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Abstract. We show that large classes of non-arithmetic hyperbolic n-manifolds,
including the hybrids introduced by Gromov and Piatetski-Shapiro and many

of their generalizations, have only finitely many finite-volume immersed totally

geodesic hypersurfaces. In higher codimension, we prove finiteness for geodesic
submanifolds of dimension at least 2 that are maximal, i.e., not properly con-

tained in a proper geodesic submanifold of the ambient n-manifold. The proof

is a mix of structure theory for arithmetic groups, dynamics, and geometry in
negative curvature.

1. Introduction

To simplify the discussion, throughout this introduction a hyperbolic manifold will
mean a connected, oriented, complete, finite-volume hyperbolic n-manifold, and a
geodesic submanifold will be a complete, immersed, finite-volume, totally geodesic
subspace (note that a totally geodesic subspace need not be orientable). The main
motivation of this paper is the following question which, as far as we know, has
been asked independently by Reid and in dimension 3 by McMullen [12, Qn. 7.6]:

Question 1.1. Let M be a non-arithmetic hyperbolic manifold of dimension at
least 3. Does M have at most finitely many geodesic submanifolds of codimension
one?

We will prove the answer is yes for a large class of non-arithmetic hyperbolic man-
ifolds that includes the famous non-arithmetic manifolds constructed by Gromov
and Piatetski-Shapiro [18]. We also prove more general results valid in arbitrary
codimension k < n− 1, answering a more general question of Reid. Making a pre-
cise statement requires some more care and notation. Before embarking on that,
we discuss some background and motivation for the conjecture.

Totally geodesic submanifolds of hyperbolic manifolds, when they exist, have
proven fundamental in solving a number of important problems. Perhaps most fa-
mously, Gromov and Piatetski-Shapiro used cut-and-paste of arithmetic hyperbolic
manifolds along codimension one geodesic submanifolds to build non-arithmetic
hyperbolic manifolds in all dimensions [18]. More recently, variants on their con-
struction first introduced in [1] were used by Gelander and Levit to prove that
“most” hyperbolic manifolds in dimension at least 4 are non-arithmetic [16].

In another famous application, Millson used geodesic submanifolds to construct
hyperbolic manifolds in all dimensions with positive 1st betti number [29]. Millson’s
examples are arithmetic, and a key idea in the proof is that if an arithmetic hy-
perbolic manifold contains a geodesic submanifold, then it contains many of them.
One can see this as an easy application of the fact that the commensurator of an
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arithmetic group is dense in the isometry group of the associated symmetric space
[7, Th. 2]. In particular, density of the commensurator allows one to prove the
following:

Arithmetic geodesic submanifold dichotomy: For any 1 ≤ k ≤ n − 1, an
arithmetic hyperbolic n-manifold either contains no codimension k geodesic sub-
manifolds, or it contains infinitely many and they are everywhere dense.

This was perhaps first made precise in dimension 3 by Maclachlan–Reid and Reid
[21, 35], who exhibited the first hyperbolic 3-manifolds with no totally geodesic
surfaces. (For non-arithmetic examples, see [8] for fibered knots with no totally
geodesic surfaces.)

In the non-arithmetic setting, this commensurator argument is not available. A
theorem of Margulis shows that an irreducible lattice Γ in an adjoint semisimple Lie
group G is arithmetic if its commensurator is topologically dense in G. From this
one deduces that if Γ is non-arithmetic, then its commensurator is itself a lattice
that contains Γ with finite index [25, p. 2], and so Question 1.1 is reasonable. The
simplest form of our main result is the following.

Theorem 1.2. For every n ≥ 3, there exist infinitely many commensurability
classes of finite-volume non-arithmetic hyperbolic n-manifolds for which the collec-
tion of all codimension one finite-volume totally geodesic submanifolds is finite but
nonempty.

As we will describe below, Theorem 1.2 applies in particular to the class of
manifolds constructed by Gromov and Piatetski-Shapiro, along with many vari-
ants of their construction. In dimension n ≥ 4, we do not know an example of
a non-arithmetic hyperbolic n-manifold containing no codimension one geodesic
submanifolds. Interestingly, finiteness results of this kind were only known previ-
ously for compact immersed totally geodesic surfaces in infinite volume hyperbolic
3-manifolds with compact convex core, by McMullen–Mohammadi–Oh [26, Thm.
1.4]. See very recent work of Benoist–Oh for the geometrically finite case [6, Thm.
1.5].

Even for finite-volume hyperbolic 3-manifolds, Theorem 1.2 is new and the first
result of its kind on the question of McMullen and Reid. All previous arguments
in that setting could only show finiteness of geodesic subsurfaces by showing there
were none at all. In fact, we will show in §6.1 that explicit examples of hyperbolic
links with a finite but nonempty set of totally geodesic surfaces are relatively easy
to construct.

Theorem 1.3. There are infinitely many distinct hyperbolic links L in the 3-sphere
so that the collection of all finite-area totally geodesic surfaces in S3rL is finite but
nonempty. The link complements can be chosen to be mutually incommensurable.
One can choose L such that all its totally geodesic surfaces are noncompact.

In short, our examples are belted sums of arithmetic links. See §6 for more on
various examples and nonexamples, along with connections between our work and
the Menasco–Reid conjecture [27].

As mentioned above, Theorem 1.2 is a special case of a more general theorem
on geodesic submanifolds of arbitrary codimension. To state this result we require
some more notation. A building block of a hyperbolic n-manifold M is a connected
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n-dimensional submanifold N with nonempty (but possibly disconnected) totally
geodesic boundary such that π1(N) < π1(M) is Zariski dense in Isom+(Hn). In the
finite-volume noncompact case, we require all cusps of N to be finite-volume.

We say a hyperbolic manifold M is built from building blocks when it is the
union of finitely many building blocks with disjoint interiors, hence they intersect
only along their boundaries. That is, M is obtained by gluing finitely many build-
ing blocks together isometrically along their boundaries. We call two such blocks
adjacent if they meet in M along a common boundary component. We will fre-
quently refer to any connected component of this common boundary as a cutting
hypersurface.

We say that a building block N ⊂ M is arithmetic when there exists an arith-
metic hyperbolic n-manifold M ′ such that N is isometric to a building block for
M ′. We will see that, up to commensurability, M ′ is uniquely determined by N .
In particular, it makes sense to say that two arithmetic building blocks are sim-
ilar when they are building blocks for commensurable arithmetic manifolds and
are dissimilar otherwise. We will also call a geodesic submanifold maximal if it is
not contained in a proper geodesic submanifold of smaller codimension. Our main
result is:

Theorem 1.4. Let M be a non-arithmetic hyperbolic n-manifold built from building
blocks for which there are two adjacent building blocks N1 and N2 that are arithmetic
and dissimilar. For each 1 ≤ k ≤ n− 2, the collection of all maximal codimension
k finite-volume totally geodesic submanifolds of M is finite.

Note that the word maximal in the theorem is necessary, since codimension
k finite-volume totally geodesic submanifolds may be arithmetic and thus could
contain infinitely many finite volume totally geodesics submanifolds of all greater
codimensions. This occurs quite frequently in explicit constructions, particularly
those built by Gromov and Piatetski-Shapiro.

Also note that the manifolds constructed by Gromov and Piatetski-Shapiro are
built from two dissimilar buildings blocks (see §2.2), so Theorem 1.4 applies. The
theorem also applies to the manifolds used to study invariant random subgroups
in [1] and to those used by Raimbault [31] and Gelander–Levit [16] in studying
growth of the number of maximal lattices in SO(n, 1). These lattices are all built
from subarithmetic pieces in the language of Gromov and Piatetski-Shapiro [18, Qn.
0.4]. We state one immediate corollary of our result and the results of Gelander–
Levit more carefully:

Theorem 1.5. Fix n > 3. Then there exists a number bn > 0 such that the number
of commensurability classes of hyperbolic manifolds satisfying the conclusions of
Theorem 1.4 and having a representative of volume less than V is proportional to
V bnV .

As in Gelander–Levit, it is possible to see from this that there are “more” manifolds
satisfying the conclusions of Theorem 1.4 than there are arithmetic manifolds. In
fact, the set of such manifolds has positive logarithmic density if one counts by
minimal volume in the commensurability class.

We note here that our proofs do not apply to the class of hyperbolic manifolds
built by inbreeding that were introduced by Agol [3] and developed further by Be-
lolipetsky and Thomson [5]. Our approach depends at a key point on the adjacent
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pieces being associated with different arithmetic groups, and in this family of exam-
ples there is only one arithmetic group involved. In other words, in our terminology
the building blocks used to construct the examples in [3] and [5] are similar, hence
Theorem 1.4 does not apply.

The proof of Theorem 1.4 is a mix of structure theory for arithmetic groups, dy-
namics, and geometry in negative curvature.

Our proof involves three key ingredients. The first two are a pair of ‘rigidity’
theorems for geodesic submanifolds of manifolds M satisfying the properties of The-
orem 1.4. Each shows that geodesic submanifolds of M that meet both N1 and N2

must be of a very particular kind. The third ingredient consists of equidistribution
results from homogeneous dynamics.

The first ingredient is ‘Closure Rigidity’, which we prove in §3. Given a geodesic
submanifold Σ that crosses both N1 and N2, we show that Σ ∩ Ni is actually
the intersection with Ni of a geodesic submanifold in the finite volume arithmetic
manifold from which Ni is cut. This is not true for geodesics, and in fact a generic
geodesic in the examples we consider is built from pieces that do not close in the
corresponding arithmetic manifold.

The second ingredient and rigidity result is ‘Angle Rigidity’, proven in §4. This
says that once we know the closure rigidity results from §3, geodesic submanifolds
must meet N1 ∩N2 orthogonally.

The last key ingredient in the proof is a generalization of Shah’s work on orbit
closures in hyperbolic manifolds [38], which we prove in §5. This allows us to
conclude that either the collection of codimension k geodesic submanifolds of M
satisfies the conclusions of Theorem 1.4, or they determine a dense subset of the
oriented orthonormal frame bundle of M . The combination of closure and angle
rigidity forbids the second conclusion, hence the theorem follows.

There is some overlap of ideas between our paper and a recent paper of Benoist
and Oh [6]. In fact, after we showed our paper to Oh, she pointed out that in
dimension 3 one can prove our Theorem 1.2 using their Proposition 12.1 in place
of our Theorem 4.1. The proof in their paper does not cover the examples needed
for Theorem 1.3. See Remark 4.4 for the relation between our work and theirs.

We close with some discussion of the following famous question asked by Gromov
and Piatetski-Shapiro.

Question 1.6 (Qn. 0.4 [18]). Call a discrete subgroup Γ0 < PO(n, 1) subarithmetic
if Γ0 is Zariski dense and if there exists an arithmetic subgroup Γ1 < PO(n, 1) such
that Γ0 ∩ Γ1 has finite index in Γ0. Does every lattice Γ in PO(n, 1) (maybe for
large n) contain a subarithmetic subgroup? Is Γ generated by (finitely many) such
subgroups? If so, does V = Hn/Γ admit a “nice” partition into “subarithmetic
pieces”.

Manifolds built from arithmetic building blocks certainly admit a nice partition
into subarithmetic pieces. In a different direction, in the 1960s Vinberg introduced
the notion of a quasi-arithmetic lattice [40] (see §6.2). For example, many lattices
acting on Hn generated by reflections are quasi-arithmetic. However, the typical
variants of Gromov and Piatetski-Shapiro’s construction of non-arithmetic lattices
are not quasi-arithmetic, so Question 1.6 is well-known to be more subtle than “are
all non-arithmetic lattices iterations of the construction in [18]”.
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A key step in the proof that the examples in [18] are non-arithmetic is the
assumption that one interbreeds noncommensurable arithmetic manifolds. More
recently, Agol [3] (for n = 4) and Belolipetsky–Thomson [5] (for n ≥ 4) constructed
non-arithmetic but quasi-arithmetic lattices by inbreeding commensurable arith-
metic lattices. In particular, the existence of quasi-arithmetic lattices that are
non-arithmetic does not rule out the possibility that all non-arithmetic lattices for
n ≥ 4 are constructed by inbreeding arithmetic lattices (there are hyperbolic 3-
manifolds with no totally geodesic surfaces, which clearly are not constructed via
interbreeding or inbreeding; see Example 6.3).

With the methods of this paper, we can give examples of Coxeter polyhedra
whose associated non-arithmetic lattices are not commensurable with either the
Gromov–Piatetski-Shapiro type lattices or to the Agol type lattices. See §6.2, where
we will prove the following, which perhaps further clarifies the subtle nature of
Question 1.6.

Theorem 1.7. There exist non-arithmetic lattices in SO(5, 1) that are not com-
mensurable with a lattice constructed by the methods of Gromov–Piatetski-Shapiro
or Agol.

The results in §6 also show that, despite the use of certain dynamical tools that
make precise counting quite subtle, the methods developed in this paper can be
used to study concrete examples. We also provide examples of Coxeter groups in
dimension 3 that cannot come from a hybrid construction, and it is possible that
one could use the ideas behind the proof of Theorem 1.7 to construct an explicit hy-
perbolic 3-manifold M containing exactly m totally geodesic surfaces for sufficiently
large m. Recent work of Emery–Mila [14] also used Theorem 1.7 to motivate results
on rational relations between volumes of odd-dimensional hyperbolic manifolds.
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1607041. Lafont was partially supported by the NSF Grant Number DMS 1510640
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tion/SFARI. The authors acknowledge support from U.S. National Science Foun-
dation grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And
Representation varieties” (the GEAR Network).

2. Background on constructions of hyperbolic n-manifolds

This section gives the necessary background on the constructions of hyperbolic
n-manifolds that are relevant for this paper. It also establishes much of the notation
that we will use throughout.

2.1. Arithmetic manifolds constructed from quadratic forms. Here we re-
call the construction of arithmetic hyperbolic manifolds via quadratic forms over
number fields. Our standing assumption throughout will be that F is a totally real
number field of degree s over Q with distinct real embeddings σ1, . . . , σs : F → R.
To simplify our discussion, we assume that F is a subfield of R under σ1 = Id.

Now, let V be an F -vector space of dimension n + 1 and q a nondegenerate
F -defined quadratic form on V . Such a pair (V, q) is called an F -quadratic space,
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and associated with q we have the inner product

(1) 〈u, v〉q =
1

2
(q(u+ v)− q(u)− q(v)) .

We then have the F -algebraic group SO(q, F ) consisting of those determinant one
linear transformations of V that preserve q. We use

V (R) = V ⊗F R ∼= Rn+1,

to denote the extension of V to a real vector space under our chosen real embedding
of F , and q will denote the unique extension of q to a quadratic form on V (R).
For the nonidentity σi, q

σi will denote the extension of q to the real vector space
V ⊗σi(F ) R.

We assume throughout this paper that q has signature (n, 1) on V (R) and that
qσi is definite for all i 6= 1. Given this setup, there is a natural injection

i : SO(q, F ) ↪→
s∏
i=1

SO(qσi ,R),

∼= SO(n, 1)×
s∏
i=2

SO(n+ 1),

sending g ∈ SO(q, F ) to

i(g) = (g, σ2(g), . . . , σs(g)) ∈ SO(n, 1)×
s∏
i=2

SO(n+ 1).

In other words, we identify g ∈ SO(q, F ) with its image in SO(n, 1) under projection
onto the first factor of the above product.

Now, let OF denote the ring of integers of F . The above identifications map
SO(q,OF ) to an arithmetic lattice Γq in SO(n, 1). All arithmetic lattices in SO(n, 1)
considered in this paper will be commensurable with some Γq as above. We note
that in even dimensions this construction determines every commensurability class
of arithmetic lattices in SO(n, 1).

Given a quadratic form q as above, we form the hyperboloid model of hyperbolic
space associated with q by

Hnq = {(x1, . . . , xn+1) ∈ Rn+1 | q(x1, . . . , xn+1) = −1, xn+1 > 0}.

The inner product on Rn+1 defined by (1) determines the usual hyperbolic metric
on Hnq . From here forward, when there is no possibility of confusion we will drop
the subscript and identify Hnq with Hn.

A finite-volume hyperbolic orbifold is given as a quotient of Hn by a lattice Γ in
Isom(Hn) ∼= PO(n, 1). The group Isom+(Hn) of orientation-preserving isometries
is isomorphic to the connected component SO0(n, 1) of the identity in SO(n, 1). If
Γ is torsion-free then Hn/Γ is a manifold, and otherwise it is a hyperbolic orbifold.
In particular, the arithmetic lattice Γq described above determines an arithmetic
hyperbolic orbifold Hn/Γ. Selberg’s lemma then implies that there is a finite index,
torsion-free subgroup Γ′ < Γ and hence there is always an arithmetic hyperbolic
manifold Hn/Γ′ that finitely covers Hn/Γ.

For the reader’s convenience, we also state the commensurability classification
for arithmetic hyperbolic manifolds arising from the above construction. See [18,
2.6] and [28] for further details.
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Theorem 2.1. Let Γ,Γ′ be two arithmetic lattices in SO(n, 1) constructed from
quadratic spaces (V, q), (V ′, q′) over the number fields F, F ′, respectively. Then Γ′

is commensurable with Γ if and only if F ∼= F ′ and q′ is similar to q, i.e., there
exists λ ∈ F ∗ such that (V ′, q′) is isometric to (V, λq).

We now briefly recall the construction of finite-volume codimension k immersed
totally geodesic submanifolds of arithmetic hyperbolic manifolds arising from qua-
dratic forms. Let Γ be an arithmetic lattice in Isom(Hn) associated with the qua-
dratic space (V, q) over the number field F . Let W ⊂ V be a (F -defined) codi-
mension k subspace such that the restriction of q to W has signature (n− k, 1) on
W (R). Then the intersection of W (R) with Hn ⊂ V (R) defines a totally geodesic
embedding f : Hn−k ↪→ Hn. The induced embedding of SO(W, q|W ) into SO(V, q)
yields an embedding

GW = S(O(k)×O(n− k, 1)) ∩ SO0(n, 1) ↪→ Isom(Hn),

such that ΓW = GW ∩Γ is a lattice in GW . In particular, Hn−k/ΓW maps in as an
immersed finite-volume totally geodesic submanifold of Hn/Γ. Moreover, it is well-
known that all geodesic submanifolds of Hn/Γ arise from the above construction,
(see [28]).

Remark 2.2. It is also known that arithmetic manifolds of the above kind are the
only arithmetic manifolds that contain a codimension one finite volume totally geo-
desic submanifold. In particular, this means that the arithmetic manifolds described
above are precisely those that can be used in the constructions of non-arithmetic
manifolds that follow.

2.2. Constructions of non-arithmetic manifolds following Gromov and
Piatetski-Shapiro. In this section, we recall the construction by Gromov and
Piatetski-Shapiro of non-arithmetic hyperbolic manifolds [18], along with general-
izations by Raimbault [31] and Gelander–Levit [16].

First, we recall the notion of a building block and an arithmetic building block
from the introduction. As previously, a hyperbolic manifold will always mean a
connected and oriented quotient of hyperbolic space with finite-volume. If M is a
hyperbolic n-manifold, then a building block N ⊂M is an n-dimensional submani-
fold with nonempty totally geodesic boundary such that π1(N) < π1(M) is Zariski
dense in Isom(Hn) under the holonomy of the hyperbolic structure on M and such
that all cusps of N have full rank. We call N arithmetic when M is an arithmetic
hyperbolic manifold. The following is evident from [18, 1.6.A].

Proposition 2.3. Suppose that M is an arithmetic hyperbolic manifold and N ⊂
M is an arithmetic building block. If N ⊂M ′ for M ′ another arithmetic hyperbolic
manifold, then M ′ is commensurable with M .

In particular, if N1, N2 are arithmetic building blocks with associated arithmetic
hyperbolic manifolds M1 and M2, it makes sense to say that they are similar
if M1 and M2 are commensurable and dissimilar otherwise. We now return to
constructing non-arithmetic hyperbolic manifolds.

The most basic Gromov–Piatetski-Shapiro construction is a hybrid manifold de-
fined by interbreeding two incommensurable arithmetic hyperbolic manifolds. In
our language, one builds a hyperbolic manifold consisting of two dissimilar arith-
metic building blocks. Specifically, suppose that M1 and M2 are incommensurable
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arithmetic hyperbolic n-manifolds and that Σ is a hyperbolic (n− 1)-manifold that
admits totally geodesic embeddings

fi : Σ ↪→Mi,

i = 1, 2. Suppose that fi(Σ) separates Mi, and choose one side Ni. This is then
a hyperbolic manifold with connected totally geodesic boundary isometric to Σ,
and Ni is an arithmetic building block in the sense described above. Gluing N1 to
N2 along their boundaries then defines a non-arithmetic manifold comprised of two
incommensurable arithmetic building blocks.

Further variants of this construction are given by Raimbault [31] and Gelander–
Levit [16], who use a generalization of this idea to provide asymptotic counts on the
number of hyperbolic manifolds in terms of volume. We describe the constructions
so the reader can explicitly see that they satisfy the assumptions of Theorem 1.4.

Raimbault’s variant of the Gromov–Piatetski-Shapiro construction glues together
arithmetic building blocks in a circular pattern. More specifically, start with a fam-
ily of r arithmetic building blocks N1, . . . , Nr that are pairwise dissimilar and such
that ∂Nj has two connected components, each being isometric to some fixed hyper-
bolic (n − 1)-manifold Σ (with opposite orientations). Let Σ+

j (resp. Σ−j ) denote

the positively (resp. negatively) oriented boundary component. One then glues Nj
to Nj+1 by identifying Σ+

j to Σ−j+1, 1 ≤ j ≤ r − 1, and Nr to N1 by Σ+
r to Σ−1 to

obtain a non-arithmetic hyperbolic manifold built from r building blocks.

Gelander–Levit also construct large families of non-arithmetic manifolds, in
which they start with any 4-regular and 2-colored graph G on k vertices such
that every vertex has the same color except for one and such that each edge is
given a label from the set {a, a−1, b, b−1}. They then form a graph of spaces where
the vertex set V corresponds to two fixed arithmetic building blocks {V0, V1} each
with totally geodesic boundary with four connected components, each isometric to
a fixed hyperbolic (n − 1)-manifold Σ. Moreover, the edge set E corresponds to
gluing together two of four arithmetic building blocks from a set {A−, A+, B−, B+}
each with totally geodesic boundary with two connected components, each also iso-
metric to the same Σ as before (see [16, Rem. 3.2] for details). Provided the building
blocks are dissimilar, this constructs a non-arithmetic hyperbolic manifold.

3. Closure rigidity

The purpose of this section is to show that any totally geodesic submanifold
with boundary lying on a cutting hypersurface can be extended to a finite-volume
totally geodesic submanifold of the arithmetic manifold associated with each of the
adjacent building blocks.

Proving this will require the following lemma, whose statement requires a defi-
nition. Let M be a finite-volume cusped hyperbolic n-manifold. Then a geodesic
σ in M is called a cusp-to-cusp geodesic if it is the image in M of a geodesic in

M̃ = Hn connecting two parabolic fixed points for the action of π1(M) on Hn.
Also, we refer the reader to [32, §12.6] for details about the structure of cusps of
hyperbolic manifolds.

Lemma 3.1. Let M be a finite-volume hyperbolic n-manifold, Σ a finite-volume
embedded totally geodesic hypersurface, and N a finite-volume immersed totally
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geodesic m-manifold, m ≥ 2. Suppose N is not contained in Σ. Then N ∩ Σ is a
union of complete hyperbolic (m − 1)-manifolds. If either m ≥ 3 or Σ is compact,
then each element of this union has finite volume. If m = 2 and N ∩ Σ is not
finite-volume, then it is a union of closed geodesics and cusp-to-cusp geodesics.

Proof. Let M , Σ, and N be as in the statement of the lemma, and let X = N ∩Σ.
This intersection is necessarily transverse, since N is not contained in Σ and for any
x ∈ Hn there is a unique H` tangent to any `-plane in TxHn. Being either complete
or totally geodesic is preserved under intersections, so each connected component
of X is a properly embedded complete immersed totally geodesic submanifold. If
X is a union of compact components, it is clearly finite volume and we are done.

If X is not compact, then M necessarily has cusps, so we want to show that each
component of X has cusps of full rank. In other words, we want to show that its
cusps are finite-volume. Indeed, the intersection of X with the compact core of M
is compact so this intersection clearly has finite volume. Cusp cross-sections of X
are intersections of cusp cross-sections of N and Σ, which are closed flat (m − 1)-
and (n− 2)-manifolds, respectively, naturally immersed inside a closed flat (n− 1)-
manifold cusp cross-section of M . In particular, this intersection is a closed flat
(m − 2)-manifold. When m > 2, we see that each cusp end is the product of a
closed flat (m − 2)-manifold with R+. This has finite volume, and the lemma is
proved in this case.

When m = 2, we are in the case where our component of X going out the cusp of
M is a complete hyperbolic 1-manifold with cusps, i.e., a geodesic ray going out to
the cusp. Since this component of X is complete, it extends in the other direction
to a bi-infinite geodesic contained in N ∩ Σ. We claim that the other end of this
geodesic also goes to a cusp of M . To see this, notice that otherwise such a geodesic
could not be properly embedded in M , but this is impossible for the intersection
of two complete totally geodesic subspaces of M . In particular, we see that this
component of X must be a cusp-to-cusp geodesic. This proves the lemma. �

We will also need the following.

Lemma 3.2. Let N be a finite volume hyperbolic m-manifold with nonempty totally
geodesic boundary ∂N , and let N1, . . . , Nk be the connected components of ∂N . If
either

(1) at least two components Ni have finite (m− 1)-dimensional volume, or
(2) at least one component Ni has finite (m − 1)-dimensional volume and N

does not deformation retract into that boundary component,

then there exists an element g ∈ π1(N) that is not conjugate into any of the π1(Ni).

Proof. We will fix an isometric embedding of the universal cover Ñ into the ball

model of Hm. There is an isometric action of ∆ = π1(N) on Ñ , which we can extend

to an isometric action on Hm. The region Ñ inside Hm has boundary consisting of
a countably infinite collection of isometrically embedded copies of Hm−1, each a lift
of one of the boundary components Ni. We will call these the boundary hyperplanes

of the region Ñ .
All the distinct boundary hyperplanes are pairwise disjoint inside Hm, but can

have closures inside Hm ∪ ∂∞Hm that intersect nontrivially. Note that the closures
intersect nontrivially when the corresponding point at infinity comes from distinct
cusps of ∂N that are asymptotic in N . Since we are in the ball model for Hm, each
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of the boundary hyperplanes has a boundary at infinity which determines a round
(m − 2)-sphere inside the standard sphere Sm−1 = ∂∞Hm. We will call these the
boundary hyperspheres. Observe that for any ε > 0, there are only finitely many
boundary hyperspheres of diameter greater than ε, measured in the round metric
on Sm−1.

Let us consider case (1), and assume N1, N2 have finite volume. Note that
the negative curvature assumption implies that N cannot be a cylinder. Each of
the corresponding subgroups ∆i = π1(Ni) inside ∆ = π1(N) is nontrivial and

contains an element acting hyperbolically on Ñi. Here we are viewing Ñi as a

specific boundary hyperplane of the region Ñ . Let γi ∈ ∆i be such an element
and γ±i ⊂ Sm−1 = ∂∞Hm denote the two limit points of the geodesic determined

by γi. Notice that this geodesic lies inside Ñi, so the pair of points γ±i lie on the

boundary hypersphere ∂∞Ñi inside Sm−1. Also, this geodesic is the lift of a closed

geodesic in Ni, so the points γ±i do not correspond to cusp points in ∂∞Ñi, and
hence cannot lie in any other boundary hyperspheres.

Let Λ ⊂ Sm−1 be the limit set for the ∆-action. The pair of distinct points
γ+

1 , γ
+
2 lie in Λ and are a positive distance δ apart. Since they are disjoint, there

are only finitely many boundary hyperspheres of diameter greater than δ/3, so
we can choose an ε < δ/3 with the property that the open ε-balls Bi ⊂ Sm−1

centered at γ+
i do not intersect this finite collection of boundary hyperspheres,

except potentially ∂∞Ñ1 and ∂∞Ñ2. Then B1 ∩Λ and B2 ∩Λ are a pair of disjoint
open subsets in the limit set Λ, so by [17, §8.2F-G], there exists a hyperbolic element
g ∈ ∆ with g+ ∈ B1 and g− ∈ B2. From our choice of ε, the pair of points g±

cannot lie on any single boundary hypersphere. This implies that the element g
cannot be conjugated into any π1(Ni), as desired.

Now consider case (2), and assume N1 has finite volume and N does not de-
formation retract into N1. Since N , N1 are aspherical, this implies that there
exists an h ∈ π1(N) r π1(N1). We now consider the two distinct boundary hyper-

planes Ñ1 and h Ñ1. Since N1 has finite volume, we can pick a hyperbolic element
g1 ∈ π1(N1), and then define another hyperbolic element g2 = hg1h

−1. These

stabilize the boundary hyperplanes Ñ1 and h Ñ1 respectively, so we obtain pairs

of limit points g±1 ∈ ∂∞Ñ1 and g±2 ∈ ∂∞(h Ñ1) in the corresponding boundary
hyperspheres. We can then proceed as in case (1) to produce the desired element
g. This completes the proof of the lemma. �

We are now ready to state and prove the main result of this section.

Theorem 3.3 (Closure Rigidity). Let M = Hn/Γ be an arithmetic hyperbolic n-
manifold, n ≥ 3, π : Hn → M be the universal covering, and Σ = Hn−1/Γ0 ⊂ M
be an embedded oriented finite volume totally geodesic hypersurface. For a fixed
1 < m ≤ n−1, suppose that f : Hm → Hn is a totally geodesic embedding such that
the image (π ◦ f)(Hm) ⊂M contains a connected finite-volume m-manifold N with
totally geodesic boundary such that ∂N ∩ Σ 6= ∅. Further, suppose that N does not
deformation retract into Σ. Then (π ◦ f)(Hm) is an immersed finite-volume totally
geodesic submanifold of M of dimension m.

Proof. Since M contains a finite volume hypersurface, we have that M is defined
by a quadratic form q on the vector space V defined over a number field F and Σ
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Figure 1. The case when N has one boundary component.

comes from an F -defined codimension one subspace V0 ⊂ V . It will be convenient
to set k = n−m as the codimension of f(Hm) in Hn.

If Σ is nonseparating then let M1 be M cut open along Σ and otherwise suppose
that Σ divides M into two submanifolds with boundary M1∪M2, ∂M1 = ∂M2 = Σ.
Set Γi = π1(Mi) and Γ0 = π1(Σ), considered as a subgroup of Γ. Without loss of
generality, we can assume that N ⊂ M1. Indeed, if every component of N ∩M1

and N ∩M2 deformation retracts into Σ, then N itself would deformation retract
into Σ, hence up to relabeling we can assume that N ∩M1 contains a component
that doesn’t retract into Σ. Then ∂N contains a nonempty union N1, . . . , Nr of
immersed totally geodesic submanifolds of Σ (note that the Ni might intersect if
N is not embedded).

We first consider the case where the Ni satisfy either (1) or (2) in Lemma 3.2.
Note that this is always the case when m > 2. Let ∆ = π1(N) ⊂ Γ1 and ∆i =
π1(Ni) ⊂ Γ0. After reordering the boundary components, we can assume that
π1(N1) is nontrivial. Lemma 3.2 implies that there is some g ∈ ∆ that is not ∆-
conjugate into some ∆i (i.e., does not deformation retract into Σ). For example,
this is necessarily the case when N has a unique boundary component, since N
cannot deformation retract into Σ (see Figure 1). Recall from the proof of Lemma
3.2 that N cannot be a cylinder. We now need some arithmetic notation.

Since N1 is a finite-volume totally geodesic submanifold of Σ, it is associated
with an F -defined subspace V1 ⊂ V0 of codimension k. Similarly, associated with
f : Hm → Hn is a codimension k subspace W (R) ⊂ V (R) with the property that
V1(R) ⊂ W (R). It follows that W (R) is a ∆-invariant subspace of V (R), since the

image of f contains a lift of the map on universal coverings Ñ → M̃1. In fact, there
exists a vector w ∈ V (R) so that W (R) is spanned by w and V1(F ). We will show
that we can take w ∈ V (F ), hence W is an F -defined subspace of V and (π◦f)(Hm)
then must determine an immersed finite-volume totally geodesic submanifold of M .

We have that g(W (R)) = W (R), but g(V1(R)) 6= V1(R), since g is not contained
in Γ0. However, the fact that g ∈ Γ1 implies that g(V (F )) = V (F ). In particular,
g(V1(F )) ⊂ W (R) contains a vector v ∈ V (F ) that is not contained in V1(R).
Therefore, the F -span of V1(F ) and v is a codimension 1 subspace of V (F ) contained
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in W (R). Thus W is defined over F as claimed. This completes the proof when
the Ni satisfy either (1) or (2) in Lemma 3.2.

By Lemma 3.1, what remains is the case where m = 2 and N ∩Σ is a finite union
of closed geodesics and cusp-to-cusp geodesics. (Lemma 3.2 actually allows us to
reduce to the case where N ∩ Σ contains at most one closed geodesic, but this is
not needed in what follows.)

Let σ and τ be two of the boundary components of N . Each is either a closed

geodesic in M , or a cusp-to-cusp geodesic. Choose a lift of Σ to Σ̃ = Hn−1 ⊂ Hn.

We then have a lift of N to Hn that we can complete to N̂ = H2 ⊂ Hn such

that N̂ ∩ Σ̃ is a geodesic σ̃ lifting σ. Associated with Σ̃ is a subspace V0 ⊂ V of
codimension one on which the restriction of q has signature (n− 1, 1).

First, suppose that σ is a cusp-to-cusp geodesic. Then σ̃ is a geodesic connecting
two cusp points z1, z2 ∈ ∂∞Hn for the action of Γ. Each zi is determined by a unique
F -defined isotropic line Li ⊂ V . Let Y be the plane in V spanned over F by these
two lines. Since G has Q-rank one, there cannot be q-orthogonal isotropic lines in
V , hence the restriction of q to Y ⊥ is definite. Having dimension n− 1, we see that
q is positive definite on Y ⊥, and hence q has signature (1, 1) on Y (for the chosen
embedding of F in R). This subspace of V (R) is associated with the geodesic in
Hn connecting the two ideal points z1 and z2. Note that Y ⊂ V0.

When σ is a closed geodesic, we similarly obtain an F -defined subspace Y on

which q has signature (1, 1) associated with the lift σ̃. Our choice of lift to M̃
determines a unique cyclic subgroup C in the conjugacy class of cyclic subgroups
of Γ associated with the geodesic σ. Then C preserves an F -defined q-orthogonal
splitting of V into Y ⊂ V0 and Y ⊥ having the same properties as in the previous
case.

Now, consider the lift τ̃ of τ to N̂ . The same arguments as above show that
this determines two F -defined and q-orthogonal subspaces Z and Z⊥ such that the

restriction of q to Z has signature (1, 1). However, since τ̃ is not contained in Σ̃ for
this choice of lifts, we see that Z is not a subspace of V0.

Now, let U be the subspace of V spanned over F by Y and Z. Since σ̃ and τ̃

both lie in N̂ , i.e., the same embedded H2 in Hn, it follows that U is 3-dimensional
and that the restriction of q to U has signature (2, 1). Since U is F -defined, we see

that there is an arithmetic subgroup of Γ acting on N̂ with finite-volume quotient.
This completes the proof of the theorem in this case. �

Remark 3.4. The assumption that 1 < m is critical. Indeed, in the case where N
is a geodesic arc in M1 connecting two distinct points in Σ, the proof completely
falls apart in that N and ∂N have trivial fundamental group. However, the first
step of the proof does work in the following sense. Suppose that Γ is an arithmetic
Kleinian group that contains arithmetic Fuchsian subgroups. If γ1, γ2 are two purely
hyperbolic elements of Γ that mutually preserve a totally geodesic hyperbolic plane
in H3, then 〈γ1, γ2〉 is contained in an arithmetic Fuchsian subgroup of Γ.

Remark 3.5. We note that the proof required extra care in the case m = 2 with
N noncompact. For example, one is faced with the possibility that N is an ideal
polygon meeting Σ along its sides. In this case, there is no fundamental group for
N or ∂N , but the cusp-to-cusp geodesics still carry sufficient arithmetic data for
us to conclude that N is contained in a totally geodesic surface.
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Ñ2Ñ1

Σ̃
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Figure 2. The proof of Angle Rigidity. Subspaces of Ñi associ-
ated with geodesic subspaces of Mi (green) are matched only if
they meet Σ orthogonally.

4. Angle Rigidity

In this section we prove the following.

Theorem 4.1 (Angle Rigidity). Fix a non-arithmetic hyperbolic manifold M that
is built from building blocks, and suppose that two adjacent building blocks N1 and
N2 are arithmetic and dissimilar. Let A ⊂ M be a connected finite-volume im-
mersed totally geodesic submanifold of dimension at least 2 such that A intersects
the interior of N1 and N2, i.e. crosses a cutting hypersurface Σ. Then A meets Σ
orthogonally.

As remarked in the introduction, a special case of this result was recently and
independently obtained in [6].

Proof. The basic idea of the proof is as follows. Each Ni is associated with an
arithmetic manifold Mi. That the Mi share isometric codimension 1 submanifolds
allows us to assume they are defined via quadratic forms over the same field F [28,
§6]. Closure Rigidity allows us to assume that A is built from gluing submanifolds
Ai of Ni, where Ai = Ni ∩ Bi for Bi a finite-volume immersed totally geodesic
submanifold of Mi. We will show when M1 is not commensurable with M2 that
such a matching can only occur when the Bi meet Σ orthogonally. See Figure 2. The
key point is that such submanifolds Bi arise from certain F -defined subspaces of the
F -vector space for Mi, but the identification between half-spaces in Hn arising from
gluing N2 to N1 is defined by a map of real vector spaces that preserves definition
over F only for very special subspaces.

We first carefully explain why Closure Rigidity applies. Set Ai = Ni ∩ A ⊂Mi.
This defines an immersed totally geodesic submanifold of Mi with totally geodesic
boundary that meets the cutting hypersurface Σ nontrivially. If fi : Hm ↪→ Hn
denotes the extension to Hm of the lift Ãi → M̃i, we see that Ãi satisfies the
assumptions of Theorem 3.3. The existence of the totally geodesic submanifold Bi
as above follows.

Next we set up some notation and make some simplifying assumptions. Sup-
pose that N1 and N2 are dissimilar arithmetic building blocks glued together by an
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orientation-reversing isometry of the connected totally geodesic boundary compo-
nent Σ. Being arithmetic, each Ni has an associated quadratic space (Vi, qi), which
is well defined up to similarity. The isometry ϕ : Σ → Σ determines a similarity
between codimension one subspaces Hi of Vi on which the restriction of qi has sig-
nature (n − 1, 1). We can change the similarity class of q2 and assume that the
similarity H2 → H1 is an isometry.

Therefore, we can assume there is a quadratic space (H, q) of dimension n and
signature (n− 1, 1) that is isometric to a codimension one subspace of each (Vi, qi).
Using Gram–Schmidt, we can write

(Vi, qi) = (Vi, 〈αi〉 ⊕ q),

for some αi ∈ F ∗. More specifically, we can choose coordinates {x0, . . . , xn} on V1

and {y0, . . . , yn} on V2 such that

q1(x0, . . . , xn) = α1x
2
0 + q(x1, . . . , xn),

q2(y0, . . . , yn) = α2y
2
0 + q(y1, . . . , yn).

The isometry between the models Hnqi of hyperbolic space associated with q2 and

q1 is then induced by the map V2(R) → V1(R) defined by y0 7→
√
α2/α1 x0 and

yi 7→ xi for 1 ≤ i ≤ n (compare with [18, §2.9]). Let Φ denote this map, and note
that Φ determines a map of F -vector spaces V2 → V1 if and only if α2/α1 is a
square in F ∗. By Witt cancellation, this holds if and only if q1 is isometric to q2,
which is definitely not the case if M1 and M2 are noncommensurable.

Consider a codimension k totally geodesic submanifold Bi of the arithmetic
manifold Mi associated with qi. Then Bi arises from a codimension k subspace
Wi of the F -vector space Vi on which the restriction of qi has signature (n− k, 1).
Furthermore, suppose that the intersection of Bi with Σ contains a codimension
k totally geodesic submanifold of Σ. Then, for the correct choice of base point,
Wi intersects H in a codimension k subspace Ui of H on which the restriction has
signature (n− k − 1, 1). Thus Wi is generated by Ui and a vector not in H.

Turning this around, we can construct all the submanifolds Bi as above by
starting with a codimension k subspace Ui of H then taking the subspace of Vi
generated by Ui and another vector ξi that is not contained in H. Note that ξi is
not in H if and only if y0 6= 0. Let Wi be the span over F of ξi and Ui. To have

B̃1 glue to B̃2 means precisely that Φ takes W2(R) to W1(R).
Notice that Φ(U2) = U1, since Φ(H) = H. If ξ2 has coordinates yi, then

Φ(ξ2) =
(√

α2/α1y0 , y1 , . . . , yn

)
∈ V1(R).

If α2/α1 fails to be a square in F ∗, we see that Φ(W2(R)) is W1(R) for W1 an
F -defined subspace of V1 if and only if y1 = · · · = yn = 0. This proves that such an
F -defined subspace of V2 maps to an F -defined subspace of V1 if and only if Wi(R)
is the R-span of Ui and the vector (1, 0, . . . , 0). The same argument shows that this
again holds with the roles of V1 and V2 reversed.

Geometrically, this proves that the submanifolds Bi of Mi that could possibly
give rise to A as in the statement of the theorem are associated with subspaces
Wi of Vi generated by a codimension one subspace Ui of H along with the vector
(1, 0, . . . , 0). It remains to compute that such a Bi intersects Σ orthogonally.
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The subspace of Vi associated with Σ is the qi-orthogonal complement to e =
(1, 0, . . . , 0). The subspace associated with Bi is the orthogonal complement Wi

to a subspace Zi of Vi with dimension k. Since (1, 0, . . . , 0) ∈ Wi, Zi must be a
subspace of H. However, the angle θi between Bi and Σ satisfies

cos2 θi = sup
z∈Zi

〈e, z〉2qi
qi(e)qi(z)

.

See [32, p. 71]. Since Zi ⊆ H, z is qi-orthogonal to e for all z ∈ Zi, and we see that
the above expression is identically zero. This shows that Bi meets Σ orthogonally,
as desired. �

Remark 4.2. Note that the proof of Theorem 4.1 does not appear to use the
assumption that A has dimension at least two. In fact, the use of this hypothesis
is hiding in our application of Closure Rigidity, in the very first step of the proof.
Indeed, Closure Rigidity fails when A is a geodesic; see Remark 3.4.

Remark 4.3. With a bit more work, one can show that this approach proves a
stronger result. Suppose M1,M2 are arithmetic hyperbolic n-manifolds containing
an isometric totally geodesic hypersurface Σ. Suppose that there is a further totally
geodesic subspace Z0 ⊂ Σ of codimension 1 ≤ k < n−1 and a codimension k totally
geodesic submanifold Ni of Mi that meets Σ at Z0 with angle θi. If θ2 = ±θ1, then
M2 is commensurable with M1. One uses the above decomposition of q1 and q2 to
directly build an isometry between the quadratic spaces.

Remark 4.4. We now discuss the similarities and differences between our work
and the work of Benoist–Oh, in particular with regard to the proofs of Theorem
1.2 in dimension 3. The angle calculation at the end of the proof of Theorem 4.1
specializes in dimension 3 to be almost identical to their Lemma 12.2 and Corollary
12.3. Corollary 12.3 is then used in exactly the same way in the proof of their
Proposition 12.1 as our observation is used in our proof of Theorem 4.1. While
there are superficial similarities, the rest of the proofs are in fact substantially dif-
ferent. In most cases of our proof of Theorem 3.3, we use geometric techniques to
prove that a connected component of the intersection of a totally geodesic subman-
ifold with an arithmetic building block has non-elementary fundamental group and
hence is arithmetically defined. This appears similar to the use of [6, Thm. 11.8]
in their proof of [6, Prop. 12.1], but in fact the groups considered are different.
They consider the stabilizer of an entire geodesic plane in the infinite cover of the
arithmetic manifold corresponding to the fundamental group of the building block
and use dynamics of unipotent flows to show this group is non-elementary. The
group they consider always contains the group we consider. This difference is most
striking in those special cases where the object we consider may have no funda-
mental group while they prove the object they consider always has non-elementary
fundamental group. The proof of [6, Prop. 12.1] in that paper only covers the case
of three manifolds built by gluing along cocompact cutting surfaces.

5. Equidistribution, homogeneous dynamics, and proofs of the main
theorems

In this section, we complete the proof of Theorem 1.4. We will first give some
geometric reductions in Section 5.1 that recast the problem as a dynamical one.
For the reader’s convenience, we then give a simple proof in Section 5.2 in the
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Figure 3. Choosing ε0 in the proof of Proposition 5.1.

special case of closed hypersurfaces in compact manifolds. We then go on to give
a proof of the general form of Theorem 1.4, first in the cocompact case in Section
5.3, and finally in the finite-volume case in Section 5.4.

5.1. Some geometric preliminaries. For a Riemannian manifold M , we denote
by OF(M) the bundle of oriented orthonormal frames on M and for any 1 ≤
m ≤ n we denote by GmM the bundle over M whose fiber over a point p is
the Grassmannian of m-dimensional subspaces in TpM . For each m, there is a
natural bundle map OF(M) → GmM obtained by sending an orthonormal frame
(v1, . . . , vn) at a point p to the m-dimensional subspace spanned by v1, . . . , vm. The
fiber of the bundle map OF(M)→ GmM can naturally be identified with

S (O(m)×O(n−m)) = {(A,B) ∈ O(m)×O(n−m) : det(A) det(B) = 1} .
An immersion N →M with dim(N) = m induces a map GmN → GmM .

We now spend the rest of this subsection proving the following proposition.

Proposition 5.1. Let M be an n-dimensional hyperbolic manifold built from build-
ing blocks containing two adjacent, arithmetic, and dissimilar building blocks. Then
for any 2 ≤ m < n there is an open subset Ωm ⊆ GmM such that GmN ∩ Ωm = ∅
for any finite-volume immersed totally geodesic submanifold N ⊂ M of dimension
m.

Proof. Fix m ≥ 2. By assumption, there is a totally geodesic cutting hypersurface
Σ ⊂ M contained in the common boundary of the arithmetic building blocks. We
know from Theorem 4.1 that any closed immersed totally geodesic m-dimensional
submanifold N →M intersects Σ orthogonally. That the submanifold N intersects
Σ orthogonally means that (TxN)⊥ ⊆ TxΣ for every x ∈ N ∩ Σ (note that this
condition is in fact symmetric).

Choose a compact core C for M [23, p. 156]. Since Σ∩C is a smoothly embedded
compact codimension one submanifold in M , there is a small enough δ so that the
exponential map, defined on the δ-neighborhood of the zero section of the normal
bundle to Σ ∩C ⊂M , gives a diffeomorphism from (Σ ∩C)× (−δ, δ) into a subset

of M . For a subset S ⊂ Σ ∩ C, denote by Ŝ the image of S × (−δ, δ) under this

exponential map. For all points p inside Ŝ, there is a unique minimal length geodesic
γp from p to Σ ∩ C, which will have length < δ, and will terminate at a point on
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S. Now pick x in the interior of Σ ∩ C, and fix a small open metric neighborhood
U of x in Σ ∩ C, of radius smaller than the distance from x to ∂C.

We form the subset

V = {(p,W ) ∈ GmM | p ∈ Û , γ̇p ∈W},

and denote by Vp the subset of V lying above a point p ∈ Û . Note that V → Û
is a fiber bundle over an open subset of M with fiber Vp a closed subset of the
corresponding Grassmannian fiber of GmM . Indeed, Vp is a copy of Gr(m−1,Rn−1)
lying within the Gr(m,Rn) fiber of GmM .

Take a geodesic γ in H2, a point A at distance δ/2 from γ, and let B denote the
projection of A onto γ. Set 0 < ε0 < π/2 to be the angle between the geodesic AB
from A to B and the geodesic ray α from A to one of the endpoints of γ on ∂∞H2.
See Figure 3. In particular, notice that any geodesic arc in H2 starting at A with
initial angle 0 < ε < ε0 with AB then must intersect γ in H2.

Take 0 < ε < ε0, and consider the set Nε(V) defined by taking the fiber-wise
ε-neighborhood of the set V, measured in the angular metric on the Grassmannian.

Thus a pair (p,W ) lies in Nε(V) if and only if p ∈ Û and there exists a W ′ ∈ Vp
such that θ(W,W ′) < ε. Finally, we let

Ωm = Nε(V) r V,

and note that Ωm is an open subset of GmM .
We now check that GmN∩Ωm = ∅ for any finite-volume immersed m-dimensional

totally geodesic submanifold N of M . By way of contradiction, assume that there
exists a point (p,W ) ∈ GmN ∩ Ωm. Since N has dimension m, this means that
p ∈ N , W = TpN ⊂ TpM , and 0 < θ(W,Vp) < ε. This last inequality tells us that

0 < θ(W, γ̇p) < ε, where γp is the unique geodesic from p ∈ Û to U ⊂ Σ.
We let w ∈ W denote the projection of γ̇p to TpN , and consider the subspace

Z = span{w, γ̇p} of TpM . We have that dim(Z ∩ TpN) = dim(Z ∩W ) = 1, and
hence Z defines a (not necessarily closed) geodesic η contained in the submanifold
N . It also contains the direction vector γ̇p corresponding to the minimal geodesic
from p to Σ. Moreover, we have that

z = γ̇p − w ∈ (TpN)⊥,

is a nonzero vector, hence dim(Z ∩ (TpN)⊥) = 1.

The 2-dimensional subspace Z gives rise to an isometric immersion f : H2 →M
whose image contains both geodesics γp and η. We let q denote the terminal point
of γp in the open subset U of the hypersurface Σ. Since θ(γ̇p, η̇) = θ(γ̇p, w) < ε,
our choice of ε < ε0 implies that the geodesic η intersects Σ at a point q′. Since
η̇ ∈ TpN , we see that η is contained entirely in the submanifold N , and hence that
q′ ∈ N ∩ Σ.

Notice that we now have a geodesic triangle contained in the isometrically im-
mersed hyperbolic plane f(H2), consisting of the geodesic segment γp, the geodesic
segment η, and the geodesic ξ joining the two endpoints q, q′ ∈ Σ. See Figure
4. Since Σ is totally geodesic, we see that ξ is contained entirely in Σ, and basic
hyperbolic trigonometry implies that θq′(η, ξ) < π/2, since θq(ξ, γp) = π/2.

We claim that N fails to be orthogonal to Σ at the point q′. To see this, we
need to exhibit a vector in (Tq′N)⊥ that does not lie in the subspace Tq′Σ. Recall
that z ∈ Z was a vector orthogonal to TpN , and tangent to the immersed totally
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Figure 4. The geodesic triangle in Proposition 5.1.

geodesic hyperbolic plane f(H2). We can thus parallel transport this orthogonal
vector along η ⊂ N to obtain a vector z′ ∈ Tq′M . Since parallel transport preserves
orthogonality, we see that z′ ∈ (Tq′N)⊥. Also, z ∈ Tpf(H2), and η is contained
in f(H2), which forces z′ ∈ Tq′f(H2). Since we have z ⊥ η̇(p), it follows that
z′ ⊥ η̇(q′).

Finally, focusing on the behavior at Tq′M , we have three vectors that all lie

in the 2-dimensional subspace Tq′f(H2) ⊂ Tq′M : the vector ξ̇, which spans the
1-dimensional subspace

Tq′f(H2) ∩ Tq′Σ,

the vector η̇, which we argued forms an angle θq′(η̇, ξ̇) < π/2 with ξ̇, and the
vector z′ ∈ (Tq′N)⊥ that is orthogonal to η̇. It immediately follows that z′ cannot

be parallel to ξ̇. Since ξ̇ generates the intersection of (Tq′N)⊥ with Tq′Σ, we have
found an element of (Tq′N)⊥ that cannot be in Tq′Σ, and hence N is not orthogonal
to Σ.

This contradicts Theorem 4.1, so we conclude that the set GmN ∩ Ωm is indeed
empty, completing the proof of the proposition. �

5.2. Codimension 1. In this subsection, we show how Proposition 5.1 can be
used to complete the proof of Theorem 1.4 for the case of closed hypersurfaces in a
compact manifold. For this, we use the following result of Shah [38, Thm. B] from
homogeneous dynamics.

Theorem 5.2. Suppose n ≥ 3, G = SO0(n, 1), Γ < G a cocompact lattice, and
W = SO0(n− 1, 1). Then every W invariant subset of G/Γ is either dense or the
union of finitely many closed W orbits.

It is worth mentioning that one can also prove Theorem 5.2 by using Ratner’s
work on invariant measures for unipotent flows [33] and work of either Ratner
or Dani–Margulis on equidistribution and orbit closures [34, 10]. In fact we will
use this approach in Section 5.3. The proof given in Shah’s paper follows instead
Margulis’ original proof of the Oppenheim conjecture using topological dynamics
[24, 9]. It seems possible that those methods might prove all the results we need in
this paper, but we do not pursue this here.

The following standard lemma shows how immersed totally geodesic submani-
folds correspond to closed W orbits in G/Γ.
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Lemma 5.3. Let M be a compact hyperbolic manifold of dimension n and N ⊂M
a closed immersed totally geodesic hypersurface. Then there are either one or two
closed W orbits in G/Γ which project onto N . Furthermore, distinct immersed
totally geodesic hypersurfaces give rise to distinct W orbits.

Proof. Given a closed immersed totally geodesic hypersurface N , its lift Ñ to the

universal cover M̃ = Hn has stabilizer

H = g−1 O+(n− 1, 1)g,

where g is any isometry taking Ñ to the standard Hn−1 stabilized by

O+(n− 1, 1) = S(O(1)×O(n− 1, 1)) ∩ SO0(n, 1).

Since N is closed, H ∩ Γ is a cocompact lattice. Writing O+(n − 1, 1)g = gH we
see that the O+(n − 1, 1) orbit of [g] is the g translate of H/H ∩ Γ in G/Γ. As
O+(n − 1, 1) contains SO0(n − 1, 1) as a subgroup of index two, this O+(n − 1, 1)
orbit is either one or two SO0(n− 1, 1) orbits giving the first claim. Since distinct
choices of N give rise to distinct groups H, the last statement is clear. �

We are now in a position to conclude Theorem 1.4 in our special case.

Theorem 5.4. Let M be a compact hyperbolic manifold built from building blocks
with two adjacent, arithmetic, and dissimilar building blocks. Then there are only
finitely many closed immersed totally geodesic hypersurfaces in M .

Proof. Denote by Ωn−1 the open set provided by Proposition 5.1 applied when
m = n − 1 and by V its pre-image in G/Γ (which can be identified with OF (M),
the orthonormal frame bundle). By Proposition 5.1 and Lemma 5.3, the W orbits
arising from all closed immersed totally geodesic hypersurfaces in M have trivial
intersection with V . By Theorem 5.2 we thus have a finite collection of W or-
bits and hence we must only have finitely many totally geodesic closed immersed
hypersurfaces in M . �

5.3. Theorem 1.4 in the compact case. For simplicity, we write this subsection
assuming that M is compact, that is to say that Γ < G is a cocompact lattice.
Throughout we assume M satisfies the hypotheses of Theorem 1.4 and use the
conventions that m = n− k and Wm = SO0(m, 1). Our choice of Wm ensures that
it is connected and generated by one-parameter unipotent subgroups.

We begin by recalling some notation and a result of Dani–Margulis. Let H be
the collection of subgroups H of G such that H∩Γ is a lattice in H and Ad(H∩Γ) is
Zariski dense in Ad(H). Given H ∈ H and a group W ⊂ G generated by unipotent
elements, define

X(H,W ) = {g ∈ G |Wg ⊂ gH}.
We remark for later that the following is immediate from the definition.

Lemma 5.5. If x ∈ G, then X(H,xWx−1) = xX(H,W ).

We now recall a special case of [10, Thm. 3], where the advantage of assuming
that Γ is cocompact is that we may take K = G/Γ in their notation. (We emphasize
here that our K below will be a maximal compact subgroup of G.)

Theorem 5.6. Let G be a Lie group and Γ < G a cocompact lattice. Let µ be the
Haar measure on G/Γ. Let U = {ut} be a one parameter Ad-unipotent subgroup of
G and let φ be a bounded continuous function on G/Γ. Fix ε > 0, then there exist
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finitely many subgroups H1, . . . Hr ∈ H such that for x /∈ ∪ri=1X(Hi, U)Γ/Γ there
exists a T0 ≥ 0 such that∣∣∣∣∣ 1

T

∫ T

0

φ(utx)dt−
∫
G/Γ

φdµ

∣∣∣∣∣ < ε,

for all T > T0.

This theorem says that any ut trajectory not contained in any of the X(Hi, U)
eventually has time average for φ equal to the space average for φ. Then, let
πm : OF(M) → GmM be the bundle map defined in §5.1, Ωm be the open set
provided by Proposition 5.1, and let Vm = π−1

m (Ωm). For our purposes we will
always take φm to be a compactly supported function of total integral 1 with
support in Vm. Then any unipotent trajectory in OF(M) corresponding to part of
the horocycle flow of a closed immersed totally geodesic submanifold must have

1

T

∫ T

0

φm(utx)dt = 0,

for all T . In particular, the entire trajectory is contained in

r⋃
i=1

X(Hi, U)Γ/Γ,

by Theorem 5.6.
In the remainder of this section, we show that all pre-images of closed immersed

totally geodesic submanifolds are contained in

r⋃
i=1

X(Hi,Wm)Γ/Γ,

for some finite collection of subgroups Hi ∈ H. We then give a concrete description
of each X(Hi,Wm). These form the content of Lemma 5.7 and Proposition 5.11.
The geometric translations in Corollaries 5.8 and 5.12 will then give the requisite
finiteness statement. We now begin with a key reduction for our proof, noting that
Wm is generated by unipotent subgroups.

Lemma 5.7. Fix m between 2 and n − 1, let W = Wm, and let U1, . . . , Us be
unipotent subgroups generating W . If H ∈ H, then

X(H,W ) =
s⋂
i=1

X(H,Ui).

Proof. It is clear that X(H,W ) ⊂ X(H,Ui) for all 1 ≤ i ≤ s. Taking the deriva-
tive of the defining equation of X(H,W ) we see that g ∈ X(H,W ) if and only if
Ad(g−1)w ⊂ h. Consequently if g ∈ X(H,W ), then Ad(g−1)u ⊂ h for any con-
nected subgroup U < W . As h is a subalgebra, if Ad(g−1)ui ⊂ h for all 1 ≤ i ≤ s
then Ad(g−1)w ⊂ h. This gives the reverse containment. �

Corollary 5.8. Let M = Hn/Γ be any compact hyperbolic manifold satisfying
the hypotheses of Theorem 1.4. Fix m between 2 and n − 1, and let K ∼= SO(n)
denote a maximal compact subgroup of G = SO0(n, 1). Then there are finitely
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many subgroups H1,m, · · ·Hjm,m of G such that the set of all closed immersed totally
geodesic submanifolds of M of dimension m is contained in

Xm = K\K

(
jm⋃
i=1

X(Hi,m,Wm)Γ/Γ

)
⊂M.

In particular, the set of all closed immersed totally geodesic submanifolds of M of
dimension between 2 and n− 1 is contained in the union of the Xm.

Proof. Fix some m between 2 and n − 1. By definition, the pre-image in G/Γ of
any closed immersed totally geodesic submanifold N of M with dimension m has

empty intersection with Vm. Arguing as in Lemma 5.3, we see that Ñ ⊂ M̃ is
stabilized by a conjugate of

L = S(O(n−m)×O(m, 1)) ∩ SO0(n, 1).

Again as in Lemma 5.3, there is a closed L orbit in G/Γ covering N which is clearly
Wm invariant, since Wm < L. Therefore the set of all closed immersed totally
geodesic submanifolds of M is contained in a Wm invariant set avoiding the set
Vm defined after the statement of Theorem 5.6. Picking any bounded continuous
function φm with support in Vm and average

∫
φmdµ = 1, the statement is then

immediate from Theorem 5.6 and Lemma 5.7 for totally geodesic submanifolds
of dimension m. Repeating the argument in each dimension establishes the last
statement in the corollary and completes the proof. �

To complete the proofs of our main theorems, we now need to compute the sets
X(H,Wm) for any H ∈ H. Note that by definition any H for which X(Hi,Wm) is
nonempty contains a conjugate of Wm or equivalently H is a conjugate of a group
containing Wm. The following lemma is elementary and contained in, for example,
Einsiedler–Wirth [13, Cor. 3.2].

Lemma 5.9. Any closed subgroup H < G = SO0(n, 1) containing Wm is of the
form

S(K ×O(`, 1)) ∩G,
where ` ≥ m and K is a compact subgroup of O(n− `).

We also need an elementary algebraic lemma concerning Wm, H, and G.

Lemma 5.10. Fix m between 2 and n−1, let W = Wm, and let H be any subgroup
satisfying W < H < G. Then any subgroup W ′ of H isomorphic to W is conjugate
to W in H. Furthermore, Aut(W ) < G and Aut(W ) < H unless H is K×SO(m, 1)
for some compact K.

Proof. For the first statement, we can assume H = SO0(`, 1) since any subgroup
W ′ ∼= SO0(m, 1) is obviously contained in a subgroup of H isomorphic to SO0(`, 1).
In this case we identify Isom(H`) with H by writing H` = K\H, where K =
SO(`) is a maximal compact subgroup of H. The orbits of W and W ′ in H` are
totally geodesic copies of Hm. Since SO0(`, 1) acts transitively on totally geodesic
embeddings of Hm, there is an isometry g ∈ H carrying the W orbit to the W ′ orbit
and hence g−1Wg < W ′. The last statement follows similarly as Aut(W ) is simply
the group of all isometries of Hm, including the orientation-reversing isometries,
and these can be realized in Isom(H`). The only case where these are not all in H
is when H contains only SO0(m, 1) and not O+(m, 1). �
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We now describe the possible X(H,Wm), where in what follows we write Z(W )
for the centralizer of a subgroup W in G.

Proposition 5.11. Fix m between 2 and n − 1, let W = Wm, and fix H ∈ H for
which X(H,W ) is nonempty. Then either there exists x ∈ G such that X(H,W ) =
Z(W )xH or there exists x1, x2 ∈ G such that X(H,W ) = Z(W )x1H ∪ Z(W )x2H.

Proof. Conjugating W by a suitable element x ∈ G we may assume that W ′ =
x−1Wx < H. We first show the corresponding result for W ′.

It is clear that Z(W ′)H ⊂ X(H,W ′) and we need only prove the reverse inclu-
sion. To this end, let y ∈ X(H,W ′) and define W ′′ = y−1W ′y to be the resulting
subgroup of H. Then from Lemma 5.10, we know that W ′′ is conjugate to W ′ by
an element h ∈ H. When Aut(W ′) < H, we may moreover choose h so that conju-
gating W ′ by yh is the identity on W ′. This immediately implies that yh ∈ Z(W ′)
and hence y ∈ Z(W ′)H. When Aut(W ′) is not contained in H, we can only guar-
antee that yh is either in Z(W ′) or is of the form zf where z ∈ Z(W ′) and f ∈ G
is any fixed element of G inducing the outer automorphism of W . Hence either
X(H,W ′) = Z(W ′)H or X(H,W ′) = Z(W ′)H ∪ Z(W ′)fH as claimed.

For the general case, we use Lemma 5.5 to compute X(H,W ). Since

Z(W ′) = Z(x−1Wx) = x−1Z(W )x,

in the first case we get that X(H,W ) = xx−1Z(W )xH = Z(W )xH and in the
second case we get that X(H,W ) = Z(W )xH ∪ Z(W )xfH. �

Corollary 5.12. Let M = Hn/Γ be a finite-volume hyperbolic manifold. For any
fixed H ∈ H and m between 2 and n − 1, the subset K\KX(H,Wm)Γ/Γ ⊂ M is
either one or two closed totally geodesic submanifolds of M .

Proof. It is enough to see that K\KZ(W )xHΓ/Γ is as described. Since Z(W ) ⊂ K,
it can be dropped from the expression and we have K\KxHΓ/Γ. By Lemma 5.9,

H = S(C ×O(`, 1)) ∩ SO0(n, 1),

where C is a subgroup of K and H ∩ Γ is a lattice. Hence we are reduced to
the K,Γ double coset of xH which is precisely a closed immersed totally geodesic
submanifold of M . �

Theorem 1.4 in the case where M is compact is now immediate from Corollary 5.8
and Corollary 5.12.

5.4. Theorem 1.4 in the general finite-volume case. The goal of this sub-
section is to prove an analogue of Corollary 5.8 in the case when M has finite
volume, after which one is reduced to repeating the proof in Section 5.3. There
is some difficulty in extending the argument above to the case of finite covolume,
since the general version of Theorem 5.6, stated below, is more complicated. Our
main tool for circumventing this issue is the following simple geometric lemma.
We emphasize that in this subsection we use ‘closed’ in the sense of orbits, so any
immersed finite-volume totally geodesic submanifold is considered to be closed in
what follows.

Lemma 5.13. Let M be a noncompact finite volume hyperbolic manifold of dimen-
sion n. Then there is a compact set C ⊂M such that any closed immersed totally
geodesic submanifold N in M of dimension between 2 and n − 1 has nonempty
intersection with C.
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Proof. Note that each N has fundamental group π1(N) which is a lattice in some
SO0(m, 1) and injects in π1(M). Moreover, the cusps of M have solvable funda-
mental groups and consequently π1(N) admits no embeddings into these groups.
Let C1 be a compact core of M [23, p. 156], so M rC1 is entirely contained in the
cusps. Then the image of every N in M must intersect C1. A compact subset C of
M containing a neighborhood of C1 gives the requisite compact set. �

We now state the general form of the theorem of Dani–Margulis [10, Thm. 3],
where in their language we assume that K = C, F = {x}, and the Ci are all of
the X(Hi, U). As in the previous section, our K below will be a maximal compact
subgroup of G.

Theorem 5.14. Let G be a connected Lie group and Γ < G a lattice and µ be the
G invariant probability measure on G/Γ. Let U = {ut} be any Ad-unipotent one
parameter subgroup of G and φ a bounded continuous function on G/Γ. Let C be
a compact subset of G/Γ and ε > 0 be given. Then there exist finitely many proper
closed subgroups H1, . . . Hr such that Hi∩Γ is a lattice in Hi and such that for any
x in

C r

(
r⋃
i=1

(X(Hi, U)Γ/Γ

)
,

there exists T0 ≥ 0 such that∣∣∣∣∣ 1

T

∫ T

0

φ(utx)dt−
∫
G/Γ

φdµ

∣∣∣∣∣ < ε,

for all T > T0.

The need for Lemma 5.13 comes from the fact that the Hi depend on C in this
statement. We believe this is an artifact of the proof given in [10], but modifying
their proof to avoid this dependence requires significant changes. We now show how
to combine Lemma 5.13 and Theorem 5.14 to obtain our desired finiteness result.

Proposition 5.15. Fix m between 2 and n − 1, let Wm = SO0(m, 1), and let M
be any finite volume hyperbolic manifold satisfying the hypotheses of Theorem 1.4.
Then there are finitely many subgroups H1,m, · · ·Hjm,m of G such that the set of all
closed immersed totally geodesic submanifolds of M of dimension m is contained
in

Xm = K\K

(
jm⋃
i=1

X(Hi,m,Wm)Γ/Γ

)
,

where K is a maximal compact subgroup of G. In particular, the set of all closed
immersed totally geodesic submanifolds of M of dimension between 2 and n− 1 is
contained in the union of the Xm.

Proof. As in the proof of Corollary 5.8, we see that each totally geodesic submani-
fold of M of dimension m gives rise to a closed orbit of

L = S(O(n−m)×O(m, 1)) ∩ SO0(n, 1).

By Lemma 5.13, there is a compact subset C in G/Γ such that any closed L
orbit intersects C. We also know that there are finitely many unipotent subgroups
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U1, . . . , Usm that generate Wm = SO0(m, 1) < L, and so

X(H,Wm) =

sm⋂
j=1

X(H,Uj),

for any H ∈ H.
We apply Theorem 5.14 to each Uj using C as the compact set, taking ε to

be any fixed number 0 < ε < 1, and with φm a compactly supported function
with integral 1 and support in Vm = π−1(Ωm). Given a closed L orbit O, we
pick a point x contained in O ∩ C. For any Uj the time average of φm over the x
orbit is zero, and so by the above there are finitely many Hi,j,m such that x is in
one of the X(Hi,j,m, Uj). Taking intersection over j and re-indexing the resulting
collection of subgroups completes the proof for fixed m. Repeating the argument
in each dimension establishes the last statement in the corollary and completes the
proof. �

Given Proposition 5.15, the proof of Theorem 1.4 for finite-volume manifolds pro-
ceeds exactly as in the compact case.

6. Examples

6.1. Hyperbolic 3-manifolds and link complements.

We begin with a few examples to give a sense of the known possibilities for existence
of arithmetic/non-arithmetic hyperbolic 3-manifolds with certain behavior for their
geodesic surfaces.

Example 6.1. The figure-eight knot complement contains infinitely many distinct
immersed totally geodesic surfaces. They may be taken to be closed. [22, §9.6]

Example 6.2. The Weeks manifold [22, §13.5, Ex. 1] is arithmetic and contains
no totally geodesic surfaces.

Example 6.3. Performing (−4, 1)-surgery on the sister of the figure-eight knot
complement [22, §13.5, Ex. 8] determines a non-arithmetic closed hyperbolic man-
ifold M of volume 1.42361... that satisfies the conditions of [22, Thm. 5.3.1], and
hence contains no totally geodesic surfaces.

Example 6.4. Consider the three-twist knot 52. It has (invariant) trace field the
cubic extension of Q with minimal polynomial t3 − t2 + 1. It follows from [22,
Thm. 5.3.8] that the associated hyperbolic knot complement contains no closed
totally geodesic surfaces. It does, however, contain an immersed totally geodesic
3-punctured sphere (see [35]).

Example 6.5. Calegari showed that fibered knots (more generally, fibered knots in
rational homology spheres) with trace field of odd degree cannot contain immersed
totally geodesic surfaces [8]. For instance, this holds for the knot 820 in [36].

As further motivation, we recall the Menasco–Reid conjecture.

Conjecture 6.6 (Menasco–Reid [27]). Let K be a hyperbolic knot. Then S3 r K
does not contain a closed embedded totally geodesic surface.

In [27], Menasco and Reid prove the conjecture for tunnel number one knots.
Our results then have the following ‘almost’ version of the conjecture, which also
allows one to promote embedded to immersed:
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Figure 5. An essential 2-punctured disk from an unknotted component.

Theorem 6.7. Let K be a hyperbolic knot for which S3 rK satisfies the conditions
of Theorem 1.4. Then S3 rK contains only finitely many closed, immersed totally
geodesic surfaces.

Menasco and Reid also proved that alternating hyperbolic links cannot contain
embedded closed totally geodesic surfaces [27, Thm. 1]. Such a link can certainly
contain punctured totally geodesic surfaces, and, when Theorem 1.4 applies, we see
that S3 r L can only contain finitely many such surfaces. To prove Theorem 1.3,
we must produce an infinite family of examples to which Theorem 1.4 will apply.
We do this via the operation on links called the belted sum, which is justified by
the following theorem of Adams.

Theorem 6.8 (Adams [2]). Suppose M is a complete finite-volume hyperbolic 3-
manifold. Then any incompressible and properly embedded 3-punctured sphere in
M is isotopic to one that is totally geodesic.

Let M1,M2 be noncommensurable arithmetic hyperbolic 3-manifolds each con-
taining an embedded totally geodesic 3-punctured spheres. Since the hyperbolic
structure on a 3-punctured sphere is unique, we can cut M1 and M2 open along
these surfaces and obtain a Gromov and Piatetski-Shapiro non-arithmetic mani-
fold. The proof of [2, Thm. 4.1] makes this connection very explicit. In particular,
Theorem 1.4 applies and the hybrid manifold has finitely many totally geodesic
surfaces.

We will apply this in the case where Mi = S3 r Li for Li a link containing an
unknotted component as in Figure 5. This contains an obvious properly embedded
2-punctured disk Di, which is then isotopic to a totally geodesic 3-punctured sphere
in Mi. One can then glue M1 r D1 to M2 r D2 to obtain a new link L1,2 in S3,
which is visibly built from arithmetic building blocks. This link is the belted sum
of L1 and L2.

The belted sum of noncommensurable arithmetic links will be a non-arithmetic
link built out of two dissimilar hyperbolic building blocks. To prove Theorem 1.3,
we use an arithmetic link containing two trivial summands as in Figure 5. See
Figure 6 for some arithmetic links with this property. We chose these links to be
mutually incommensurable. The first is the Whitehead link, which is commensu-
rable with PSL2(Z[i]). The second is the three chain link, which is commensurable

with PSL2

(
Z[ 1+

√
−7

2 ]
)

. The third is a five component link commensurable with

PSL2

(
Z[ 1+

√
−15

2 ]
)

. See [22, §9.2].
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Figure 6. Three incommensurable arithmetic links.

Figure 7. The belted sum of the Whitehead link and the three
chain link.

See Figure 7 for the belted sum of the Whitehead link and the three chain link.
This is the link 72

6 from Rolfsen’s tables [36]. This is a link complement built from
dissimilar hyperbolic building blocks, hence it contains only finitely many immersed
totally geodesic submanifolds. It is alternating, so it has no closed immersed totally
geodesic submanifolds by [27, Thm. 1]. We note that it has trace field Q(i,

√
−7)

by a theorem of Neumann–Reid (see [22, §5.6], and note that the trace field and
invariant trace field are the same for link complements [22, Cor. 4.2.2]). However,
to prove Theorem 1.3, we use the five component link in Figure 6.

Proof of Theorem 1.3. Let L1 be the Whitehead link and L2 the five component
link in Figure 6. Then L2 contains a pair of totally geodesic 3-punctured spheres
S+

2 and S−2 associated with any two of the three unknotted components. For r ≥ 3,
let Lr be the two component link obtained by performing 1/r-Dehn surgery on the
third unknotted component of L2. Note that S+

2 and S−2 still determine totally
geodesic thrice-punctured spheres in S3 r Lr; choose one and call it Sr.

Let N1 be S3 r L1 cut open along the totally geodesic 3-punctured sphere S1

associated with its unknotted component. Let N2 be a copy of S3 r L2, cut open
along S+

2 and S−2 . Finally, let Nr be the result of cutting S3 r Lr open along Sr,
r ≥ 3. We can then perform an iterated belted sum, starting with N1 belted to N2

by gluing S1 to S+
2 , then N2 belted to Nr by gluing S−2 to Sr.

N1
S1↔S+

2←→ N2
S−2 ↔Sr←→ Nr

This determines a link Lr in S3 that is built from building blocks, and there are
two adjacent blocks that are arithmetic and dissimilar, so S3 r Lr contains only
finitely many immersed totally geodesic surfaces.

To complete the proof of the theorem, we must check that the links Lr determine
infinitely many distinct commensurability classes of hyperbolic 3-manifolds. Let kr



TOTALLY GEODESIC SUBMANIFOLDS 27

be the trace field of S3 r Lr. It suffices to show that the degree [kr : Q] goes to
infinity as r goes to infinity. Let Fr = Q(αr) be the trace field of S3 r Lr. By a
theorem of Neumann–Reid [22, §5.6], we have

F ′r = Q(i,
√
−7, αr),

so it now suffices to check that [Fr : Q] gets arbitrarily large. However, the links
Lr are all Dehn surgery on a fixed link (namely, L2), so S3 r Lr has uniformly
bounded volume. Since there are only finitely many hyperbolic 3-manifolds of
bounded volume and trace field degree [19], the result follows. �

6.2. Hyperbolic Coxeter lattices . A Coxeter polyhedron P ⊂ Hn is a finite-
volume polyhedron with totally geodesic faces having the property that adjacent
faces intersect at angles which are integral submultiples of π. Such finite-volume
polyhedra can only exist in dimensions n ≤ 995 by Prokhorov [30], and compact
ones can only exist in dimensions n ≤ 29 by Vinberg [41]. Associated with such a
polyhedron P , one can form the lattice ΓP < SO(n, 1) generated by reflections in the
hyperplanes containing the faces of the polyhedron. We call these Coxeter lattices.
Vinberg gave a simple criterion for whether such a lattice is arithmetic, and gave
examples in dimensions n = 3, 4, 5 of non-arithmetic Coxeter lattices that pre-dated
the Gromov–Piatetski-Shapiro constructions. This was extended by Ruzmanov [37]
who produced non-arithmetic Coxeter lattices in dimension 6 ≤ n ≤ 10.

In a recent paper, Vinberg [42] points out that the Gromov–Piatetski-Shapiro
construction can also be applied to Coxeter polyhedra in a particularly simple
manner. Given a pair of polyhedra P1, P2, let us assume that they contain faces Fi ⊂
Pi which are isometric to each other and have the property that every other face
which intersects Fi does so orthogonally. In that case, we can form a new Coxeter
polyhedron P by gluing the Pi together along the Fi. If the original polyhedra Pi
are not commensurable, then the resulting P is non-arithmetic. Vinberg used this
procedure to create non-arithmetic Coxeter lattices in dimensions n = 11, 12, 14, 18
(as well as new examples in some lower dimensions).

Let us call a Coxeter polyhedron P splittable if one can find a totally geodesic
hyperplane H ⊂ Hn with the property that every face of P which intersects H
either is contained in H or intersects H orthogonally. Observe that the polyhedra
Pi in Vinberg’s gluing construction are splittable, as is the resulting polyhedron
P . Splittable polyhedra also play a key role in work of Allcock [4]. We call a
polyhedron unsplittable if it is not splittable.

Lemma 6.9. Let P be an unsplittable Coxeter polyhedron. Then the associated
Coxeter lattice ΓP is not commensurable with any Gromov–Piatetski-Shapiro type
lattice.

Proof. By way of contradiction, assume that ΓP is commensurable with a Gromov–
Piatetski-Shapiro type lattice Λ. Then there are isomorphic finite index torsion-
free subgroups Γ < ΓP and Γ < Λ. The associated hyperbolic manifold M =
Hn/Γ is then itself a Gromov–Piatetski-Shapiro type hyperbolic manifold, but is
also tessellated by finitely many copies of the hyperbolic polyhedron P . Let Σ ⊂
M be a totally geodesic cutting hypersurface for the Gromov–Piatetski-Shapiro
decomposition of M .

In the tessellation of M , consider any of the copies of P that intersect Σ. Since
P is unsplittable and Σ is codimension one, there exists a face of this polyhedron
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Figure 8. The Coxeter diagram of a 5-simplex in H5.

that intersects Σ at an angle 0 < θ < π/2. But this face extends to a closed totally
geodesic immersed hypersurface, which contradicts angle rigidity. �

We now produce examples in dimension 3 and 5 to which Lemma 6.9 applies.
First we briefly recall Vinberg’s notion of a quasi-arithmetic lattice. Let G be a Q-
algebraic group such that G(Z) defines an arithmetic lattice in SO(n, 1). A lattice Γ
in SO(n, 1) is quasi-arithmetic if it is contained in G(Q). Vinberg showed that there
are quasi-arithmetic lattices that are not arithmetic (i.e., are not commensurable
with G(Z)) [40]. The inbreeding examples of Agol and Belolipetsky–Thomson are
also quasi-arithmetic, but the Gromov–Piatetski-Shapiro type examples described
in §2.2 are not (see [39]).

The 5-dimensional example in the following will prove Theorem 1.7, i.e., that there
are non-arithmetic lattices in SO(5, 1) that are not commensurable with a lattice
constructed by the methods of Gromov–Piatetski-Shapiro or Agol.

Example 6.10. It is easy to see that if the Coxeter polyhedron P ⊂ Hn is combi-
natorially an n-simplex, then P is unsplittable. There are 72 finite volume Coxeter
polyhedra with this combinatorial type. Of these, a few examples give rise to non-
arithmetic lattices: one in dimension 5 and seven in dimension 3 (see [20, p. 128]).
The 5-dimensional example arises from a non-compact finite-volume 5-simplex in
H5 with Coxeter diagram given in Figure 8. For the 3-dimensional examples, six
of the seven examples are non-compact and finite volume, while one is compact.
Their Coxeter diagrams are listed out in Figure 9, with the upper left-most dia-
gram corresponding to the compact 3-simplex polyhedron. For all these examples,
our Lemma 6.9 applies and the associated lattices are not commensurable with any
Gromov–Piatetski-Shapiro type lattices. Moreover, for the non-compact polyhedra,
the associated lattices are not quasi-arithmetic (see [40, p. 442, Remark 3]). This
proves Theorem 1.7.

Given a splittable Coxeter polyhedron P ⊂ Hn, one can consider the hyperplane
H ⊂ Hn giving rise to the splitting. Then the intersection H ∩ P yields a Coxeter
polyhedron in H ∼= Hn−1 with faces of H ∩ P corresponding bijectively with the
faces of the original P that were orthogonal to H. The number of faces of H ∩ P
is strictly smaller than the number of faces of P . Indeed, H separates Hn into two
half-spaces H+ and H−, and in order for P to have finite volume, there needs to be
at least one face of P on each side of H satisfying H± ∩ Int(P ) 6= ∅. Such faces will
be disjoint from H, giving a generator for ΓP which does not lie in ΓP∩H . Recall
that a special subgroup of a Coxeter group is a subgroup generated by a subset of
the Coxeter generating set. This establishes the following:

Lemma 6.11. If a Coxeter polyhedron P ∈ Hn is splittable, then the associated
Coxeter group contains a proper special subgroup which is itself a Coxeter group for
a Coxeter polyhedron P ′ ⊂ Hn−1.
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Figure 9. Coxeter diagrams for 3-simplices in H3.

In practice, Lemma 6.11 can be used to show that certain Coxeter polyhedron
are unsplittable. For example, Andreev’s theorem gives an algorithm for deciding
whether a Coxeter group arises from a polyhedron in H3 (see [11, §6.10]). Thus
if one is given a Coxeter polyhedron P ⊂ H4, one can sometimes use Andreev’s
theorem to algorithmically verify if the polyhedron is unsplittable. Unfortunately
all examples of 4-dimensional Coxeter polyhedra currently known to the authors
are either splittable, or yield lattices that are quasi-arithmetic.

Closely related to our unsplittable polyhedra are the essential polyhedra, in-
troduced by Felikson and Tumarkin [15]. These are polyhedra which cannot be
decomposed into smaller Coxeter polyhedra glued along faces. In their paper they
give a commensurability classification of all the known (at the time) essential poly-
hedra. While the two notions of unsplittable and essential are related, neither
implies the other.

We close by noting that it would be interesting to use results of this kind to
produce infinitely many commensurability classes of lattices in SO(n, 1) for small
n that cannot arise from the constructions of Gromov–Piatetski-Shapiro or Agol.
While this seems possible in small dimensions, one still wonders if the “maybe for
large n” in Question 1.6 is related to the non-existence of Coxeter polytopes and
related geometric objects in sufficiently high dimension.
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dimensional Lobachevskĭı space when 6 ≤ n ≤ 10. In Problems in group theory and in

homological algebra (Russian), pages 138–142. Yaroslav. Gos. Univ., Yaroslavl’, 1989.
[38] N. A. Shah. Closures of totally geodesic immersions in manifolds of constant negative cur-

vature. In Group theory from a geometrical viewpoint (Trieste, 1990), pages 718–732. World

Sci. Publ., 1991.
[39] S. Thomson. Quasi-arithmeticity of lattices in PO(n, 1). Geom. Dedicata, 180:85–94, 2016.

[40] E. B. Vinberg. Discrete groups generated by reflections in Lobačevskĭı spaces. Mat. Sb. (N.S.),
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