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The Shastry-Sutherland (SS) model as a canonical example of frustrated magnetism has been extensively stud-
ied. The conventional wisdom has been that the transition from the plaquette valence bond order to the Neel order
is direct and potentially realizes a deconfined quantum critical point beyond the Ginzburg-Landau paradigm. This
scenario, however, was challenged recently by improved numerics from density matrix renormalization group
which offers evidence for a narrow gapless spin liquid between the two phases. Prompted by this controversy and
to shed light on this intricate parameter regime from a fresh perspective, we report high-resolution functional
renormalization group analysis of the generalized SS model. The flows of over 50 million running couplings
provide a detailed picture for the evolution of spin correlations as the frequency/energy scale is dialed from the
ultraviolet to the infrared to yield the zero-temperature phase diagram. The singlet dimer phase emerges as a
fixed point, the Neel order is characterized by divergence in the vertex function, while the transition into and
out of the plaquette order is accompanied by pronounced peaks in the plaquette susceptibility. The plaquette
order is suppressed before the onset of the Neel order, lending evidence for a finite spin liquid region for

J1/J> € (0.77, 0.82), where the flow is continuous without any indication of divergence.

DOI: 10.1103/PhysRevB.105.L041115

Forty years after the introduction of the Shastry-Sutherland
(SS) model [1], its ground-state phase diagram remains in-
conclusive. The model describes quantum spins on the square
lattice with competing antiferromagnetic exchange interac-
tions, J; for the horizontal/vertical bonds and J, for the
decimated diagonal bonds connecting the empty plaquettes;
see Fig. 1. Owing to the frustration, the model has long been
suspected to host exotic ground states and phase transitions. A
large body of theoretical works has established the existence
of three phases, see, e.g., Ref. [2] and Refs. [3,4] for a synop-
sis of earlier and recent results, respectively. The J; < J,/2
limit is exactly solvable and the ground state is a product
state of diagonal dimers (spin singlets). For intermediate value
of J1/J», the ground state is a plaquette valence bond solid,
while Neel order takes over for large J,/J;. The most in-
teresting, and controversial, question regards the nature of
the plaquette-to-Neel (pN) transition: Is it conventional, a
deconfined quantum critical point, or through an additional
spin liquid phase?

Remarkably, the SS model has an almost ideal realiza-
tion in SrCu,(BOs3), crystals, where phase transitions can be
induced by tuning the hydrostatic pressure [5,6]. Inelastic neu-
tron scattering found signatures of the plaquette phase [7], and
heat-capacity measurements confirmed the dimer-to-plaquette
transition [8,9]. Yet a direct pN transition was not observed
in the anticipated pressure range. These experiments renewed
the effort to examine this intriguing region using the state-of-
the-art numerical techniques. Earlier tensor network (iPEPS)
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calculations confirmed the plaquette phase within the re-
gion J;/J, € [0.675,0.765] [10-14] and a weak first-order
pN transition. A recent density matrix renormalization group
(DMRG) study [3] with cylinders of circumference up to 10
sites yielded similar phase boundary J; /J, € [0.675, 0.77] but
a continuous pN transition with spin correlations supporting
a deconfined quantum critical point. Another DMRG using
cylinder circumference up to 14 sites concludes that a spin
liquid phase exists in the window J;/J; € [0.79, 0.82] be-
tween the plaquette and the Neel phase [4]. A core difficulty
in reaching a consensus is attributed to the near degeneracy of
the competing orders in this region. The finite-size limitation
of DMRG means that the ground state can only be inferred by
extrapolation via careful finite-size scaling analysis.

The size restriction prompts us to adopt an alternative
approach diametrically opposed to exact diagonalization or
DMRG on finite systems. The algorithm directly accesses
the infrared and thermodynamic limit while treating all com-
peting orders on equal footing without bias. It starts from
the microscopic spin Hamiltonian and successively integrates
out the higher frequency fluctuations with full spatial (or
equivalently momentum) resolution retained at each step. The
scale-dependent effective couplings and correlation functions
are obtained by numerically solving the functional renormal-
ization group (FRG) flow equations [15-17]. As the frequency
scale A slides from J; , down to zero, the zero-temperature
phase diagram is determined. Such FRG approach to quan-
tum spin systems, first established in 2010 [18], has yielded
insights for many frustrated spin models. But its application
to the SS model has not been successful, perhaps due to two
reasons. First, in contrast to the Neel order, the dimer or the
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FIG. 1. Generalized SS model and its zero-temperature phase
diagram from FRG. (a) The competing exchange couplings in model
Eq. (1) include «J; and J; for the black solid and dashed bonds,
respectively, and J, for the red bonds. The four sites within the unit
cell (shaded square) are labeled by color red, green, blue, and yellow,
respectively. (b) The phase diagram for k = 1 consists of four phases
separated by three critical points as J; /J, is varied. A representative
point is chosen for each phase to illustrate the typical RG flows of the
spin susceptibilities x (p) in leading channels (i.e., different values of
p; see main text). The corresponding insets show the profile of ¥, (p)
in the infrared limit A — 0. The white x indicates its peak position
in the momentum space (py, py).

plaquette order cannot be inferred naively from the divergence
of vertex functions, making it challenging to locate their phase
boundaries. Second, as we shall show below, the pN transition
region is better understood by examining a generalized model
that reduces to the SS model in a particular limit.

In this work, high-resolution FRG analysis of the gener-
alized SS model is achieved by overcoming these technical
barriers. To maintain sufficient momentum and frequency
resolution, one must keep track of millions of running cou-
plings at each FRG step. The calculation is made possible
by migrating to the GPU platform which led to performance
improvement by orders of magnitude [19,20]. Despite be-
ing a completely different approach, the phase boundaries
predicted from our FRG are remarkably close to the state-of-
the-art DMRG. The agreement further establishes FRG as an
accurate technique for frustrated quantum magnetism. Most
importantly, the plaquette susceptibility from FRG indicates
the plaquette order terminates around J; /J, ~ 0.77 before the
onset of weak Neel order around J;/J, ~ 0.82. It supports
the existence of a spin liquid region between the plaquette
and Neel phase proposed in Ref. [4]. Thus the SS model is
a strong candidate to host spin liquid, and SrCu,(BOs3), offers
an exciting opportunity to realize and probe the elusive spin
liquid phase.

Model and pseudofermion FRG. Our starting point is the
generalized SS Hamiltonian [21]

H=x Y Si-S;+/1 Y Si-Sj+h Y 8-S (1)
(i.J)

() i,jediag

where S; are spin one-half operators (S = 1/2); i, j label
the sites; and J;, > O are antiferromagnetic exchange cou-
plings. The first (second) sum is over nearest neighbors on the
square lattice represented by the solid (dashed) black lines in
Fig. 1(a); the last sum is over the alternating diagonal bonds
indicated by the red lines. The original SS model corresponds

to the limit x = 1 [1,2]. A small 6J; = (k — 1)J; acts as a
source field to break the double degeneracy and favor valence
bond order within the shaded plaquettes. It plays a crucial role
in our analysis and facilitates the calculation of plaquette sus-
ceptibility. We will stay close to the limit « — 1 throughout.

To predict the phase diagram of Hamiltonian Eq. (1),
FRG finds its generating functional, i.e., an effective field
theory parametrized by self-energies, four-point, and higher-
order vertices, for each given frequency/energy scale A. The
self-energies and vertices obey the formally exact flow equa-
tions that can be truncated and solved numerically. More
specifically, the many-spin problem is first converted to an
interacting fermion problem using the pseudofermion repre-
sentation [18], S} = (1/2)0; ¥, Vis. Here o** are the Pauli
matrices, and ;g annihilates a fermion at site i with spin
B =7, |, etc. The resultant fermion Hamiltonian only has
quartic interactions but no kinetic energy term (the fermions
are localized and constrained at one particle per site). So
the bare single-particle Green function Gy(w) = 1/iw with
w being the frequency [18]. Then the flow equations for the
interacting fermion problem can be solved by generalizing the
expansion and truncation schemes extensively benchmarked
for strongly correlated electronic materials [22,23].

The implementation of psuedofermion FRG is well
documented in the original work [18] and later improve-
ments [24-37].

A brief outline is as follows. Starting from an ultravi-
olet scale A = Ayy > J;» and using the bare interaction
in Eq. (1) and bare Green function to set up the initial
condition, the coupled integro-differential equations for the
scale-dependent self-energy X (w) and four-point vertex
Fi‘]\iz(a)’l,wé;wl,wz) are solved successively in small steps
along a discretized grid of the frequency/energy scale A until
it is reduced down to the infrared A = A;g — 0. During the
flow, the self-energy % (w) is renormalized to gain nontrivial
frequency dependence as higher frequency fluctuations induce
retarded interactions. But it remains site independent, i.e.,
fermions hopping is prohibited. The four-point vertices I'*
(effective interactions) carry multiple indices: i#; and i, for
lattice sites, whereas o}, w5 and wi, w; are frequencies for
the pair of sites before and after the interaction. Contributions
from higher order vertices are approximated by the Katanin
term [38].

Care must be exercised to efficiently parametrize the ver-
tices in order to render the numerical task tractable. In
particular, the SS model has nonsymmorphic lattice symme-
try, with four sites per unit cell shown in colors @ =1, g, b, y
in Fig. 1 and no C4 symmetry as in the J;-J, model. To avoid
using color indices in Fi’]\iz, we pick a o = r site located at
the origin as #;. Other vertices for sites of different color
o = g, b,y can be obtained from the central r site with ap-
propriate rotation and lattice translation [39]. We retain all
i» within a radius |r;, — I;,| < Rpax In F[’]\iz and emphasize
that the FRG equations describe infinite systems without a
boundary. Here R, merely places an upper cutoff for the
correlations retained in the numerics. As to the frequency
variables, we rewrite FA(a)/l, wh; w1, wp) as functions of the
Mandelstam variables s, ¢, and u [18] which manifestly en-
force the frequency conservation. Finally, we discretize the
frequency using a logarithmic mesh of N, points extending
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from the ultraviolet scale Ayy = 10%J, to the infrared scale
Ag = 1072J,. Typically, N, = 48 provides good frequency
resolution, and further increasing N,, will not alter the results
appreciably. We take R,x = 10 which amounts to N, = 441
lattice sites within the correlation radius. In total, this gives a
coupled system of N; x N> ~ 50 million running couplings.

Correlation functions and susceptibilities. To detect the
emergence of long-range order as A — 0, correlation func-
tions at each renormalization scale can be obtained from
the £ and I'* via standard calculations involving Feynman
diagrams. For example, the spin-spin-correlation function is
given by

wi@) = [ drenirsiosio)

= 51O+ 5 M

where black dots represent the spin matrix S7 = 0*/2, the
filled square represents vertex I'*, and lines with arrows are
dressed Green functions that contain the self-energy. The scale
dependence of y is suppressed for brevity. We find that it
is necessary to distinguish the flows of spin correlations for
different bonds, i.e., pairs of (i, j), because the symmetry-
breaking patterns in the SS model are rather complex and
involve valence bond orders. For a given site i of color «, one
can find %, (p), the Fourier transform of Eq. (2) in the limit of
w — 0. Itis also convenient to define spin susceptibility

1 . 1
— 1 ip-(fa=1j) .. I 7
x(p) = lim - > E P i (@) = > %), ()
o Jj a

@

where the o sum is over the four sites of different colors within
the unit cell, the j sum is over all sites, and the limit w — 0 is
taken in the end. The spin susceptibility defined in Eq. (3) has
no bond resolution, but its divergence (or lack thereof) and its
profile in momentum space offer a quick diagnosis of the in-
cipient orders as the ratio J; /J; is changed. Finally, we define
a set of plaquette susceptibilities to detect the plaquette va-
lence bond order. They measure the bond-resolved responses,
e.g., the change in y;;, due to a small bond modulation

_ X
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with J; and J, fixed. A dramatic enhancement of the xf;
around the shaded plaquettes indicates an instability against
a small fluctuation of modulation §J;. To compute Xi?’ we
perform two runs of FRG flow with bare couplings (kJ; =
J1+ 841, J1,») and (Jy, Jy, Jp) for a given bond (7, j). The
procedure is expensive but provides invaluable insights.
Phase diagram. The final results of our FRG calculation
are summarized in the phase diagram shown in Fig. 1(b). It
contains four phases as J; /J, is varied at fixed k = 1. For each
phase, a representative value of J; /J, is chosen to illustrate its
characteristic FRG flow pattern in two complementary ways.
First is the momentum distribution ¥, (p) near the end of the
flow (insets), where the peak momenta are labeled by a white
“x” in the extended Brillouin zone [40]. Next is the flow of
spin susceptibility x (p) with the RG scale A (main panels)
for different channels, i.e., different values of p. For example,
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FIG. 2. The dimer and spin liquid phase as the fixed points of
the flow of spin-spin-correlation functions x;;(w — 0). (a) Flows of
xij for the dimer bonds (red lines in inset) converge to a constant
~0.41 in the infrared limit for all J, /J, values (color coded; see the
colorbar) up until 0.67 indicated by the solid black line. (b) The scale-
dependent y;; (solid lines) for the dimer bonds becomes flat against
Ji/J, in the infrared limit. Linear regression (black lines) gives the
dimer to plaquette transition point (J,/J2). = 0.67. The dashed lines
represent x;; for another set of diagonal bonds (inset at the upper-
right corner) orthogonal to the dimer bonds. As A — 0, it becomes
flat for J, /J, between 0.77 and 0.82 where spin liquid is postulated
to exist.

the channel p = (i, 0) is shown in blue, the (;r, 7) channel
is shown in orange, while the flow for the peak momenta
labeled by x is shown in red. Clearly, the leading channels
for the four phases are distinct. Take the case J;/J, = 1.0,
for example; from the inset it is clear that %.(p) is peaked
at p = (m, ). Accordingly, the FRG flow for x(m, ) (in
orange) is most dominant and rises rapidly as A is reduced.
The flow breaks down around A* & 0.2, signaling a physical
divergence and the onset of magnetic long-range order as
seen in many FRG calculations. Thus the Neel phase can be
identified unambiguously from the (7, 7) peak and the flow
divergence.

Outside the Neel phase, the flows appear smooth down to
the lowest A. This is perhaps not that surprising because spin
rotational symmetry is not broken in the dimer or plaquette
phase. Yet by inspecting the two cases J;/J, = 0.3 and 0.7
in Fig. 1, it is apparent that their spin correlations are rather
different, e.g., they have different peak momenta or leading
channels. Unfortunately, the information contained in x (p) or
X« (P) is too crude to differentiate the dimer from the plaquette
phase. In what follows, we show that this can be achieved by
the FRG flow of bond-resolved spin-correlation ;.

Dimer phase as a fixed point. Figure 2(a) compares the
flows of x;; for the diagonal bond (red lines in the inset) at dif-
ferent values of J; /J,. One notices a remarkable phenomenon:
For all J;/J, < 0.6, they flow to the same exact value ~0.41
in the infrared A — 0. This renormalization group fixed point
defines a robust phase with constant spin correlation along the
diagonal. This is nothing but the dimer phase, in accordance
with the known fact that the ground-state wave function in this
region is a product state of isolated spin singlets, frozen with
respect to J;/J, with constant energy up to a critical point.
To determine its phase boundary, Fig. 2(b) plots the diagonal
bond correlation in the infrared limit versus J;/J,. It stays
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FIG. 3. Identification of the phase boundaries from bond-
resolved plaquette susceptibility X,-I;, which measures the response of
a given bond (i, j) (red lines in insets) to a small increase 6J; in the
shaded squares. (a) A pronounced peak of x[ around J; /J, = 0.67
signals the onset of plaquette order. (b) The suppression dip of x. at
0.77 indicates the plaquette order is superseded by a new phase, the
spin liquid with distinct interplaquette correlations. (¢) An example
of longer range X,? that also develops peak/dip at the two critical
points above. (d) The momentum space degeneracy n of %.(p) is
peaked at J,/J, ~ 0.82, which marks the transition into the Neel
phase.

completely flat before dropping rapidly in a linear fashion.
Linear regression (black lines) yields an intersection point at
J1/J> = 0.67 which we take as the estimated phase-transition
point. This critical value is impressively close to 0.675 from
large-scale DMRG [3]. The agreement provides strong evi-
dence for the validity and accuracy of our FRG calculation.

Plaquette valence bond solid. 1dentification of plaquette
order from FRG has been an open challenge. In earlier studies,
a plaquette susceptibility ypyp was defined as the propen-
sity toward translational symmetry breaking with respect to
a small bond modulation bias [18,25,33]. Enhancement of
xpve has been reported, but to our best knowledge, plaquette
order has not been positively identified using pseudofermion
FRG so far. For the generalized SS model, we have confirmed
that ypyp is indeed enhanced within a broad region stretch-
ing from J;/J, ~ 0.5 to 0.7 when compared to its values
within the Neel phase (see Ref. [39] for details). But it only
exhibits a smooth crossover with J;/J, due to the lack of
bond resolution. This has motivated us to introduce a more
refined measure, the bond-resolved plaquette susceptibility
X}; in Eq. (4).

Figure 3(a) illustrates the yx/ for the horizontal/vertical
bonds within the slightly strengthened plaquettes (shaded
squares) denoted by x[.. While it is more or less featureless
at the ultraviolet scale, as RG steps are taken and A is re-
duced, x[ gains nontrivial dependence on J; /J,. In particular,

in the infrared limit x. develops a pronounced peak around
J1/J» = 0.67 [41]. The dramatic enhancement of plaquette
susceptibility marks the onset of plaquette order. This inde-
pendent diagnosis of the dimer-to-plaquette transition agrees
very well with the linear regression result above, showing the
self-consistency of our FRG and the advantage of introducing
the quantity Xif; . It is not a divergence because higher-order
vertices are truncated in the current implementation. The onset
of plaquette order also manifests in longer range interplaque-
tte correlations. Figure 3(c) depicts the X[I; for a bond between
an r site and a b site from two shaded squares along the lattice
diagonal. It too has an enhancement peak at J; /J, =~ 0.67.

Further analysis of Xii; also points to the demise of the
plaquette phase. A pristine plaquette order is adiabatically
connected to the limit of decoupled plaquette singlets (shaded
squares in Fig. 1 without red or dashed bonds). On increasing
J1/J», the plaquette order eventually yields to a state with
homogeneous bond energies and very different spin corre-
lations. One possibility is a liquid state where the shaded
and empty squares are entangled to feature strong interpla-
quette correlations. The change in correlation is apparent in
Fig. 3(c): After the peak, Xi[; changes sign to develop a sharp
dip at J;/J, =~ 0.78, suggesting the onset of a new phase.
This interpretation is supported by the plaquette susceptibility
xZ shown in Fig. 3(b). It measures the change to the bonds
around the empty plaquettes in response to 6J; > 0 in the
nearby shaded squares. When J;/J;, is reduced from above
toward 0.77, a small 8/, leads to significant weakening of the
antiferromagnetic bonds (red lines) around the empty squares,
i.e. decoupling of the shaded plaquettes to break translational
symmetry. Thus the pronounce dip of x[ atJ; /J, ~ 0.77 [42]
marks the upper critical point of the plaquette phase. At the
very least, the dramatic variations of x[’; are at odds with the
scenario that the plaquette phase persists after J, /J, = 0.77.

A sliver of spin liquid. The existence of a novel phase
after J;/J, = 0.77 can be inferred independently from the
spin-correlation y;; for the diagonal bond shown in Fig. 2(b)
(dashed lines). Here it becomes flat, i.e. independent of J; /J;,
in the infrared limit. The behavior is distinct from that of
a plaquette valence bond solid or a Neel antiferromagnet,
for which y;; increases with J;. Since the spin susceptibility
flow is continuous down to A — 0 as shown in Fig. 1(b),
the only plausible scenario seems to be that this FRG fixed
point corresponds to a liquid phase. With further increase in
Ji, the flat top of diagonal yx;; is terminated by an upturn
around J;/J, ~ 0.82, signaling another phase transition. To
precisely locate the onset of the Neel order, we adopt an
independent criterion [43]. In the postulated spin liquid re-
gion, the spin susceptibility ¥.(p) develops broad maxima,
instead of a sharp peak, in momentum space; see the case of
J1/J» = 0.8 in Fig. 1(b). We can quantify the peak degeneracy
by n, the percentage of p points with x,(p) = 0.9max[ %, (p)].
A similar method was employed in Ref. [44] for a different
system. The result is shown in Fig. 3(d). As the Neel phase
is approached, the broad maxima coalesce into a sharp peak
at (m, ), after which 5 drops quickly. The peak location of
degeneracy n at J; /J, = 0.82 serves as an accurate estimation
for the transition from the spin liquid to the Neel phase, in
excellent agreement with the phase boundary obtained from
large scale DMRG [4].
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Conclusions. Our high-resolution FRG analysis of the SS
model identifies four phases separated by three critical points
summarized in Fig. 1. Key technical insights are retrieved by
monitoring the renormalization group flows of bond-resolved
spin-spin-correlation functions and susceptibilities. The good
agreement with other established numerical methods on the
locations of the phase boundaries attests to the accuracy of
FRG which takes into account quantum fluctuations in all
the channels without bias by tracking millions of effective
couplings at each scale A. The implementation and analysis
strategies reported here can be applied to study other quantum

spin Hamiltonians with unconventional magnetic orders using
pseudofermion FRG. In particular, our result supports the
existence of a finite spin liquid phase rather than a deconfined
quantum critical point between the plaquette and Neel phase.
It motivates future theoretical work to further elucidate the
nature and extent of this phase, and precision measurements
to locate and probe spin liquid in SrCu,(BO3),.
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