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The Shastry-Sutherland (SS) model as a canonical example of frustrated magnetism has been extensively stud-

ied. The conventional wisdom has been that the transition from the plaquette valence bond order to the Neel order

is direct and potentially realizes a deconfined quantum critical point beyond the Ginzburg-Landau paradigm. This

scenario, however, was challenged recently by improved numerics from density matrix renormalization group

which offers evidence for a narrow gapless spin liquid between the two phases. Prompted by this controversy and

to shed light on this intricate parameter regime from a fresh perspective, we report high-resolution functional

renormalization group analysis of the generalized SS model. The flows of over 50 million running couplings

provide a detailed picture for the evolution of spin correlations as the frequency/energy scale is dialed from the

ultraviolet to the infrared to yield the zero-temperature phase diagram. The singlet dimer phase emerges as a

fixed point, the Neel order is characterized by divergence in the vertex function, while the transition into and

out of the plaquette order is accompanied by pronounced peaks in the plaquette susceptibility. The plaquette

order is suppressed before the onset of the Neel order, lending evidence for a finite spin liquid region for

J1/J2 ∈ (0.77, 0.82), where the flow is continuous without any indication of divergence.

DOI: 10.1103/PhysRevB.105.L041115

Forty years after the introduction of the Shastry-Sutherland

(SS) model [1], its ground-state phase diagram remains in-

conclusive. The model describes quantum spins on the square

lattice with competing antiferromagnetic exchange interac-

tions, J1 for the horizontal/vertical bonds and J2 for the

decimated diagonal bonds connecting the empty plaquettes;

see Fig. 1. Owing to the frustration, the model has long been

suspected to host exotic ground states and phase transitions. A

large body of theoretical works has established the existence

of three phases, see, e.g., Ref. [2] and Refs. [3,4] for a synop-

sis of earlier and recent results, respectively. The J1 < J2/2

limit is exactly solvable and the ground state is a product

state of diagonal dimers (spin singlets). For intermediate value

of J1/J2, the ground state is a plaquette valence bond solid,

while Neel order takes over for large J1/J2. The most in-

teresting, and controversial, question regards the nature of

the plaquette-to-Neel (pN) transition: Is it conventional, a

deconfined quantum critical point, or through an additional

spin liquid phase?

Remarkably, the SS model has an almost ideal realiza-

tion in SrCu2(BO3)2 crystals, where phase transitions can be

induced by tuning the hydrostatic pressure [5,6]. Inelastic neu-

tron scattering found signatures of the plaquette phase [7], and

heat-capacity measurements confirmed the dimer-to-plaquette

transition [8,9]. Yet a direct pN transition was not observed

in the anticipated pressure range. These experiments renewed

the effort to examine this intriguing region using the state-of-

the-art numerical techniques. Earlier tensor network (iPEPS)
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calculations confirmed the plaquette phase within the re-

gion J1/J2 ∈ [0.675, 0.765] [10–14] and a weak first-order

pN transition. A recent density matrix renormalization group

(DMRG) study [3] with cylinders of circumference up to 10

sites yielded similar phase boundary J1/J2 ∈ [0.675, 0.77] but

a continuous pN transition with spin correlations supporting

a deconfined quantum critical point. Another DMRG using

cylinder circumference up to 14 sites concludes that a spin

liquid phase exists in the window J1/J2 ∈ [0.79, 0.82] be-

tween the plaquette and the Neel phase [4]. A core difficulty

in reaching a consensus is attributed to the near degeneracy of

the competing orders in this region. The finite-size limitation

of DMRG means that the ground state can only be inferred by

extrapolation via careful finite-size scaling analysis.

The size restriction prompts us to adopt an alternative

approach diametrically opposed to exact diagonalization or

DMRG on finite systems. The algorithm directly accesses

the infrared and thermodynamic limit while treating all com-

peting orders on equal footing without bias. It starts from

the microscopic spin Hamiltonian and successively integrates

out the higher frequency fluctuations with full spatial (or

equivalently momentum) resolution retained at each step. The

scale-dependent effective couplings and correlation functions

are obtained by numerically solving the functional renormal-

ization group (FRG) flow equations [15–17]. As the frequency

scale � slides from J1,2 down to zero, the zero-temperature

phase diagram is determined. Such FRG approach to quan-

tum spin systems, first established in 2010 [18], has yielded

insights for many frustrated spin models. But its application

to the SS model has not been successful, perhaps due to two

reasons. First, in contrast to the Neel order, the dimer or the
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FIG. 1. Generalized SS model and its zero-temperature phase

diagram from FRG. (a) The competing exchange couplings in model

Eq. (1) include κJ1 and J1 for the black solid and dashed bonds,

respectively, and J2 for the red bonds. The four sites within the unit

cell (shaded square) are labeled by color red, green, blue, and yellow,

respectively. (b) The phase diagram for κ = 1 consists of four phases

separated by three critical points as J1/J2 is varied. A representative

point is chosen for each phase to illustrate the typical RG flows of the

spin susceptibilities χ (p) in leading channels (i.e., different values of

p; see main text). The corresponding insets show the profile of χ̃r (p)

in the infrared limit � → 0. The white × indicates its peak position

in the momentum space (px, py ).

plaquette order cannot be inferred naively from the divergence

of vertex functions, making it challenging to locate their phase

boundaries. Second, as we shall show below, the pN transition

region is better understood by examining a generalized model

that reduces to the SS model in a particular limit.

In this work, high-resolution FRG analysis of the gener-

alized SS model is achieved by overcoming these technical

barriers. To maintain sufficient momentum and frequency

resolution, one must keep track of millions of running cou-

plings at each FRG step. The calculation is made possible

by migrating to the GPU platform which led to performance

improvement by orders of magnitude [19,20]. Despite be-

ing a completely different approach, the phase boundaries

predicted from our FRG are remarkably close to the state-of-

the-art DMRG. The agreement further establishes FRG as an

accurate technique for frustrated quantum magnetism. Most

importantly, the plaquette susceptibility from FRG indicates

the plaquette order terminates around J1/J2 ≈ 0.77 before the

onset of weak Neel order around J1/J2 ≈ 0.82. It supports

the existence of a spin liquid region between the plaquette

and Neel phase proposed in Ref. [4]. Thus the SS model is

a strong candidate to host spin liquid, and SrCu2(BO3)2 offers

an exciting opportunity to realize and probe the elusive spin

liquid phase.

Model and pseudofermion FRG. Our starting point is the

generalized SS Hamiltonian [21]

H = κJ1

∑

〈i, j〉′

Si · S j + J1

∑

〈i, j〉′′

Si · S j + J2

∑

i, j∈diag

Si · S j, (1)

where Si are spin one-half operators (S = 1/2); i, j label

the sites; and J1,2 > 0 are antiferromagnetic exchange cou-

plings. The first (second) sum is over nearest neighbors on the

square lattice represented by the solid (dashed) black lines in

Fig. 1(a); the last sum is over the alternating diagonal bonds

indicated by the red lines. The original SS model corresponds

to the limit κ = 1 [1,2]. A small δJ1 = (κ − 1)J1 acts as a

source field to break the double degeneracy and favor valence

bond order within the shaded plaquettes. It plays a crucial role

in our analysis and facilitates the calculation of plaquette sus-

ceptibility. We will stay close to the limit κ → 1 throughout.

To predict the phase diagram of Hamiltonian Eq. (1),

FRG finds its generating functional, i.e., an effective field

theory parametrized by self-energies, four-point, and higher-

order vertices, for each given frequency/energy scale �. The

self-energies and vertices obey the formally exact flow equa-

tions that can be truncated and solved numerically. More

specifically, the many-spin problem is first converted to an

interacting fermion problem using the pseudofermion repre-

sentation [18], S
μ

i = (1/2)σ
μ

αβψ
†
iαψiβ . Here σμ are the Pauli

matrices, and ψiβ annihilates a fermion at site i with spin

β =↑,↓, etc. The resultant fermion Hamiltonian only has

quartic interactions but no kinetic energy term (the fermions

are localized and constrained at one particle per site). So

the bare single-particle Green function G0(ω) = 1/iω with

ω being the frequency [18]. Then the flow equations for the

interacting fermion problem can be solved by generalizing the

expansion and truncation schemes extensively benchmarked

for strongly correlated electronic materials [22,23].

The implementation of psuedofermion FRG is well

documented in the original work [18] and later improve-

ments [24–37].

A brief outline is as follows. Starting from an ultravi-

olet scale � = �UV 
 J1,2 and using the bare interaction

in Eq. (1) and bare Green function to set up the initial

condition, the coupled integro-differential equations for the

scale-dependent self-energy ��(ω) and four-point vertex

��
i1i2

(ω′
1, ω

′
2; ω1, ω2) are solved successively in small steps

along a discretized grid of the frequency/energy scale � until

it is reduced down to the infrared � = �IR → 0. During the

flow, the self-energy ��(ω) is renormalized to gain nontrivial

frequency dependence as higher frequency fluctuations induce

retarded interactions. But it remains site independent, i.e.,

fermions hopping is prohibited. The four-point vertices ��

(effective interactions) carry multiple indices: i1 and i2 for

lattice sites, whereas ω′
1, ω

′
2 and ω1, ω2 are frequencies for

the pair of sites before and after the interaction. Contributions

from higher order vertices are approximated by the Katanin

term [38].

Care must be exercised to efficiently parametrize the ver-

tices in order to render the numerical task tractable. In

particular, the SS model has nonsymmorphic lattice symme-

try, with four sites per unit cell shown in colors α = r, g, b, y

in Fig. 1 and no C4 symmetry as in the J1-J2 model. To avoid

using color indices in ��
i1i2

, we pick a α = r site located at

the origin as i1. Other vertices for sites of different color

α = g, b, y can be obtained from the central r site with ap-

propriate rotation and lattice translation [39]. We retain all

i2 within a radius |ri1 − ri2 | < Rmax in ��
i1i2

and emphasize

that the FRG equations describe infinite systems without a

boundary. Here Rmax merely places an upper cutoff for the

correlations retained in the numerics. As to the frequency

variables, we rewrite ��(ω′
1, ω

′
2; ω1, ω2) as functions of the

Mandelstam variables s, t , and u [18] which manifestly en-

force the frequency conservation. Finally, we discretize the

frequency using a logarithmic mesh of Nω points extending
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from the ultraviolet scale �UV = 102J2 to the infrared scale

�IR = 10−2J2. Typically, Nω = 48 provides good frequency

resolution, and further increasing Nω will not alter the results

appreciably. We take Rmax = 10 which amounts to NL = 441

lattice sites within the correlation radius. In total, this gives a

coupled system of NL × N3
ω ∼ 50 million running couplings.

Correlation functions and susceptibilities. To detect the

emergence of long-range order as � → 0, correlation func-

tions at each renormalization scale can be obtained from

the �� and �� via standard calculations involving Feynman

diagrams. For example, the spin-spin-correlation function is

given by

(2)

where black dots represent the spin matrix Sz
i = σ z/2, the

filled square represents vertex ��, and lines with arrows are

dressed Green functions that contain the self-energy. The scale

dependence of χ is suppressed for brevity. We find that it

is necessary to distinguish the flows of spin correlations for

different bonds, i.e., pairs of (i, j), because the symmetry-

breaking patterns in the SS model are rather complex and

involve valence bond orders. For a given site i of color α, one

can find χ̃α (p), the Fourier transform of Eq. (2) in the limit of

ω → 0. It is also convenient to define spin susceptibility

χ (p) = lim
ω→0

1

4

∑

α

∑

j

eip·(rα−r j )χi j (ω) =
1

4

∑

α

χ̃α (p), (3)

where the α sum is over the four sites of different colors within

the unit cell, the j sum is over all sites, and the limit ω → 0 is

taken in the end. The spin susceptibility defined in Eq. (3) has

no bond resolution, but its divergence (or lack thereof) and its

profile in momentum space offer a quick diagnosis of the in-

cipient orders as the ratio J1/J2 is changed. Finally, we define

a set of plaquette susceptibilities to detect the plaquette va-

lence bond order. They measure the bond-resolved responses,

e.g., the change in χi j , due to a small bond modulation

χP
i j ≡ −

1

J1

∂χi j

∂κ

∣

∣

∣

∣

κ→1

= −
∂χi j

∂ (δJ1)

∣

∣

∣

∣

δJ1→0

, (4)

with J1 and J2 fixed. A dramatic enhancement of the χP
i j

around the shaded plaquettes indicates an instability against

a small fluctuation of modulation δJ1. To compute χP
i j , we

perform two runs of FRG flow with bare couplings (κJ1 =

J1 + δJ1, J1, J2) and (J1, J1, J2) for a given bond (i, j). The

procedure is expensive but provides invaluable insights.

Phase diagram. The final results of our FRG calculation

are summarized in the phase diagram shown in Fig. 1(b). It

contains four phases as J1/J2 is varied at fixed κ = 1. For each

phase, a representative value of J1/J2 is chosen to illustrate its

characteristic FRG flow pattern in two complementary ways.

First is the momentum distribution χ̃r (p) near the end of the

flow (insets), where the peak momenta are labeled by a white

“×′′ in the extended Brillouin zone [40]. Next is the flow of

spin susceptibility χ (p) with the RG scale � (main panels)

for different channels, i.e., different values of p. For example,

FIG. 2. The dimer and spin liquid phase as the fixed points of

the flow of spin-spin-correlation functions χi j (ω → 0). (a) Flows of

χi j for the dimer bonds (red lines in inset) converge to a constant

≈0.41 in the infrared limit for all J1/J2 values (color coded; see the

colorbar) up until 0.67 indicated by the solid black line. (b) The scale-

dependent χi j (solid lines) for the dimer bonds becomes flat against

J1/J2 in the infrared limit. Linear regression (black lines) gives the

dimer to plaquette transition point (J1/J2)c = 0.67. The dashed lines

represent χi j for another set of diagonal bonds (inset at the upper-

right corner) orthogonal to the dimer bonds. As � → 0, it becomes

flat for J1/J2 between 0.77 and 0.82 where spin liquid is postulated

to exist.

the channel p = (π, 0) is shown in blue, the (π, π ) channel

is shown in orange, while the flow for the peak momenta

labeled by × is shown in red. Clearly, the leading channels

for the four phases are distinct. Take the case J1/J2 = 1.0,

for example; from the inset it is clear that χ̃r (p) is peaked

at p = (π, π ). Accordingly, the FRG flow for χ (π, π ) (in

orange) is most dominant and rises rapidly as � is reduced.

The flow breaks down around �∗ ≈ 0.2, signaling a physical

divergence and the onset of magnetic long-range order as

seen in many FRG calculations. Thus the Neel phase can be

identified unambiguously from the (π, π ) peak and the flow

divergence.

Outside the Neel phase, the flows appear smooth down to

the lowest �. This is perhaps not that surprising because spin

rotational symmetry is not broken in the dimer or plaquette

phase. Yet by inspecting the two cases J1/J2 = 0.3 and 0.7

in Fig. 1, it is apparent that their spin correlations are rather

different, e.g., they have different peak momenta or leading

channels. Unfortunately, the information contained in χ (p) or

χ̃α (p) is too crude to differentiate the dimer from the plaquette

phase. In what follows, we show that this can be achieved by

the FRG flow of bond-resolved spin-correlation χi j .

Dimer phase as a fixed point. Figure 2(a) compares the

flows of χi j for the diagonal bond (red lines in the inset) at dif-

ferent values of J1/J2. One notices a remarkable phenomenon:

For all J1/J2 < 0.6, they flow to the same exact value ≈0.41

in the infrared � → 0. This renormalization group fixed point

defines a robust phase with constant spin correlation along the

diagonal. This is nothing but the dimer phase, in accordance

with the known fact that the ground-state wave function in this

region is a product state of isolated spin singlets, frozen with

respect to J1/J2 with constant energy up to a critical point.

To determine its phase boundary, Fig. 2(b) plots the diagonal

bond correlation in the infrared limit versus J1/J2. It stays
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FIG. 3. Identification of the phase boundaries from bond-

resolved plaquette susceptibility χP
i j , which measures the response of

a given bond (i, j) (red lines in insets) to a small increase δJ1 in the

shaded squares. (a) A pronounced peak of χP
�

around J1/J2 = 0.67

signals the onset of plaquette order. (b) The suppression dip of χP
�

at

0.77 indicates the plaquette order is superseded by a new phase, the

spin liquid with distinct interplaquette correlations. (c) An example

of longer range χP
i j that also develops peak/dip at the two critical

points above. (d) The momentum space degeneracy η of χ̃r (p) is

peaked at J1/J2 ≈ 0.82, which marks the transition into the Neel

phase.

completely flat before dropping rapidly in a linear fashion.

Linear regression (black lines) yields an intersection point at

J1/J2 = 0.67 which we take as the estimated phase-transition

point. This critical value is impressively close to 0.675 from

large-scale DMRG [3]. The agreement provides strong evi-

dence for the validity and accuracy of our FRG calculation.

Plaquette valence bond solid. Identification of plaquette

order from FRG has been an open challenge. In earlier studies,

a plaquette susceptibility χPV B was defined as the propen-

sity toward translational symmetry breaking with respect to

a small bond modulation bias [18,25,33]. Enhancement of

χPV B has been reported, but to our best knowledge, plaquette

order has not been positively identified using pseudofermion

FRG so far. For the generalized SS model, we have confirmed

that χPV B is indeed enhanced within a broad region stretch-

ing from J1/J2 ∼ 0.5 to 0.7 when compared to its values

within the Neel phase (see Ref. [39] for details). But it only

exhibits a smooth crossover with J1/J2 due to the lack of

bond resolution. This has motivated us to introduce a more

refined measure, the bond-resolved plaquette susceptibility

χP
i j in Eq. (4).

Figure 3(a) illustrates the χP
i j for the horizontal/vertical

bonds within the slightly strengthened plaquettes (shaded

squares) denoted by χP
�

. While it is more or less featureless

at the ultraviolet scale, as RG steps are taken and � is re-

duced, χP
�

gains nontrivial dependence on J1/J2. In particular,

in the infrared limit χP
�

develops a pronounced peak around

J1/J2 ≈ 0.67 [41]. The dramatic enhancement of plaquette

susceptibility marks the onset of plaquette order. This inde-

pendent diagnosis of the dimer-to-plaquette transition agrees

very well with the linear regression result above, showing the

self-consistency of our FRG and the advantage of introducing

the quantity χP
i j . It is not a divergence because higher-order

vertices are truncated in the current implementation. The onset

of plaquette order also manifests in longer range interplaque-

tte correlations. Figure 3(c) depicts the χP
i j for a bond between

an r site and a b site from two shaded squares along the lattice

diagonal. It too has an enhancement peak at J1/J2 ≈ 0.67.

Further analysis of χP
i j also points to the demise of the

plaquette phase. A pristine plaquette order is adiabatically

connected to the limit of decoupled plaquette singlets (shaded

squares in Fig. 1 without red or dashed bonds). On increasing

J1/J2, the plaquette order eventually yields to a state with

homogeneous bond energies and very different spin corre-

lations. One possibility is a liquid state where the shaded

and empty squares are entangled to feature strong interpla-

quette correlations. The change in correlation is apparent in

Fig. 3(c): After the peak, χP
i j changes sign to develop a sharp

dip at J1/J2 ≈ 0.78, suggesting the onset of a new phase.

This interpretation is supported by the plaquette susceptibility

χP
�

shown in Fig. 3(b). It measures the change to the bonds

around the empty plaquettes in response to δJ1 > 0 in the

nearby shaded squares. When J1/J2 is reduced from above

toward 0.77, a small δJ1 leads to significant weakening of the

antiferromagnetic bonds (red lines) around the empty squares,

i.e. decoupling of the shaded plaquettes to break translational

symmetry. Thus the pronounce dip of χP
�

at J1/J2 ≈ 0.77 [42]

marks the upper critical point of the plaquette phase. At the

very least, the dramatic variations of χP
i j are at odds with the

scenario that the plaquette phase persists after J1/J2 ≈ 0.77.

A sliver of spin liquid. The existence of a novel phase

after J1/J2 ≈ 0.77 can be inferred independently from the

spin-correlation χi j for the diagonal bond shown in Fig. 2(b)

(dashed lines). Here it becomes flat, i.e. independent of J1/J2,

in the infrared limit. The behavior is distinct from that of

a plaquette valence bond solid or a Neel antiferromagnet,

for which χi j increases with J1. Since the spin susceptibility

flow is continuous down to � → 0 as shown in Fig. 1(b),

the only plausible scenario seems to be that this FRG fixed

point corresponds to a liquid phase. With further increase in

J1, the flat top of diagonal χi j is terminated by an upturn

around J1/J2 ∼ 0.82, signaling another phase transition. To

precisely locate the onset of the Neel order, we adopt an

independent criterion [43]. In the postulated spin liquid re-

gion, the spin susceptibility χ̃r (p) develops broad maxima,

instead of a sharp peak, in momentum space; see the case of

J1/J2 = 0.8 in Fig. 1(b). We can quantify the peak degeneracy

by η, the percentage of p points with χ̃r (p) � 0.9max[χ̃r (p)].

A similar method was employed in Ref. [44] for a different

system. The result is shown in Fig. 3(d). As the Neel phase

is approached, the broad maxima coalesce into a sharp peak

at (π, π ), after which η drops quickly. The peak location of

degeneracy η at J1/J2 = 0.82 serves as an accurate estimation

for the transition from the spin liquid to the Neel phase, in

excellent agreement with the phase boundary obtained from

large scale DMRG [4].
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Conclusions. Our high-resolution FRG analysis of the SS

model identifies four phases separated by three critical points

summarized in Fig. 1. Key technical insights are retrieved by

monitoring the renormalization group flows of bond-resolved

spin-spin-correlation functions and susceptibilities. The good

agreement with other established numerical methods on the

locations of the phase boundaries attests to the accuracy of

FRG which takes into account quantum fluctuations in all

the channels without bias by tracking millions of effective

couplings at each scale �. The implementation and analysis

strategies reported here can be applied to study other quantum

spin Hamiltonians with unconventional magnetic orders using

pseudofermion FRG. In particular, our result supports the

existence of a finite spin liquid phase rather than a deconfined

quantum critical point between the plaquette and Neel phase.

It motivates future theoretical work to further elucidate the

nature and extent of this phase, and precision measurements

to locate and probe spin liquid in SrCu2(BO3)2.
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