant measure π̃ δ ,

π̃ δD := 1BD
π̃ δ

π̃ δ(1BD )
, BD :=

{
x ∈ Rd

⏐⏐ ∥x∥ ≤ D
}
, D > 1, (56)

where 1BD (·) denotes the characteristic function with respect to the ball BD. By the linear growth bound in Assumption 2.1, we have
b(x)| ≤ K2

√
1+ D2 for all x ∈ BD. Fixing K2, we introduce the following convex hypothesis space,

H
A,ζ
D :=

{
f = 1BDH

A,ζ
W

⏐⏐⏐ ∥f ∥∞ ≤ K2

√
1+ D2

}
.

iven a realization of A and ζ , we may introduce the target function, with a slight abuse of the notation,

bH := arg min
h∈H

A,ζ
D

∥b− h∥2
π̃δ

= arg min
h∈H

A,ζ
D

∥b− h∥2
π̃δD
, (57)

which is well-defined since H
A,ζ
D , according to the definition of the random function in (55), is a convex subset of the M-dimensional

function space, span {φ (⟨Ai, ·⟩ + ζi) , i = 1, 2, . . . ,M}. The second identity in (57) holds because functions in the hypothesis space are
supported in BD and the measures π̃ δ and π̃ δD are proportional to each other in BD.

The following result, as a direct consequence of Corollary 2 in [30], specifies how to generate the random coefficients A and ζ in
the RNN (55) as well as the approximation error of bH in (57).

Proposition 5.1. Assume that b ∈ Ck(Rd) for some integer k ≥
d
2 + 1 + s with s > 0. Let T = M

1
2k−2s+1 . Suppose that the row vectors

{Ai}
M
i=1 of the matrix A are i.i.d. samples sampled from the uniform distribution on the ball BT ⊂ Rd, and the entries of the vector ζ , {ζi}Mi=1,

are i.i.d. samples sampled from the uniform distribution on [−DT ,DT ]. Assume the two uniform distributions together with the stationary
distribution µδ are mutually independent. Then for any τ ∈ (0, 1), with probability 1− τ , the target function bH in (57) satisfies,

∥b− bH ∥
2
π̃δ

≤
C
τ
M−

2
α + K 2

2

∫
{∥x∥>D}

(1+ ∥x∥2)π̃ δ(dx), α = 2+
d+ 1

k− d
2 − s

, (58)

or some constant C ∈ (0,+∞), where the integral in (58) can be further bounded by∫
{∥x∥>D}

(1+ ∥x∥2)π̃ δ(dx) ≤ C−ℓ
1 (1+ D2)1−ℓπ̃ δ(V ). (59)

ecall that V denotes the Lyapunov function satisfying Assumption 2.4, and the constants ℓ and C1 are the same as in Assumption 2.4.

roof. To begin with, since the target function bH is supported in BD, the L2-error ∥b− bH ∥
2
π̃δ

is bounded as follows,

∥b− bH ∥
2
π̃δ

= π̃ δD(1BD )
2
∥b− bH ∥

2
π̃δD

+

∫
{∥x∥>D}

∥b∥2π̃ δ(dx) ≤ ∥b− bH ∥
2
π̃δD

+ K 2
2

∫
{∥x∥>D}

(1+ ∥x∥2)π̃ δ(dx),

here we have used the linear growth bound on b in Assumption 2.1. To apply Corollary 2 in [30] to ∥b − bH ∥
2
π̃δD

, we introduce the

ollification b∗ ∈ W k,2(Rd) ∩ L1(Rd) of b such that

b∗ = b, ∀x ∈ BD.

ere, W k,2(Rd) indicates a Sobolev space. We have the following relation

bH = arg min
h∈H

A,ζ
D

∥b− h∥2
π̃δ

= arg min
h∈H

A,ζ
D

∥b− h∥2
π̃δD

= arg min
h∈H

A,ζ
D

∥b∗ − h∥2
π̃δD
,

hat is, bH (57) is also the target function of b∗ with respect to L2(Rd, π̃ δD). In this case, the corresponding approximation error can be
ounded by Corollary 2 in [30],

E
[
∥b− bH ∥

2
π̃δD

]
= E

[
∥b∗ − bH ∥

2
π̃δD

]
≤ CM−

2
α , α = 2+

d+ 1
k− d

2 − s
,

or some constant C ∈ (0,+∞). Here the expectation is taken with respect to the random coefficients A and ζ . Together with the
arkov’s inequality, we reach the upper bound in (58).
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As for the integral in (58), simply notice that by Assumption 2.4, one has,

1+ ∥x∥2 =
(1+ ∥x∥2)ℓ

(1+ ∥x∥2)ℓ−1 ≤ C−ℓ
1 (1+ D2)1−ℓV (x), ∀x ∈ {∥x∥ > D},

hich leads to the upper bound in (59). □

We want to point out that in [30], an explicit expression of the constant C in (58) has been provided, which is proportional to the
quare of the norm of b∗ in W k,2(Rd).

emark 2. We should also point out that the polynomial decay bound in (59) can be improved under additional assumptions.
articularly, if X is a centered random variable of sub-exponential distribution SE(ν2, α) with ν, α > 0, then by concentration inequality
or sub-exponential distribution, one obtains

P(∥X∥ ≥ D) ≤ e−
D
2α , ∀D > ν2α−1.

his means,∫
{∥x∥>D}

(1+ ∥x∥2)π̃ δ(dx) ≤ P(∥X∥ ≥ D)1/2
(∫

Rd
(1+ ∥x∥2)2π̃ δ(dx)

)1/2
≤ e−

D
4α π̃ δ(V 2)1/2, (60)

decays exponentially in D when π̃ δ(V 2) <∞.

5.2. The generalization error

Due to the truncation to the distribution π̃ δ in (56), we shall define the risk function E [h] in (18) with respect to the truncated
random variables (XD, YD), where XD follows the distribution π̃ δD and YD is still determined by the model (16). Let µδD denote their joint
distribution, and the risk function in (18) becomes

ED[h] := EµδD
[
∥h(XD)− YD∥

2] .
For simplicity, we assume the constant D is large enough so that the samples {xi}Ni=1 ⊂ BD. Then, the corresponding empirical risk
unction, denoted as ED,N , is the same as the risk EN in (19). In particular, following (20), the empirical estimate bϵ,D is given by,

bϵ,D := arg min
h∈H

A,ζ
D

ED,N [h]. (61)

The least-squares problem in (61) is conditionally linear in the sense that, given a realization of A and ζ , functions in H
A,ζ
D are linear

combinations of basis functions {φ (⟨Ai, ·⟩ + ζi)}
M
i=1. Thus, if we let

bϵ,D(x) = 1BD (x)
M∑
i=1

Ŵiφ (⟨Ai, x⟩ + ζi) , (62)

then Ŵ = (Ŵ1, Ŵ2, . . . , ŴM )⊤ solves the linear system

Φ⊤ΦŴ = Φ⊤y, y = (y1, y2, . . . , yN )⊤, (63)

where Φ ∈ RN×M such that

Φ =
(
Φij
)
, Φij = φ

(
⟨Aj, xi⟩ + ζj

)
, 1 ≤ i ≤ N, 1 ≤ j ≤ M.

In practice, when Φ⊤Φ in (63) is singular, we write Ŵ = (Φ⊤Φ)†Φ⊤y, with (Φ⊤Φ)† being the Moore–Penrose inverse.
Various results on the estimation error of empirical risk minimization are available under a bounded sampling assumption, e.g., [44].

However, due to the Gaussian noise ηi in yi, our problem belongs to the unbounded sampling case. As a remedy, we will consider the
result in [43] to study the estimation error ED[bϵ,D] − ED[bH ].

Proposition 5.2. Let {xi, yi}Ni=1 be i.i.d. samples with xi ∼ XD of distribution π̃ δD and yi = b(xi)+ ηi with Gaussian noise ηi ∼ E = N (0, R)
independent of π̃ δD. Then, for any τ ∈ (0, 1), with probability 1− τ , the estimation error satisfies

ED[bϵ,D] − ED[bH ] ≤
B1
√
N

(
ln

8
τ 2

+M ln ln
2
τ

)
+

B1M
√
N

(
1+ ln

(
4K2B2

√
1+ D2

B1
·

√
N

M

))
,

or some constants B1, B2 ∈ (0,+∞), which will be specified in the proof.

roof. The result in [43] relies on the notion of covering number of the hypothesis space H
A,ζ
D and a moment condition on the output

i.
Recall that for θ > 0, the covering number of H

A,ζ
D with radius θ , denoted by N(H A,ζ

D , θ ), is defined to be the minimal integer n
uch that there exist n balls with radius θ covering H

A,ζ
D . Here, the topology are induced by the uniform norm ∥ · ∥∞. Notice that H

A,ζ
D

s a bounded subset of an M-dimensional normed space. By Proposition 5 in [44], we have

lnN(H A,ζ
D , θ ) ≤ M ln

(
4K2

√
1+ D2

θ

)
, ∀θ > 0.
20
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he output yi yields a Gaussian distribution ρ(y|xi) = N (b(xi), R). The moment of the output E[|b(XD)+ E|n] is given by the following
ntegral

E
[
|b(XD)+ E|n

]
=

∫
BD

∫
R
|y|nρ(y|x)dyπ̃ δD(dx), n ∈ N,

here for all x ∈ BD,∫
R
|y|nρ(y|x)dy ≤ 2n−1

(∫
R
|y− b(x)|nρ(y|x)dy+

∫
R
|b(x)|nρ(y|x)dy

)
≤ 2n−1

(
(2R)

n
2
Γ
( n+1

2

)
√
π

+ K n
2 (1+ D2)

n
2

)
.

ere, we have used the identity regarding the central absolute moments of Gaussian distribution and the linear growth bound of b.
ince the Gamma function is monotone increasing, that is,

Γ

(
n+ 1
2

)
≤ Γ

(
m+

1
2

)
=

(2m− 1)!!
2m

√
π ≤

n!!

2
n
2

√
π, m = ⌈

n
2
⌉

⌈
n
2⌉ denotes the smallest integer that is greater or equal than n

2 ), which suggests

(2R)
n
2
Γ
( n+1

2

)
√
π

≤ R
n
2 n!! ≤ R

n
2
√
n!.

hoosing,

MD := 2max
{
K2

√
1+ D2,

√
R
}
, (64)

e obtain,

E
[
|b(XD)+ E|n

]
≤

√
n!Mn

D, ∀n ∈ N, (65)

which fulfills the moment hypothesis in [43].
By Propositions 2.2 and 3.3 in [43], we see that, with probability at least 1− τ , there holds for all θ > 0

ED[bϵ,D] − ED[bH ] ≤
(
ED[bϵ,D] − ED,N [bϵ,D]

)
+
(
ED,N [bH ] − ED[bH ]

)
≤

B1
√
N

(
ln

8
τ 2

+ lnN(H A,ζ
D , θ )

)
+ B2θ ln

2
τ

≤
B1
√
N

ln
8
τ 2

+

(
B1M
√
N

ln

(
4K2

√
1+ D2

θ

)
+ B2θ ln

2
τ

)
,

here the constants B1 and B2 are given by

B1 = 40K 2
2 (1+ D2)+ 160M2

D ≤ 180M2
D, B2 = 4

[
K2(1+ D2)

1
2 + (2+ 3

√
2)MD

]
≤ (10+ 12

√
2)MD. (66)

n particular, when

θ = θ∗ :=
B1M

B2 ln 2
τ

√
N
> 0

the upper bound reaches its minimum, and we have

ED[bϵ,D] − ED[bH ] ≤
B1
√
N

ln
8
τ 2

+
B1M
√
N

[
1+ ln

(
4K2B2

√
1+ D2

B1

)
+ ln ln

2
τ
+ ln

√
N

M

]
. □

It is worthwhile mentioning that the moment condition in (65) is a necessary condition for using the Bennet inequality to deduce
the bounds above. Importantly, this moment bound gives a characterization of the estimation error in terms of the noise variance R
through constant MD in (64) that appears in both B1 and B2 as shown in (66). Recall that in our application R ≤ δ−1Tr[σσ⊤

] as in (46).
Using the covering number of the hypothesis space to analyze the estimation error is a classical approach in statistical learning theory,
e.g., [66]. Combining Propositions 5.1–5.2, with probability 1− τ , we conclude the following upper bound for the generalization error,

Eπ̃δ
[
∥b− bϵ,D∥2

]
= Eπ̃δ

[
∥b− bH ∥

2]
+
(
Eπ̃δ

[
∥b− bϵ,D∥2

]
− Eπ̃δ

[
∥b− bH ∥

2])
≤ Eπ̃δ

[
∥b− bH ∥

2]
+

(
Eπ̃δD

[
∥b− bϵ,D∥2

]
− Eπ̃δD

[
∥b− bH ∥

2])
= Eπ̃δ

[
∥b− bH ∥

2]
+ ED

[
bϵ,D

]
− ED [bH ]

= O
(
τ−1M−

2
α

)
+ O

(
(1+ D2)1−ℓ

)
+ O

(
M2

DN
−

1
2
(
ln τ−2

+M ln ln τ−1))
+ O

(
M2

D
M
√
N

ln

√
N

M

)
,

here the constant MD depends on the noise variance as defined in (64). If we assume the invariant measure π̃ δ yields an exponential
ecay as in Remark 2, then the second term above can be replaced by the error bound in (60). For fixed τ > 0, the leading error term
s the last component. Choosing N = O(M2), the last error term is O(M2

D) which is effectively O(R), where R ≤ δ−1Tr[σσ⊤
]. This means

he contribution from noise is comparable to that in the error from the kernel method in (52).
21
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.3. Lipschitz continuity

To close this section, we check the Lipschitz continuity of the estimator bϵ,D in (61). From (62), we have

⏐⏐bϵ,D(x)− bϵ,D(y)
⏐⏐ ≤ M∑

i=1

|Ŵi| |φ (⟨Ai, x⟩ + ζi)− φ (⟨Ai, y⟩ + ζi)| ≤
M∑
i=1

|Ŵi|∥Ai∥∥x− y∥

≤

(
M∑
i=1

Ŵ 2
i

) 1
2
(

M∑
i=1

∥Ai∥
2

) 1
2

∥x− y∥ = ∥Ŵ∥∥A∥F∥x− y∥,

hich suggests that bϵ,D is globally Lipschitz. Recall that the matrix A is randomly generated following Proposition 5.1. We have the
ollowing concentration bounds for ∥A∥F .

Proposition 5.3. Let A ∈ RM×d with row vectors Ai randomly generated as in Proposition 5.1. Then, for τ > 0 we have

P
(
∥A∥2F ∈ [MµA − τ ,MµA + τ ]

)
≥ 1− 2 exp

(
−

τ 2

2Mσ 2
A +

2
3µAτ

)
, µA =

d
d+ 2

T 2, σ 2
A =

4d
(d+ 4)(d+ 2)2

T 4,

here the constant T is the same as in Proposition 5.1.

roof. Recall that the row vectors {Ai}
M
i=1 are i.i.d. samples drawn from the uniform distribution on the ball BT ⊂ Rd. Let ξ denote the

andom variable corresponding to ∥Ai∥ with density ρT . Using the spherical coordinates, one sees that ρT (r) ∝ rd−1. Moreover, ρT is
upported in [0, T ], that is,

ρT (r) =
d
T d r

d−1, r ∈ [0, T ].

ince ∥A∥2F =
∑M

i=1 ∥Ai∥
2, to apply concentration inequalities, we need to identify the statistics of the random variable ξ 2. By direct

omputation, we find

µA := E[ξ 2] =
d

d+ 2
T 2, σ 2

A := E[ξ 4] − E[ξ 2]2 =
4d

(d+ 4)(d+ 2)2
T 4.

urther notice that ξ 2 ∈ [0, T 2
] and |ξ 2 − µA| ≤ µA, and by the Bernstein inequality (e.g., Proposition 2 in [44]), we reach the bound

n the proposition’s statement. □

We want to point out that since T ≤ M
1

d+3 according to Proposition 5.1, Proposition 5.3 suggests that

∥A∥F = O
(
M

d+5
2d+6

)
,

n high probability.
As for ∥Ŵ∥, since Ŵ solves the linear system in (63) the norm ∥Ŵ∥ depends on the smallest positive eigenvalue of the matrix Φ⊤Φ .

hus, in practice, to control ∥Ŵ∥, a regularization is necessary. This provably improves the Lipschitz continuity of the estimates, but it
omes in the expense of estimation error. For general discussions on the Lipschitz function approximation using neural network, we
efer the readers to [67] and the references therein.

.4. Remarks on the ReLU random neural networks

The ReLU RNN approach reviewed here has several advantages. First, compared with the spectral regression method in Section 4, the
NN approach is numerically cheaper to implement since it does not require solving large eigenvalue problems. Given the realization of
and ζ , the target function bH can be properly defined as the minimizer of the least-squares problem in (57) with no extra assumption
n the unknown function b. The existence of a target function simplifies the discussion of the generalization error.
An obvious drawback of the RNN approach is that the estimates bϵ,D (62) has compact support, while the unknown drift coefficients

(x) are often unbounded as ∥x∥ → +∞. Under such constructions, the consistency condition (25) in Assumption 3.1 can never be
atisfied beyond the compact support. While the error beyond the compact support decays, either polynomial (see (59)) or exponential
see (60)) under additional assumptions, as a function of the radius of the ball, in practice, we may not be able to estimate on a domain
ith large D. This issue is due to the difficulty in obtaining training samples on the tail of the distribution X . Additionally, larger D

induces a larger estimation error through the constant MD in (64).

6. Summary

In this paper, we studied the error bounds of the invariant statistics in learning ergodic Itô diffusion. Using the perturbation theory
of ergodic Markov chains [37,38] and the linear response theory [40], we established a linear dependence of the errors of one-point
and two-point invariant statistics on the spectral error of the diffusion matrix estimator. Under a proper consistency condition on the
estimator of the drift coefficient, one can identify the error bound in terms of the size of the training sample, ‘‘size’’ of hypothesis space,
noise amplitude, and the discretization error induced by the SDE’s solver, using standard L2 generalization error analysis corresponding
o the specific machine learning algorithm. An important takeaway from this study is that the L2 characterization of the learning
eneralization error is not sufficient for achieving the linear dependence error bound presented in this paper, due to the discrepancies
22
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f the topologies that characterize the errors in perturbation theory of ergodic Markov chain and learning theory. Besides the consistent
stimator in the hypothesis space that retains certain characteristics of the drift coefficients, a sufficient condition to achieve the error
ound here is through learning algorithms that produce a uniformly Lipschitz estimator.
From our examination of two simple learning algorithms, the kernel-based spectral regression method and the shallow random

eural networks with the ReLU activation function, we conclude that to satisfy these sufficient conditions, one needs to specify the
ypothesis space carefully to avoid bias. In practice, the main challenge will be in the kernel specification when a kernel-based algorithm
s used. For random neural network, the consistency depends on the universality of the random bases [26]. Another practical issue is
o overcome biased estimation with the random neural networks that arises when sampling data on the tail of the distribution are
ot available. These issues suggest that it is important to have a physical understanding of the problem at hand to have appropriate
ypothesis space for convergence guarantees rather than just using machine learning as a black-box. Furthermore, consistent estimates
an only be achieved on the domain where the training data is available.
We view this study as a first step to understand machine learning of dynamical systems with invariant statistical properties. Many

ssues remain open. For example, in our study, we consider a consistent supervised learning problem in the following sense. Specifically,
e model the response variable y in (16) to be compatible with the integration Euler–Maruyama scheme. In practice, when the

underlying scheme is not known, the inconsistent learning model will produce a biased estimator. Another related issue is the global
Lipschitz condition on the drift term. If we relax it to be locally Lipschitz, the EM discretization does not yield an ergodic Markov chain
in general. As pointed out in [39], one can generate an ergodic Markov chain by considering the stochastic backward Euler discretization.
With this discretization, unfortunately, the corresponding supervised learning model will be much more complicated to analyze since
the loss function is implicit. If one uses the learning model corresponding to EM discretization or any other explicit integration schemes,
then an additional bias will be introduced. A much harder yet important problem is to carry this analysis on deterministic dynamical
systems. In this context, the existence of the invariant measure of the estimated dynamics is an essential question in dynamical system
theory [68]. Furthermore, the validity of linear response theory is also a critical problem [69] that is difficult to justify in general.

While this paper focuses on the theory, several numerical results using kernel methods are readily available. For example, see
Section 3 of [14] for numerical results on a linear SDE and Section 2.2 of [19] for numerical results on a nonlinear Langevin equation.
otivated by the analysis in this paper, we are pursuing numerical studies with neural network models in separate works.
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ppendix A. Proof of Lemma 3.1

In this appendix, we discuss the proof of Lemma 3.1 in Section 3. For reader’s convenience, we first review a nonlinear generalization
of Gronwall’s inequality.

Proposition A.1. Let v(t) be a nonnegative function that satisfies the integral inequality

v(t) ≤ c +
∫ t

t0
(a1(s)v(s)+ a2(s)vα(s)) ds, c ≥ 0, α ≥ 0,

here a1(t) and a2(t) are continuous nonnegative functions on [t0,+∞). For 0 ≤ α < 1, we have

v(t) ≤
{
c1−α exp

[
(1− α)

∫ t

t0

a1(s)ds
]
+ (1− α)

∫ t

t0

a2(s) exp
[
(1− α)

∫ t

s
a1(r)dr

]
ds
} 1

1−α

.

When α = 1, such a result reduces to the standard Gronwall’s inequality. The proof is an application of the Bernoulli equation
(e.g., Theorem 21 in [70]).

Proof of Lemma 3.1. We start with the case: (un, uϵn) = (Xn, X ϵn ). By the definition of Gℓ in Proposition 2.2, we have

|f (x)− f (y)| ≤ Cℓ
(
1+ ∥x∥2ℓ−1

+ ∥y∥2ℓ−1)
∥x− y∥, ∀x, y ∈ Rd, ∀f ∈ Gℓ, (67)

where Cℓ ∈ (0,+∞) is a fixed constant independent of f . Taking expectation on (67), and employing the Cauchy–Schwarz inequality,
we obtain⏐⏐Ex

[f (X )] − Ex
[f (X ϵ)]

⏐⏐ ≤ C
(
Ex
[(

1+ ∥X ∥
2ℓ−1

+ ∥X ϵ∥2ℓ−1)2]) 1
2 (

Ex [
∥X − X ϵ∥2

]) 1
2 ,
1 1 ℓ 1 1 1 1
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F

w

∥

urther notice that

Ex
[(

1+ ∥X1∥
2ℓ−1

+ ∥X ϵ1∥
2ℓ−1)2]

= Ex [1+ ∥X1∥
4ℓ−2

+ ∥X ϵ1∥
4ℓ−2]

+ 2Ex [
∥X1∥

2ℓ−1
+ ∥X ϵ1∥

2ℓ−1
+ ∥X1∥

2ℓ−1
∥X ϵ1∥

2ℓ−1] ,
here the last term can be bounded as follows,

Ex [
∥X1∥

2ℓ−1
∥X ϵ1∥

2ℓ−1]
≤
(
Ex [

∥X1∥
4ℓ−2]) 1

2
(
Ex [

∥X ϵ1∥
4ℓ−2]) 1

2 ≤
1
2

(
Ex [

∥X1∥
4ℓ−2]

+ Ex [
∥X ϵ1∥

4ℓ−2]) .
To bound the remaining order-(2ℓ− 1) moments of X1 and X ϵ1 , we apply the Jensen’s inequality,

Ex [
∥A∥2ℓ−1]

≤ Ex [
∥A∥4ℓ−2] 1

2 ≤ max
{
Ex [

∥A∥4ℓ−2] , 1} ,
(for A = X1 and X ϵ1 , respectively), which leads to⏐⏐Ex

[f (X1)] − Ex
[f (X ϵ1 )]

⏐⏐ ≤ R1
(
Ex [1+ ∥X1∥

4ℓ−2
+ ∥X ϵ1∥

4ℓ−2]) 1
2
(
Ex [

∥X1 − X ϵ1∥
2]) 1

2 (68)

for some constant R1 ∈ (0,+∞) independent of ϵ. On the right-hand side of Eq. (68), the moments are bounded by applying Lemma 2.1
to X(t) and X ϵ(t), respectively. As for the error Ex

[
∥X1 − X ϵ1∥

2
]
in (68), we will derive an integral inequality of the form in Proposition A.1

using Itô formula [2].
Notice that since X(t) in (9) and X ϵ(t) in (15) are driven by the same Brownian motion W , we can consider the following coupled

SDEs
d
dt

(
X
X ϵ

)
=

(
b(X)
bϵ(X ϵ)

)
+

(
σ

σϵ

)
Ẇ ,

(
X(0)
X ϵ(0)

)
=

(
x
x

)
. (69)

Recall that in Section 3.1, we estimated σσ⊤ by σϵσ⊤
ϵ without specifying the diffusion coefficient σϵ . Here, we shall take σϵ so that

σ − σϵ∥F = O(ϵ) for the sake of the proof. To construct such σϵ , we introduce the thin SVD factorization of σ (recall that σ ∈ Rd×m is
full rank with m ≤ d),

σ = UΛV⊤, U ∈ Rd×m, Λ ∈ Rm×m, V ∈ Rm×m, (70)

where Λ = diag(σ1, σ2, . . . , σm) with σi > 0, ∀i. With the SVD factorization, we get σσ⊤
= UΛ2U⊤. Given the estimate σϵσ⊤

ϵ of σσ⊤

satisfying (24), we define

Σϵ := U⊤σϵσ
⊤

ϵ U ∈ Rm×m,

and we have

∥Λ2
−Σϵ∥2 = ∥U⊤(σσ⊤

− σϵσ
⊤

ϵ )U∥2 = ∥σσ⊤
− σϵσ

⊤

ϵ ∥2 = ϵ. (71)

Since Λ2
= diag(σ 2

1 , σ
2
2 , . . . , σ

2
m) is positive definite, for ϵ small enough, Σϵ is also positive definite according to (71). Thus, there

exists a unique lower triangular Cholesky factorization of Σϵ , e.g., Theorem 4.2.7 in [71], with the lower triangular matrix denoted by
Lϵ ∈ Rm×m. Namely,

LϵL⊤ϵ = Σϵ .

Moreover, by the forward stability of the Cholesky factorization subject to small perturbations, e.g., Theorem 2.1 in [72], we have

∥Λ− Lϵ∥F ≤ ∥Λ2
−Σϵ∥F ≤

√
m∥Λ2

−Σϵ∥2 =
√
mϵ. (72)

In other words, Lϵ approximates the matrix Λ in the SVD factorization of σ (70). Thus, by replacing Λ in (70) by Lϵ , we define

σϵ := ULϵV⊤, (73)

which satisfies(
ULϵV⊤

) (
ULϵV⊤

)⊤
= UΣϵU⊤

= σϵσ
⊤

ϵ .

In particular, by (72), we have

∥σ − σϵ∥F ≤
√
m∥σ − σϵ∥2 =

√
m∥U(Λ− Lϵ)V⊤

∥2 ≤
√
m∥Λ− Lϵ∥2 ≤ mϵ. (74)

We assign σϵ in (73) to the coupled system (69), and apply the Itô formula to the process

U(t) := ∥X(t)− X ϵ(t)∥2, U(0) = 0, 0 ≤ t ≤ δ.

Direct calculations yield,

U̇ = 2⟨X − X ϵ, b(X)− bϵ(X ϵ)⟩ + 2⟨X − X ϵ, (σ − σϵ) Ẇ ⟩ + ⟨(σ − σϵ) Ẇ , (σ − σϵ) Ẇ ⟩

= 2⟨X − X ϵ, b(X)− bϵ(X ϵ)⟩ + ∥σ − σϵ∥
2
F + 2⟨X − X ϵ, (σ − σϵ) Ẇ ⟩,

where ⟨·, ·⟩ denotes the inner product in Rd. This can be rewritten as an Itô integral representation of U(t),

U(t) =
∫ t

0
2⟨X(s)− X ϵ(s), b(X(s))− bϵ(X ϵ(s))⟩ + ∥σ − σϵ∥

2
Fds+

∫ t

0
(σ − σϵ)⊤(X − X ϵ) · dW .

Here, ∫ t

(σ − σϵ)⊤(X − X ϵ) · dW :=

m∑∫ t

(σ − σϵ)⊤i (X − X ϵ)dWi,

0 i=1 0
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here (σ − σϵ)i ∈ Rd denotes the ith column vector of the matrix (σ − σϵ). Using the Itô-isometry [2], we have

Ex
[∫ t

0
(σ − σϵ)⊤(X − X ϵ) · dW

]
≤ Ex

[∫ t

0
∥(σ − σϵ)⊤(X − X ϵ)∥2ds

] 1
2

≤ ∥σ − σϵ∥F

∫ t

0
Ex
[U(s)]

1
2 ds.

urther observe that b(X)− bϵ(X ϵ) = (b(X)− b(X ϵ))+ (b(X ϵ)− bϵ(X ϵ)). By the Lipschitz continuity of b in Assumption 2.1 and the linear
rowth bound of b− bϵ in Assumption 3.1, we have

|⟨X − X ϵ, b(X)− bϵ(X ϵ)⟩| ≤ |⟨X − X ϵ, b(X)− b(X ϵ)⟩| + |⟨X − X ϵ, b(X ϵ)− bϵ(X ϵ)⟩|

≤ K1∥X − X ϵ∥2 + ϵK3(1+ ∥X ϵ∥2)
1
2 ∥X − X ϵ∥.

ombining these inequalities, we arrive at,

Ex
[U(t)] ≤ t∥σ − σϵ∥

2
F + 2

∫ t

0
K1Ex

[U(s)] +
(
ϵK3Ex

[
(1+ ∥X ϵ(s)∥2)

1
2

]
+ ∥σ − σϵ∥F

)
Ex
[U(s)]

1
2 ds, ∀t ∈ [0, δ].

hus, the function v(t; x) := Ex
[U(t)] satisfies the following integral inequality

v(t; x) ≤ c +
∫ t

0

(
a1v(s)+ a2v

1
2 (s)

)
ds, ∀t ∈ (0, δ),

with

c = δm2ϵ2, a1 = 2K1, a2 = R2(1+ ∥x∥2)
1
2 ϵ,

here the constant R2 ∈ (0,+∞) is independent of ϵ. Here, we have used the error bound on ∥σ − σϵ∥F in Eq. (74) to get c and the
moment bound of Ex

[
∥X ϵ∥2

]
(by applying Lemma 2.1 to X ϵ) to get a2. By the Gronwall-type inequality in Proposition A.1, we conclude

he following bound for v,

Ex [
∥X(t)− X ϵ(t)∥2

]
= v(t; x) ≤ R3e2K1t (1+ ∥x∥2)ϵ2, ∀t ∈ [0, δ],

here the constant R3 ∈ (0,+∞) is independent of ϵ. Thus, Eq. (68) becomes⏐⏐Ex
[f (X1)] − Ex

[f (X ϵ1 )]
⏐⏐ ≤ R1R

1
2
3 e

K1δ(1+ ∥x∥2)
1
2
(
Ex [1+ ∥X1∥

4ℓ−2
+ ∥X ϵ1∥

4ℓ−2]) 1
2 ϵ ≤ KV (x)ϵ,

or some constant K ∈ (0,+∞) independent of ϵ. In the last inequality, we have used the moment bounds on X1 and X ϵ1 based on
emma 2.1 and Assumption 2.4 on the Lyapunov function V . Finally, by the definition of γX , we have,

γX = sup
x∈Rd

sup
f∈Gℓ

⏐⏐Ex
[f (X1)] − Ex

[f (X ϵ1 )]
⏐⏐

V (x)
≤ Kϵ,

hich is the desirable result.
When (un, uϵn) = (X δn , X

ϵ,δ
n ), as an analogy of (68), we have⏐⏐Ex

[f (X δ1 )] − Ex
[f (X ϵ,δ1 )]

⏐⏐ ≤ R1
(
Ex [1+ ∥X δ1∥

4ℓ−2
+ ∥X ϵ,δ1 ∥

4ℓ−2]) 1
2
(
Ex [

∥X δ1 − X ϵ,δ1 ∥
2]) 1

2 .

he bound for Ex
[
∥X δ1 − X ϵ,δ1 ∥

2
]
can be derived via direct computations. We apply EM scheme (7) to the coupled system (69), and we

ave

Ex [
∥X δ1 − X ϵ,δ1 ∥

2]
= E

[
∥δ(b(x)− bϵ(x))+

√
δ(σ − σϵ)ξ1∥2

]
= δ2∥b(x)− bϵ(x)∥2 + δE

[
∥(σ − σϵ)ξ1∥2

]
≤ R4(1+ ∥x∥2)ϵ2,

or some constant R4 ∈ (0,+∞) independent of ϵ. Repeating the argument for γX , we reach the same desirable result for γXδ .

ppendix B. Proof of Proposition 3.2

In this Appendix, we discuss the proof of Proposition 3.2, which provides both the well-posedness of the two-point statistics of the
erturbed dynamics and the corresponding error bound.
By the finite second moments assumption, we know the two-point statistics in (30) are well-defined. In particular, we have

(kϵA,B)n − (kA,B)n =
∫∫

A(x)B(x0)Pϵnδ(x0, dx)π
ϵ(dx0)−

∫∫
A(x)B(x0)Pnδ(x0, dx)π (dx0)

=

∫∫
A(x)B(x0)

(
Pϵnδ(x0, dx)− Pnδ(x0, dx)

)
π ϵ(dx0)+

∫∫
A(x)B(x0)Pnδ(x0, dx)(π ϵ − π )(dx0) =: I1 + I2.

or the term I1, we have

|I1| ≤
∫

|B(x0)|
⏐⏐⏐⏐∫ A(x)

(
Pϵnδ(x0, dx)− Pnδ(x0, dx)

)⏐⏐⏐⏐π ϵ(dx0) = ∫
|B(x0)|

⏐⏐Ex0 [A(X ϵn )] − Ex0 [A(Xn)]
⏐⏐π ϵ(dx0)

≤ R1π
ϵ(|B|V )ϵ ≤ R1(π ϵ(B2))

1
2 (π ϵ(V 2))

1
2 ϵ,

or some constants R1 ∈ (0,+∞) and D ∈ (1,+∞) (independent of A and B). Here we have applied Proposition 2.1 to⏐⏐Ex0 [A(X ϵ)] − Ex0 [A(X )]
⏐⏐ based on Lemma 3.1.
n n
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Meanwhile for the term I2, we have

I2 =
∫

B(x0)
∫

A(x)Pnδ(x0, dx)(π ϵ − π )(dx0) =
∫

B(x0)Ex0 [A(Xn)](π ϵ − π )(dx0) = π ϵ(fn)− π (fn),

here fn(x) = B(x)Ex
[A(Xn)]. Here, fn, in general, is not a function in Gℓ, and we cannot apply the existing one-point statistics error bound

erived from the perturbation theory, e.g., Proposition 2.1. As a remedy, we consider the long-time linear response theory reviewed in
ection 2.4.
Before applying Theorem 2.2 to fn, we need to show that fn ∈ C1

G,H . Let

An(x) := Ex
[A(Xn)] − π (A).

otice A ∈ C1
V ,VH/G ⊂ C1

G,H (since G ≥ V ), and, by the spectral gap assumption (Assumption 2.6), we have

∥An∥1;G,H =
P0

nδA− π (A)

1;G,H ≤ λn∥A− π (A)∥1;G,H , λ ∈ (0, 1). (75)

ith this bound, we turn to fn,

∥fn∥1;G,H = ∥BAn + Bπ (A)∥1;G,H ≤ ∥BAn∥1;G,H + π (A)∥B∥1;G,H ,

here ∥B∥1;G,H < ∞ since B ∈ C1
G/V ,H/V ⊂ C1

G,H . Therefore, to show fn ∈ C1
G,H it is enough to control the norm ∥BAn∥1;G,H . By the

efinition (13), we have

∥BAn∥1;G,H = sup
x∈Rd

{
|BAn|

G
+

∥∇BAn + B∇An∥

H

}
.

otice that,

|BAn|

G
+

∥∇BAn + B∇An∥

H
≤ |B|

(
|An|

G
+

∥∇An∥

H

)
+

∥∇B∥
H/G

|An|

G
≤

(
|An|

G
+

∥∇An∥

H

)(
|B| +

∥∇B∥
H/G

)
,

here, by Eq. (75),

sup
x∈Rd

{
|An|

G
+

∥∇An∥

H

}
= ∥An∥1;G,H ≤ λn∥A− π (A)∥1;G,H = λn sup

x∈Rd

{
|A− π (A)|

G
+

∥∇A∥
H

}
.

hus, we obtain the following bound,

∥BAn∥1;G,H ≤ λn sup
x∈Rd

{(
|A− π (A)|

G
+

∥∇A∥
H

)(
|B| +

∥∇B∥
H/G

)}
= λn sup

x∈Rd

{(
|A− π (A)|

V
+

∥∇A∥
VH/G

)(
|B|
G/V

+
∥∇B∥
H/V

)}
.

his shows that,

∥fn∥1;G,H ≤ λn∥A− π (A)∥1;V ,VH/G∥B∥1;G/V ,H/V + π (A)∥B∥1;G,H <∞. (76)

ith fn ∈ C1
G,H , by invoking Theorem 2.2, we have

|I2| = |π ϵ(fn)− π (fn)| ≤
⏐⏐⏐⏐ d
d ϵ

π ϵ(fn)
⏐⏐⏐
ϵ=0

⏐⏐⏐⏐ ϵ + O(ϵ2),

here the ϵ-derivative is well-defined and satisfies Eq. (14) with f = fn and t = δ.
Given π (A) = 0, Eq. (76) reduces to

∥fn∥1;G,H ≤ λn∥A∥1;V ,VH/G∥B∥1;G/V ,H/V ,

nd the ϵ-derivative in (30), by Eq. (14), satisfies
d
d ϵ

π ϵ(fn)
⏐⏐⏐
ϵ=0

= Eπ
[
∂P0

δ (I − P0
δ )

−1 (fn − π (fn))
]
,

here

∥fn − π (fn)∥1;G,H ≤ ∥fn∥1;G,H + |π (fn)| ≤ λn∥A∥1;V ,VH/G∥B∥1;G/V ,H/V + |π (fn)|, ∀n ≥ 0.

o bound π (fn), since A ∈ Gℓ ⊂ G , we apply Theorem 2.1 to A,

|fn(x)| = |B(x)|
⏐⏐Ex

[A(Xn)]
⏐⏐ = |B(x)|

⏐⏐Ex
[A(Xn)] − π (A)

⏐⏐ ≤ R2ρ
n
|B(x)|V (x) ≤ R2ρ

n
∥B∥1;G/V ,H/VG(x), ∀x ∈ Rd,

or some constants R2 ∈ (0,∞) and ρ = ρ(δ) ∈ (0, 1) independent of A. Here, |B(x)|V (x) ≤ ∥B∥1;G/V ,H/VG(x) by the definition of the
orm ∥ · ∥G/V ,H/V . Thus, |π (fn)| ≤ R2∥B∥1;G/V ,H/Vρnπ (G) and

∥fn − π (fn)∥1;G,H ≤ ∥B∥1;G/V ,H/V
(
λn∥A∥1;V ,VH/G + R2ρ

nπ (G)
)
, (77)

here π (G) ≤ π (U) <∞ by Assumptions 2.7–2.8.
Let Kπ :=

{
f ∈ C1

G,H | π (f ) = 0
}
. Recall that (I − P0

δ )
−1 defines a bounded linear map from Kπ to itself (see the discussion

fter Assumption 2.6). In particular, for any f ∈ Kπ , we have,

(I − P0
δ )

−1f (x) =
∞∑(

P0
δ

)n
f (x) =

∞∑
Ex
[f (Xn)]
n=0 n=0
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the summation converges due to the spectral gap assumption), which implies that,(I − P0
δ )

−1f

1;G,H =


∞∑
n=0

(
P0
δ

)n
f (x)


1;G,H

≤

∞∑
n=0

λn∥f ∥1;G,H =
1

1− λ
∥f ∥1;G,H , ∀f ∈ Kπ .

ogether with Assumption 2.7 and Eq. (77), we have∂P0
δ (I − P0

δ )
−1 (fn − π (fn))


U ≤

R3

1− λ
∥fn − π (fn)∥1;G,H ≤

R3

1− λ
∥B∥1;G/V ,H/V

(
λn∥A∥1;V ,VH/G + R2ρ

nπ (G)
)
,

or a constant R3 ∈ (0,+∞) independent of A and B, which leads to the desirable error bound in Eq. (31).
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