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Novel family of topological semimetals with butterflylike nodal lines
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In recent years, the exotic properties of topological semimetals (TSMs) have attracted great attention and
significant efforts have been made in seeking new topological phases and material realization. In this work,
we propose a family of TSMs which harbors an unprecedented nodal line (NL) landscape consisting of a
pair of concentric intersecting coplanar ellipses (CICEs) at half-filling. Meanwhile, the CICE at half-filling
guarantees the presence of a second pair of CICEs beyond half-filling. Both CICEs are linked at fourfold
degenerate points at zone boundaries. In addition, we identify the generic criteria for the existence of the CICE
in a time-reversal-invariant spinless fermion system or a spinful system with negligible spin-orbital coupling.
Consequently, 9 out of 230 space groups (SGs) are feasible for hosting CICEs whose location centers in the first
Brillouin zone (BZ) are identified. We provide a simple model with SG Pbam (No. 55) which exhibits CICEs,
and the exotic intertwined drumhead surface states, induced by double band inversions. Finally, we propose a
series of material candidates that host butterflylike CICE NLs, such as ZrX2 (X = P, As), Tl2GeTe5, CYB2, and
Al2Y3.
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I. INTRODUCTION

Topological semimetals (TSMs) [1–4] have emerged
among the most active frontiers in condensed matter physics
in recent years, drawing widespread attention from both the
theoretical and the experimental communities. In the noninter-
acting limit, TSMs describe systems which are characterized
by the topologically robust band-crossings manifolds be-
tween conduction and valence bands in momentum k space.
These mainfolds can be zero-dimensional (0D) nodal points,
e.g., three-dimensional (3D) Weyl semimetals (WSMs) [4–6]
and Dirac semimetals (DSMs) [4,7–11], and one-dimensional
(1D) nodal lines/loops, e.g., nodal-line semimetals (NLSMs)
[2,12]. Around these band crossings, electron excitations be-
have drastically differently from the conventional Schrödinger
fermions in normal metals. For example, the low-energy elec-
trons in 3D DSMs and WSMs resemble the relativistic Dirac
and Weyl fermions, making it possible to mimic high-energy
physics phenomena. Meanwhile, TSMs are distinguished
from normal semimetals by the accompanying topological
indices due to the aforementioned manifolds. Moreover, be-
cause of these unique electronic features, TSMs present exotic
properties in different ways, such as Fermi arcs [13] and
drumhead surface states (SSs) [14] on surfaces of WSMs and
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NLSMs, respectively, and novel transport phenomena e.g., the
negative magnetoresistance related to the chiral anomaly in
both Weyl and Dirac SMs [15–17].

Among TSMs, NLSMs possess the highest variability.
Nodal lines (NLs) can be integrated in various configura-
tions, e.g., a chain link [11,18–20], a Hopf link [19], and a
knot [21], where each of them carries its unique topology.
Since the essential characteristics, band crossings, of vari-
ous TSMs are mostly protected by crystalline symmetries, a
thorough classification of a particular type of TSMs in all
space groups can greatly accelerate the experimental discov-
ery. There exist well-established classifications for DSMs and
WSMs [22–24], and the triple point semimetals [25]. How-
ever, for most types of NLSMs proposed today, except the
chain link [18] and some types of intersecting rings [26], the
symmetry criteria of the emergence of particular nodal lines
remain deficient.

In this paper, we introduce a type of NLSM in time-
reversal-invariant spinless systems, which hosts a butterflylike
nodal line (NL) consisting of a pair of concentric intersecting
coplanar ellipses (CICEs) at half-filling residing on a plane in
k space, as indicated by the blue and red concentric ellipses
in Fig. 1(a). Meanwhile, the half-filling CICE consequently
guarantees the presence of another pair of CICEs formed
by band crossings beyond half-filling, which is indicated by
the magenta lines in Fig. 1(b). We demonstrate that CICEs
can be sustained by nonsymmorphic crystalline symmetries
including two glide symmetries, and only nine space groups
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FIG. 1. Schematic band structures showing the mechanism of
the formation of the CICE NLs, resulting from the DBI. (a) The
half-filling CICE can be decomposed into two ellipses in red and
blue, respectively, which are locked by symmetries. Each ellipse is
the band crossing due to a single band inversion and protected by
mirror (or glide) symmetry Mz (or Gz). (b) The second pair of CICE
NLs (labeled in magenta) emerge due to the crossings between the
bands denoted in red and blue corresponding to crossings between
two occupied (one-quarter filling) or two unoccupied (three-quarter
filling) bands. These cross the Fermi surface (FS) leading to the
intersection of four NLs at four points on the kx and ky axes. Band
structures along the paths (c) p1 and (d) the kx axis. The bands labeled
by solid and dashed lines carry different eigenvalues of Mz (or Gz),
and opposite parity at the center TRIM point of the CICE. Bands are
doubly degenerate along the kx axis (d) and similarly, along the ky
axis. I, II, and III denote the regions divided by the NLs.

(SGs) are feasible to host it. These SGs are classified into
two categories by their point group symmetries, which are
D2h and D4h. Moreover, we provide a tight-binding model for
one of the SGs, Pbam (No. 55), which exhibits CICEs and
hosts exotic intertwined drumhead surface states. In the end,
five material candidates from these two categories, hosting
the proposed CICEs, are suggested for further experimental
studies, such as time-resolved angle-resolved photoemission
spectroscopy and studies of magneto-optical effects [27,28].

II. SYMMETRY CRITERIA AND SPACE GROUPS

Conceptually, a pair of CICEs can be constructed by in-
tegrating two NL fermions. As shown in Fig. 1(a), CICEs
denoted by the intersection of the red and blue ellipses on
the kz = 0 plane can be decomposed into two individual NL
fermions. Each NL, the accidental twofold band crossings
due to the band inversion, is further validated by the inherent
crystal symmetry belonging to its parent bands, which is the
mirror (or glide) reflection symmetry, Mz(Gz ) : (kx, ky, kz ) →
(kx, ky,−kz ). On the kz = 0 plane, states [labeled by solid and

dashed lines in Fig. 1(c)] carrying different mirror (or glide)
eigenvalues forbid their mutual hybridization, thus supporting
the NL fermion. Since at each k point Mz (Gz) only supplies
two different eigenvalues, additional symmetry constraints
along the kx and ky axes are demanded to sustain the fourfold
degenerate points (FDPs) on the CICEs, i.e., the intersecting
points of the two NL fermions, marked in Fig. 1(d).

Therefore, the additional symmetries required along kx and
ky to guarantee the twofold degeneracy can be realized by
introducing an antiunitary symmetry, T Q, which combines
time-reversal symmetry (TRS) T and a spatial symmetry Q.
Thus, the Kramer-like twofold degeneracy is enforced at T Q-
invariant points where (T Q)2 = −1. For a spinless system,
T 2 = +1, which in turn requires that Q is a nonsymmorphic
symmetry, with eigenvalues of ±i [9,29] at certain points
on the boundaries of the Brillouin zone (BZ). Consequently,
the qualified candidates of Q for ensuring the degeneracy on
the kx (ky) are Gx or Sy (Gy or Sx), so the CICE should be
centered at (π, π, 0 or π ). Here, Sx(y) = {C2x(2y)|tx(y)} denotes
a twofold screw rotation with respect to the kx(y) axis accom-
panied by a translation tx(y) = 1

2 x̂(ŷ), and Gx(y) = {Mx(y)|ty(x)}
is a glide symmetry normal to kx(y), which contains a fractional
translation ty(x) = 1

2 ŷ(x̂). To avoid replicas of CICEs on other
symmetry-related planes, n-fold rotation and rotoinversion
symmetries with n > 2 with respect to the kx(y) axes are not
allowed. In addition, each Kramer-paired state should carry
the same mirror symmetry eigenvalue of Mz (or Gz). Further-
more, symmetry-enforced degeneracy is not allowed at any
generic point of the kz = 0 plane other than the kx(y) axis.

In summary, the criteria for generating CICEs in a spinless
crystal preserving TRS include the following: (i) the little
group of the center of the CICE is nonsymmorphic with
corresponding point group (PG) D2h or D4h; (ii) the crystal
contains two glide Gx(y) or screw Sy(x) symmetries with respect
to the axes lying on a mirror Mz or a glide Gz plane; and
(iii) at the center of the CICE, Mz (Gz) should commute with
other preserved and required symmetries. According to the
above criteria, we have exhaustively scanned all 230 SGs, and
determined 9 possible SGs to host CICEs. The corresponding
positions of the center of the CICE and the corresponding axes
of S or G are listed in Table I.

TABLE I. List of space groups (SGs) and corresponding point
groups (PGs) that can host CICEs. We also list the possible positions
of the CICE centers and the axes on which the fourfold degenerate
points on the CICE emerge

PGs SGs (No.) Positions Axes

D2h Pbam (55) (π, π, 0), (π, π, π ) {[100], [010]}
Pccn (56) (π, π, π )
Pnnm (58) (π, π, 0)
Pnma (62) (π, 0, π ) {[100], [001]}

D4h P4/mbm (127) (π, π, 0), (π, π, π ) {[100], [010]}
P4/mnc (128) (π, π, 0)
P42/mbc (135) (π, π, 0)
P42/mnm (136) (π, π, 0)
P42/ncm (138) (π, π, π )
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FIG. 2. (a) Orthorhombic crystal structure of the lattice model in
Eq. (1) in SG Pbam, consisting of a bipartite lattice with two sub-
lattices A (in blue) and B (in gray). (b) Bulk BZ, the projected (001)
surface BZ, and high-symmetry points. (c) Band structures of the
model without spin-orbit coupling. (d) Schematic dispersion of the
drumhead surface states (DSSs) of the (001) surface stemming from
the NLs, with two saddlelike hyperbolic paraboloids intertwined with
each other. (e), (f) Dispersion along high symmetric directions of
two types of DSSs on the (001) surface. (e) Type-I DSSs stem from
the CICE FS, while (f) type II from the NLs labeled in magenta in
Fig. 1(b).

III. LATTICE MODEL AND SURFACE STATES

To validate the criteria derived above and explore the
underlying topology of CICEs, we construct a minimal four-
band tight-binding lattice model for the SG Pbam (No.
55). The minimal required symmetries are Mz = {m001|000},
Gx = {m100| 1

2
1
2 0}, and Gy = {m010| 1

2
1
2 0}. The model is a bi-

partite lattice, where the sublattices denoted by A (gray) and
B (blue) occupy the 2a Wyckoff position at rA = (0, 0, 0) and
rB = ( 1

2 , 1
2 , 0) in a unit cell [see Fig. 2(a) for the structure].

Each sublattice contains two orbitals, pz and dxy, described
by the Pauli matrix σ, and τ for the A and B sublattices (see
Appendix A for details). For a spinless system, employing
the basis � = (pAz , d

A
xy, p

B
z , d

B
xy)T the symmetry-constrained

tight-binding Hamiltonian is of the form

H0(k) = [(α coskx + β cosky + γ coskz ) + δ0]τ0σ3

+ cos
kx
2

cos
ky
2

coskz(λ10τ1σ0 + λ13τ1σ3)

+ sinkz(λ32τ3σ2)

+ sin
kx
2

sin
ky
2

sinkz(λ12τ1σ2), (1)

where α, β, γ , δ0, and λi j are constants.
Since the CICE can emerge on the mirror plane [gray

shaded area in Fig. 2(b)] centered at the high-symmetry k
point S = (π, π, 0) [R = (π, π, π )] [Fig. 2(b)], we derive the
effective k · p Hamiltonian around the S(R) point,

HS(R)(q) = 1
2

(
αq2

x + βq2
y ∓ γ q2

z + 2δS(R)
)
τ0σ3

+ 1
4qxqy(λ10τ1σ0 + λ13τ1σ3)

+ qz(λ12τ1σ2 + λ32τ3σ2). (2)

At qz = 0, the Hamiltonian is diagonalized as
ES(R)(qx, qy, 0) = diag(EA+B

+ ,EA+B
− ,EA−B

+ ,EA−B
− ) on the

basis � ′ = (pA+B
z , dA+B

xy , pA−B
z , dA−B

xy )T , where |ϕA±B〉 =
1√
2
(|ϕA〉 ± |ϕB〉) (ϕ = pz, dxy) denote the

bonding/antibonding states of the relevant orbitals. Each
ellipse in the half-filling CICE is the line crossing between
the conduction band and the valence band, which is referred to
as type-I NL. Whereas, type-II NLs are the crossings between
two conduction or two valence bands. If |λ13| > |λ10|,
the crossings between the bands EA+B

+ (EA−B
+ ) and EA+B

−
(EA−B

− ) give rise to the type-I NL, while EA+B
+ (EA−B

+ ) and
EA−B

− (EA+B
− ) give rise to the type-II NLs. Otherwise, if

|λ13| < |λ10|, type-I NLs evolve to type II, and vice versa.
Thus, the corresponding NLs for the half-filling CICE can be
obtained by solving the equations

|λ13| > |λ10| : αq2
x + βq2

y ± 1
2λ13qxqy + 2δS(R) = 0,

|λ13| < |λ10| : αq2
x + βq2

y ± 1
2λ10qxqy + 2δS(R) = 0. (3)

After further analyses, we find that when the condition

{αδS(R) < 0 ∩ αβ > 0 ∩ α �= β} (4)

is satisfied, where δS,R = δ0 − (α + β ∓ γ ), the terms in the
first line of Eq. (1) describe two concentric elliptic NLs with
double band inversions at the S (R) point [Fig. 1(d)]. The terms
in the second line in Eq. (1) adjust the anisotropy of each
NL, resulting in two twisted elliptic NLs [see dispersion along
kx = ky in Fig. 2(c), where the band width differs in the two
original elliptic NLs]. The angles of the elliptic NLs with re-
spect to the kx axis are determined via θ± = ± 1

2 arctan λ
2(α−β ) ,

where λ = max{|λ10|, |λ13|}.
To explore the unique topological properties of the CICE

NL, the system is designed to host CICEs centered at the
S point and to have no additional band inversions at other
time-reversal-invariant momentum points (TRIM). Thus, in
addition to Eq. (4), the model parameters should be tuned to

satisfy the following conditions:

{δS < 0 ∩ δR > 0 ∩ δ
 > max(|λ10|, |λ13|) ∩ δZ > max(|λ10|, |λ13|)};
or

{δS > 0 ∩ δR < 0 ∩ δ
 < min(−|λ10|,−|λ13|) ∩ δZ < min(−|λ10|,−|λ13|)}, (5)
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where δ
,Z = δ0 + (α + β ± γ ). The corresponding band
structure is shown in Fig. 2(c), in which the distinctive fea-
tures of CICEs can be recognized by comparing the bands
along S-
 and S-X (or S-Y ). Since CICEs are comprised
of two NLs, and the essential Gx and Gy symmetries are
preserved on (001) surface, which is stabilized by the two-
dimensional (2D) wallpaper group P2gg, we anticipate to
observe two intertwined drumhead surface states (DSSs) [12].
At the S̄ point, T = K, and T should commute with all
spatial symmetries. Since both Gx and Gy should take the
eigenvalues ±i, the symmetry constraints can be determined
as Gx = iμ2, Gy = iμ2, where μ1,2,3 are Pauli matrices acting
in orbital space. The DSS, shown schematically in Fig. 2(d),
can be described by the k · p Hamiltonian around the S̄
point,

HDSS(qx, qy ) = qxqy(a3μ3 + a1μ1), (6)

where a1,3 are real constants. Two saddlelike hyperbolic
paraboloids [red and gray surfaces in Fig. 2(d)] are inter-
twined with each other, resulting in the doubly degenerate
bands along S̄-X̄ and S̄-Ȳ , respectively, which are enforced
by Gx and Gy symmetries combined with T . We would like
to emphasize that these remarkable features exhibited by the
new DSSs allow them to provide a great platform for studies
of exotic emergent phenomena.

The calculated (001) surface band structure along X̄ -S̄-
̄
for |λ10| < |λ13| is shown in Fig. 2(e). Intriguingly, we notice
that another type of DSSs, shown in Fig. 2(f), can be realized
when |λ10| > |λ13| with all remaining parameters unchanged.
We refer to the two different types of DSSs as type I/type II
for the former/latter case. Type-II DSSs can be comprehended
from the way one proceeds to decompose the second pair
of CICEs into two single NLs. As shown in Fig. 1(b) the
NLs (shown by magenta color) are allowed by the same band
configurations with swapped conduction bands in comparison
to the configurations of Fig. 1(a). In contrast to the NLs of the
half-filling CICE, the NLs labeled in magenta are due to the
crossings between two occupied bands (one-quarter filling)
and two unoccupied bands (three-quarter filling), respectively,
and hence might be irrelevant for electron excitation at a half-
filling system. However, the CICE TSM introduces another
possibility. As one cannot distinguish whether the FDPs of
CICEs belong to the half-filling CICE or the second pair
of CICEs, both of them can provide topological DSSs on
an equal footing due to the inherent band inversion. Even
though both types of NL contribute to the DSS on the (001)
surface, Gx and Gy permit solely one pair of DSSs, forcing
in turn the other pair to merge into the bulk states. Con-
sequently, the DSS of CICE-NL in the spinless case may
appear in either way depending on the coupling parameter
details.

IV. MATERIAL CANDIDATES

We propose a series of compounds as material candidates
for the experimental realization of this type of TSMs that host
butterflylike CICE NLs, such as ZrX2 (X = As, P) with CICEs
centered at TRIM point U (π, π, 0), as well as Tl2GeTe5,
CYB2, and Al2Y3 at M (π, π, 0), respectively. Here we take
the ZrAs2 and Tl2GeTe5 as representatives. The equilibrium

lattice constants and electronic structure of both compounds
were determined by first-principles density functional theory
(DFT) calculations using the VASP [30] and WIEN2K [31] pack-
ages. CYB2 and Al2Y3 were found using the Advanced Search
Tools [32–36] (see Appendix C for details).

The crystal structure of ZrAs2, is orthorhombic with SG
Pnma (No. 62) and is displayed in Fig. 3(a). The calcu-
lated lattice parameters a = 6.847 Å, b = 3.718 Å, and c =
9.123 Å are in agreement with the experimental ones [37,38].
The band structure without SOC close to the U = (π, 0, π )
point of the BZ is shown in Fig. 3(b) along two high-symmetry
lines (X -U and U -
). The second material, Tl2GeTe5, has
tetragonal structure with SG P4/mbm (No. 127) and the crys-
tal structure is depicted in Fig. 3(d). In the DFT calculations
the experimental structure of Tl2GeTe5 [39,40] is applied, and
the band structures along two essential high-symmetry k paths
M → X and M → 
 are shown in Fig. 3(d), which reveal
band crossings alike those observed in ZrAs2.

In order to corroborate the CICE NLs in ZrAs2 around U
we used the Bloch functions obtained with DFT to construct
a Wannier-function based model employing the WANNIER90
package [41]. The model reproduces the bands around the
Fermi level, allowing the scan of band crossings in the BZ
more efficiently than direct DFT calculations. As shown in
Fig. 3(c) the nodal points around the U point form a butter-
flylike CICE with a small energy dispersion. In the case of
Tl2GeTe5, the band crossings, shown in Fig 3(f), occur closer
to the M point, yielding a smaller area enclosed by the CICE
and a lower energy dispersion.

FIG. 3. Crystal structure of bulk (a) ZrAs2 and (d) Tl2GeTe5.
Band structure of (b) ZrAs2 and (e) Tl2GeTe5 close to the Fermi
energy without spin-orbit coupling (SOC) along the symmetry lines
in the BZ shown in the insets where high-symmetry points are
marked. The relevant crossings on U (M)-
 for the half-filling and
the second pair of CICEs are indicated by [red, blue] and magenta
dots, respectively. Energy-momentum spread for the half-filing CICE
nodal lines in the BZ for (c) ZrAs2 centered at the U point on the
(010) plane (gray shaded) and (f) Tl2GeTe5 at the M point on the
(001) plane (gray shaded). The black dots shown on the projected
CICEs in the k space are the FDPs and one of them is indicated in
the band along X -U (M) of (b) and (e). As suggested by the crossings
in (b) and (e), the energy spreads for the second pair of CICEs are
very similar.
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V. CONCLUSION

In summary, we have proposed a type of TSMs which
unveil intriguing butterflylike CICE NLs. We have derived the
symmetry criteria to generate the CICE, identified the nine
SGs which can host such complex NLs, and determined the
positions of the CICE centers in the BZ for each SG. In one of
the SGs, Pbam (No. 55), we have introduced a model of spin-
less fermions, which hosts CICEs and supports the intriguing
two intertwined DSSs. We have also calculated the Zak phase,
which is related to the bulk-boundary correspondence [42–49]
(see details in Appendix B). In our following work [50], we
have investigated the effect of SOC on a CICE TSM, where
the connection of the CICE NLSM and the TCI protected
by glide symmetries is revealed. More specifically, the in-
tertwined DSSs evolve to topological surface states (TSSs)
with fourfold Dirac fermion. In addition, a 3D higher-order
topological insulator (HOTI) protected by glide symmetry
emerges in the presence of SOC. The appearance of a pair
of doubly degenerate saddle points or Van Hove singularities
on the surface states, provides a platform for exploring the in-
terplay between topological states and the physics of strongly
correlated systems, e.g., the related interaction-driven instabil-
ities, such as superconducting states and charge-density-wave
(CDW) phase.

Finally, we have predicted candidate materials which can
host such exotic NL landscapes. Many materials may have
substantial SOC, which would lift the band crossings and
drive the system to an insulating phase. However, for materials
with negligible SOC, the band gaps lifted by SOC might
be small. Hence, those observable physical properties, e.g.,
electronic transport, still hold. In addition, this model also
can be realized in other spinless fermion systems, such as
photonic crystals. In general, the study of the material band
structures without SOC provides some clues and indicates the
connections between a topological semimetal phase (without
SOC) and a topological insulating phase (with SOC) [50]. We
hope that these predictions will motivate experimental studies
of such complex NLs. For instance, the optical and magneto-
optical signatures of CICE nodal lines are worth investigating.
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APPENDIX A: SYMMETRY CONSTRAINTS

According to the analysis in main text, a model which
hosts the CICE nodal lines requires at least four bands.
Now we try to construct a Hamiltonian in SG Pbam
(No. 55), in which there are four sets of Wyckoff posi-
tions, i.e., 2a, 2b, 2c, and 2d . Each of them contains two
sublattices (denoted by A and B). Thus, to construct a four-
band minimal model, two orbitals from each sublattice are
required.

The coordinates of the two sublattices for each set of
Wyckoff positions are listed here. 2a: (0, 0, 0), ( 1

2 , 1
2 , 0);

2b: (0, 0, 1
2 ), ( 1

2 , 1
2 , 1

2 ); 2c: ( 1
2 , 0, 0), (0, 1

2 , 0); 2d: ( 1
2 , 0, 1

2 ),
(0, 1

2 , 1
2 ). One can find that for any set of Wyckoff

positions, sublattice A (B) maps to A (B) under the mir-
ror symmetry Mz, or inversion symmetry I. That indicates
that the constraints of both Mz and I should be writ-
ten as τ0 (identity matrix) employing the basis (A,B)T ,
and the eigenvalue can only be the single value 1. There-
fore, the two orbitals selected should carry opposite parity
and eigenvalues of Mz, so that the nodal line band cross-
ings in the (001) plane are protected due to the opposite
eigenvalues of mirror symmetry. Indeed, the choices of
the Wyckoff positions or orbitals are not unique, e.g.,
(s, pz), (px, dyz), and (py, dxz).

Here we choose two sublattices denoted by A and B
occupying the 2a Wyckoff position at rA = (0, 0, 0) and
rB = ( 1

2 , 1
2 , 0) in a unit cell, and each sublattice has two

electrons of orbitals pz and dxy. Employing the basis � =
(pAz , d

A
xy, p

B
z , d

B
xy)T , the symmetry constraints at TRIM points

take the form


 = (0, 0, 0) ∪ Z = (0, 0, π ) : T = K, I = −σ3, Mz = −σ3, Gx = e−iqy/2τ1σ3, Gy = e−iqx/2τ1σ3,

S = (π, π, 0) ∪ R = (π, π, π ) : T = K, I = −σ3, Mz = −σ3, Gx = −e−iqy/2iτ2σ3, Gy = −e−iqx/2iτ2σ3,

X = (π, 0, 0) ∪U = (π, 0, π ) : T = τ3K, I = −τ3σ3, Mz = −σ3, Gx = e−iqy/2τ2σ3, Gy = −e−iqx/2iτ1σ3,

Y = (0, π, 0) ∪ T = (0, π, π ) : T = τ3K, I = −τ3σ3, Mz = −σ3, Gx = −e−iqy/2iτ1σ3, Gy = e−iqx/2τ2σ3, (A1)

where qx,y is the k vector from the corresponding TRIM point,
Pauli matrices τ and σ are used for the sublattice and orbital
space, respectively, and K is the complex conjugate operator.
Given these constraints, the minimal tight-binding model can
be constructed.

APPENDIX B: THE ZAK PHASE

The Zak phase γ has been used for the Z2 classification of
inversion-symmetric 1D insulators, where it can be quantized
to 0 or π (mod 2π ). It can be also applied to the effective
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FIG. 4. (a) CICE nodal lines around the S point on the kz = 0
plane. (b) The Zak phase γ distributions for the model. The yellow
(blue) color represents π (0). Outside the projection of the NLs,
no surface modes can be observed and the Zak phase γ = 0, while
within the area labeled in yellow, there is one DSS. However, within
the overlapping area of the projections of two NLs, the Zak phase
is 0 (mod 2π ), although there are two DSSs within that area, which
cannot be characterized by the Z2 Zak phase.

1D models along one direction by fixing one or two momenta
of 2D or 3D Hamiltonians. In this Z2 classification, the bulk-
boundary correspondence states that the nontrivial Zak phase
γ = π indicates the emergence of boundary modes, while
γ = 0 is considered a trivial insulator without surface modes.
In our model, the CICE NLs consisting of two ellipses lie
on the kz = 0 plane. Considering kx and ky as parameters,
we calculate the Zak phase of the 1D model along the kz
direction, and the CICE NLs are projected on the (kx, ky) plane
[Fig. 4(a)]. Within the areas of the projection of each one
single nodal line, the Zak phase is π , indicating the emergence
of one DSS [area labeled in yellow in Fig. 4(b)]. However,
within the overlapping area of the projections of two NLs,
the Zak phase is 0 [Fig. 4(b)], although there are two copies
of DSSs. This implies that the even number of DSSs cannot
be characterized by the Zak phase, and is invisible in the Z2

classification.

APPENDIX C: OTHER MATERIAL CANDIDATES

We propose CYB2 [51] and Al2Y3 [52] as materials can-
didates to host CICEs. The crystal structure of CYB2 is
tetragonal with SG P42/mbc (No. 135) and shows a layered
structured of Y layers intercalated with B and C nets. Al2Y3

crystal structure belongs to the P42/mnm (No. 136) tetrag-
onal SG. Figures 5(a) and 5(c) and 5(b) and 5(d) show the
band structure calculation and crystal structure of CYB2 and
Al2Y3, respectively. The band structures include two essential
high-symmetry paths X → 
 → M, where the crossings of
CICEs are highlighted by black dots. These band structures
were calculated using VASP with the modified Becke-Johnson
exchange potential in combination with generalized gradient
approximation (GGA) [53,54]. The BZ was sampled with
a 7 × 7 × 9 Monkhorst-Pack grid and an energy cutoff of
520 eV was used.

FIG. 5. Crystal structure of bulk (a) CYB2 with tetragonal SG
P42/mbc (No. 135) and (c) Al2Y3 with tetragonal SG P4/mbm (No.
136). Band structure of (b) CYB2 and (d) Al2Y3 close to the Fermi
energy without SOC along the symmetry lines in the Brillouin zone
shown in the insets where high-symmetry points are marked. The
relevant crossings on M-
 for the half-filling and the second pair of
CICEs are indicated by [red, blue] and magenta dots, respectively.
The black dots along X -M are the FDPs.

APPENDIX D: DETAILS OF THE CALCULATIONS

In the DFT) calculations of ZrAs2 and ZrP2 the Perdew-
Burke-Ernzherhof [55] implementation of the GGA was used
for the exchange-correlation functional. A plane-wave ba-
sis with an energy cutoff of 340 eV was employed in
all calculations. The BZ was sampled with an 8 × 15 × 6
Monkhorst-Pack grid [56]. The systems were allowed to
fully relax until residual atomic forces became smaller than
0.01 eV/Å.

Turning on the SOC in ZrAs2 opens a small gap of about
8 meV of the band crossings around theU point. Furthermore,
we have carried out electronic structure calculations using the
modified Becke-Johnson local density approximation (MB-
JLDA) exchange-correlation functional which predicts band
gaps, effective masses, and frontier-band ordering that are in
good agreement with the computationally more intense GW
and hybrid functional approaches [57]. The calculations reveal
that the band crossings around theU point in ZrAs2 disappear
indicating that the CICEs (and the closing of the gap) is very
sensitive to the exchange-correlation functional employed.

A Wannier-function based model for ZrAs2 and ZrP2 was
obtained using the DFT results as the starting point. The WAN-
NIER90 package along with its interface with the VASP package
were employed for this purpose [41]. The upper limit of the
frozen energy window was set to 2.5 eV above the Fermi
level of each compound. The model perfectly reproduces the
DFT bands up to that energy, which is well above the studied
band crossings. We chose the following atomic orbitals as
the starting guess for the projection of the Bloch states onto
Wannier functions: s, p, and d orbitals for Zr and s and p
orbitals for As or P.

[1] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Phys. Rev. B 92,
081201(R) (2015).

[2] C. Fang, H. Weng, X. Dai, and Z. Fang, Chin. Phys. B 25,
117106 (2016).

125135-6

https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1088/1674-1056/25/11/117106


NOVEL FAMILY OF TOPOLOGICAL SEMIMETALS WITH … PHYSICAL REVIEW B 104, 125135 (2021)

[3] H. Weng, X. Dai, and Z. Fang, J. Phys.: Condens. Matter 28,
303001 (2016).

[4] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.
90, 015001 (2018).

[5] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.
Rev. B 83, 205101 (2011).

[6] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205
(2011).

[7] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).

[8] Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng,
X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

[9] S. M. Young and C. L. Kane, Phys. Rev. Lett. 115, 126803
(2015).

[10] T.-R. Chang, S.-Y. Xu, D. S. Sanchez, W.-F. Tsai, S.-M. Huang,
G. Chang, C.-H. Hsu, G. Bian, I. Belopolski, Z.-M. Yu et al.,
Phys. Rev. Lett. 119, 026404 (2017).

[11] W. C. Yu, X. Zhou, F.-C. Chuang, S. A. Yang, H. Lin, and
A. Bansil, Phys. Rev. Mater. 2, 051201(R) (2018).

[12] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84,
235126 (2011).

[13] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee et al., Science
349, 613 (2015).

[14] G. Bian, T.-R. Chang, H. Zheng, S. Velury, S.-Y. Xu, T.
Neupert, C.-K. Chiu, S.-M. Huang, D. S. Sanchez et al., Phys.
Rev. B 93, 121113(R) (2016).

[15] A. A. Burkov, Phys. Rev. Lett. 113, 247203 (2014).
[16] C.-L. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong,

G. Bian, N. Alidoust, C.-C. Lee, S.-M. Huang et al., Nat.
Commun. 7, 10735 (2016).

[17] J. Hu, S.-Y. Xu, N. Ni, and Z. Mao, Annu. Rev. Mater. Res. 49,
207 (2019).

[18] T. Bzdušek, Q. S. Wu, A. Rüegg, M. Sigrist, and A. A.
Soluyanov, Nature (London) 538, 75 (2016).

[19] G. Chang, S. Y. Xu, X. Zhou, S. M. Huang, B. Singh, B. Wang,
I. Belopolski, J. Yin, S. Zhang, A. Bansil et al., Phys. Rev. Lett.
119, 156401 (2017).

[20] Z. Yan, R. Bi, H. Shen, L. Lu, S. C. Zhang, and Z. Wang, Phys.
Rev. B 96, 041103(R) (2017).

[21] R. Bi, Z. Yan, L. Lu, and Z. Wang, Phys. Rev. B 96, 201305(R)
(2017).

[22] B.-J. Yang and N. Nagaosa, Nat. Commun. 5, 4898 (2014).
[23] Z. Gao, M. Hua, H. Zhang, and X. Zhang, Phys. Rev. B 93,

205109 (2016).
[24] B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Phys. Rev.

Lett. 116, 186402 (2016).
[25] Z. Zhu, G. W. Winkler, Q. S. Wu, J. Li, and A. A. Soluyanov,

Phys. Rev. X 6, 031003 (2016).
[26] C. Gong, Y. Xie, Y. Chen, H.-S. Kim, and D. Vanderbilt, Phys.

Rev. Lett. 120, 106403 (2018).
[27] S. Ahn, E. J. Mele, and H. Min, Phys. Rev. Lett. 119, 147402

(2017).

[28] Y. Shao, Z. Sun, Y. Wang, C. Xu, R. Sankar, A. J. Breindel, C.
Cao, M. M. Fogler, A. J. Millis, F. Chou et al., Proc. Natl. Acad.
Sci. USA 116, 1168 (2019).

[29] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A. Bernevig,
Nature (London) 532, 189 (2016).

[30] G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
[31] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen,

and L. D. Marks, J. Chem. Phys. 152, 074101 (2020).
[32] https://www.topologicalquantumchemistry.org/.
[33] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.

Felser, M. I. Aroyo, and B. A. Bernevig, Nature (London) 547,
298 (2017).

[34] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A.
Bernevig, and Z. Wang, Nature (London) 566, 480 (2019).

[35] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng,
and C. Fang, Nature (London) 566, 475 (2019).

[36] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Nature (London)
566, 486 (2019).

[37] W. Trzebiatowski, S. Weglowski, and L. Lukaszewicz, Roczn.
Chem. 32, 189 (1958).

[38] P. E. Blanchard, R. G. Cavell, and A. Mar, J. Alloys Compd.
505, 17 (2010).

[39] R. Marsh, J. Solid State Chem. 87, 467 (1990).
[40] A. Abba Toure, G. Kra, R. Eholie, J. Olivier Fourcade, J. Jumas,

and M. Maurin, J. Solid State Chem. 84, 245 (1990).
[41] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,

and N. Marzari, Comput. Phys. Commun. 178, 685 (2008).
[42] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[43] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651

(1993).
[44] D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442

(1993).
[45] S. Ryu and Y. Hatsugai, Phys. Rev. B 73, 245115 (2006).
[46] T. Kariyado and Y. Hatsugai, Phys. Rev. B 88, 245126

(2013).
[47] F. Grusdt, M. Höning, and M. Fleischhauer, Phys. Rev. Lett.

110, 260405 (2013).
[48] R. Barnett, Phys. Rev. A 88, 063631 (2013).
[49] Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder, Phys.

Rev. B 93, 205132 (2016).
[50] X. Zhou, C.-H. Hsu, C.-Y. Huang, M. Iraola, J. L. Mañes, M. G.

Vergniory, H. Lin, and N. Kioussis, arXiv:2005.06071.
[51] J. Bauer and J. Debuigne, J. Inorg. Nucl. Chem. 37, 2473

(1975).
[52] T. Dagerhamn, Ark. Kemi 27, 363 (1967).
[53] A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101

(2006).
[54] F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
[55] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[56] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[57] Y.-S. Kim, M. Marsman, G. Kresse, F. Tran, and P. Blaha, Phys.

Rev. B 82, 205212 (2010).

125135-7

https://doi.org/10.1088/0953-8984/28/30/303001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1103/PhysRevLett.119.026404
https://doi.org/10.1103/PhysRevMaterials.2.051201
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1103/PhysRevLett.113.247203
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1146/annurev-matsci-070218-010023
https://doi.org/10.1038/nature19099
https://doi.org/10.1103/PhysRevLett.119.156401
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevB.96.201305
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1103/PhysRevB.93.205109
https://doi.org/10.1103/PhysRevLett.116.186402
https://doi.org/10.1103/PhysRevX.6.031003
https://doi.org/10.1103/PhysRevLett.120.106403
https://doi.org/10.1103/PhysRevLett.119.147402
https://doi.org/10.1073/pnas.1809631115
https://doi.org/10.1038/nature17410
https://doi.org/10.1103/PhysRevB.48.13115
https://doi.org/10.1063/1.5143061
https://www.topologicalquantumchemistry.org/
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1038/s41586-019-0944-6
https://doi.org/10.1038/s41586-019-0937-5
https://doi.org/10.1016/j.jallcom.2010.06.049
https://doi.org/10.1016/0022-4596(90)90051-X
https://doi.org/10.1016/0022-4596(90)90323-P
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1103/PhysRevB.73.245115
https://doi.org/10.1103/PhysRevB.88.245126
https://doi.org/10.1103/PhysRevLett.110.260405
https://doi.org/10.1103/PhysRevA.88.063631
https://doi.org/10.1103/PhysRevB.93.205132
http://arxiv.org/abs/arXiv:2005.06071
https://doi.org/10.1016/0022-1902(75)80873-6
https://doi.org/10.1063/1.2213970
https://doi.org/10.1103/PhysRevLett.102.226401
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.82.205212

