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Abstract—Phylogenetic networks provide a powerful framework for modeling and analyzing reticulate evolutionary
histories. While polyploidy has been shown to be prevalent not only in plants but also in other groups of eukaryotic
species, most work done thus far on phylogenetic network inference assumes diploid hybridization. These inference
methods have been applied, with varying degrees of success, to data sets with polyploid species, even though polyploidy
violates the mathematical assumptions underlying these methods. Statistical methods were developed recently for handling
specific types of polyploids and so were parsimony methods that could handle polyploidy more generally yet while
excluding processes such as incomplete lineage sorting. In this article, we introduce a new method for inferring most
parsimonious phylogenetic networks on data that include polyploid species. Taking gene tree topologies as input, the
method seeks a phylogenetic network that minimizes deep coalescences while accounting for polyploidy. We demonstrate
the performance of the method on both simulated and biological data. The inference method as well as a method for
evaluating evolutionary hypotheses in the form of phylogenetic networks are implemented and publicly available in the
PhyloNet software package. [Incomplete lineage sorting; minimizing deep coalescences; multilabeled trees; multispecies

network coalescent; phylogenetic networks; polyploidy.]

Hybridization and polyploidization have long been
recognized as crucial factors in speciation and genomic
and phenotypic novelties (Oxelman et al. 2017; Blischak
et al. 2018). While in homoploid hybridization, the
hybrid has the same number of chromosome sets as
the two parental species, allopolyploid hybrids receive
both chromosome sets from the parents, thus increasing
the size of the chromosome set as compared to the two
parents. Both types of hybridization result in reticulate
evolutionary histories of the whole genomes that are best
modeled by phylogenetic networks. Autopolyploidy, on
the other hand, is whole-genome duplication (WGD)
that involves a single lineage and does not violate a
treelike evolutionary history at the level of the species
phylogeny.

Polyploidy is prevalent across the eukaryotic branch
of the Tree of Life. Many extant flowering plants are
neopolyploids, and for the remaining diploid species,
one or more rounds of ancient WGD events can be traced
(Masterson 1994; Jiao et al. 2011), thus indicating that they
are paleopolyploids. Although hybrid and polyploid
species are less commonly observed in animals than
plants, presumably owing to their potential reduced
fitness, fish and amphibians are known to have high
incidence of polyploidy (Glasauer and Neuhauss 2014;
Berthelot et al. 2014; Woods et al. 2005). Furthermore,
it is believed that at least two rounds of ancient WGD
occurred in the vertebrate lineage (the 2R hypothesis)
(Ohno 2013; Muffato and Crollius 2008). Fungi also
include polyploids, with evidence supporting that the
ancestor of the baker’s yeast Saccharomyces cerevisiae
underwent WGD (Marcet-Houben and Gabaldén 2015).

Allopolyploidization has been attracting attention
for decades as it reflects the joint effects of genome

doubling and interspecific hybridization. Unlike
autopolyploids, allopolyploids contain multiple
divergent subgenomes, each derived from distinct
parental species. The investigation of subgenome
evolution has been propelled by recent advances in
homoeology analyses (Glover et al. 2016; Sancho et al.
2021). From modeling and inference perspectives,
allopolyploidy is of particular interest, as it results
from hybridization of two species and gives rise to
evolutionary histories in the form of phylogenetic
networks. Although polyploidy could potentially be
identified from the chromosome count, the task of
determining its mode of origin is nontrivial, especially
when the parental taxa are closely related. Moreover,
other evolutionary processes, such as incomplete lineage
sorting (ILS), complicate this task. Therefore, extending
models such as the multispecies coalescent to account
for polyploidy could provide a powerful approach
inferring evolutionary histories of polyploids.

Yu et al. (2012, 2014) extended the multispecies
coalescent to incorporate hybridization into the model,
giving rise to the multispecies network coalescent
(MSNC). Based on this generative process, PhyloNet
(Than et al. 2008; Wen et al. 2018) implements a wide
array of methods for inferring phylogenetic networks in
the presence of incomplete lineage sorting and diploid
hybrids, including parsimony methods (Yu et al. 2013),
maximum likelihood and pseudolikelihood methods
(Yu et al. 2014; Yu and Nakhleh 2015; Zhu and Nakhleh
2018), and Bayesian methods (Wen et al. 2016; Wen
and Nakhleh 2018; Zhu et al. 2018). Since almost all
these methods are computationally demanding (with
the exception of Yu and Nakhleh (2015)), a divide-and-
conquer approach was recently introduced to speed
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them up (Zhu et al. 2019). Cao et al. (2019) illustrated
the use of many of these inference methods, as well
as network summarization methods, on data generated
under the multispecies network coalescence, which
assumes diploid hybridization.

Kamneva et al. (2017) evaluated various inference
tools in PhyloNet (Than et al. 2008; Wen et al
2018) for inferring phylogenetic networks of polyploid
strawberries, Fragaria (Rosaceae), with species that
ranged in ploidy from tetraploid to decaploid. As
Blischak et al. (2018) correctly pointed out, “Though not
specifically built for polyploids, PhyloNet can model
multiple haplotypes in each lineage. It can hence infer
hybridization in these species when the assumptions of
its model (the coalescent) are not violated, making it
most appropriate for recent allopolyploids.”

While existing inference tools in PhyloNet were not
designed for handling polyploidy, there are several
existing methods that are designed specifically to model
polyploidy events (Oxelman et al. 2017). Many of
these methods have relied on multilabeled species
trees, or MUL-trees, to model polyploids. As multiple
copies of a locus could be present in the genome
due to polyploidization, a MUL-tree extends standard
phylogenetic trees by allowing multiple leaves to be
labeled by the same taxon name (Fig. 1la—-d). There is
a straightforward connection between a phylogenetic
network and a MUL-tree, as illustrated in Figure 1a,b.
Indeed, in one of the earliest works in this area,
Huber and Moulton (2006) provided an algorithm for
converting a MUL-tree into a phylogenetic network,
which was later implemented in the PADRE software
(Lott et al. 2009). This connection between phylogenetic
networks and MUL-trees was the basis for computations
under the MSNC in Yu et al. (2012, 2014) before moving
towards computations directly on the phylogenetic
network in subsequent implements in PhyloNet. The
software tool GRAMPA (Thomas et al. 2017) uses MUL-
trees to reconcile a set of gene trees parsimoniously with
a given species tree to postulate polyploidy events.

To the best of our knowledge, the only statistical
inference methods specifically designed for handling
allopolyploids are the AlloppNET method of Jones
et al. (2013) and its extension (Oxelman et al.
2017). AlloppNET uses Bayesian Markov chain
Monte Carlo (MCMC) to sample, using multilocus
DNA sequence data, the posterior distribution of
phylogenetic networks that contain diploid and
allotetraploid species. The method allows for multiple
individuals per species and samples, in addition
to the phylogenetic network topology, parameters
including divergence and hybridization times as well as
population sizes. Like other statistical inference methods
in PhyloNet, AlloppNET is computationally intensive,
in particular as it employs reversible-jump MCMC to
sample the transdimensional space of phylogenetic
networks. Furthermore, as mentioned above,
AlloppNET allows for only diploid and allotetraploid
species.

a) b)
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FiGure 1. Allopolyploidy, phylogenetic networks, and MUL-trees.
a) Phylogenetic network depicting allopolyploidization involving the
ancestor of X, Y, and Z. b) MUL-tree representation of the network. c)
Gene tree inside the branches of the phylogenetic network. d) Gene tree
with two copies of the gene in each of the species X, Y, and Z. e) Gene
tree inside the branches of the phylogenetic network in the presence of
incomplete lineage sorting and gene loss. f) Gene tree where the signal
for the allopolyploids is confounded by ILS and gene loss.

As described in Blischak et al. (2018), producing an
all-encompassing stochastic model of polyploidization
would be a massive undertaking due to the complexities
of processes occurring during and after polyploidization
events. In this article, we take a maximum parsimony
approach to phylogenetic network inference in the
presence of general allopolyploidy events. Recognizing
that the parsimony method of Yu et al. (2013) as
implemented in PhyloNet was not designed to handle
allopolyploids, Oberprieler et al. 2017 coupled it with
a permutation scheme where multiple analyses are
conducted in each of which only two copies from the
polyploid are mapped to one parent and the other copies
are mapped to a second parent, and then reporting
the optimal result over all these analyses. In this work,
we extend the method of Yu et al. (2013) to properly
handle polyploids without the need for a permutation
approach. We implemented both an inference method
(MPAllopp) and a scoring method in PhyloNet and
assessed their performance on the simulated and
biological data used in (Jones, 2017), (Marcussen et al.,
2014), and (Joly et al., 2009). We report on the accuracy
and running time of MPAllopp, and compare it to
AlloppNET as well as existing methods in PhyloNet that
were not designed to handle polyploid hybridization.
We show that MPAllopp outperforms other methods
in PhyloNet that were not designed to handle
allopolyploidy and performs similarly to AlloppNET in
terms of accuracy while being much faster.
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METHODS

Minimizing Deep Coalescences in the Presence of
Allopolyploidy

Maddison (1997) proposed minimizing deep
coalescences (MDC) as a parsimony criterion for
reconciling a gene tree with a given species tree, as
well as for inferring a species tree from a collection
of gene trees, both under the assumption that gene
tree heterogeneity is caused by ILS. Maddison and
Knowles (2006) later implemented and tested a heuristic
for inferring a species tree under the MDC criterion.
Than and Nakhleh (2009) provided a mathematical
characterization of the number of deep coalescences
given a clade in the species tree (without having the
species tree itself), which allowed for developing exact
algorithms for species tree inference under the MDC
criterion. To account for hybridization and introgression
simultaneously with ILS, Yu et al. (2013) introduced
the MDC criterion for inferring phylogenetic networks
from a collection of gene trees whose heterogeneity is
assumed to be caused by ILS and introgression. All
these works on the MDC criterion naturally allow for
including multiple individuals per species.

While the method of Yu et al. (2013) could in practice
be used on data with allopolyploid species while
treating multiple gene copies as alleles from different
individuals, the criterion is not mathematically designed
for handling polyploids. Let us illustrate this issue with
the scenario depicted in Figure 1c. The gene tree shown
inside the branches of the phylogenetic network has two
copies from each of the three taxa X, Y, and Z, due to
the polyploid hybridization event involving taxa B and
C. If each of the two copies are treated as alleles from
two different individuals, then this gene history will be
heavily penalized by the MDC criterion as lineages failed
to coalesce on the four branches connected to X, to Y, to
Z, and to the most recent common ancestor (MRCA) of X
and Y. Indeed, the MDC score of this gene tree given the
phylogenetic network is 4 in this case. However, when
considering that this is a polyploid hybridization event
and the two lineages correspond to two different copies
of the gene, these lineages should not be expected to
coalesce on these four branches, and the true score of this
phylogenetic network/ gene tree reconciliation should be
0; thatis, thisis a gene tree that “perfectly” fits the species
evolutionary history with no deep coalescence events. It
is this issue that led Oberprieler et al. (2017) to justifiably
avoid the method of Yu et al. (2013), rather applying a
permutation scheme to it so as to sample gene copies
and not leave them in the analysis and treat them as
alleles from different individuals of the species. We now
describe a modification to the MDC criterion so that it
properly handles polyploid hybridization events. This
extension can be viewed as a generalization of Thomas
et al. (2017) by allowing for ILS.

Using the notation of (Huber et al., 2016), we denote
by U(V) a MUL-tree representation of phylogenetic
network W, and we denote by F(T) a phylogenetic

network that corresponds to MUL-tree T. As Huber
et al. (2016) showed, neither U(W¥) nor F(T) are unique
in general, though they are unique for special classes of
phylogenetic networks. While theleaves of a gene tree are
uniquely mapped to the leaves of a phylogenetic network
(since each species labels exactly one leaf in the network),
this is not the case for MUL-trees. For example, for the
gene tree in Figure 1d and the MUL-tree of Figure 1b,
each of the two copies x1 and x; could map to either
of the two leaves labeled by X in the MUL-tree, leading
to 64 possible allele mappings in total (here, multiple
alleles correspond to multiple copies of a gene obtained
from the same individual): x; and x; could both map
to the same X in the MUL-tree (there are two choices)
or each to a different X (there are two choices, and the
same for the Y and Z alleles, resulting in 4 x4 x4=64
possible mappings. However, the number of possible
allele mappings could be greatly reduced if information
is given on the subgenome assignment of each gene
copy. Figure 2a shows all possible allele mappings for
these gene trees and MUL-tree when the allopolyploid
alleles are known to come from distinct subgenomes. For
example, in this case, it is assumed that x; and x, did
not come from the same subgenome, and similarly for
the Y and Z alleles. It is worth noting here, though, that
delineating subgenomes could be challenging in ancient
polyploids due to extensive homeologous exchanges
(Edger et al. 2018) and in groups of species whose
evolutionary histories involve deep coalescence. Below
we describe our new method that is implemented to run
in either of two modes: assuming a known subgenome
assignment or inferring such an assignment during
phylogenetic inference.

Given the set F of all allele mappings of a gene tree g
to a MUL-tree T, the number of extra lineages of ¢ given
Tis

XL(T,g)=minXL(T,g.f). (1)
feF

Here, XL(T,g.f) is the number of extra lineages given
a specific allele mapping f, which is the sum, over
all branches of the MUL-tree, of the number of extra
lineages on each branch given the allele mapping f. The
number of extra lineages resulting from each of the allele
mappings in Figure 2a is shown in the same panel, and
illustrations of how these quantities are computed for
two of the allele mappings are shown in Figure 2b,c.

Given a collection G of gene trees, inferring a
phylogenetic network W* under the criterion of
minimizing the number of extra lineages amounts to
computing

* < argmin,, (Z XL(U(W), g)) . )
=Y

Based on this formulation, the inference is done by
walking the space of phylogenetic networks using the
implementation of Yu et al. (2013), while evaluating
the number of extra lineages on the MUL-tree
representation of each network, using Equation (1). The
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FIGURE 2.
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Allele mappings from a gene tree to a MUL-tree and the number of extra lineages. a) The set of all eight possible allele mappings

for the gene tree of Figure 1d and the MUL-tree of Figure 1b given that each copy of allopolyploids came from distinct subgenome, along with
the number of extra lineages that results from each of the allele mappings. b—c) The reconciliations that correspond to allele mappings #1 and #7,
respectively, of the gene tree within the branches of the MUL-tree. Shown next to each of the MUL-tree branches is the number of extra lineages
on that branch, which is the number of lineages that persist without coalescing on that branch minus 1.

limitations of the method as formulated are that it
cannot detect homoploid hybridization and assumes no
recombination between parental subgenomes.

PhyloNet Implementation

We implemented the inference based on Equation
(2) in PhyloNet (Than et al. 2008; Wen et al. 2018) as
a new command called InferNetwork MP Allopp.
This method takes as input a set of gene trees and reports
the top-k species networks and their MUL-trees based
on the MUL-tree score. If during the search there are
multiple networks with the same scores encountered,
those networks will be reported if their scores are within
the top-k scores, although the total number of networks
returned will be truncated at k, which by default is set
to 5.

¢ The subgenome assignment. This method makes
use of the known subgenome identity for each
sampled allopolyploid allele to determine the
(reduced) set of candidate allele mappings to use
during the phylogenetic network inference. We
refer to the new method that makes use of this
information as MPAllopp (“MP” is for maximum
parsimony). In the absence of information about
the assignment of gene sequences to subgenomes,
MPAllopp considers all possible subgenome
assignment per-locus. However, this requires the
addition of heuristics due to the exponential
growth in the number of ways alleles may be
mapped to subgenomes (i.e., we may have to
consider an extraordinarily large number of sets
of assignments) when computing the parsimony
score.

e The maximum number of reticulations allowed
during the search. If this number is set at 0, then
the method searches the space of genome trees
(Thomas et al. 2017; Oxelman et al. 2017) only.

* Whether the hybrid species are known. If the
hybrid species are known and specified by the user,
and the maximum number of reticulations allowed
equals the number of specified hybrid species,
the method searches only networks that have the
specified hybrids; that is, it does not detect any
other potential hybrids. If the maximum number of
reticulations allowed is greater than the number of
specified hybrid species, the method could detect
additional hybrids. If the hybrids are not specified,
then the method identifies hybrids.

In addition to phylogenetic network inference, we
provide the user with the option to evaluate, rather
than infer, competing hypotheses. Given a phylogenetic
network W and a set of gene trees G, the parsimony score
of the W is given by

Y OXLU(W).8)
g€g

This analysis is enabled by the new PhyloNet
command DeepCoalCount AlloppNet. We envision
this command used in at least two contexts. First, if
the user has two or more evolutionary hypotheses
(in the form of phylogenetic networks), this command
can be used to assess which of these hypotheses has
the best score. Second, if the inference method above
returns a phylogenetic network that does not match
some biological knowledge, the user can manipulate
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the inferred network to obtain one that matches the
biological knowledge and compare the two. In other
words, this command can be used in an exploratory
mode.

Last but not least, a brief explanation of the
nature of heuristic searches is in order. Inferring
the optimal phylogenetic network according to
Equation 2 is computationally very demanding.
Therefore, the algorithm implemented by the command
InferNetwork MP Allopp performs a random
walk in the space of phylogenetic networks, evaluates
phylogenetic networks encountered during the walk,
and returns the best (i.e., the one with the lowest
parsimony score) network among all those encountered.
For each run, the search starts from either a random
tree or a starting tree quickly estimated from the data
using MDC (Than and Nakhleh 2009) or NJg (Liu and
Yu 2011). Then the search explores the network space
by modifying the current topology. Six moves were
employed to alter the network topology: i) reticulation
edge addition, which creates a new hybridization
event; ii) reticulation edge deletion, which removes one
hybridization event; iii) reticulation edge tail relocation,
which modifies a parent lineage of a hybridization
event; iv) reticulation edge direction flip, which
reverses the direction of the “gene flow” underlying the
hybridization event; v) reticulation edge replacement,
which replaces an existing hybridization event by a
completely different one; and vi) reticulation edge
head relocation, which modifies the hybrid lineage
resulting from the hybridization event. A new network
is proposed by applying a randomly chosen operation
from the six, proportional to their associate weights, to
the current network. The score of the resulting network
is calculated, and it is accepted or rejected based on this
score. If the score of the proposed topology is worse, we
reject the proposal, and the search continues from the
current network. If it is accepted, the resulting network
replaces the current one and the search proceeds from
it. This type of heuristics is not guaranteed to find
the optimal network, which is why it is recommended
to run the command multiple times and return the
optimal solution among all the runs (in the simulation
experiments below, we ran the method 30 times on each
data set). The search heuristic computes the parsimony
score of each network candidate encountered during
the search by considering the set of all allele mappings
that satisfy the known subgenome assignment.

If the subgenome assignment is not known, we found
that it was only possible to estimate this assignment and
the genome tree with the addition of further heuristics
in more complex scenarios, due to the previously
mentioned combinatorial explosion. We implemented a
similar heuristic for reducing the number of mappings
as in Thomas et al. (2017) to efficiently evaluate allele
mappings without exhaustively considering all of them
as their number could be prohibitive even for a small
number of species. This heuristic works as follows for
each gene tree:

1. Determine the set of clades Cq,...,Cy that include
all leaf species with polyploid alleles and exclude
all species with diploid alleles.

2. For each clade C;

¢ If the sister node D; to the root node of C; is
diploid, then the leaves of C; will be mapped
to the subgenome most related to the genome
of Di

e If the leaves of C; come from different
polyploid species, then they will be mapped
to the same subgenome

Simulations

We used the AlloppDT simulator (Jones 2012) and
parameter settings of Jones et al. (2013) and Jones (2017)
to simulate a collection of data sets. The data were
generated under four different evolutionary scenarios
with 1, 2, 3 and 3 reticulations (Fig. 3), where for each
scenario the mutation rate, the number of individuals
per species, and the number of genes were varied. In
addition, we increased the number of genes to 100
to emulate the kinds of data sets enabled by next-
generation sequencing. In total, there were 116 model
conditions, each with 10 replicate data sets (Table 1).
Since the gene tree-based inference methods considered
in this study require rooted gene trees, an outgroup
species was added for the purpose of rooting the
estimated gene trees Table 1 and was excluded in the
species phylogeny reconstruction. It would be possible
for molecular clock methods to root the gene trees by
finding the tree with the best ultrametric fit, but this may
be unreliable when the strict molecular clock assumption
is violated.

For each gene tree, DNA sequences of length 500 were
generated using Seq-Gen Version 1.3.2 (Rambaut and
Grass 1997) under the HKY model. Then gene trees were
reconstructed from the simulated sequence alignments
using IQ-TREE Version 2.1.2 (Minh et al. 2020), and
rooted by the outgroup.

TaBLE 1.
Based on the species phylogenies in Fig. 3, we varied
the parameters and obtained 116 conditions. For each
condition, 10 replicates were simulated.

AlloppDT parameters for data sets with allopolyploidy.

Parameters

G (Number of genes) €{1,3,10,100}

series Scenario

DEF N (Individuals per species) €{1,3,9}
T (Mutation rates) € {4¢—9,2¢—8,1e—7}
substitutions per site per generation
H (Root height)=0.02 substitutions per site
I G (Number of genes) €{1,3,10,100}

N (Individuals per species) € {1,3}

T (Mutation rates) =2¢ —8 substitutions per site
per generation

H (Root height)=0.045 substitutions per site

220z aunr G0 uo 1sonB Aq $9608€9/90./€/1 L/2I91ME/0IGSAS/WO0"dNO"0ILISPEDE//:SARY WO PAPEOUMOC



2022 YAN ET AL.—INFERRING PHYLOGENETIC NETWORKS WITH POLYPLOIDS 711

a)
0.012 0.009 0.006 0.003 0 0.012 0.009 0.006 0.003 0
Divergence (substitutions per site) Divergence (substitutions per site)
Scenario D Scenario E
c) d)
a
0.012 0.009 0.006 0.003 0 0035 003 0025 002 0.015  0.01 0.005 0
Divergence (substitutions per site) Divergence (substitutions per site)
Scenario F Scenario J

FIGURE 3.  Multilabeled species trees used in allopolyploid simulations (taken from Jones (2017)). a) Scenario D with 5 species has one
hybridization event that gave rise to the allopolyploid clade {x,y,z}. b) Scenario E with five species has two hybridization events that led to the
allopolyploid clades {x} and {y,z}. ¢) Scenario F with five species has three hybridization events that resulted in the allopolyploid clades {x}, {y},
and {z}. Scenario J with 13 species has three hybridization events that produced the allopolyploid clades {v}, {t,u}, and {x,y,z,w}.

Comparison with other methods—The AlloppNET input We tested MPAllopp (with known subgenome
XML files were generated by AlloppDT with the same assignment) and compared it to three methods:

model parameters and MCMC settings as used in Jones e InferNetwork MPL in PhyloNet, which imple-
(2017). This includes coestimating the assignment of ments the maximum pseudolikelihood method of
alleles to subgenomes. Yu and Nakhleh (2015) (this is labeled MPL below).
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FIGURE 4.

Boxplots of inference accuracy on simulated data with low ILS (mutation rate of 4 x 10-°) over 10 replicates. Data sets with 100

genes were too large for AlloppNET to converge within a reasonable amount of time, so they are omitted from the 100- gene results shown here.
Furthermore, scenario J is not shown since only one mutation rate (2 x 10~8) was used.

¢ InferNetwork MP in  PhyloNet, which
implements that MDC method of Yu et al
(2013) (this is labeled MP below).

* AlloppNET (Jones et al. 2013; Oxelman et al. 2017).

When running MPL and MP, multiple gene copies
were treated as different alleles from the same species,
since these methods do not incorporate any association
between gene copies and specific individuals.

Due to the nondeterministic nature of the search
heuristics underlying all gene tree-based methods used
here, each method (except for AlloppNET) was run 30
times on each replicate data set and the optimal solution
across all 30 runs was returned.

Evaluating inferences—We evaluated both the accuracy
and the runtime of methods. The accuracy was measured
in terms of the error in the inferred network compared to
the true network using the metric of Nakhleh (2010). The
experiments were performed on a server equipped with
2.2GHz Intel(R) Xeon(R) Gold 5220R CPUs, each with

48 cores. All the methods were executed using single
thread, and the execution time was measured in CPU
time spent in user mode.

RESULTS AND DISCUSSION

Results on Simulated Data

Treating Gene Copies as Alleles From Different Individuals:
Performance of MPL and MP—MPL and MP are
not intended to model the evolutionary relationship
between subgenomes, and hence, unlike our new
methods do not include any mechanism for assigning
alleles to subgenomes. Despite this, we wished to
analyze whether MPL and MP could accurately model
the relationship between species, by treating alleles from
different subgenomes as being randomly sampled from
a species without subgenome structure.

The accuracy results of the methods on data sets
with low, moderate, and high levels of ILS are shown
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FIGURE 5.

Boxplots of inference accuracy on simulated data with moderate ILS (mutation rate of 2 x 10~8) over 10 replicates. Data sets with

100 genes were too large for AlloppNET to converge within a reasonable amount of time, so they are omitted from the 100-gene results shown

here.

in Figures 4, 5, and 6, respectively, where the species
network error was measured as the distance between the
true and estimated networks according to the metric of
Nakhleh (2010). It is important to note that AlloppNET
uses sequence data as input, therefore it was compared
against other gene tree-based methods using estimated
gene trees but not the true gene trees.

As the results show, both MPL and MP infer very
accurate networks when using the true gene trees
of scenario D with low levels of ILS, which is the
simplest of all four scenarios considered, as it contains
a single hybridization event. However, this observation
changes significantly for the same scenario when the
level of ILS increases and/or when gene tree estimates
as used. In particular, while still using the true gene
trees, as the level of ILS increases, the error rates of
both methods increase, with MP performing slightly
better. We hypothesize that MP performs slightly better
because it is a simple summary method that does
not rely on the mathematical assumptions of the
coalescent model, which are violated here and are

used explicitly by MPL. Specifically, coalescent methods
assume that alleles can be inherited at random from
any individual chromosome in the previous generation,
but when subgenomes are nonrecombining, alleles can
only be inherited from chromosomes belonging to the
same subgenome. For low levels of ILS, gene tree
estimation error significantly impacts the performance
of the methods; however, that gene tree estimation error
does not make the performance much worse in the
presence of higher levels of ILS. We determined that
the difference in error rates is somewhat artifactual, as it
is being caused by the inability to resolve relationships
between individuals at each locus within each extant
species, due to very short coalescent times when ILS
is low (Supplementary Fig. S1 available on Dryad at
http:/ /dx.doi.org/10.5061 /dryad.4xgxd25b0.).
Scenario E has two hybridization events, Scenario
F has three hybridization events, and Scenario ] has
three hybridization events and is much larger. Therefore,
these scenarios are more challenging for the methods
than Scenario D, and they increase in complexity from
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FIGURE 6.

Boxplots of inference accuracy on simulated data with high ILS (mutation rate of 1 x 10~7) over 10 replicates. Data sets with 100

genes were too large for AlloppNET to converge within a reasonable amount of time, so they are omitted from the 100-gene results shown here.
Furthermore, scenario J is not shown since only one mutation rate (2 x 10~8) was used.

Scenario E to F to ]. We observe the impact of the increase
in complexity on the performance of MPL and MP, as
both infer less accurate networks on these scenarios than
on the data of Scenario D.

Finally, it worth noting that increasing the numbers
of genes does not seem to affect the performance of
these two methods, with the only exception observed
when using 100 gene trees on the low-ILS conditions
of Scenarios D and E, where the performance improved
significantly over smaller numbers of genes when using
gene tree estimates.

While inference under the MSNC using MPL could
result in the correct phylogenetic network topology,
several of the branch lengths could be inferred
incorrectly. Consider the scenario of Figure 1lc. Since
inference under the MSNC assumes that x; and x, are
two alleles of species X, and the same for the pair (y1,2),
and the pair (z1,zp), the lengths of all four branches in the
subtree ((X,Y),Z) would be underestimated to account
for the absence of coalescence events on these branches.
In other words, while MPL happened to provide good

results in some of these simulations in terms of the
phylogenetic network topology, it did so at the expense
of the branch lengths. For example, for scenario F (see
Fig. 3c), the coalescent times of the homeologous alleles
from the tetraploid z have to be more ancient than the
divergence time between species a and b. That is to say,
no homoeologs could coalesce along the two horizontal
edges or the branch connected to z. So, even when the
tetraploid z was correctly inferred as the hybrid species,
MPL worked by forcing the age of the hybridization to
be zero.

Accounting for Allopolyploidy Explicitly: Performance of
MPAllopp and AlloppNET—For low levels of ILS,
MPAllopp outperforms both MPL and MP in particular
when using gene tree estimates. Furthermore, increasing
the number of genes has a noticeable positive impact
on the performance of MPAllopp. For moderate and
high levels of ILS, MPAllopp outperforms both methods
significantly when using both the true or estimated
gene trees, across all scenarios. For low levels of ILS,
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AlloppNET and MPAllopp performed almostidentically
on Scenario D. For Scenarios E and F, AlloppNET
outperformed MPAllopp slightly when using 1 or 3
genes, but they both had almost identical performance
when using 10 genes. For higher levels of ILS, AlloppNET
could outperform MPAllopp, especially when using a
larger number of genes. However, increasing the number
of genes also increases the computational requirements
of AlloppNET. For 100-gene data sets, 29/30 AlloppNET
chains converged (effective sample size for log-posterior
density samples > 200) for scenarios D, E, and F given
a single individual and high ILS. But for other model
conditions only 26 /240 chains converged after at least 46
h of running time, so we excluded AlloppNET from our
analysis of 100-gene data sets.

Overall, counting the number of times AlloppNET
and MPAllopp inferred the correct network, MPAllopp
successfully recovered the true network in 44% of
replicates across all combinations that are being
compared of scenario, mutation rate, and number of
individuals (56% of the replicates when using the true
gene trees). AlloppNET, on the other hand, performed
slightly better, inferring the true network in 48% of the
cases. We also noted that MPAllopp had an advantage
over AlloppNET when the number of individuals per
species increased to 9 under high ILS, with a mean error
of 1.57 as compared to 1.71.

As mentioned above, AlloppNET is more powerful
than the other methods studied here in that it
estimates other evolutionary parameters (beside the
network topology) including sampling gene trees from
the posterior distribution. Normally AlloppNET is
initialized with user-supplied assignments of alleles
to subgenomes, but will coestimate these assignments
along with the gene and species phylogenies. To assess
the quality of gene trees estimated by AlloppNET, we
quantified their accuracy and compared it to that of gene
trees estimated from the sequence alignments using I1Q-
TREE. As AlloppNET returns a sample of gene trees
per locus, we computed for each locus the maximum
clade credibility (MCC) tree. As Supplementary Figure
S1 available on Dryad shows, AlloppNET infers more
accurate gene trees, owing mainly to the fact that
AlloppNET samples the gene trees and phylogenetic
networks simultaneously. The average gene tree error of
data sets with low, moderate, and high ILS were 0.39,0.27,
and 0.23, respectively for IQ-TREE gene trees, whereas
they were 0.27,0.21, and 0.15, respectively for AlloppNET.

We also evaluated the performance of MPAllopp when
the subgenome assignment is unknown, a method we
call MPAllopp*. Based on this evaluation, estimates of
the species network are much higher in error when
the subgenome assignment must be estimated using
the heuristic we describe in Methods (Supplementary
Fig. S2 available on Dryad). Running time was generally
unaffected, except for scenario | where it increased by
up to 20 minutes (Supplementary Fig. S3 available on
Dryad).

Running Times of the Methods—We recorded the
computational time in CPU minutes for each method
on each data set; the results for low, moderate, and high
levels of ILS are shown in Figures 7, 8, and 9, respectively.

As expected, AlloppNET was in general the slowest
method (71 min on average), and MPL was the second
slowest (25 min on average). The parsimony methods
typically took 1-2 min to complete; however, for MP,
the variation in running time was noticeable when gene
tree estimation error was involved, especially when more
individuals were included. In fact, MP failed to complete
on 2 and 28 data sets of gene tree estimates with 3 and 9
individuals per species, respectively.

As the results show, Scenario D in general takes the
least amount of time for the methods to analyze since it is
the simplest in terms of the number of hybridization and
the location of the hybridization events. Scenarios E and
F are more complex and take more time, and Scenario J,
which is the largest, takes the most time. Furthermore,
in many cases of 3 or more genes, AlloppNET takes
time that is two order of magnitude larger than that of
MPAllopp. For 100 gene trees, and as mentioned above,
AlloppNET did not converge within 46 h. Finally, MP
had the largest variability in running time over data sets
with the same parameter settings, a trend that is clearest
on data sets with high ILS levels.

In summary, the simulation results show that
AlloppNET and MPAllopp have comparable per-
formance in terms of accuracy of the phylogenetic
network topology, yet MPAllopp is much faster than
AlloppNET.

Analysis of Biological Data Sets

A Triticum (Poaceae) data set—We used the bread wheat
data set with 275 gene trees from Marcussen et al. (2014).
The data set includes the allohexaploid Triticum aestivum
(Ta), its five diploid relatives Triticum monococcum (Tm),
Triticum urartu (Tu), Aegilops sharonensis (Ash), Aegilops
speltoides (Asp), and Aegilops tauschii (At), together
with three outgroup species Hordeum wvulgare (Hv),
Brachypodium distachyon (Bd), and Oryza sativa (Os).
AlloppNET was not run on this data set since it only
deals with diploids and tetraploids. Given that the bread
wheat contains six sets of chromosomes, we set the
maximum number of allowable reticulations to 2 and
3. Using our method with the genome identities being
assigned to the alleles of the allopolyploid bread wheat,
we obtained the optimal results after 30 runs of search,
as shown in Figure 10.

Although there are three equally parsimonious
networks inferred, they share the same underlying
MUL-tree. As described above, MPAllopp searches the
network space while evaluating the network based
on its MUL-tree representation. In this case, three
networks correspond to the same MUL-tree. This
nonuniqueness of the network nothwithstanding, the
three networks point to an evolutionary hypothesis with

220z aunr G0 uo 1sonB Aq $9608€9/90./€/1 L/2I91ME/0IGSAS/WO0"dNO"0ILISPEDE//:SARY WO PAPEOUMOC


https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab081#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab081#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab081#supplementary-data

716 SYSTEMATIC BIOLOGY VOL. 71
true gene trees estimated gene trees or sequences
scenario D | | scenario E | | scenario F || scenario D | | scenario E | | scenario F
10"° £ £ £ £ Fo Fe
101 - = = — I-—_-I 2 ° E r' . Q _
05 F 3 e 3 - SR Q
SoE e b e B (P B e[S
1009F  tobanba | s o™ P N
2_: E E E E E
OF 3 F F BF =2F 0 828
= 10'F e e e ., . @
é 100-# ;: [ &} ;_— l-.-IH ;_& L ;__*liiIH ;__ I-EIH g
Py o s | 3 E [E= ) 3 3
£ 10*°t - . - - -
£ L I0F 3 3 r BfF B8r ° Bg
-} 1L C C C C C ()
x 10:F - T T T T o)
10°5¢ e - - s E S
1 g-r‘--‘-- g | E o=Ehetedk | B b L'“l s !3""..4.... — wh é
1077 pputs | E 3 EoF 3 3 '
=
10" - - e r E Q
3 3 S— 3 o= Femit
100_5;#|--|# ;!EE!# 5_— iiiim 5_2-.‘# 3 5__ E_'Em 5__ I;-_I# é
« 1individual + 3individuals = 9 individuals

E3 MPL E3 MP E3 MPAllopp E3 AlloppNET

FIGURE 7.

Boxplots of running time (in CPU minutes) on simulated data with low ILS (mutation rate of 4 x 10~°) over 10 replicates. Data

sets with 100 genes were too large for AlloppNET to converge within a reasonable amount of time, so they are omitted from the 100-gene results
shown here. Furthermore, scenario J is not shown since only one mutation rate (2 x 10~8) was used.

two hybridization events leading to the formation of T.
aestivum. Furthermore, the identified putative diploid
progenitors, namely Ae. speltoides, Ae. tauschii and T.
urartu, were consistent with previous studies (Marcussen
et al. 2014). The three networks differ in the order in
which these three species hybridized to give rise to the
two hybridization events shown.

A Pachycladon (Brassicaceae) data set— We reanalyzed
the Pachycladon data set with five nuclear single-
copy genes from Joly et al. (2009). We included eight
tetraploid species of the Pachycladon genus, coupled
with two diploids Arabidopsis thaliana and Lepidium
apelatum as in Jones et al. (2013). For each gene, BEAST
Version 2.6.4 was employed to infer a sample of trees,
based on which we computed the maximum clade
credibility tree by the utility program TreeAnnotator in
BEAST. This produced five gene tree estimates in total
(Supplementary Fig. S4 available on Dryad). We ran
MPAllopp supplied with the genome identities of the

allele copies from the Pachycladon species, varying from
one to three reticulations. Results are shown in Figure 11

and Supplementary Figure S5 available on Dryad.

The main difference between these two phylogenetic
networks is the placement of P. wallii: In Figure 1la,
P. wallii is placed as basal to the clade formed by P.
latisiliqua, P. enysii, P. fastigiata, and P. stellata, whereas
in Figure 11b it is grouped with P. latisiliqua as
sisters. The latter is in full agreement with the result
reported in Jones et al. (2013) using the same data.
Interestingly, P. wallii is traditionally regarded as a sister
species to P. novaezelandiae considering that they both
live in the southern South Island of New Zealand.
Such conflicts were probably caused by missing data
as P. novaezelandiae only has sequences for the CHS
gene in this data set, and one of the gene copy was
grouped within the P. latisiliqua et al. clade while the
other was a sister to P. novaezelandiae. It is also worth
mentioning that though six networks with equal score
were returned, there are only four unique underlying
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FIGURE 8.  Boxplots of running time (in CPU minutes) on simulated data with moderate ILS (mutation rate of 2 x 10-8) over 10 replicates.

Data sets with 100 genes were too large for AlloppNET to converge within a reasonable amount of time so they are omitted from the 100-gene

results shown here.

MUL-trees: Figure 11a and Supplementary Figure S5a
available on Dryad are associated with the same MUL-
tree despite different number of reticulations, so are
Figure 11b and Supplementary Figure S5b available
on Dryad. This again illustrates the identifiability
issue for the conversion between MUL-trees and
networks.

A potentially more interesting hypothesis based on
the networks in Figure 11 is that this evolutionary
history includes an autopolyploidization event at the
most recent common ancestor of the in-group after the
split from A. thaliana. That is, an alternative evolutionary
scenario here is a species tree with no interspecific
hybridization. These two alternative hypotheses have an
equal score under the criterion optimized by MPAllopp
and, thus, cannot be distinguished based on the data
provided.

CONCLUSIONS

In this article, we introduced a new maximum
parsimony method, MPAllopp, for inferring phylo-

genetic networks from gene tree topologies while
accounting for polyploidy and incomplete lineage
sorting simultaneously. The method employs a heuristic
search for walking the network space while evaluating
the parsimony score on the MUL-tree representation of
the network.

The lack of a one-to-one mapping between MUL-trees
and phylogenetic networks notwithstanding (Huber
et al. 2016; Zhu et al. 2016), “seeing” the polypoloid
hybridization events in a MUL-tree is possible only for
simplistic scenarios: a small number of taxa, a small
number of hybridization events, a small number of
gene extinctions, and, most importantly, the absence
of confounding factors such as ILS (Fig. 1). Indeed,
the parsimony algorithms and methods of Huber
and Moulton (2006) and Thomas et al. (2017) do not
account for ILS. Identifying the hybridization events
computationally is the task of turning the MUL-tree
into a phylogenetic network after a MUL-tree is inferred
from the gene trees. Therefore, our method searches
the phylogenetic network space directly by applying
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FIGURE 10.  Results on bread wheat data. Species networks inferred by MPAllopp from the 9-taxon wheat data set with 275 reconstructed
gene trees from (Marcussen et al., 2014). The three networks have the same score under the criterion optimized by MPAllopp.

subnetwork transfer operations on networks, so that In addition, the method proposed here assumes
the inference result is a network, rather than a MUL- allopolyploidization. However, in nature, homoploid
tree. hybrids, allopolyploids, and autopolyploids could
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a) b)
A.thaliana L.apelatum
P.cheesemanii P.wallii
P.exilis P.latisiliqua
P.novaezelandiae P.enysii
P.wallii P.fastigiata
P.stellata P.stellata
P.fastigiata P.novaezelandiae
P.enysii P.exilis
P.latisiliqua P.cheesemanii
L.apelatum A.thaliana
FIGURE 11.  Results on Pachycladon data. Species network reconstructed from the 10-taxon Pachycladon data set with five genes from (Joly et al.,

2009). The two networks have the same score under the criterion optimized by MPAllopp.

coexist, which would necessitate the development of
methods incorporating various types of hybridization
and polyploidization events. However, as we illustrated
in the case of the Pachycladon data set above, some
patterns in the phylogenetic network could potentially
signal an autopolyploidization event. Currently, our
method cannot infer autopolyploidy and requires the
diploid progenitors to be sampled, as we have not
implemented support for a data structure that can
represent WGD in the absence of diploid progenitor
species, or if those species never existed. We plan on
implementing it in a future version.

As discussed in Blischak et al. (2018), statistical
modeling of phylogenetic networks with polyploid
hybridization is very complex. We believe that devising
stochastic models and inference methods for restricted
classes of polyploids, as in Jones et al. (2013); Oxelman
et al. (2017), is most likely the way to make progress in
this area.

In the last several years, there has been work on
combining the multispecies coalescent model with
a birth-death model of gene duplication and loss
(Wu et al. 2014; Rasmussen and Kellis 2012; Du and
Nakhleh 2018; Li et al. 2020). While these works
do not consider hybridization or allelic introgression,
Du et al. (2019) introduced a model that unifies the
multispecies network coalescent and a birth—-death
model thus allowing for simultaneous modeling of
incomplete lineage sorting, gene duplication and loss,
and diploid hybridization. These works could be
relevant for further advances in modeling polyploid
hybridization in phylogenomic inference.

Statistical inference of phylogenetic networks is
computationally much more demanding than inference
of trees, severely limiting the sizes of data sets that
can be analyzed with phylogenetic network methods.
One approach to handling larger data sets is to
analyze smaller subsets of the data (subsets in terms
of taxa). This approach could be automated, as in
Zhu et al. (2019) for example, but this requires
developing methods for accurately estimating small
networks with their evolutionary parameters and for
merging these small networks into a network on the
full data set. We view this as an essential direction
for future research for phylogenetic network inference

on large data sets involving polyploids to become
feasible. Another approach is to combine the speed of
methods like MPAllopp with the capabilities of methods
like AlloppNET. For example, given the accuracy of
MPAllopp, a phylogenetic network topology is first
inferred using MPAllopp, and then its associated
evolutionary parameters are estimated using statistical
methods such as AlloppNET.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061 / dryad.4xgxd25b0.
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