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Topological characterization of non-Hermitian band structures demands more than a straightforward general-
ization of the Hermitian cases. Even for one-dimensional tight-binding models with nonreciprocal hopping, the
appearance of point gaps and the skin effect leads to the breakdown of the usual bulk-boundary correspondence.
Luckily, the correspondence can be resurrected by introducing a winding number for the generalized Brillouin
zone for systems with an even number of bands and chiral symmetry. Here, we analyze the topological phases
of a nonreciprocal hopping model on the stub lattice, where one of the three bands remains flat. Due to the lack
of chiral symmetry, the biorthogonal Zak phase is no longer quantized, invalidating the winding number as a
topological index. Instead, we show that a Z2 invariant can be defined from Majorana’s stellar representation of
the eigenstates on the Bloch sphere. The parity of the total azimuthal winding of the entire Majorana constellation
correctly predicts the appearance of edge states between the bulk gaps. We further show that the system is
not a square-root topological insulator, despite the fact that its parent Hamiltonian can be block diagonalized
and related to a sawtooth lattice model. The analysis presented here may be generalized to understand other
non-Hermitian systems with multiple bands.
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I. INTRODUCTION

Non-Hermitian (NH) Hamiltonians have long been
adopted to describe a wide range of open or nonequi-
librium quantum systems. The experimental realization of
PT -symmetric systems in quantum optics has renewed the
interest in NH lattice systems, especially their topological
properties [1]. From a theoretical point of view, NH systems
are interesting because they host a number of unique phenom-
ena such as exceptional points in the spectrum [2–4] and the
NH skin effect [5–16], where an extensive number of eigen-
states are accumulated at the boundaries. These properties
promise new technological applications including topological
lasing [17–20] and enhanced quantum sensing [21,22].

Substantial theoretical progress has been made to systemat-
ically classify and characterize the topological band structures
of NH Bloch Hamiltonians. The initial schemes were based
on gap dichotomy, i.e., by differentiating point gaps from
line gaps [23–28]. Later on the more general cases of sepa-
rable bands [29] were considered, leading to their homotopy
classification using braid groups [30,31] and knots [32] in
one dimension (1D). A major obstacle in developing a full
NH band theory is the sensitivity of the spectrum to the
boundary conditions. Bulk topological invariants defined for
real quasimomentum k and periodic boundary condition are
usually insufficient to describe the excitations at the open
boundary which may include the skin modes. This problem
is well recognized in one dimension. For example, for the
NH Su-Schrieffer-Heeger (SSH) model [5–7,33,34], the phase
diagram predicted by the winding number does not agree with

the appearance of edge states, signaling the breakdown of the
usual bulk-edge correspondence.

One way to recover the correspondence is to generalize
the Bloch band theory to allow the quasimomentum k to be
complex and analytically continue the Hamiltonian H (k) to
H (β = eik ). Then one can define the so-called generalized
Brillouin zone (GBZ) Cβ , a closed curve on the complex
β plane. Taking the GBZ curve Cβ as the base manifold, a
winding number can be defined analogous to the Hermitian
SSH model, which correctly predicts the emergence of edge
states [5–7,34]. The definition of the winding number over Cβ

requires the presence of chiral symmetry, which is common
for bipartite lattice models with nearest neighbor hopping and
an even number of bands. For 1D lattice models that lack the
chiral symmetry, it remains unclear whether it is viable, or
how, to construct a proper NH topological invariant.

To address this open question, in this paper we study a 1D
NH tight-binding model on the stub lattice with three bands
(see Fig. 1). It turns out that, perhaps counterintuitively, the
topological characterization of the NH stub model is rather
nontrivial. The Zak phase [35] accumulated when transversing
the curve Cβ is not quantized, for the model lacks chiral
symmetry. Nonetheless, it features robust edge states in cer-
tain parameter regimes to indicate a topologically nontrivial
bulk. We present two ways to characterize the bulk topology,
the first via the Majorana star representation and the second
through the decomposition of the squared Hamiltonian H2(β ).
Both methods are capable of recovering the generalized (non-
Bloch) bulk-boundary correspondence, and their results are
consistent with each other.
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FIG. 1. Schematic of the non-Hermitian stub lattice. Each unit
cell consists of three sites labeled by a, b, and c, respectively. The
hopping parameters t1,2,3 and κ are all real. For finite κ , the hor-
izontal intracell hopping between a and b is nonreciprocal, so the
tight-binding Hamiltonian becomes non-Hermitian. We take t2 = 1
as the energy unit.

A secondary motivation to examine the NH stub lattice is
to elucidate the interplay of flat bands [36] and the skin effect.
It is well known that the stub lattice features a completely
flat band at zero energy [37]. Another well known lattice
that possesses a flat band, the Lieb lattice in 2D [38], can
be viewed as the stub lattice stacked together. The lack of
dispersion means the kinetic energy is frustrated. In fact, the
degenerate states within the flat band are compact-localized
[39] in real space, i.e., the corresponding Wannier functions
have a compact support and vanish beyond a finite cluster size.
Then it is natural to expect them to resist the NH skin effect.
Recall that in the simplest case of the NH skin effect, e.g. in
the Hatano-Nelson model [40], all eigenstates are localized
to one edge due to nonreciprocal hopping. Such a scenario
seems improbable for the flat band. Since compact localized
states are potentially useful for optical applications, such as
the diffraction-free propagation of light [41–44] and enhanced
light-matter interaction by generating slow light [45–48], it is
worthwhile to investigate their NH skin effect.

This paper is organized as follows. In Sec. II, we introduce
the NH stub lattice model and discuss its bulk spectra. We
also analyze its band topology from the perspective of knot
theory [32]. Then in Sec. III, we present the edge spectrum
and a systematic analysis of the NH skin effect by comparing
the localization properties of the continuum bands measured
by the inverse participation ratio. Comparing the bulk and
edge spectrum points to the failure of the usual bulk-boundary
correspondence. To restore the correspondence, we introduce
the notion of the generalized Brillouin zone, continuum band
and biorthogonal Zak phase in Sec. IV. These setups enable us
to define in Sec. V a topological invariant based on Majorana’s
stellar representation [49–51]. We show the invariant yields
the correct prediction of the edge states. Section VI is devoted
to a simplified picture of the azimuthal winding through the
parent Hamiltonian [52,53]. We conclude in Sec. VII by dis-
cussing open questions and possible experimental realizations
of the stub model.

II. THE NON-HERMITIAN STUB MODEL

Our starting point is a Hermitian tight-binding model on
the stub lattice, schematically shown in Fig. 1 with κ = 0.
Each unit cell contains three sites, a, b, and c. The hopping
amplitudes t1,2,3 are real. The bulk energy spectrum has three

bands, one of which is completely flat at zero energy,

E (k) = 0,±
√

t2
1 + t2

2 + t2
3 + 2t1t2 cos k. (1)

Here, k ∈ [−π, π ] is the quasimomentum and we have set the
unit cell size to be one. The existence of the flat band can be
understood as follows. The whole lattice can be partitioned
into two sublattices: sublattice A consisting of the a and c
sites, and sublattice B of all the b sites. Particles only hop
between the sublattices, so the Hamiltonian has a sublattice
symmetry. Define projector PA (PB) for the A (B) sublat-
tice, then the operator � = PA − PB anticommutes with H ,
�H� = −H with �2 = 1. Then it is straightforward to show
the number of zero modes N0 = Tr� [54]. The trace of � has
a simple interpretation in real space, it is the imbalance of the
number of sites within the two sublattices, Tr� = NA − NB.
Thus N0 = NA − NB which is a general and well-known result.
Applying it to the stub lattice, we recover the result above that
at each k, there is exactly one zero mode. In other words, we
have a flat band at zero energy.

We generalize the stub lattice model by allowing the intra-
cell hopping between the a and b sites to be nonreciprocal.
The hopping asymmetry is characterized by a parameter κ as
depicted in Fig. 1. The resultant tight-binding Hamiltonian in
second quantized form is

H =
∑

n

[(
t1 + κ

2

)
b†

nan +
(

t1 − κ

2

)
a†

nbn + t3b†
ncn

+ t3c†
nbn + t2b†

n+1an + t2a†
nbn+1

]
. (2)

Here a†
n creates a particle at the a site of the nth unit cell, and

similarly for b†
n and c†

n. We assume t1,2,3 and κ are real, and
set t2 = 1 unless specified otherwise. In momentum space, the
Bloch Hamiltonian is a 3 × 3 matrix

H (k) =

⎡
⎢⎣

0 (t1 − κ
2 ) + t2eik 0

(t1 + κ
2 ) + t2e−ik 0 t3

0 t3 0

⎤
⎥⎦. (3)

This non-Hermitian model does not have PT symmetry, so
its eigenenergies are in general complex,

E (k) = 0,±
√

αk + it2κ sin k, (4)

αk = t2
1 + t2

2 + t2
3 − κ2/4 + 2t1t2 cos k. (5)

The bulk energy spectrum is illustrated in Fig. 2, where the
magnitude of E (k) is plotted against t1. There is a flat band
at zero energy, just as in the Hermitian case, and the energy
gap closes at two critical values, t1 = tL and tH (it is sufficient
to focus on t1 > 0). The values of tL,H can be easily obtained
by solving αk=π = 0, a quadratic equation for t1 yielding two
roots. For the parameters given in Fig. 2, tL = 0.382 and tH =
1.62.

These gap-closing points mark the transition between two
topologically distinct phases. To see this, it is best to plot the
eigenenergy string in the space spanned by (ReE , ImE , k) as
shown in Fig. 3. For t1 ∈ [0, tL ) and t1 > tH , e.g. t1 = 0.3 in
the upper panel, there is no braiding between the two nonflat
bands (in blue and red respectively). Projecting the spectrum
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FIG. 2. Bulk energy spectrum of the NH stub model with pa-
rameters t2 = 1, t3 = 0.25, κ = 4/3. The magnitude of E (k) plotted
for varying t1 shows a flat band at zero energy, and two gap closing
points at tL=0.382 and tH = 1.62.

on the complex energy plane (grey curves in Fig. 3), we
see that each nonflat band forms a closed curve. There is
no linking between the two curves, so we call it the unlink
phase. Note that for a reference energy Ep inside either of the
closed curves, the system has a point gap. In comparison, for
t1 ∈ (tL, tH ) such as t1 = 1.0 in the lower panel, the two energy
strings braid once. Since the Brillouin zone is periodic, during
the evolution of k from −π to π , the ending point (k = π )
of the blue band becomes the starting point (k = −π ) of the
red band. When projected on the complex energy plane, the
two bands join each other to form a single curve, i.e., a trivial
knot or unknot. Note that the unknot phase also has a point
gap. The unlink and unknot phase are topologically distinct.
It is impossible to continuously vary one into the other while
keeping the bands separated. In Ref. [32], two of us showed
that phase transitions between two phases characterized by
distinct knots/links occur at exceptional points. This can be
verified numerically at tL and tH .

III. EDGE STATES AND SKIN EFFECT

Next we show that these phase transition points for the
bulk band structure do not coincide with where the edge states
change qualitatively. Consider a finite chain of L unit cells
terminating at the edge as depicted in Fig. 1. An example of
its energy spectrum is given in Fig. 4 for L = 30. Here the
vertical axis shows the real part of the energy ReE , while
|ImE | is indicated by color. In particular, all the points in
blue represent real energy eigenvalues. Comparing to the bulk
spectrum with the same parameters shown in Fig. 2, we see
that the flat band at zero energy persists in the finite lattice.
Moreover, edge states appear inside the bulk gap at

Eedge = ±t3 (6)

for |t1| < tc. Note that the critical value tc, in this case tc = 1.2,
differs from tL or tH above. The discrepancy indicates the
breakdown of bulk-edge correspondence, which is is well
recognized in NH systems.

The edge states at energy ±t3 do not hinge on the model
being non-Hermitian. It is also present in the Hermitian limit
κ = 0. Its robustness is attested by its independence on t1
(as long as t1 < tc). Such independence also suggests that the

FIG. 3. Two bulk phases identified from the braiding pattern of
the eigenenergy strings: the unlink phase (upper panel, for t1 = 0.3)
and the unknot phase (lower panel, for t1 = 1.0). Parameters t2, t3,
and κ are the same as Fig. 2.

origin of the edge state can be revealed by considering the
limit t1 = κ = 0, i.e. when the chain is broken up into disjoint
pieces. Each piece is an elbow-shaped “molecule” consisting
of sites cn, bn, and an−1 coupled by t3 and t2, see Fig. 1. Then
the eigenenergies of the whole chain are easy to enumerate.
At the right edge n = L, site aL is dangling and not coupled
to anything else to give eigenenergy 0. At the left edge n = 1,
sites b1 and c1 are only coupled to each other by t3, which
yields eigenenergy ±t3. For all the molecules in the middle,
we have eigenenergy 0, ±

√
t2
2 + t2

3 . Thus, the edge states at
±t3 can be traced to the molecular states isolated at the edge
in the limit of vanishing t1 and κ . The physical picture here
is very analogous to the SSH model in the dimer limit. The
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FIG. 4. The energy spectrum of a finite chain of the nonrecip-
rocal stub model with parameters t2 = 1, t3 = 0.25, κ = 4/3, and
L = 30. The imaginary part of the energy eigenvalues is indicated by
color, with real energy shown in blue. The edge states living inside
the bulk gap are at Eedge = ±t3 and they persist up to t1 = tc = 1.2.

difference is that for the stub lattice, Eedge is not at zero energy.
Rather, it is repelled from the zero-energy flat bands to reside
inside the band gap.

Going away from the molecule limit by increasing t1 while
maintaining κ = 0, the energy bands acquire the dispersion
given in Eq. (1). We can determine when the edge states merge
into the bulk bands as follows. The bottom of the upper band
is E (k = π ) =

√
(t1 − t2)2 + t2

3 . Equating it to Eedge = t3, we
find that the merge occurs when t1 = t2, which is consistent
with the numerics. Applying the same reasoning to the NH
stub model, one might expect that the edge state would cease
to exist when the bulk band bottom αk=π = t3, i.e., when
t1 = (t2 − κ/2). However, this prediction based on the bulk
spectrum is incorrect and does not agree with Fig. 4. As we
will show in Sec. IV below, the correct critical value for the
NH model is

tc =
√

t2
2 +

(
κ

2

)2

for
κ

2
< t1, (7)

tc =
√

−t2
2 +

(
κ

2

)2

for
κ

2
> t1. (8)

The failure of the naive prediction for tc is another mani-
festation of the nontrivial bulk-edge correspondence in NH
systems.

The presence of open boundaries drastically changes the
wave functions of the three continuum bands. For a given
eigenenergy E , let ψs(x) be its wave function (more precisely
the right eigenvector of H) at unit cell x ∈ [1, L] and site s ∈
{a, b, c}, and define the probability density ρs(x) = |ψs(x)|2.

FIG. 5. Non-Hermitian skin effect. Shown are the total proba-
bility densities ρs(x), s = a, b, c, for the bulk band with ReE < 0
(top) and the zero energy states (bottom, with ρb=0). t2 = 1, t3 =
0.25, κ = 4/3, and L = 30.

For example, one finds that all ψs(x) at energies with finite
ReE localize at the left boundary for κ > 0. The upper panel
of Fig. 5 illustrates the total probability ρs of all states with
ReE < 0 (excluding the edge state at −t3). They decay ex-
ponentially into the bulk to exhibit NH skin effect. The flat
band states at zero energy also gravitate toward the left edge,
but the localization is far from complete and the decay is
not exponential. The lower panel of Fig. 5 shows the total
probability of all zero energy states as function of the unit
cell index x. Note that zero energy states only live on the a
and c sites. The resistance to skin effect observed here is in
accordance to the intuition based on the real space picture of
flat band states summarized in the introduction.

A more quantitative measure of the localization is provided
by the inverse participation ratio, IPR = ∑

s,x |ψs(x)|4 defined
for a given energy. The value of IPR approaches 1 for a state
perfectly localized on one site, and order 1/L2 for a uniformly
delocalized state. For degenerate states such as those at zero
energy, the IPR is averaged within the degenerate subspace.
Fig. 6 summarizes and compares the IPR for all the eigenen-
ergies of a finite chain. It is clear that the edge states at ±t3
are the most localized with the highest IPR. Next are the
continuum of states with finite ReE that show the skin effect.
The least localized are the zero energy states. For reference,
the energies of the bulk (with periodic boundary conditions)
are shown in grey. They form a closed ring to enclose all
the open spectra on the complex energy plane. The change
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FIG. 6. The inverse participation ratio (IPR) of the eigenstates
of a finite chain. The grey points are the eigenenergies of the bulk.
t2 = 1, t3 = 0.25, κ = 4/3, and L = 30.

from the grey to blue is an example of the sensitivity of the
spectrum to the boundary conditions in NH systems.

IV. GENERALIZED BRILLOUIN ZONE

The continuum of states for finite chains with open bound-
ary conditions as shown in Figs. 4 and 6 are not Bloch waves
with real wave number k. In order to describe them and ac-
count for the NH skin effect, an established procedure [5,9] is
to analytically continue H (k) to H (β ) where β = eik can take
complex values away from the unit circle,

H (β ) =

⎡
⎢⎣

0
(
t1 − κ

2

) + t2β 0(
t1 + κ

2

) + t2β−1 0 t3
0 t3 0

⎤
⎥⎦. (9)

Then, an eigenstate ψ (x) ∼ βx can describe states localized
at the boundaries. The value of β is not arbitrary and must be
chosen properly such that the energy spectrum of H (β ) given
by

det [H (β ) − E ] = 0 (10)

matches that of a long chain in the limit L → ∞. To this
end, the boundary conditions at x = 1, L must be met, and
the spectrum of H (β ) must approach a union of continuum
manifolds, known as continuum bands, in the limit of L → ∞.
It was shown in Ref. [9] that these requirements are met when
the “continuum condition” is satisfied, |βM | = |βM+1|, where
βi with i = 1, 2, . . . , 2M are the solutions to Eq. (10), which is
an algebraic equation for β for given E , with their magnitudes
sorted in ascending order, |β1| � |β2| · · · � |β2M |. Solving
|βM | = |βM+1|, one finds that β traces out a closed loop Cβ on
the complex plan referred to as the generalized Brillouin zone.
Applying this result to our nonreciprocal stub model with
M = 1, Eq. (10) is a quadratic equation for β and has two
solutions β1,2. The continuum condition requires |β1| = |β2|
and leads to

|β1,2| = r =
∣∣∣∣ t1 − κ

2

t1 + κ
2

∣∣∣∣
1
2

. (11)

Thus the generalized Brillouin zone is a circle with radius r. In
the Hermitian limit κ = 0, Cβ reduces to the unit circle. One
can check that for β ∈ Cβ , the eigenvalues of Hβ indeed form

continuum bands that match the open chain spectrum such as
the one shown in Fig. 4 (except for the edge states at ±t3).

The introduction of generalized Brillouin zone enables us
to derive the correct topological phase transition point where
the edge states appear/vanish. In the generalized band theory
based on H (β ), the transition at t1 = tc corresponds to the
point where the continuum band touches the edge state energy.
Setting E = t3 in Eq. (10), we find

β1 = − t2
t1 + κ

2

, β2 = − t1 − κ
2

t2
. (12)

Requiring |β1| = |β2| yields

t1 = ±
√

t2
2 +

(
κ

2

)2

for
κ

2
< t1, (13)

t1 = ±
√

−t2
2 +

(
κ

2

)2

for
κ

2
> t1. (14)

which prove Eqs. (7) and (8) earlier. Note that tc here does
not coincide with any band gap closing as in the SSH model.
Closing of the band gap is not a prerequisite for topological
transitions, even in Hermitian systems [55]. As we will show
below in Secs. V and VI, at the transition point tc, the topo-
logical invariant undergoes a jump and becomes ill-defined,
illustrating the topological origin of the edges states.

In Refs. [5,9], the bulk-boundary correspondence is
reestablished by introducing a quantized winding number w

along Cβ . This is not possible in the present case due to the
lack of chiral symmetry. To see this, we define the Zak phase
[35] for the mth band as follows:

γm = i
∮

Cβ

dβ〈λm(β )|∂β |ψm(β )〉, (15)

where |ψm(β )〉 and 〈λm(β )| are the right and left eigenvec-
tor of H (β ) corresponding to the m-th eigenenergy {Em(β )}.
Note that a non-Hermitian Hamiltonian has both left and
right eigenstates defined as H† |λm〉 = E∗

m |λm〉 and H |ψm〉 =
E |ψm〉. Compared to the Hermitian case, the set of eigen-
states {|ψn〉} are not necessarily orthogonal but are linearly
independent [56]. We follow the convention of biorthogonal
normalization, 〈λi|ψ j〉 = δi, j . In the limit of t3 = 0, the stub
model reduces to the nonreciprocal SSH model, the Zak phase
for the two bands with finite ReE is then quantized to multi-
ples of π : π for |t1| <

√
t2
2 + (κ/2)2 and zero otherwise. For

finite t3, they are no longer multiples of π . This can be illus-
trated for example by considering the limit t1 = 0 and κ = 0,
the Zak phase for the positive energy band is −πt2

2 /(t2
2 + t2

3 ).
Thus γm cannot serve as the topological invariants for the stub
model.

V. INVARIANT FROM MAJORANA STARS

A convenient way to visualize the eigenstates of a multi-
band Bloch Hamiltonian is to represent them as a set of stars
on the Bloch sphere through Majorana’s stellar representation
[49–51,57–59]. More specifically, the eigenvectors of H (β )
with (2 j + 1) bands can be viewed as β-dependent spinors of
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spin j,

|ψm(β )〉 = [
C(m)

j ,C(m)
j−1, . . . ,C(m)

− j

]T
, (16)

where m is the band index. Recall that any spin- j state |
〉
can be constructed using two bosonic creation operators a†

↑,↓
following Schwinger’s bosonic representation of angular mo-
mentum eigenstates [60]:

|
〉 = 1

Nj

2 j∏
�=1

[
cos

θ�

2
a†

↑ + sin
θ�

2
eiφ�a†

↓

]
|0〉, (17)

where Nj is the normalization factor and |0〉 is the vacuum
state. The parametrization in Eq. (17) makes it clear that the
spin- j state is represented by 2 j points living on the Bloch
sphere, labelled by index � with polar angle θ� and azimuthal
angle φ�, respectively. Each point on the Bloch sphere can be
viewed as a spin-1/2 state generated by acting [ cos θ�

2 a†
↑ +

sin θ�

2 eiφ�a†
↓] on the vacuum. We will refer to these points as

Majorana stars. Together they form a “quantum constellation,”
which encodes the band topologies.

To find the positions of the stars for a given state such as
|ψm(β )〉, it is sufficient to solve for the roots of the so-called
star equation, a polynomial equation of degree 2 j for complex
variable z [57],

2 j∑
k=0

(−1)kC(m)
j−k√

(2 j − k)!k!
z2 j−k = 0. (18)

Once the 2 j roots {z(m)
� } are obtained, the angular positions of

the stars can be determined by

z(m)
� = tan

θ
(m)
�

(β )

2
eiφ(m)

�
(β ), � = 1, 2, . . . 2 j, (19)

where we have restored the β dependence of the angles.
Our nonreciprocal stub model has three bands and cor-

responds to a spin-1 system, j = 1. Thus, each band is
represented by two Majorana stars on the Bloch sphere. As
β is varied throughout the generalized Brillouin zone Cβ ,
the pair of stars for a given band trace out closed curves on
the Bloch sphere as shown in Figs. 7(a) to 7(c). Here for the
sake of clarity, the star trajectories are also projected onto the
xy plane and depicted in panels on the right. In Hermitian
systems, the solid angles subtended by the closed trajectories
of the Majorana stars are related to the Zak phase [49,61].
Here for the stub model, the Zak phase is not quantized and
the solid angles of the closed star trajectories vary smoothly
with parameters such as t1. Yet, the azimuthal winding number
of the star trajectories is always an integer. We find that the
azimuthal winding contains enough information to distinguish
the topological nontrivial phase (with edge states) from the
trivial phase.

More specifically, the azimuthal winding number for the
mth band is defined as

νm = − 1

2π

2 j∑
�=1

∮
Cβ

dβ∂βφ
(m)
� . (20)

The winding is easy to count by visual inspection. For ex-
ample, for the band with ReE > 0, the red (orange) curve
in Fig. 7(a) winds around the z axis one (zero) time, so the

(a)

(b)

(c)

(d)

FIG. 7. Majorana stars (left panel) and their projections on the
xy plane (right) for (a) t1 = 1.1 inside the topologically nontrivial
phase; (b) t1 = tc at the transition point; and (c) t1 = 1.3 inside the
trivial phase. The red and orange (blue and green) curves are the
trajectories of Majorana stars for the band with ReE > 0 (ReE < 0).
The brown and purple curves correspond to the band at zero energy.
The stars are constructed from the right eigenvectors of H (β ) for β

within the generalized Brillouin zone. (d) Majorana stars obtained
from the left eigenvectors of H (β ) for t1 = 1.1 (left) and 1.3 (right).
Parameters used are t2 = 1, t3 = 0.25, and κ = 4/3.

total winding is 1. Similarly, for the ReE < 0 band, the green
(blue) curve winds one (zero) time. And finally, for the band
at zero energy, the brown and purple curve together contribute
to winding number 1. To summarize, in this case of t1=1.1,
all three bands have νm = 1. In comparison, for the case of
t1 = 1.3 shown in Fig. 7(c), none of the curves wind around
the z axis, νm = 0, as is evident from their projection on the
xy plane.

The winding number νm defined in Eq. (20) depends on
the choice of gauge or basis. For example, in a new basis
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FIG. 8. The phase diagram for the nonreciprocal stub model with
parameters t2 = 1 and t3 = 0.25. The topological invariant P defined
in Eq. (21) is computed numerically. The topological nontrivial (triv-
ial) region is shown in red (blue) and has a value P = −1 (P = 1).
The upper left phase boundary is given by Eq. (14) while the lower
right phase boundary is given by Eq. (13).

where the site order is switched from (b, a, c) to (a, b, c), only
the zero-energy band has winding number 1. This example
also shows that the total winding νtotal = ∑

m νm is gauge-
dependent, but νtotal = 3 and νtotal = 1 are equivalent. In fact,
the parity of the total winding number is gauge invariant,

P = (−1)
∑

m νm . (21)

Then we are naturally led to the following definition: phases
with P = −1 (P = 1), i.e., with νtotal odd (even), are topo-
logically nontrivial (trivial). The topological invariant P
introduced here based on Majorana stars correctly predicts the
phase diagram and the phase transition point. For example,
Fig. 7(a) has P = −1 and depicts a topologically nontrivial
phase, while P = 1 in Fig. 7(c). At the transition point t1 = tc
depicted in Fig. 7(b), the red and green curve pass through
the north pole, while the brown and purple line pass through
the south pole, at which point the corresponding azimuthal
winding number is ill-defined.

In summary, by analytically continuing H (k) to H (β ) and
introducing the topological invariant P based on the Majorana
star representation, we have re-established the bulk-boundary
correspondence for the nonreciprocal stub model. This is con-
firmed by comparing the phase diagram predicted from the
numerical evaluation of invariant P, shown in Fig. 8, with the
edge state spectra of open chains. The red region with P = −1
features edge states, while the blue region with P = 1 does
not. The numerical phase diagram also confirms the analytical
phase boundaries given by Eqs. (13) and (14) shown in solid
lines. Other parameters of t2 and t3 can be discussed in a
similar fashion.

In the formulation above, we have exclusively relied on the
right eigenstates. Alternatively, we can introduce Majorana
stars and the winding numbers based on the left eigenstates
of H (β ). Two examples are shown in Fig. 7(d). Compared
to their respective counterpart obtained from the right eigen-
states in Figs. 7(a) and 7(c), the star trajectories appear very
different, but the winding number νm retains the same magni-
tude with the sign flipped.

VI. PARENT HAMILTONIAN

To gain further insight about the band topology, we
now view the stub model from another angle by analyzing
it’s parent Hamiltonian which is considerably simpler. This
perspective is inspired by one-dimensional square-root topo-
logical insulators (

√
TI). A

√
TI described by a Hamiltonian

H is an insulator whose topological properties are inherited
from its parent Hamiltonian H2 [52,53]. While H does not
fit into the standard description of topological insulators, H2

does. The first clue that the stub model is potentially a square-
root topological insulator is the existence of in-gap edge states
away from zero energy, a common feature of

√
TIs. The

second indication is that a similar, but different, three-band
model, the Hermitian diamond lattice threaded with φ flux,
has been recently identified as a

√
TI [62]. The diamond

lattice model shares a few common features with the stub
model here including the presence of zero energy flat band
and nonquantized Zak phase. In what follows, we show that
the nonreciprocal stub model is not a

√
TI as defined in recent

works. Its parent Hamiltonian H2 does not possess chiral
symmetry or quantized Zak phase, and therefore is not in
the same league of the SSH model. Despite this, the parent
Hamiltonian helps elucidate what happens to the azimuthal
winding across the phase transition point t1 = tc.

The parent Hamiltonian for the nonreciprocal stub model
is a function of β

H2(β ) =

⎡
⎢⎣

m0(β ) − t2
3 0 m− + t2t3β

0 m0(β ) 0

m+ + t2t3β−1 0 t2
3

⎤
⎥⎦, (22)

where m0(β ) = (t1 + t2β − κ
2 )(t1 + t2β−1 + κ

2 ) + t2
3 and

m± = (t1 ± κ
2 )t3. Recall the child Hamiltonian H has three

bands, E (β ) = 0,±√
m0(β ). The eigenvalues of the parent

Hamiltonian H2 consist of only two bands, E (β ) = 0 and
m0(β ), since the two original bands of H with opposite ReE
become degenerate after the square.

The form of H2 in Eq. (22) is not very convenient. We
can transform it into block diagonal form, which is always
possible because the original stub model lives on a bipartite
lattice [63]. This is simply achieved by a reordering of the
basis to

H2 = Hres ⊕ Hsaw. (23)

Now the parent Hamiltonian is reduced to the direct sum of a
residual Hamiltonian

Hres(β ) = m0(β ), (24)
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FIG. 9. The right eigenvectors of Hsaw(β ) on the Bloch sphere
as β is varied across the generalized Brillouin zone. The red (blue)
curve corresponds to the band at zero (m0). The values for t1 are
(a) t1 = 1.1, (b) t1 = tc = 1.2, and t1 = 1.3 with t2 = 1, t3 = 0.25,
and κ = 4/3.

which describes hopping along a chain, and a 2 × 2 Hamilto-
nian

Hsaw(β ) =
[

m0(β ) − t2
3 m− + t2t3β

m+ + t2t3β−1 t2
3

]
, (25)

which can be interpreted as a tight-binding model with nearest
neighbor hopping on the sawtooth lattice. The generalized
Brillouin zone for Hsaw coincides with that of H , and the two
bands are 0 and m0(β ). Note that most hopping models on the
sawtooth lattice do not feature a flat band except for certain
special ratios of the hopping amplitudes. The reason why Hsaw

hosts a zero-energy flat band is because there are also onsite
potential terms m0 − t2

3 and t2
3 .

As a two band model, the right eigenvectors of Hsaw(β )
can be brought into the standard form |ψ (β )〉 = cos θ

2 |0〉 +
sin θ

2 eiφ |1〉 to live on the Bloch sphere. We stress that Hsaw

contains all three Pauli components, Hsaw = E0 + d · σ, so
its eigenvectors in general do not span a great circle. As
β is varied throughout the generalized Brillouin zone Cβ ,
the eigenvector of each band traces out a closed curve on
the Bloch sphere. Figure 9 shows the trajectory of the zero
(in red) and m0 band (in blue) for t1 values before, at, and after
the transition point t1 = tc. The azimuthal winding of these
curves is reminiscent of the Majorana stars, only to show up
more clearly thanks to the reduction in the number of bands.
Define the winding of azimuthal angles for each band as

ν = − 1

2π

∮
dβ∂βφ. (26)

Note that the two bands have the same winding number so it is
sufficient to focus on one of them, say the m0 band. This can
be seen for example in the Hermitian limit, where Hsaw can
be shifted, flattened, and cast into the form n̂(k) · σ. Then the
two eigenvectors are antipodal points on the Bloch sphere and
wind around the z axis in the same way. We find that for t ∈
[0, tc), ν = 1 for the m0 bands, the red and blue curves both
enclose the z-axis as shown in Fig. 9(a). In contrast, for t > tc,
ν = 0, neither the red nor the blue trajectory winds around
the z axis, see Fig. 9(c). Right at the transition point t = tc
[Fig. 9(b)], the red curve crosses the north pole while the blue
curve crosses the south pole, at which points φ becomes ill
defined. The winding number is quantized and jumps by one
at the transition. The transition is topological in the sense that

it is impossible to smoothly vary the blue curve in Fig. 9(a) to
that in Fig. 9(c) without going thought one of the poles.

VII. CONCLUSION

The nonreciprocal stub lattice model appears deceivingly
simple. Yet understanding its bulk-edge correspondence is not
a straightforward matter and requires concepts and techniques
developed only recently. Its bulk spectrum has a flat band
and two exceptional points separate phases characterized by
distinct knots of the eigenenergy strings. The bulk phase tran-
sition points however do not coincide with the emergence of
edge states in finite systems with open boundaries. This failure
of the traditional (Hermitian) bulk-boundary correspondence
is accompanied by the NH skin effect. For finite chains with
open boundaries, the continuum bands away from zero energy
all congregate to one edge, but the flat band resists the skin
effect and has the lowest degree of localization as measured by
the IPR. A NH bulk-boundary correspondence is established
by analytically continuing the Hamiltonian H (k) to H (β )
with the complex β confined within the generalized Brillouin
zone Cβ . The resultant continuum band structure gives correct
prediction of the critical point tc where the edge states onset.

The three-band model H (β ) differs from the NH SSH
model or its generalization in one important aspect, it does not
possess a chiral symmetry so the Zak phase is not quantized
to 0 or π (or fractions of π such as π/2). It also differs from
known examples of

√
TIs, because its parent Hamiltonian, or

more precisely its subblock Hsaw, does not feature a quantized
Zak phase and cannot be identified as a known topological
insulator. Despite those differences, H2(β ) can still be uti-
lized to accurately characterize the NH band topology. This
suggests that parent Hamiltonian is useful beyond traditional√

TIs. By representing the eigenvectors of H (β ) using Ma-
jorana stars, we find that at the transition, the Majorana star
trajectories pass through the north or south pole, triggering
a jump in the azimuthal winding number. We propose that
the parity P of the total azimuthal winding can serve as the
gauge-independent invariant to characterize different gapped
phases. Phases with odd parity have edge states, and it is im-
possible to go from an odd parity phase to an even parity phase
without having the star trajectory crossing the poles. Using the
invariant P, one can reliably predict the existence/absence of
edge state from the bulk information of H (β ). Note that the
parity does not give the total number of isolated edge states.

A challenging open question is to formulate a rigorous
proof of the bulk-edge relationship based on the Majorana
stellar representation. Previous studies for Hermitian systems
[49,58] have shown that the geometrical phases of MSs are
closely related to the Zak phases of the system and the
existence of edge states is associated with the nontrivial wind-
ing of MSs [64]. Generalizing the proof to non-Hermitian
systems, including establishing the exact correspondence
between P and the appearance of topological edge states
found here, is an open challenge left for future work. We
speculate that for generic multiband NH systems, the Zak
phases of the individual bands only provide partial topological
data, while the Majorana stars contain the full information.
Future work is required to fully understand the topologi-
cal information contained in the quantum constellation and
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their experimental signatures in edge spectrum and quantum
dynamics. We hope the analysis presented here can be ex-
tended to the topological characterizations of other multi-band
models.

The nonreciprocal stub lattice can be realized experimen-
tally using electric circuits [65,66] or optical ring resonators
[67]. For example, electric circuits consisting of LC resonators
with negative impedance converters can achieve nonrecip-
rocal hopping, and admittance measurement can probe the
complex band structures of NH lattice modes [13]. Similarly,

ring resonators can realize the nonreciprocal lattice by using
antiresonant coupling rings to produce asymmetric hopping
[67]. The presence of edge states can then be demonstrated by
measuring transmittance and imaging the propagation of light
[68].
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