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Abstract

This paper develops manifold learning techniques for the numerical solution of
PDE-constrained Bayesian inverse problems on manifolds with boundaries. We
introduce graphical Matérn-type Gaussian field priors that enable flexible mod-
eling near the boundaries, representing boundary values by superposition of har-
monic functions with appropriate Dirichlet boundary conditions. We also inves-
tigate the graph-based approximation of forward models from PDE parameters
to observed quantities. In the construction of graph-based prior and forward
models, we leverage the ghost point diffusion map algorithm to approximate
second-order elliptic operators with classical boundary conditions. Numerical
results validate our graph-based approach and demonstrate the need to design
prior covariance models that account for boundary conditions.
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1. Introduction

This paper develops manifold learning techniques to address two tasks in the numerical solu-
tion of PDE-constrained Bayesian inverse problems on manifolds with boundaries: (1) the
design and approximation of Gaussian field priors for spatially-distributed PDE parameters;
and (2) the approximation of forward maps from PDE parameters to PDE solutions. We intro-
duce graph-based approximations of prior and forward models and numerically show their
effectiveness in two test problems. The first one concerns the recovery of the diffusion coeffi-
cient of an elliptic PDE from pointwise noisy measurements of the PDE solution; the second
one concerns the recovery of the initial condition of a heat equation from noisy measurements
of the PDE solution at some positive time. Both of these problems have been widely used as
test cases for Bayesian inversion on manifolds and Euclidean domains [6, 13, 21, 23, 25, 26,
441, but previous work has largely ignored the boundary effects that are the focus of this paper.
The applied significance of elliptic and heat inverse problems is exemplified by [1, 52] and ref-
erences therein. PDEs on manifolds arise in many applications, including granular flow [36],
liquid crystals [47], biomembranes [20], computer graphics [3, 32], and brain imaging [34].

In the Bayesian approach to inverse problems [28, 44, 45], overviewed in section 2 below,
inference on the PDE parameters is performed using a posterior distribution obtained by con-
ditioning a user-chosen prior distribution to observed data. When the parameter of interest is a
function, employing an adequate choice of prior is crucial: the prior determines the support of
the posterior, and hence the space of parameters that can be recovered given sufficient data. In
this work, we will focus on Matérn-type Gaussian field priors [33, 43] that have been widely
adopted in inverse problems, statistics and machine learning due to their flexibility and com-
putational efficiency, e.g. [7-10, 31, 37, 49]. We consider Matérn-type models on manifolds
[31] and investigate their discretization using graphs, as well as their generalization to enhance
flexibility near the boundaries. To our knowledge, all previous work on graph-based Matérn
models, e.g. [4, 25, 39, 40], disregarded boundary effects, despite their importance in the dis-
cretization of Gaussian field priors in Euclidean settings [11, 17, 29]. Our numerical results
will confirm that accounting for boundary conditions is important in the design of priors and
in their graph-based approximation. While our emphasis is on PDE-constrained inverse prob-
lems, we expect that the boundary-aware graph-based Matérn priors that we introduce will also
find applications in graph-based machine learning [40].

Approximation of the forward map requires solving PDEs on manifolds with a range of
PDE parameters. There are numerous techniques to solve PDEs on manifolds, including the
finite element method [19], the level set method [3], closest point representation [38], and the
mesh-free radial basis function method [22]. In contrast to all of these methods, the kernel
approach we will consider avoids the need to have some parameterization on the manifolds;
we refer to [27] for a detailed discussion of the advantages and disadvantages of these PDE
solvers. In this work, we introduce graph-based forward map approximations for elliptic and
heat inversion on manifolds with boundaries. Our graph-based approach leverages the ghost
point diffusion map (GPDM) algorithm [27] to approximate second-order elliptic operators
with classical boundary conditions, which are used to define elliptic and heat forward models,
and also the Matérn prior covariance. The main idea behind the GPDM algorithm is to extend
the domain of the PDE through a set of artificially constructed ghost points. By extending the
underlying manifold where the PDE was defined, one can treat the boundary of the original
manifold as the interior of the extended manifold. The implication is that the kernel-based
approximations that underpin the design of the GPDM method remain to be valid close to
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the boundary. The GPDM algorithm has been generalized to solve time-dependent advection-
diffusion equations on manifolds [50].
We close this introduction with an outline of the paper and a summary of our contributions.

e In section 2, we overview the Bayesian approach to inverse problems and provide a high-
level summary of the proposed procedure. We also review the Bayesian approach in [26]
for elliptic inversion on a closed (i.e. boundary-free and compact) manifold, and we lay
out the forward map discretization for the heat inverse problem. We present elliptic and
heat inverse problems in a parallel way, emphasizing that both can be treated in the same
way under the proposed approach except for the necessary distinction in the discretization
of the forward map.

e In section 3, we review the GPDM algorithm and introduce our boundary-aware Matérn-
type priors and forward map approximations for elliptic and heat inversion.

e In section 4, we showcase implementations of the proposed methodology for elliptic and
heat inversion on one and two-dimensional manifolds with boundaries. In addition, we
demonstrate the enhanced flexibility of our proposed prior relative to existing graph-based
approaches that ignore boundary effects.

e In section 5, we provide conclusions and some open directions for future work.

2. Background

In this section, we first give the necessary background on the Bayesian formulation of inverse
problems [28, 42, 45] and the function space perspective [18, 44]. Next, we formulate the
problem of interest, namely, PDE-constrained Bayesian inversion on manifolds. Lastly, we
review the graph-based approach in [26] which is only applicable for closed manifolds.

2.1. Bayesian formulation of inverse problems

Suppose we have a parameter of interest § € ©, observed data y € RM and a forward model
g, satisfying

y =G +n, 2.1)

where 7 € RM is an observation noise. Our goal is to study the inverse problem of recovering
6 from the observed data y. In the Bayesian framework, one endows probabilistic structure to
any unknown quantity. Here this involves specifying a prior distribution y for the parameter ¢
and a distribution p for the noise 7. To facilitate our presentation, we assume throughout that
N~ p=N(,T), where I' € RM*M i5 a given positive-definite covariance matrix. We also
assume that # and 7 are independent random variables. The solution of the inverse problem
under the Bayesian framework is then the posterior distribution of ¢ given y, denoted 1”. The
posterior distribution allows to not only construct point estimates of the parameter of interest
but also quantify the uncertainty in the parameter reconstruction. In practice, this often requires
to resort to sampling techniques such as Markov chain Monte Carlo (MCMC).

If the parameter space is finite-dimensional, i.e. © C RY, and the prior x has Lebesgue
density 7, then the posterior 1 has Lebesgue-density 7 given by

1
mO) = oy —GONTO), Z:= /p(y — G(0)) (0)do, (2.2)

where p (y — G(u)) is the data likelihood. Under suitable assumptions [44], the characterization
(2.2) of the posterior can be generalized to infinite dimensional parameter space © by writing
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the posterior as a change of measure with respect to the prior:

du 1
d" ©) = = p(y — G(B)) x exp (—0(B:)), 2.3)
w Z

where we have defined ®(6; y) := 3[|y — G(0)||£ and we set || - ||p := HF‘% I

2.2. General setting and approach

We are interested in the inverse problem of recovering a parameter function § € © of a PDE
defined on a manifold M C RP from noisy measurements of the PDE solution u € I/ at given
locations {X,,}*_, C M. Here both © and U are suitable function spaces. The data model
(2.1) is therefore given by

Ym = M(.;Cm) + N, M= 1’ cee ,M7 n= {n"l}f‘y{:] ~ N(O’ F), (24)

with the forward model G : 6 — (u(xy),...,u(Xy)) defined as the composition of a for-
ward map F : 0 +— u from PDE input to PDE solution with an observation map O :u
(u(xy), . ..,u(xp)) from PDE solution to observed quantities. In this paper, we solely focus
on pointwise observations and tacitly assume throughout that the solutions to the PDEs we
consider can be evaluated pointwise. However, our methodology can deal with other types
of observation map, e.g. defined by bounded linear functionals in L? [26]. We will discretize
the forward map using a point cloud in M, which is denoted by {x,}"_| D {%,}}_,, where
M < N. Our approach for the computational implementation of the inverse problem is then
summarized in the following four steps:

(a) Prior specification: specify a prior distribution for the infinite dimensional parameter
0eco.
(b) Prior and forward model discretization:

1. Discretize using graph-based techniques the prior distribution £ to obtain fy, a prior
distribution over Oy := (0(x)),. .., 0(xy)) € RY. Note that i, is a prior distribution
over discrete functions y defined on the point cloud {x, }*_,.

2. Discretize using graph-based techniques the given forward map F : 6 — u to obtain
Fr 1Oy — uy = Fy(0y) € RN, where uy is an approximation to the solution of the
PDE evaluated along the point cloud, i.e., uy =~ (u(x1), ..., u(xy)). Furthermore, we
define Gy(Oy) :== (un (1), . . ., un(Xy)) € RM where uy(%;) denotes the component of
the vector uy € R" that corresponds to ¥; € {x,}V_,.

(c) Sampling: use an MCMC algorithm to obtain samples from the posterior distribution over
Oy, given by

du 1
G (080 ox exp(-O(Oxiy), - where Dby ) =3y — GO}
N
(2.5)
(d) Interpolation: if desired, extend the samples to functions on M with an interpolation
map.

This four-step approach was introduced in [24, 25] and previous works on the discretiza-
tion process include [26]. The primary focus of this paper is to contribute to the specification
and discretization steps for PDE-constrained inverse problems on manifolds with boundaries.
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Algorithm 1. Graph pCN.

Input: initial value 0,(\(,)), number of samples J, parameter value ¢ € (0, 1).
For j=1,...,J do:
1. Propose 6 = (1 — Qz)%@(f + ¢ €Q, where £ ~ N0, V).
2. Set
a(ﬁl(\{), 5%)) = min {l,exp (@N(f);\{);y) — @N(éxj;y» } R
and let

, 6 with probability a6y, 63,
oty =

6y with probability 1 — a(6y’, 6).
Output: samples of discrete functions {6 }§:1~

We propose (1) priors that accommodate for prescribed boundary conditions, (2) graph-based
discretizations of such priors; and (3) graph-based discretizations of the forward PDEs sup-
plemented with boundary conditions. These procedures will be introduced in section 3. In the
remainder of this section, we address the sampling and interpolation steps, which are based on
existing methodologies that are applicable in wide generality.

For the sampling step, we will use the graph pCN method [4, 25], summarized in algorithm
1. The covariance matrix Vy in the pCN proposal is tightly connected with the prior con-
struction. In fact, this matrix will be precisely the covariance matrix of the discretized prior
distribution. The parameter ¢ controls the size of the proposed moves of the chain. For a large
¢ value, we explore a wider region of the state space with higher number of rejections. The
motivation for using the graph pCN method is that it shows robustness with respect to the level
of discretization refinement determined by the value of N. We refer to [4, 5, 16, 25] for the
theoretical and empirical justification of this robustness.

For the interpolation step, once we obtain finite-dimensional samples 8y € R" representing
a parameter function evaluated on the point cloud {x,}"_,, we can extend the samples into

n=1s

functions on M using the K-NN interpolation map defined by

1
) = D OnG). x €M, x ¢ {x}i,

X;€ENK (x)

where Nk(x) is the set of K-nearest points in the point cloud {x, }*_, to the point x. To find
the K-nearest points, one can use the Euclidean distance in R” or the geodesic distance on
M C RPif available. We refer to [25] for more details and we note that other interpolation
methods are possible.

2.3. Elliptic inverse problems and heat inversion on closed manifolds

In this section, we overview existing procedures for the prior specification and the discretiza-
tion of prior and forward models on closed (i.e. compact and boundary-free) manifolds. We
start by describing the two inverse problems used as running examples. Throughout this
section, M will denote a d-dimensional smooth closed manifold isometrically embedded in
RP,

Elliptic inverse problem. Consider the elliptic PDE

Lu:= —div(kVu)=f, xeM, (2.6)
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where the divergence and gradient operators are defined with respect to the Riemannian metric
inherited by M from RP. The goal of the elliptic inverse problem is to recover the diffusion
coefficient « given the right-hand side f (assumed to be smooth) and noisy pointwise obser-
vation of the solution u at M spatial locations {X, }*_, C M. The data are therefore given by
{m I, = {u(En) + nn }Y_,. We cast this problem into the general framework (2.1) defin-
ing the forward map F : 6 — u, where 0 :=1log k € (—00, 00). Previous kernel-based methods
for elliptic inverse problems on manifolds [26] assumed M to be closed so that the ellip-
tic PDE given in (2.6) is not supplemented with a boundary condition. Bayesian elliptic
inverse problems on Euclidean domains are one of the standard model problems in uncertainty
quantification [18, 23, 44]. We will refer to the operator £ as the weighted Laplacian operator.
Heat inversion. Consider the heat equation

u = —Apu,  (x,1) € M x [0,00),
2.7)
u(x,0)=0(x), xe M,
where A= — div(V") is the Laplace—Beltrami operator on M, which reduces to the neg-

ative of the conventional Laplace operator in Euclidean space. The goal of the inverse heat
problem is to recover the initial heat 6 defined on M from noisy pointwise observation of
the heat at time 7* > 0 along M spatial locations {X,, }_, C M. The data are therefore given
by {yu}M_, = {u(Em, 1) + nn }M_, where u(-, ) is the solution of the heat equation (2.7) at
time #*. The corresponding forward map is a heat equation solver, namely F : 6 — u, where
u(x) =u(x,t*) and @ is the initial condition. The function space formulation of Bayesian
heat inversion was introduced in [21] on Euclidean domains, and graph-based formulations
on closed manifolds were studied in [25]. Other than its natural physical interpretation, this
inverse problem can also be viewed as a standard deconvolution problem arising in imaging

applications.

2.3.1. Prior specification and discretization. Here we describe the specification of Matérn
Gaussian field priors for the log-diffusion coefficient and the initial heat on closed manifolds.
We will also overview their graph-based discretization. Recall that the Matérn model on a
closed manifold M is defined [31] as the Gaussian measure

w=N(O,V), V=cl+ A", (2.8)

where Ay := — div(V+) is the Laplace—Beltrami operator on M and 7 > 0,s > % are two
free parameters. The choice of normalizing constant

1
2im (T

where (\)2, are the increasingly ordered eigenvalues of A4, ensures that 6 ~ p has unit

marginal variance. Samples can be represented using the Karhunen—Loéve (KL) expansion

Cc =

0(x) = VeY_ (T + M) 1Gix), x €M, 2.9)
i=1
where ((;);2, are ii.d. standard normal random variables and (¢;);2, are eigenfunctions of

. . . . 1 .
Ay with corresponding eigenvalues ();)72,. The parameter 72 represents the inverse length-
scale and allows to discern the significant terms in the KL expansion (2.9). The parameter s
characterizes the almost-sure regularity of the samples. The requirement s > % is motivated
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by Weyl’s law, see [12, theorem 72] and [15], which asserts that \; < i %, i.e., the asymptotic
behavior of ); is equivalent to that of l'%. Thus, s > % ensures that x4 is a well-defined Gaussian
measure in L>(M). Further increasing s allows to ensure higher-order sample path differen-
tiability and Sobolev regularity [41, 44], and thereby the well-posedness of elliptic and heat
inverse problems [26, 44]. The flexibility of the Matérn model can be enhanced by letting the
inverse length-scale be a spatially varying function rather than a scalar parameter [31, 39].

To define a prior distribution over discrete functions defined along the point cloud
{x,}N_, C M, the paper [26] proposed to replace the Laplace—Beltrami operator A yy in (2.8)
by a graph Laplacian Ay constructed using the point cloud {x,}*_,. To be more specific, the
discretized prior distribution is given by

pun =N, Vy), Vy=cy(l+ Ay,

where Ay € R¥V ig a graph Laplacian constructed using {x,}"_, and 7 > 0, s > % are two
free parameters. The role of the parameters 7 and s is analogous to the infinite-dimensional
case and these can be manually tuned, or learned from data using a hierarchical Bayesian
approach [26, 39]. In practice, among different choices of graph Laplacian [48], the use of
self-tuning graph Laplacian [51] was recommended in [26]. More specifically, in our numerical
experiments we use a symmetric graph Laplacian given by

Ay=1Iy—A3SA3. (2.10)

Here S is a similarity matrix and A is a diagonal matrix whose entries are respectively given by

|xi — x,-|2) -
Sij = exp (—7 s A=) S,
i 2did; ; i

where d; is the distance between x; and its kth closest neighbor. Same definition applies for d;.
Typically, the parameter & is tuned empirically. We refer to [48] for a review of graph Laplacians
and to [39] for generalizations of this graph-based prior model and its connection to the Matérn
family [43]. To obtain samples whose variance per node is one, the normalizing constant cy
can be set to be

N
ZLV:](T_F )\;N))—x’

where AM)V_ are the increasingly ordered eigenvalues of Ay. Samples y from this prior
can be represented via the KL expansion

CN =

N
On(x) = ey T+ A 2o, 1T<i<N, @.11)
n=1
where (Cn)gzl are i.i.d. standard normal random variables and (qzﬁﬁ,N ) )5:1 are eigenvectors of Ay
with corresponding eigenvalues (AY)Y_ .

2.3.2. Forward map discretization. Elliptic inverse problem. For the discretization of the
elliptic forward map, one can approximate the operator £ in equation (2.6) by an integral
operator [26], which can be subsequently approximated using a Monte Carlo sum. To be more
specific, let

L)
G, (u(x)) = e} /M 0 (%) u(y) V),
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where A(s) = 24 exp(—s) and V denotes the volume form inherited by M from the
ambient space RP. For a smooth u, it was shown in [14] that

G, (u(x)) = u(x) + e (wu(x) — Apu(x)) + O), xe M, (2.12)

where w is a function that depends only on the parametrization of the manifold M.
Recall that Ay ;= — div(V-) and from (2.6),

Lu:= —div(kVu) = kApu — Vu-Vk (2.13)
= V& (Amuvr) — ubu(Vr)) - (2.14)
Use (2.12) on v/ and u\/k to obtain,

UGNk = u\k + € (wu K — uAM\/E) + O,
G (u/k) = u\/rk + € (wu\/— — Apm (u\/E)) + O(%).
This yields

UGk — Geuy/w) = € (Apuv/k) — ub (k) + O() = %Eu +0(E).

Motivated from this equation, we define

Lou(x) = @ (101G, (V) = Guov/w))

which can be rewritten as the following integral operator

1 _ |2
Lat)= 7 /Mh ('x o | ) VECRD) @00 = ) V) (2.15)

satisfying
Leu(x) = Lu(x) + Oe), x € M.

The kernel operator £, can be approximated by Monte Carlo viewing the point cloud
{x,}Y_, as manifold samples. Using importance sampling with approximate density ¢,, we
have an approximation of £, given by

1 1 N |)Cl' — )Cj|2
EC,NM(.X,') = d+1 NZI’I T
j=1

€2

x /EC)EG) g ) (uGx) —u(xp) |, i=1,...,N,

(2.16)
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is a kernel estimator of the density of the point cloud. One can write the discretized weighted
Laplacian operator in (2.16) in a matrix form. Specifically, define a kernel matrix H with entries

ki

H;j:= exp ( T) and define a vector Q with entries Q; = Z]},:]Hij- Set the matrix W
with entries W; = /k(xj)r(x;) H; jQ;1 and the diagonal matrix D with diagonal entries D; =
21}’:1 W;;. Then the discretized weighted Laplacian L. y can be written as

Loy = é(D —w). 2.17)

For practical implementation, the bandwidth parameter e can be empirically chosen so that it
lies in the region where

oK x; — x,)[?
log (T(¢)) = log Z exp (—#) (2.18)

i,j=1

is approximately linear [26]. Here (x j(i))f:1 are the K closest points to the point x;. In practice,
it was further observed that the maximum slope of log (7'(¢)) often coincided with 4 where d
is the dimension of the underlying manifold M (see [2]).

Using the above discretization, one can obtain a discretized forward map, F.y, which
maps Oy = (log(k(x1)), . ..,log(k(xy))) to an N-dimensional vector uy, which represents an
approximate solution to (2.6) restricted to the point cloud. In other words, uy is the minimal
norm least-squares solution of

['e,NuN = f N>
where fy = (f(x1),..., f(xn)). Therefore, the discretized forward map is given by
./TF,N . 91\/ = Uy = E;]be,

where L;ﬁ, denotes the pseudo-inverse. This allows us to write the discretized posterior distri-
bution 1, as a change of measure with respect to the discretized prior distribution 1y in the
following way:

dp 1
ﬁ(@v) X exp (—Ely - QF,N(GN)I%) ,

where G n(Oy) = (un(X1), ..., un(Xy)). The Lebesgue density of the posterior is given by
7r',‘(,(6’N) o p(y— QF,N(GN)) mn(0y), where p and wy are Gaussian densities N(0,T") and
N(0,Vy) in RM and R¥, respectively. The graph pCN algorithm can then be used to obtain
samples Oy ~ ) that can be extended into the underlying manifold using a K-NN map.

Heat inversion. To discretize the heat forward map, we replace the Laplace—Beltrami
operator in (2.7) with the graph Laplacian Ay in (2.10) and solve

QMN = —Ayuy, t€[0,00),

ot
un(0) = Oy,
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where 0y € RV represents the initial heat function restricted to the point cloud. Then the
solution uy = uy(t*) at time #* can be expressed as

N

AW
uy = Z (On, ¢ )e oY,

n=1

where (A, g™M)N_ are the ordered eigenpairs of the graph Laplacian Ay. From this, we
naturally obtain a discretization of the forward map given by

N
)
Fn Oy = uy = Z (9N,¢;N)>e At (bglN).

n=1

We can then write the discretized posterior distribution p, as a change of measure with
respect to the prior distribution fuy

du 1
ﬁ(QN) X exp (*Eb’ - gN(QN)|%> ,

where Gy(Oy) = (un(X1), ..., un(Xy)). The Lebesgue density of the posterior is given by
m(On) < p(y — Gy(Oy)) mn(Oy), and sampling and interpolation can be performed with the
general methodology described previously.

3. Bayesian inverse problems on manifolds with boundaries

In this section, we propose a novel methodology for Bayesian inversion on manifolds with
boundaries, addressing the design of priors that can reflect the given boundary conditions,
the graph-based discretization of these priors, and the graph-based approximation of PDE-
constrained forward maps supplemented with boundary conditions. To be concrete, we will
focus on the following elliptic and heat inverse problems on one and two-dimensional mani-
folds with Dirichlet boundary conditions. Throughout this section and the rest of this paper,
M will denote a smooth compact d-dimensional manifold isometrically embedded in R” with
boundary dM. We denote M° = M\OM.

Elliptic inverse problem. Consider the following elliptic PDE with Dirichlet boundary
conditions,

Lu:= —div(kVu) = f, xe M°,
{ 3.1)

M(.x) = h(-x)’ X € aM,

where the divergence and gradient operators are defined with respect to the Riemannian met-
ric inherited by the manifold M from RP. In our numerical examples, we will consider a
one-dimensional semi-ellipse where OM = {xo, xy} and a two-dimensional semi-torus where
OM =By UB, and B;, i = 1,2 are circles. We will then denote by h; and %, the Dirichlet
boundary conditions at B; and B,. The goal of the elliptic inverse problem is to recover the dif-
fusion coefficient x given the right-hand side f and noisy pointwise observation of the solution
u at M spatial locations {%,,}¥_, C M. The data are given by {y,,}*_, = {u(Z,) + na }1_,
with the forward map F : 0 — u, where 6 :=log k € (—00, c0). We refer to [27] for sufficient
conditions on M, &, f and & to guarantee that the solution to (3.1) can be evaluated pointwise.

10
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Heat inversion. Consider the following heat equation with Dirichlet boundary conditions,

u,(x, 1) = —Apu(x, ), xeM%t>0,
u(x,t) = h(x), xeoM,t>0, 3.2)
u(x,0) = 0(x), x € M.

Again the goal of the inverse heat problem is to recover the initial heat ¢ defined on M from
noisy pointwise observation of the heat at time r* > 0 along M spatial locations {X, }_, C M.
The data are therefore given by {y, }_, = {u(%, t*) + 1 }¥_,. The corresponding forward
map is a heat equation solver, namely F : 6§ — u, where u(x) = u(x, ") denotes the solution
of (3.2) at time ¢* and @ is the initial condition. For our numerical examples we will use a
one-dimensional semi-ellipse and a two-dimensional semi-torus, and we will adopt the same

notations as in the elliptic inverse problem.

3.1. Ghost point diffusion maps for Dirichlet boundary conditions

In this section, we give a short discussion on the construction of ghost points and the GPDM
algorithm, which will be used in the discretizations of the prior and forward models. In this
paper, we focus on a specific GPDM algorithm to approximate the weighted Laplacian opera-
tor, L = —div(kV-) whose inputs are functions u : M — R that satisfy the Dirichlet boundary
condition, u(x) = h(x), for all x € 9 M. The discussion will focus on the algorithmic aspect
that will be used in the forward map discretization. For other types of (possibly non-symmetric)
second-order diffusion operators and boundary conditions, and the convergence analysis, we
refer to [27, 50].

The key idea of the GPDM algorithm comes from the classical ghost point method [30]
for solving PDEs with Neumann boundary condition using the finite-difference method. Par-
ticularly, the ghost points are constructed to improve the convergence rate in approximating
the normal derivative at the boundary points. In the context of the GPDM algorithm, the ghost
points are employed to overcome the biases induced by the graph Laplacian discretization near
the boundary. Numerically, solving PDEs with the ghost point method requires the following
two steps: (1) specification of ghost points; and (2) specification of function values at the ghost
points. While these two steps are trivial when the geometry is Euclidean or known, they require
nontrivial numerical algorithms and theoretical justification when the manifold is unknown in
the sense that it can only be identified with finitely sampled point cloud data.

The GPDM algorithm addresses step (1) above by augmenting the sampled point cloud
data on the manifold with a set of ghost points specified on the outer normal collar of the
boundary. Theoretically, the GPDM algorithm extends the embedded manifold M <4 RP with
its collar neighbor AM of a sufficiently large radius, such that the extended manifold M U

AM < RP s isometrically embedded and does not change the geometry of M, i.e., I|y = ¢
(see lemma 3.5 in [27]). With this modification, the graph Laplacian construction in (2.16) is a
consistent pointwise estimator of £ for all points in M, even for the points that are very close
to the boundary dM since they are sufficiently far away from the boundary of the extended
manifold, (M U AM), as illustrated in figure 1. Since our goal is to construct a forward
map on the manifold M, we need to specify the additional unknowns (the function values at
these ghost points as we noted in the step (2)) by adding more equations. Specifically, we will
impose a set of linear extrapolation equations, whose solution specifies the function values on
the ghost points through function values on the point cloud.

1"
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Figure 1. Construction of ghost points.

While there are various ways to realize the two steps above, in the following we will provide
a simple numerical procedure for well-ordered data that is used in the numerical examples in
this paper. For randomly sampled data or a higher convergence rate method, we refer interested
readers to [27]. We should also point out that the presentation below uses much simpler nota-
tions compared to those in [27, 50] since we are only interested in the algorithmic aspect of the
GPDM method. Given a point cloud {x,})_; C M, the GPDM estimator for £ is constructed
as follows:

(a) Specification of the ghost points. At each boundary point, x, € OM:

1. Apply the secant line to approximate the normal vector at each boundary point. Fol-
lowing the notation in the illustration in figure 1, the unit normal vector is estimated
via

_ Xp — Xbo
x5 — xp0ll’

2. We specify K ghost points along the normal vector at each boundary point, x; €
oMN {xn}ﬁ,:l’

Ub

xbvk::xb—i—&kvb, k=1,...,K,

where § = ||x, — x50]| and xp is the closest point to x in M N {x, }V_ .
(b) Specification of the function values at the ghost points. For each boundary point x;, we
impose the following extrapolation condition,

u(xp1) — 2u(xp) + u(xp0) = 0,
u(xp2) — 2u(xp1) + u(xp) = 0, (3.3)
u(xpg) — 2u(xpp_1) + uxppo) =0, k=3,....K.

These algebraic equations are discrete analogs of matching the first-order derivatives along
the estimated normal direction, v,,.

(c) Construction of the GPDM discrete estimator. Construct the graph Laplacian estimator as
in (2.16) for the extended points, {x, }_, U {x,4}5X_,. We point out that we also use a set

12
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of algebraic equations identical to (3.3) to determine the function value of x at the ghost
points {xb,k}fle. Let N = N 4 BK and obtain the corresponding weighted Laplacian
matrix, £y, whose construction is analogous to (2.17). The weighted Laplacian matrix
can be rewritten as

Lo Loy
LN::<“N N ) e RV, (3.4)
& 3) 4)

£eJV £€,1V

We will construct the GPDM matrix based on the sub-matrices £(1) € RV*N | whose
entries are constructed based on the affinity between pairs of the pomt cloud points in
{x.}Y_; € M, and L%} € RV*FK whose entries represent the affinity between an element

of {x,}_, and a ghost point in {xb,k}ff:l. Let ug = (u(xy,1), ..., u(xgx)) € RFK and uy =
(u(xy), ..., u(xpo), . .., u(xy)) € RN, Then we can write the solution of (3.3) in a compact form
as ug = GuN such that E(Q uy + £(2) (£(1) £(2) 7G)uy. Based on this observation, we

define the GPDM estlmator w1th0ut boundary condltlon as

Loy =L+ LEG e RV, (3.5)
Denoting
Z"(’N _ Zel(N—B)X(N—B) ZEN,(N—B)XB (3.6)
Le,BX(N—B) Ee,Bst

and splitting uy := (uy_p, up) into function values at the interior and boundary points, respec-
tively, the GPDM algorithm discretizes the Dirichlet problem in (3.1) as follows:

ACE,(NfB)X(NfB)uNfB + Ef,(Nfs)xBMB = fn-B.
3.7)
up = hB.

Here, the components of the vector fy_p € RY B are the function values at the interior points,
whereas the components of the vector iz € R? are the function values at the boundary points.

3.2. Prior specification and discretization

In this section, we propose novel prior constructions to facilitate elliptic and heat Bayesian
inversion on manifolds with boundaries. The priors we propose contain two terms. The first
one is a Matérn-type Gaussian field with Dirichlet homogeneous boundary conditions, whose
primary role is to capture the uncertainty on the parameter of interest in the interior of the
manifold. The second term accounts for prior uncertainty along the boundary of the manifold,
and can be omitted if the boundary values of the parameter are known.

For a one-dimensional manifold M with boundary M = {x;, xy}, i.e. a semi-ellipse in
our numerical experiments, we propose using a prior defined as the law of

1
0= WZ(T+/\) 2@(151 + w1y + p2iba . (3.8)

Interior term

Boundary term

13
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In the interior term, 7,s, and (¢;);2; play the same role as in (2.9), but now (\;, ¢;)2, are
the ordered eigenpairs of the Laplace—Beltrami operator A, equipped with homogeneous
Dirichlet boundary conditions, so that ¢;(x;) = ¢;(xy) = 0 for all i. Nonhomogeneous Dirich-
let boundary conditions could also be considered. In the boundary term, gy, po ~ N(0, 1) are
independent of all other randomness and ), ¢, are harmonic functions defined by

Apipy =0, Apmipr =0,
Pi(x) =1, and Pr(x1) =0, (3.9)
Pi(xy) = 0, Pa(xy) = 1.

Thus the random coefficients y; and 1, in (3.8) respectively represent the uncertainty on the
parameter value of interest at the two boundary points x; and xy. Overall, the prior defined
by (3.8) combines the flexibility of the Matérn model with homogeneous Dirichlet boundary
conditions for interior reconstruction with additional flexibility in the boundary reconstruction.
A simulation study that illustrates the increased flexibility afforded by the boundary term and
our prior construction is given in section 4.

Following the same idea, for a two-dimensional manifold M with boundary OM = B, U
B,, where B; and B, are disjoint regular closed curves, e.g. in our numerical examples 53, and
B, are boundary circles of a semi-torus, we define a prior as the law of

1 0 i L L
0= —=———— + )7 2Goi + ) + P 3.10
m; T+ M) 2Ghi + Y et + Y paetba (3.10)

(=1 =1

Interior term Boundary term

The interior term is defined analogously as in the one-dimensional case, using the spectrum
of the Laplace—Beltrami operator with homogeneous Dirichlet boundary conditions. For the
boundary term, pi1.¢, p12,c ~ N(0, 1) are independent of all other randomness, and {t1 ¢}%_, and
{424 }E_, are harmonic functions on M defined by

Apmipre =0,

Yro(x) = Yre(x), x € By, and
Pre(x) =0, x € By,

Aptpre =0,

Pre(x) =0, x€ By, fort{=1,...,L, (3.11)

Pap(x) = hay(x), x € B,

where 1/31,4()() and J)z,g(x) are ordered eigenfunctions of the Laplace—Beltrami operator defined
on the closed curves B, and B,, respectively. The number L of basis-type functions for each
boundary controls the flexibility of the prior along the boundary. Larger L allows to recover
more frequencies of the parameter of interest along the boundary, but at the expense of
introducing additional model parameters.

To discretize the prior defined in (3.8), we simply replace the role of the Laplace—Beltrami
operator A 4 with a graph Laplacian as we did in subsection 2.3.1, but now taking care of

14
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boundary conditions. Specifically, for one-dimensional inverse problems, our discretized prior
distribution would have samples of the form

VN Z
Oy ~
\/Efl\;l(T + A;N))fs n=1

T+ 27366 N + g™ + ™, (3.12)

where (A, ™) are ordered eigenpairs of Ay defined as the N x N submatrix correspond-
ing to the point cloud portion of the graph Laplacian (2.10) constructed using both the point
cloud {x,}"_, and ghost points {xh,k}fle. From now on, we will refer to Ay as a truncated

graph Laplacian. More specifically, given the point cloud and ghost points, we define Ay as
an N x N submatrix of the N x N matrix Ay with N := N + BK. Indices of the submatrix Ay
correspond to that of the elements in the point cloud. We have observed such a construction
provided an effective approximation to the Laplace—Beltrami operator on M with homoge-
neous Dirichlet boundary conditions in our numerical experiments. This construction avoids
any potential idiosyncratic boundary behavior of eigenvectors when using a graph Laplacian
constructed solely with point cloud data. Indeed, in our numerical experiments (see figure 6
and the associated discussion in section 4 below) we note that the eigenvectors of the self-tuned
graph Laplacian (2.10) have spikes and oscillations near the boundary. Finally, 1/1§N ) and dJ;N )
are the solutions of (3.9) evaluated along the point cloud. These solutions can be obtained by
the GPDM algorithm as described in section 3.1.

An alternative attempt to discretize the homogeneous Dirichlet boundary condition was
introduced in [46] where they employed truncation on the original point clouds without adding
ghost points. In fact, the spectral convergence of the truncated graph Laplacian to the Dirichlet
Laplacian on manifold with boundaries has recently been reported [35]. We should also point
out that there were two discretizations of the Laplace—Beltrami operator introduced in this
paper: (1) self-tuned normalized symmetric graph Laplacian given in (2.10) and (2) GPDM
matrix given in (3.5). The eigenvectors of the former are orthogonal as the matrix is symmetric,
whereas the eigensolutions of the latter are not the case since the GPDM matrix in (3.5) is not
symmetric. With this fact, we clarify that we only use GPDM to solve linear problems (3.9)
and do not use the eigenvectors of the corresponding GPDM matrix elsewhere.

For the two-dimensional graph-based prior discretization, we obtain a finite number of
discretized functions for each boundary, denoted by {¢il,\;)}]/2:1 and {1/)%)}%:1, by solving

(3.11) along the point cloud. One can again use the GPDM algorithm to obtain {w{\? L,

and {wg\? L_| where the boundary basis functions {¢;¢}%_, and {t,,}%_, are discretized
using a self-tuned graph Laplacian constructed with all the point cloud elements that lie on
the boundaries, which are two disjoint closed curves in our numerical examples. For instance,
to obtain {1[11,4}[%:1 one can construct the self-tuned graph Laplacian solely using points in
By 0 {x,}Y_,, where {x,}"_, € M is the point cloud of the manifold. Then {1, ,}%_, can be
chosen to be the first L eigenvectors of this self-tuned graph Laplacian. To summarize, in the
two-dimensional case, samples from the proposed graph-based prior are defined by

N
N ST+ AN E

Oy ~
\/ ZnN:l(T + AMy -5 5

L L
D Y+ sy, (3.13)
(=1 /=1

where A\™, M)V _ | are ordered eigenpairs of a truncated graph Laplacian.

n
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3.3. Forward map discretization

Using the tools introduced in previous sections, here we propose graph-based discretizations
of forward maps for elliptic and heat inverse problems on one and two-dimensional manifolds
with boundary.

Elliptic inverse problem. For the inversion problem involving the elliptic PDE in (3.1), our
goal is to learn the diffusion coefficient x on M. Correspondingly, analogous to the boundary-
free setting, a forward map was given by F : 6 — u, where § = log x € (—o0, 00) and u solves
(3.1). In this case, we can use the GPDM algorithm introduced in section 3.1 to obtain the
discretization of the forward map. Precisely, the discretized forward map is given by

]:f,N 1Oy — uy = (uy—p, up) = (z;(llx/,B)x(N,B)(fN—B - Ze,(N—B)thB), hB) s

where Oy = (log(k(x1)), . .., log(k(xy))) and Z;(‘N,B)X(N,B) denotes the pseudo-inverse. From
this discretization process, we arrive at the relationship between the discretized posterior
distribution /sy, and the discretized prior distribution sy, which is given by

du 1
ﬁ(gN) X exp (—Eb’ - gf,N(gN)ﬁ‘) )

where G, y(On) = (un(X1), . . ., un(Xp)). For the sampling and interpolation steps, we follow
the general methodology in section 2.2.

Heat inversion. Consider first the one-dimensional heat equation with Dirichlet bound-
ary conditions given by (3.2) with 9M = {x;, xy}. Analogous to the prior construction, we
introduce two time-independent functions ¢, and v, defined on M satisfying

Amr =0, Apipn =0,
Pi(x) =1, and Pa(x1) =0,
1 (xy) = 0, a(xy) = 1.

Then we can obtain the solution of (3.2) by solving for w that satisfies,
wi(x, 1) = —Apw(x, 1), xe M%t>0,
w(xy, 1) =0, wlxy, ) =0, t >0, (3.14)
w(x,0) = 0(x) — h(x)Y1(x) — h(xy)ya(x), x € M.
To see this, notice that the function
u'(x, 1) = w(x, 1) + h(x)Y1(x) + h(xy)(x) (3.15)
is the solution of (3.2).

For the two-dimensional heat equation, let 151/; and 1[12,4 be ordered eigenfunctions of the
Laplace—Beltrami operator defined on B; and B, respectively. We can then write

h(x) = amhi(x), x€B, and  h(x) =Y buh(x), x€ B,
=1 (=1
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for some real coefficients {a;}7° , and {b/}7° . The solution to (3.2) is then given by

W 1) = w0+ Y ah () + Y bita (%), (3.16)

(=1 (=1

where w is the solution of

wi(x, 1) = —Apw(x, 1), XeEM°, >0,
w(x, 1) =0, xeB, t>0,
w(x, 1) =0, xe€By, t>0, (3.17)

w(x,0) = 0(x) = > anpno(x) = bitboy(x), x € M.

(=1 (=1

Here, ¢, , is the harmonic function with boundary condition 1/;1/ in By and 0 in 3,, while
1), ¢ is the harmonic function with boundary condition 0 in 3, and 1/32,/ in B,. We have hence
expressed the solution of the heat equation with non-homogeneous boundary conditions as a
linear superposition of basis-like functions and the solution of homogeneous heat equation.
Such a decomposition will play a key role in the discretization procedures.

Now suppose that in the one-dimensional case we are given an N-dimensional discrete
representation €y of the initial heat distribution of the form

Ov = + 1\ + 1y, where
VN N
Vo (A

which reflects our prior construction given in the previous section. To discretize the forward
map of the one-dimensional heat equation, we replace the Laplace—Beltrami operator Ay by

vy = T+ X2 Ga,

Ay and solve for w™) = (wy, ..., wy) satisfying
O = _Ayu™.
ot (3.18)

w™(0) = V.

This equation can be viewed as a discrete analog of (3.14) as the eigenvectors of Ay approxi-
mate those of the Laplace—Beltrami operator with homogeneous Dirichlet boundary condition.
Given an initial condition ng) =0y — plng) — ,uzwgv), the solution of the above initial value
problem can be expressed as a linear combination of the eigenvectors of Ay. In other words,
the solution at time ¢ is given by

N
N W)
w(@) =Y (G, ) MgV,

n=1

From this, and the previous observations we made in (3.15), we naturally obtain the discrete
approximation for the solution of (3.2) given by

N N N
uy = w™ + ™ + oy,
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which defines the discretized forward map Fy : Oy +— uy.

Using the same argument, we can discretize the forward map for the two-dimensional heat
equation. Suppose we are given an N-dimensional discrete representation of the initial heat
function for two-dimensional heat inverse problem, denoted by 6y, of the form

L L
O = 5"+ )+ oty where
(=1 (=1
N
W _ VN
™ =
VEL G+ AT

Similarly as in the one-dimensional case, with the observation (3.16), the discrete approxima-
tion for the solution of (3.2) in the two-dimensional case is given by

T+ M) 2. (3.19)

L L

N N N

uy = w™ +> "l + > sy,
/=1 (=1

where w™) denotes the solution of (3.18). Accordingly, the discretized forward map is given by
Fu : Oy — uy. Inboth the one and two-dimensional cases the discretized posterior distribution
iy and the discretized prior distribution 1y satisfy the relationship

du 1
ﬁ(eN) X exp (*Eb’ - gN(eN)|12“> ,

where Gy(0y) = (un(X1), . .., un(Xp)). For the sampling and interpolation steps, we again
follow the general methodology described in section 2.2.

4. Numerical results

In this section, we provide simulation results for the numerical solution of Bayesian inverse
problems on manifolds with boundaries. We showcase our methodology for the elliptic inverse
problemin section 4.1 and for the heat inverse problem in section 4.2. For each inverse problem,
we consider one-dimensional and two-dimensional examples. In addition to validating our
approach and providing implementation details, our numerical results will demonstrate the
enhanced flexibility of our proposed priors near the boundary when compared with previ-
ous graph representations of Matérn priors. Specifically, we show the improved reconstruction
achieved by our prior in a one-dimensional elliptic inverse problem, and we illustrate in a two-
dimensional setting the emergence of artifacts near the boundary for the eigenfunctions of the
graph Laplacian (2.10) used to define graph Matérn priors on closed manifolds in [26].

Our one-dimensional examples are set on a semi-ellipse and the two-dimensional examples
are set on a semi-torus. For the semi-ellipse the embedding was given by

wa) = ( cos @ ) . aclo,nl, (4.1)

3 sin «
with Riemannian metric

g = sin*(a) + 9 cos*(a). 4.2)
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The embedding for the semi-torus was given by

(2 + cos a)cos 3
a,Bf)=| Q+cosa)sin |, «ael0,2n], 5€]l0,r], (4.3)
sin o

where («, 3) are the intrinsic coordinates and the corresponding Riemannian metric is given
by

1 0
&= (0 (2 + cos a)2> : @.4)

We use uniform grids to define point clouds over the given manifolds. For the one-
dimensional semi-ellipse we used N = 630 points and for the two-dimensional semi-torus
N = N; x N, = 1296 points in a 36 by 36 grid. The boundary of the semi-ellipse corresponds
to o = 0 or « = 7, which necessitates to model boundary values of the parameter on o = 0, 7.
For the semi-torus the boundary corresponds to 5 = 0 or § = 7, which implies the need to
model boundary values of the parameter along two boundary curves. In all of our numerical
experiments we choose N = M, that is, we assume to have observations along the entire point
cloud.

4.1. Elliptic inverse problem

For the one-dimensional elliptic inverse problem, we set the true PDE solution u' to be
u'(a) = sin(a),

and for the two-dimensional elliptic inverse problem, the true PDE solution was given by
ul(a, B) = 10 sin(2a) cos(B).

While the one-dimensional solution satisfies homogeneous Dirichlet boundary condition at
a = 0, 7, the two-dimensional solution has non-trivial Dirichlet boundary condition at 8 = 0
and 7. According to the above true solution, the observations were given by

Vo = ul () + 7, a,=1"x,), n=1,...,N,
where 7, N (0,0.01). We consider several choices of true input parameter «, and for each
choice we define the right-hand side of the PDE using the identity

. 1 i
f = —div(kVu) = f\/T_tg& (/-eg Ja_fu\/detg) .

Note that here and henceforth we abuse notation by referring to uf o ¢+ as u'.

4.1.1. One-dimensional manifold. For the one-dimensional elliptic inverse problem, we first
augmented the given manifold point cloud data, adding 10 ghost points at each boundary point.
To model the interior term from the proposed prior, we constructed a self-tuned graph Lapla-
cian using both the manifold point cloud and ghost points. After obtaining the graph Laplacian,
we truncated it to obtain a submatrix whose indices correspond to the manifold point cloud ele-
ments. Recall that this matrix was referred to as a truncated graph Laplacian in section 3.2. We
used two nearest neighbors to construct the self-tuned graph Laplacian. For the two bound-
ary terms, we used the GPDM algorithm to obtain two harmonic functions whose boundary
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a(a—m)
5

(a) Recovery of k1(a) =2 + cos(3a) (b) Recovery of ra(a) = 1+ cos?(a) (c) Recovery of k3 = 1+

(d) Recovered uy of k1

1 /\

Figure 2. One-dimensional elliptic inverse problem on a semi-ellipse: top row: recon-
struction of x. Bottom row: solution of an elliptic PDE corresponding to the x given
right above.

values were either one or zero. These harmonic functions will allow us to model boundary
values, i.e. values at &« = 0, 7, of the diffusion coefficient. When constructing the weighted
Laplacian matrix, we used 51 closest points in (2.18) and chose the value of ¢ which attained
the maximum slope of log (7'(¢)) ~ %

We set the smoothness prior parameter to be s = 4, and the inverse length-scale parameter
to be 7 = 0.2, where the choice of these values is based on empirical experiments. Hierarchical
Bayesian formulations to learn these parameters could be considered [39]. In practice, instead
of using all eigenvectors of the truncated graph Laplacian, one can use a sufficiently large
subset of eigenvectors. In our simulation study, we used 20 eigenvectors of the truncated graph
Laplacian to represent the interior term. Furthermore, to attain an acceptance rate between 40
and 60 percent, we used ¢ = 0.01 for the graph pCN algorithm. We computed a total of 10 000
MCMC iterations with an initial 5000 burn-in period. The results are shown in figure 2, where
three different choices of diffusion coefficients are considered.

Observe from figure 2 that the three true diffusion coefficients considered lie, for the most
part, inside of the 95 percent credible intervals. Moreover, the PDE solutions obtained using
the recovered coefficients were all very close to the PDE solution with the true coefficients. To
showcase the flexibility of our prior compared to the one proposed in [26], additional numer-
ical experiments were conducted. While using the same forward map approximation given
by the GPDM algorithm, we employed priors proposed in [26] where the graph Laplacian is
constructed solely from the point cloud on the manifold. We first present the recovery results
for k1 () = 2 4 cos(3a) and ka(ar) = 1 4 cos?(a) with the same semi-ellipse manifold as in
figure 2. All the parameter values for priors and pCN algorithms were set to be identical as
before. The results are shown in figure 3.
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(a) Recovery of x1(a) = 2 + cos(3a) (b) Recovery of k2(a) = 1 + cos?(a)
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Figure 4. Comparison of the performance of two priors in the reconstruction of x(a) =
2 + cos(3) with o € [0, 5 ]. Left: using the prior proposed in [26]. Middle: zoom-in of
the left figure near the boundary. Right: using our proposed prior.

Figures 3(a) and (b) show that the recovered diffusion coefficients using the priors in [26]
have artificial spikes near the boundary. The prior in [26] is only effective when the under-
lying manifold is closed, in which case the graph Laplacian used in [26] approximates the
Laplace—Beltrami operator on the underlying manifold. However, when the underlying mani-
fold has a boundary, the prior in [26] leads to the formation of spikes near the boundaries and
it does not allow for flexible modeling of boundary conditions. To illustrate this point further,
we performed the Bayesian inversion procedure for the one-dimensional elliptic equation on
an ellipse restricted to the first quadrant (i.e. a € [0, Z]) instead of the semi-ellipse. The true
diffusion coefficient was set to be x = 2 + cos(3«). All the parameter values were again the
same as before. Figure 4 demonstrates the flexibility of our proposed prior, while the recon-
struction using the prior in [26] exhibits artifacts near the boundary and appears to incorrectly
suggest a homogeneous Neumann boundary condition for x. In the next subsection we provide
further understanding of these phenomena by illustrating the different terms involved in the
definition of our prior and the one in [26] in a two-dimensional setting.

4.1.2. Two-dimensional manifold. Similarly, as in the one-dimensional elliptic PDE, we aug-
mented the given point cloud with 216 ghost points for each boundary. To define the boundary
part of our prior, for each boundary (which is a circle in this example) we construct a self-tuned
graph Laplacian using only the observations on the boundary with two-nearest neighbors. Then
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(a) True diffusion coefficient (b) True PDE solution u

(c) Posterior mean for x (d) 2.5% post. percentile for x

(f) uy with x in Figure 5¢ (9) un with k in Figure 5d (h) uy with < in Figure 5e

(i) Error in PDE solution
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Figure 5. Elliptic inverse problem on a semi-torus for x(c, ) = 10 + 8 sin(c)cos(3).

we obtain the 10 eigenvectors corresponding to the smallest 10 eigenvalues for each bound-
ary. These eigenvectors will serve the role of discretized basis functions for each boundary.
Solving 20 different Laplace-type equations in (3.11) using the GPDM algorithm, one can

obtain 10 basis-like functions for each boundary, which would correspond to {zp%)}}il and
{1/15{\? ég] in (3.13). These basis-like functions allow flexible model of functions in the vicin-
ity of each boundary curve. In particular, in our example the true diffusion coefficient was set
to k(a, ) = 10 + 8 sin(a)cos(B). Therefore, the values we would like to capture along each

boundary would be x(c, 0) = 10 + 8 sin(«) and k(a, m) = 10 — 8 sin(ar). When constructing
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(a) First eigenfunction (b) First boundary component (c) First interior component
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Figure 6. Representation of terms used to define prior draws on a semi-torus. Left col-
umn: first two eigenfunctions of the covariance matrix for the prior proposed by [26].
Middle column: first two (excluding the constant one) boundary components in our
proposed prior. Right column: first two interior terms in our proposed prior.

the weighted Laplacian matrix, we used 128 closest points in (2.18) and chose the value of €
which attained the maximum slope of log (7'(¢)) ~ 1.

For the interior part of the proposed prior, analogously to the one-dimensional case, we
truncated a self-tuned graph Laplacian constructed using the augmented dataset and obtained
a submatrix whose indices correspond to the elements in the point cloud. Taking eigenvalues
and eigenvectors of this truncated graph Laplacian would give (A, ™) in (3.13). We used
four-nearest neighbors to construct the self-tuned graph Laplacian. We set the smoothness prior
parameter to be s = 4, and the inverse length-scale parameter to be 7 = 0.24, where the choice
of these values is based on empirical experiments. To attain an acceptance rate between 40
and 60 percent, we used ¢ = 0.001 for the graph pCN algorithm. A total of 150000 MCMC
iterations with initial 75 000 burn-in iterations were run to obtain our results.

Starting from the top row of figure 5, the panels in the first row represent the true diffusion
coefficient and the solution of the elliptic PDE based on the true diffusion coefficient. The
second row represents, from left to right, the posterior mean of the MCMC samples, 2.5 per-
centile of MCMC samples and 97.5 percentile of MCMC samples. In other words, the second
row portrays the credible interval for the true diffusion coefficient function. The third row cor-
responds to the solution of the elliptic PDE equation based on the diffusion coefficients given
in the second row. The last two plots in the fourth row depict the difference between the true
diffusion coefficient and the posterior mean of the MCMC samples, and the difference between
the true solution with the one based on the posterior mean of the MCMC samples.

For the two-dimensional elliptic inverse problem, there is a larger error in the recovery
of the true diffusion coefficient. This is unsurprising, since as one can see from the solutions
corresponding to the MCMC samples of the diffusion coefficients, one can find several different
diffusion coefficients that lead to approximate solutions that are close to the solution of the
elliptic PDE, which is a manifestation of the ill-posedness of this elliptic inverse problem.

23



Inverse Problems 38 (2022) 035006 J Harlim et al

To illustrate the strength of the proposed prior relative to [26], figure 6 includes surface plots
of (i) the first two eigenfunctions of graph Laplacian used to define the prior in [26]; (ii) the
first two eigenfunctions, i.e., ¢, ¢% of the truncated graph Laplacian used to define the interior
term of our prior; and (iii) the boundary terms wff 2 Wff 5 in (3.13). As one can see in the leftmost
column in figure 6 the graph Laplacian used in the prior construction in [26] is not appropriate
for manifolds with boundary. In particular, the spikes in the first eigenfunction can be explained
by the use of a symmetric graph Laplacian and the fact that the degree of nodes close to the
boundary is significantly different than the degree of nodes in the interior. However, the samples
we propose do not possess such undesirable behavior as the boundary values are solely modeled
by boundary components which are in the middle column of figure 6. The interior term is
modeled by superposition of eigenfunctions of the homogeneous Dirichlet eigenvalue problem
(rightmost column in figure 6) approximated using a truncated graph Laplacian.

4.2. Heat inverse problem

For the one-dimensional numerical simulations of heat inversion, given an initial heat function
1y, observations were obtained by

Yn = ﬁ(anst*) + s Q= Lil(xn)’ n= l, .. "Ns

where 17, ESY (0,0.01) and z represents an approximate solution of the heat equation given
in (3.2). We assume that the boundary is given by {x, xy}. For the one-dimensional semi-
ellipse, we used the following explicit formula to compute the approximate solution over the
point cloud at time #* > 0, denoted by uy = (u(av, 1), ..., u(ay, t)),

N
=32 (e W o + ot

where (AN, gM)V_ | are eigenpairs of the truncated graph Laplacian constructed using point
cloud {x,}"_, with two boundary points {x,xy}. The definitions of w(N ), ;N ) and '1/)§N ) are
given in section 3.2. Recall that wEN) , §N> are responsible for modeling values of the parameter
at {x;, xy } while 1/J§N) determines the interior values of the parameter.

Similarly, for the two-dimensional semi-torus, given an initial heat function u, observations
were obtained by

Yn = ﬁ((anl’ ﬁnz)’ t*) + s (anl’ an) = L_l(xn), n=1,...,N
where 7, Sy N(0,0.01) and & represents the approximate solution for (3.2). For the two-
dimensional setting, the approximate solution

ﬁN = (ﬁ(ahﬁ]’t*)’ cees ﬁ(ale/BNZ’t*))

over the point cloud at time * > 0, with N = N| X N,, is given by

N

L
V) -
Z (@M e M g™ N "y Y +meu,

n=1 /=1

where the leftmost term in the right-hand side is defined similarly as in the one-
dimensional manifold setting. Likewise, the remaining finite summation terms involving
{oMN_ | {9} e, and {44} }E, are responsible for modeling parameter values along each
boundary curve. For the implementation, the true coefficients {fi,}5 , and {fij }- | were
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(a) uo = 10sin(a) + 2 (b) Recovery of ug = 10sin(a) + 2 (c) Solution u(t) at t = 10

(d) uo = 10sin(2a) + 2 (e) Recovery of ug = 10sin(2a) + 2

(9) uo = 10cos(a) + 2

Figure 7. Heat inverse problem on a semi-ellipse.

. . N N N
obtained by regressing ul)"’ = (uo(x1),. . ., up(xy)) on {pMIN_ {wﬁy}}}zl and {wé,l)}lel- In
our numerical experiments, we constructed 10 basis-like functions for each boundary of the
two-dimensional semi-torus, i.e., L = 10, and used 20 eigenvectors of the truncated graph

Laplacian.

4.2.1. One-dimensional manifold. The prior construction was exactly the same as in the one-
dimensional elliptic problem. And hence, the boundary values were only defined on two points
i.e. values at & = 0, 7. We set the smoothness prior parameter to be s = 6, and the inverse
length-scale parameter to be 7 = 0.3, where the choice of these values is based on empiri-
cal experiments. Furthermore, to attain an MCMC acceptance rate of roughly 50 percent, we
used ¢ = 0.005 for the graph pCN algorithm. A total of 20 000 MCMC iterations with initial
10000 burn-in iterations were run to obtain our results. For the heat equation, the degree of
ill-posedness of the inverse problem is closely related to the time ¢* > 0 at which we observe
the data. The smaller the time r* > 0 is, the easier the inversion.

We considered three different choices of initial heat functions. Starting from the left-most
column of figure 7, plots in each column respectively represent initial heat function with
observed data, true initial function with the posterior mean/2.5th and 97.5th percentile of
MCMC samples, and the true solution with the solutions corresponding to the posterior mean,
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(a) True initial heat ug (b) PDE solution u(t*) based on ug (c) Observed data y

(d) Posterior mean for ug (e) 2.5% post. percentile for ug (f) 97.5% post. percentile for ug

(i) un (t*) with uo in Figure 8f

(j) Error in initial condition (k) Error in PDE solution

Figure 8. Heat inverse problem on a semi-torus: uy(c, 5) = 10 sin(c)cos(23) with 7 =
0.3, =5.

2.5th and 97.5 percentile of MCMC samples. Specifically, the leftmost column in figure 7 rep-
resents the initial heat function uy with its corresponding noise-free observation # and noisy
observation y. The middle column represents the true initial function uf) with the posterior
mean estimate o, 2.5th percentile #J°%, and 97.5th percentile 457> of MCMC samples. The
rightmost column portrays the approximate solution based on the true initial heat function at
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(a) True initial heat ug (b) PDE solution u(t*) based on ug (c) Observed data y

(d) Posterior mean for uo (e) 2.5% post. percentile for ug (f) 97.5% post. percentile for uo

(9) un (t*) with uo in Figure 9d (h) un (t*) with uo in Figure 9e (i) un (t*) with wo in Figure 9f

(k) Error in PDE solution

0.z s
0.15 (s £ 0.06
- (>
0.1 N X y 0.04
0.08 : /
0.02
= ° &
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0.1 oy
] 002
018 o5
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Figure 9. Heat inverse problem on a semi-torus: uy(c, 3) = 2 4 sin(«)cos(5) with 7 =
0.012, r* = 5.

time ¢, denoted by ul with approximate solutions based on the posterior mean estimate, 2.5th

percentile and 97.5th percentile, respectively denoted by i, u%%* and u%°7>.

Figure 7 shows that all of the true initial heat functions were captured inside of the 95 percent
credible intervals for all three cases. Moreover, the corresponding solutions were very close to
the true solution.
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4.2.2. Two-dimensional manifold. The practical implementation of the two-dimensional prior
was analogous to that of the two-dimensional elliptic inverse problem. We set the smoothness
prior parameter to be s = 4, and the inverse length-scale parameter to be 7 = 0.3 or 0.012,
where the choice of these values is based on empirical experiments. Furthermore, to attain an
MCMC acceptance rate of roughly 50 percent, we used ¢ = 0.006 for the graph pCN algorithm.
A total of 100 000 number of MCMC iterations with initial 50 000 burn-in iterations were run
to obtain these results. We considered two initial heat functions: ug(c, 8) = 10 sin(a))cos(23)
in figure 8 and ug(c, B) = 2 + sin(a)cos(f) in figure 9. For up(a, B) = 10sin(a)cos(2/3), the
initial heat function values along each boundary curve we would like to recover is 10 sin(cv).
Similarly for ug(c, ) = 2 + sin(«)cos(/3), our goal is to recover an initial heat function with
values 2 + sin(«) or 2 — sin(«) corresponding to each boundary.

Starting from the top row of figures 8 and 9, the panels in the first row represent, from left
to right, the true initial heat function, approximate solution of the heat equation based on the
true heat initial function, noise-incorporated approximate solution, i.e. observation data. The
second row represents from left to right, posterior mean of the MCMC samples, 2.5 percentile
of MCMC samples, and 97.5 percentile of MCMC samples. In other words, the second row
portrays the credible interval for the true initial heat function. The third row corresponds to
the approximate solution of the heat equation based on the initial heat functions given in the
second row. Finally, the last two plots in the fourth row depict the difference between the true
initial function and the posterior mean of the MCMC samples, and the difference between the
approximate solution based on the true initial function with the one based on the posterior mean
of the MCMC samples. Figures 8 and 9 show that our proposed methodology led to reasonably
successful recovery of the parameter of interest.

5. Conclusions and open directions

In this paper, we developed graph-based Matérn priors for solving Bayesian inverse problems
on manifolds with boundaries. Our idea is to extend the Matérn priors introduced in [26],
developed for elliptic PDEs on closed manifolds, by representing the boundary conditions
via a set of functions obtained from solving Laplace equations on manifolds with appropriate
Dirichlet boundary conditions. To solve PDEs on manifolds with boundaries, we employed
the recently developed GPDM algorithm [27], which uses fictitious ghost points to remove the
bias induced by integrating radial type kernels near the boundaries.

We validated this approach on two test problems. The first problem is an inversion of the
diffusion coefficient of an elliptic PDE from the solution of the PDE corrupted by noise. The
second problem is an inversion of the initial condition of a heat equation from noisy observation
of the solution at a positive time. Based on our numerical simulations, we found positive results
given the ill-posedness of the inverse problems we considered.

While the proposed method produces encouraging results, there are many open questions.
First, we should point out that while the computational cost is independent of the ambient
dimension, it scales exponentially as a function of intrinsic dimension (see [27] for detailed
convergence rates for the forward maps). Since Bayesian inversion often requires to evaluate
the forward map numerous times, it is of interest to improve on our graph-based approxima-
tions of the forward map by using computationally cheaper surrogate forward models and/or
faster numerical solvers. Second, the method represents the hidden variables by a vector whose
components are the function values of the variable of interest (e.g., diffusion coefficients) on
the given point clouds. How to extend this to other points on the domain is of practical interest.
Beyond these practical considerations, it is also of interest to understand the theoretical aspect
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of such an approach, especially the effects of boundaries, extending the theoretical convergence
result for closed manifolds in [26].
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