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Abstract

CrossMark

Neural network quantum states provide a novel representation of the many-body states of
interacting quantum systems and open up a promising route to solve frustrated quantum spin
models that evade other numerical approaches. Yet its capacity to describe complex magnetic
orders with large unit cells has not been demonstrated, and its performance in a rugged energy
landscape has been questioned. Here we apply restricted Boltzmann machines (RBMs) and
stochastic gradient descent to seek the ground states of a compass spin model on the
honeycomb lattice, which unifies the Kitaev model, Ising model and the quantum 120° model
with a single tuning parameter. We report calculation results on the variational energy, order
parameters and correlation functions. The phase diagram obtained is in good agreement with
the predictions of tensor network ansatz, demonstrating the capacity of RBMs in learning the
ground states of frustrated quantum spin Hamiltonians. The limitations of the calculation are
discussed. A few strategies are outlined to address some of the challenges in machine learning

frustrated quantum magnets.

Keywords: frustrated quantum spin models, neural network quantum states, machine learning,

numerical many-body algorithms

(Some figures may appear in colour only in the online journal)

1. Introduction

Finding the ground-state wave functions of frustrated quantum
spin models [1, 2] in two dimensions (2D) remains an out-
standing theoretical challenge despite the great strides made
in recent decades in the field of numerical many-body algo-
rithms [3]. On the one hand, exact diagonalization and density
matrix renormalization group (DMRG), when applied to 2D,
are restricted by the finite system size. On the other hand, vari-
ational Monte Carlo approaches, while being unbiased and
valid in the thermodynamic limit, depend on the quality of
the trial wave functions and tend to lose its prediction power
due to the lack of convergence associated with the prevalent
‘negative sign problem’ in frustrated quantum spin systems.
Another efficient variational ansatz for quantum spin mod-
els is based on the tensor network (TN) representation of the
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many-body wave functions [4, 5]. One type of TNs known as
projected entangled pair states, which generalize the matrix
product states from one dimension to 2D, have been success-
fully applied to quantum spin models [6]. The accuracy of
TN ansatz however depends on the approximations employed
when truncating and contracting the tensors. Given that each
method has its advantages as well as drawbacks, a holistic
approach will benefit from new numerical methods that can
shed fresh light on this persistent problem.

Inspired by its tremendous success in machine learning
and artificial intelligence [7], neural networks were recently
proposed to solve quantum spin models [9, 10]. A generic
wave function of N interacting spins, say S=1/2, is a
superposition of 2V basis states with complex coefficients.
Mathematically, the wave function 1 (s) defines a mapping
from vector s = (sy, 52, ...,Sy), where s; = 1 or |, to a com-
plex number. Therefore, it can be thought of as a machine
that gobbles up s and spits out a complex number. It is

© 2022 |OP Publishing Ltd  Printed in the UK
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conjectured that such mapping can be represented accurately
by neural networks with sufficient number of nodes, layers,
and connections [8]. Then, to find the ground state of a given
interacting spin Hamiltonian, all one needs to do is to train
the network by adjusting its parameters stochastically so that
the energy expectation value is minimized. This approach was
pioneered by Carleo and Troyer, who represented the many-
spin wave function as restricted Boltzmann machines (RBMs)
and successfully applied it to solve the Heisenberg model on
the square lattice [9]. In addition to RBM, the wave func-
tion can also be expressed as feed-forward neural networks
or other neural network architectures. For example, Choo et al
employed convolutional feed-forward neural networks to solve
the J1—J, model, a canonical example of frustrated magnets
believed to host a quantum spin liquid, and obtained excellent
energetics comparable to exact diagonalization and DMRG
[11]. The J;—J, model has also been investigated in references
[12—16] using the neural network ansatz. In a broader context,
recent work has revealed a remarkable connection between the
neural-network and the tensor-network representation of quan-
tum many-body states despite their differences in appearance
and origin [17-19]. It was shown that neural network quan-
tum states can describe states with topological order, even with
entanglement entropy beyond the area law [20-22]. Beyond
quantum spin models, neural network quantum states have
been also applied to strongly correlated fermions [23-25].

These promising developments have raised many open
questions. So far the neural network ansatz was able to iden-
tify relatively simple states such as the Neel or stripe order.
Is it capable of finding more exotic phases with compli-
cated symmetry breaking patterns? How can it be applied to
extract the entanglement signatures of quantum spin liquids?
Does it provide an accurate, practical method to determine
the phase transitions by computing the order parameters and
correlation functions? Very recently, certain limitations to the
expressive power of RBMs as well as the stochastic recon-
figuration algorithm have been noted. For example, in some
cases, the algorithm suffers from inherent numerical instabil-
ities [14, 26]. For highly frustrated quantum spin models, e.g.
near J,/J; = 0.5 in the J;—J, model, the energy landscape is
believed to be rugged, the approach to the global minimum
may not be guaranteed in practice. These limitations led to
ongoing efforts to represent the amplitude and the phase of the
wave function separately using two real-valued networks, and
to learn the sign structures of the wave function to facilitate the
convergence [14].

In light of these open questions, in this work we apply the
neural network ansatz to the tripod model [27], a frustrated
quantum spin model in 2D. It contains the Kitaev model [28]
as a special limit and has an extended spin liquid phase. At
the same time, its phase diagram also includes the Neel order
and a nontrivial bond order which, according to TN calcula-
tions [27], can be viewed as a periodic lattice of spin vortices.
Thus, this model provides an ideal playground to test the per-
formance and limitations of the neural network ansatz. We note
that previously, there have been several works that applied neu-
ral networks to study the ground state and excitations of the

Kitaev model or its generalizations, e.g. with external mag-
netic field or Heisenberg terms [29-32]. The model here is
rather different: it overlaps with the Kitaev model only at one
special point. Moreover, our primary focus is on the phase dia-
gram and phase transitions between the spin liquid and the
long-range ordered states.

This paper is organized as follows. In section 2, we intro-
duce the tripod model and summarize existing numerical
results from TN ansatz. Then we outline the RBM ansatz in
section 3. Section 4 gives a detailed discussion of our main
numerical results, including the energy, the order parameters,
and the resulting phase diagram. In section 5, we discuss the
limitations of the neural network ansatz as implemented in
our work, and directions for future improvement. We hope
our results, including the strategies employed to facilitate the
learning process, can be useful for applying the neural network
ansatz to other quantum spin models, and more generally, to
quantum many-body systems.

2. The tripod model

The tripod model is a quantum spin model defined on the two
dimensional honeycomb lattice. It belongs to compass spin
models, a broad class of Hamiltonians in which the exchange
interaction between two neighboring spins depends on the spa-
tial direction of the bond. The study of compass models has a
long history, for review see reference [33]. Perhaps the best
know example is the Kitaev model [28]: along the three bond
directions of the honeycomb lattice, the spin exchange inter-
action is given by S,S., S,Sy, and .S, respectively (in this
shorthand notation, the first spin operator is for one lattice
site and the second for a neighboring site). Another interesting
example of compass models is the quantum 120° model dis-
covered by Zhao and Liu [34], and independently by Wu [35],
in the study of strongly interacting p-orbital fermions. In this
model, the spin exchanges along the three bonds of the honey-
comb lattice are given by S15;, 525>, and 5353 respectively. In
spin space, each spin operator is represented by a vector, and
here the three spin vectors S} » 3 lie within a plane forming 120°
angle with each other. It is apparent that the 120° model is a
cousin of the Kitaev model where the three corresponding spin
vectors S, , - form an orthogonal triad in spin space (i.e. 90°
angles with each other). This intimate connection between the
two models motivated the authors of reference [27] to unify the
120° model, the Kitaev model, and the Ising model into a single
compass model parameterized by an angle 6. Its Hamiltonian
is given by

H=17) S,(0S,(r+e,). (1)

Here J > 0 is the antiferromagnetic coupling, r labels the lat-
tice site, and e, with v = 1,2, 3 denotes the three bond vectors
of the honeycomb lattice, i.e. r + e, is a neighboring site of r
(we have set the lattice spacing to one). The spin 1/2 operator
S, is defined as

1 1
S, = E(Tz cos ¢, + Ty sin ¢,) cos 6 + 57 sin 6,  (2)
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where 7,,7,,7, are the Pauli matrices, and qbq, =
0,27/3,4w/3 are the azimuthal angle of the correspond-
ing bond direction e,. For brevity, we have suppressed the ¢
dependence of S, and H, and the notation S,(r) means the
spin operator S, is localized at site r.

Model equation (1) is dubbed the tripod model, because
geometrically the three S, form a tripod in the spin space as
shown in figure 1 of reference [27]. They are tilted out of the
xz plane by angle 6 and, when projected onto the xz plane,
are 120° from each other. In addition to the tilting angle 6
that defines S, it is convenient to follow reference [27] to
introduce @', the angle between S| and S, i.e. the angle sub-
tended by the two adjacent legs of the tripod. The two angles
are related by cos# = 1 — (3/2)cos*f. Three limits can be
identified as we change 6 from 0 to 90°. At # = 0 (and cor-
respondingly 6 = 120°), the three legs of the tripod S 53 are
fully open and lie within the xz plane. In this limit, H reduces
to the quantum 120° model. As 6 is increased, the three legs
are increasingly tilted out of the xz plane, corresponding to
a partially open tripod. At = g = arccos(\/%) ~ 35.26°,
0" becomes exactly 90°, then the tripod model becomes the
Kitaev model: now that the three operators S, are orthogonal
to each other, we can carry out a spin rotation and redefine
them as S, .. Finally, when 6 is increased all the way to 90°,
we have 6" = 0 and all three S, collapse to the y axis. The tri-
pod is now fully closed. In this limit, H reduces to the Ising
model, H = (J/4) Zm 7,(r)T,(r + e,). Note that usually the
Ising interaction is written in the form of 7,7.. Here to make it
easier to compare with previous literature, we follow the con-
vention to choose 7, as the vertical axis in spin space [27].
This choice of the axes is particularly convenient to recover the
120° model defined in earlier work reference [34]. In passing,
we note that the tripod model is not only of theoretical interest
due to its synthesis of three important models in quantum mag-
netism. Recent experiments on honeycomb antiferromagnet
NaNi,;BiOg_; suggest that its dominant exchange interactions
resemble those in the tripod model with additional terms, such
as the Heisenberg exchange, also playing a role [37].

Some limits of the tripod model are easy to understand. For
example, in the Ising limit, the ground state has Neel order,
and the order parameter is the staggered magnetization along
v. At the Kitaev point, the model is analytically solvable, and
its ground state is a spin liquid and has no long-range mag-
netic order [28]. Aside from these two limits, for general 6,
the tripod model must be solved numerically. This is challeng-
ing because the model is frustrated and hosts highly nontrivial
quantum phases. In particular, the ground state of the 120°
model has been somewhat controversial [34—36]. It was con-
jectured to be long-range ordered despite the geometric frus-
tration [35]. Reference [27] for the first time solved the tripod
model for general @' and obtained its ground state phase dia-
gram using TN ansatz. The main conclusion is that there are
three phases separated by two phase transitions, see figure 1 of
reference [27]. In particular it predicted that the ground state
of the 120° model has valence bond order. In this state, all the
spin are confined within the xz plane to form a periodic pat-
tern which can be viewed as a triangular lattice of hexagons.
Around each hexagon, the spin winds successively at a 60°

interval, forming a discrete spin vortex, see figure 5 of ref-
erence [27]. Note that this phase was referred to as ‘dimer
phase’ in reference [27], because along the bonds connect-
ing these hexagons, two neighboring spins point in opposite
directions. Such a terminology is unconventional, because in
the literature ‘dimer’ is usually synonymous to spin singlet.
To avoid potential confusion, we prefer to call this phase hav-
ing valence bond order, because it features spatially periodic
modulations of the bond energy. TN ansatz also predicted that
the quantum spin liquid is stabilized within the finite window
0’ € [87°,94°] enclosing the Kitaev point § = 90°. Judging
from the variation of the order parameters with ', the valence
bond to spin liquid transition seems continuous, while the spin
liquid to Neel transition seems to be first order [27].

The main goal of the present work is to investigate the
ground state phase diagram of the tripod model using an inde-
pendent method. This serves two purposes. On the one hand,
the variational calculation with neural network ansatz here
provides a check for the TN results, especially regarding the
ground state in the 120° limit as well as the location and nature
of the phase transitions. On the other hand, the calculation
tests the capacity of the neural network ansatz by applying it
to solve a frustrated quantum spin model which has not only
spin liquid but also nontrivial long-range order with an intri-
cate spatial pattern. A priori, itis unclear whether these ground
states, the order parameters, or phase transitions can be cap-
tured by the neural network ansatz. Overall, our calculation
benchmarks the efficiency, stability, and accuracy of the neu-
ral network algorithm by comparing to the state-of-the-art TN
results.

3. Restricted Boltzmann machines

We will represent the many-spin wave function using one of
the simplest neural networks, the RBMs. The implementation
follows the original work of reference [9]. To avoid repetition,
here we only outline the main ideas. More details can be found
in reference [9, 10]. A RBM is a shallow neural network with
two layers, the visible layer consisting of N nodes character-
ized by spin variables s; (i = 1,2, ..., N) and a hidden layer of
M nodes described by variables /2; (j = 1,2, ..., M). The cou-
pling between node s; and node £, is described by a connection
weight w;;. The quantum mechanical wave function takes the
form of joint Boltzmann weight [9],

) = 3 wels))
{si}

=D et {s}). 3)

{si} {nj}

Here, repeated indices in the exponent are summed over,
{si} = {s1,52,..., sy} are all possible spin configurations
(similarly for {A;}), the biases a; and b; as well as the con-
nection weights w;; are all complex variational parameters.
Even though there is no direct intra-layer connection in a
‘restricted” Boltzmann machine, the hidden nodes induce cor-
relations among the visible nodes. For real biases and con-
nections, it is known that RBMs can represent any classical
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distribution to desired accuracy with sufficient numbers of
hidden units [8]. The expressive power of complex RBMs is
less known. It has been argued that a fully connected RBM can
capture entanglement bounded by volume law and hence effi-
ciently describe the ground states of many Hamiltonians [17].
In our calculations, we consider a finite honeycomb lattice with
L x L unit cells with periodic boundary conditions. Then the
number of sites N = 2L? and the number of bonds N}, = 3L>.
The layer density ratio « = M/N is a tuning parameter, we
find o = 2 gives satisfactory performance for L = 4.

Starting from some initial guess, e.g. random values, the
variational parameters are adjusted iteratively to minimize
the variation energy E = (V|H|V), the expectation value of
the Hamiltonian equation (1) for the current wave function
equation (3), computed approximately by Monte Carlo sam-
pling [9]. This is done by making stochastic moves in a
large parameter space based on estimating the energy gra-
dient. This stochastic optimization procedure is often called
learning, or training the RBM. Here many mature algorithms
from the machine learning literature can be applied [7, 38].
For example, we have tested and compared several algorithms
including stochastic gradient descent, adagrad, and adamax
[38, 39, 41]. The actual computation is carried out using the
powerful Netket library [41], aided by custom-made routines
to manipulate the variational wave functions directly.

We emphasize that while the model and learning algorithm
are relatively straightforward to set up, the actual training of
the RBM with a vast parameter space is by no means a triv-
ial task. This is analogous to many other complex machine
learning tasks: efficient training a neural network hinges on
understanding the particularities of the model, the parameter
space, and the quantity and quality of the data etc [38, 39]. For
example, starting from a random configuration of the RBM, the
algorithm may lead to a quick convergence to a local minimum
and stall there. This becomes especially problematic in regions
where a few orders compete: for example, a blind stochastic
search often yields wildly fluctuating results for two neigh-
boring parameters that belong to the same phase. In this case,
one may find the best energetics by trying different optimiza-
tion algorithms or starting from different initial guesses. Even
when the true ground state is being approached, the accuracy of
the converged energy depends critically on the proper choice of
the parameters such as learning rate and sampling batch size. A
more serious problem is the sporadic occurrence of numerical
instability, presumably due to the parameters being complex,
which may manifest as a fast runaway of the energy toward
divergence. These numerical complexities complicate the task
of finding the ground state phase diagram. (The performance of
RBM is discussed in reference [40] for classical spin models).
Some of the strategies we employ to alleviate these problems
are discussed below in section 4.

4. Ground-state phase diagram

The procedure to learn the phase diagram of the tripod model
is as follows. For a given value of the tilting angle 6, the
RBM is started from random parameter values, then stochas-
tic moves are made to lower the variational energy until

convergence is achieved. A crucial parameter here is the learn-
ing rate r, or step size of the stochastic moves [38, 39]. For
stochastic gradient descent, choosing a r that is too large can
easily end up with numerical instability, while having r too
small may slow the learning to a crawl and trap it inside a local
minimum. The optimal value of r depends on the model and
the optimizer (many popular optimizers use adaptive learning
rates determined from gradient and/or momentum). Its order
of magnitude is determined by trial and error, and its value is
adjusted on the fly, for example, when entering a flat energy
landscape. When the algorithm fails to reach the anticipated
energy, different optimizers or learning parameters are tried
to shake things up. If no further progress can be made, the
machine is restarted. Some states, for example the Neel state,
are rather easy to reach with fast and robust convergence, e.g.
after hundreds of iterations. Other states, such as the spin lig-
uid or bond order, require many more steps for the energy to
relax, e.g. at least thousands of iterations even with reasonable
learning parameters and initial guess. This is expected because
of the frustration and the presence of many competing orders.
To facilitate the search for ground states in highly frustrated
regimes, it is useful to start from wave functions that were
learned previously for parameters nearby and have competi-
tive energies. In this case, random fluctuations are introduced
to the wave function before the run, and the result must be com-
pared to those obtained from random, blind guesses. During
the run, the statistical errors (variance or standard deviation)
of the observables are also monitored.

Figure 1 shows the energy per bond in units of J,
e = E/NyJ, as a function of the tilting angle 6. The energy
is the lowest in the Ising limit # = 90°, and the neural network
ansatz accurately reproduces the analytical result e = —1/4,
corresponding to the antiparallel alignment of neighboring
spins. The convergence to ground state in this limit is rather
fast, perhaps due to the classical nature of the Ising model.
(In comparison, for § < 50°, reaching the ground state is not
as straightforward and requires some of the strategies out-
lined above.) As 6 is reduced, € rises quickly; and after going
through the Kitaev point g ~ 35.26°, it reaches its peak value
of e ~ —0.122 at § = 34°. The elevation in energy is in accor-
dance with the fact that in this region around  the system is
most frustrated. Upon further reduction of €, the energy starts
to decrease. The noticeable cusp in energy located at § = 34°
marks the transition to the bond ordered phase, inside which
the frustration is relieved to some degree but not entirely.
This trend continues until the 120° model limit is reached at
0 = 0. Note the spin liquid to Neel transition is not obvious
by inspecting the energy alone. But plotting de/df reveals a
sudden change at # ~ 40°. In what follows, we present a bet-
ter way to reveal the phase boundaries by computing the order
parameters and spin correlation functions.

The first marker of phase transition is provided by the
spin—spin correlation function. It measures the antiferromag-
netic long-range order and is defined by

4
G = i D e [(SS,E) — (SO)SEN] . @)
r#£r/
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Figure 1. The converged variational ground state energy per bond in units of J for the tripod model equation (1) obtained from RBMs. Here
0 is the tilting angle out of the xz plane. § = 90° is the Ising limit, § ~ 35.26° is the Kitaev point, and § = 0° realizes the quantum 120°
model. The vertical dotted lines at = 34° and 39° are guide to the eye. The system has 32 sites with periodic boundary conditions, L = 4,
a = 2. No symmetry is enforced. The statistical error is smaller than the symbol size.

Here r, r’ label the sites, and 1), ,» = 1 (—1)if r and r’ belong to
the same (different) sublattice. As shown in figure 2, C, decays
from 1 in the Ising limit and drops sharply as the spin liquid
phase is approached. The drop experiences a glitch at § = 39°,
and C, vanishes for 6 < 34°. This plot clearly demonstrates
the existence of Neel order at & > 39°, as well as the lack of
out-of-plane antiferromagnetic correlation for 6 < 34°.

The second marker for phase transition is the expectation
value of the in-plane spin

Sy = ;fzr:\/@x(r))z + (S:0)7, )

where (S,(r)) is the expectation value of the local spin opera-
tor S,(r), and the sum ) __ is over all the sites. Figure 3 shows
the variation of S| with #, which exhibits a trend opposite
to C,: it assumes large values within the bond ordered phase,
drops sharply around 6, ~ 34°, followed by a small glitch at
0> ~ 39°. Afterwards, it remains suppressed and vanishes in
the Ising limit where all the spins align parallel to the y-axis.
This result confirms that the spins are predominantly in-plane
within the bond ordered phase, in good agreement with TN
results (see plot of O in figure 2 of reference [27]). Combining
figures 2 and 3 together, it is clear that an intermediate (the spin
liquid) region is bounded by the lower critical point g = 34°
and the upper critical point fx = 39°. These critical values are
close to, but not identical with, the TN results fg = 33° and
Ox = 38° (the phase boundaries were given in reference [27]
in terms of &', which can be easily converted into 6).

To further elucidate the nature of the bond ordered phase,
we compute the bond energies

B, (r) = 4(S,(0)S, (r+e,)) (6)

for all three bonds connected to a given site at r. One then
notices that for § < 6, one of the bond is stronger than the
other two, and a bond modulation pattern develops in space
which breaks the underlying lattice symmetry. There are three
ways to break the symmetry of the three bonds locally. For
example, in symmetry-breaking pattern p,, B) is stronger (neg-
ative with larger magnitude) while B, and Bj are roughly (up
to some small fluctuations) the same but weaker. The other two
patterns p, ; are obtained by permuting v = 1,2, 3, e.g. bond
B, is stronger in pattern p,. Obviously, these three patterns are
related to each other by C; rotations in real space. Let us define
the bond modulation AB as the difference between the stronger
bond and the average of the two weaker bonds, for example,

1 1
AB — N;E [B1(r) + B3(r)] — Bi(r), (7

where the average over all sites is taken. A finite AB is
expected if the bond modulation pattern p, is repeated through-
out the lattice. As shown in figure 4, the bond ordered phase is
characterized by a finite bond modulation, whereas in both the
Neel and spin liquid phase, bond energies are approximately
uniform in space. Thus, the bond ordered phase found here has
a solid order of periodically modulated bonds, i.e. a valence
bond solid. It breaks the C3 symmetry of the underlying honey-
comb lattice, but differs from the spin vortex state discussed in
reference [27]. And its energy per bond € = —0.143 is higher
than the best TN result —0.148 [27]. The reason behind this
difference is addressed in the next section.

5. Limitations and outlook

To summarize, neural network quantum states based on RBM
have performed very well to identify the main phases (Neel,
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Figure 2. The spin—spin correlation function C, defined in equation (4) as function of ¢. It measures the out-of-plane antiferromagnetic
order, and approaches 1 in the Ising limit. Its rapid decay to almost zero at # = 34° (indicated by the vertical dotted line on left) and the
visible kink at = 39° (vertical dotted line, right) suggest two quantum phase transitions.

0.4

0.3

5.

0.2+

0.11

0.0+

0 10 20 30 40

50 60 70 80 90

0 (degree)

Figure 3. The in-plane spin S, defined in equation (5). Its maximum is achieved at § = 0 and remains finite within the bond ordered phase.
The sudden drop at # = 34° provides a clear marker for the bond order to spin liquid transition. Transition to Neel phase is accompanied by
a small bump around 6 ~ 40°. Within the Neel phase, S, is very small and vanishes in the Ising limit.

bond order, and spin liquid) and phase transitions of the frus-
trated tripod model. We find it remarkable that with some
judicial control over the learning parameters and learning strat-
egy, the algorithm can efficiently navigate the 232-dimensional
Hilbert space stochastically to find variational ground states
that have competitive energies. In particular the two phase
boundaries are close to the state-of-the-art TN ansatz. And for
smaller systems, e.g. L = 3, the energetics is also in excellent
agreement with exact diagonalization.

Our study also exposes some limitations of the uncon-
strained RBM ansatz as implemented here. In our calculation,

we did not impose any symmetry constraints on the RBM
wave functions. While this has the advantage of being com-
pletely unbiased, it also makes it exceedingly hard, if not at all
impossible, to reach intricate states such as the spin vortex lat-
tice proposed in reference [27] for the 120° model. As shown
in figure 4 above, our calculation reaches one of the valence
bond states, where the bond modulation pattern p, is repeated
periodically in space. There are two other states with degen-
erate energies, where pattern p, or p; is repeated instead. In
fact, all possible coverings of the lattice by a suitable combi-
nation of local patterns p, , ; have the same classical energy,
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Figure 4. Bond modulation AB defined by equations (6) and (7). The bond ordered phase features bond modulations that grow with
decreasing 6. The Neel phase only has small fluctuations in bond energy.

giving rise to a large residual entropy similar to those found in
spin ice [42]. The quantum Hamiltonian equation (1) induces
transitions between different coverings and lifts the classi-
cal degeneracy. Then a particular covering, or superposition
of coverings, acquires lower energy to become the quantum
mechanical ground state. For example, the vortex state of refer-
ence [27] represents a particular periodic covering of the whole
lattice with local bond pattern p,, p,, and ps. In principle, this
state may be eventually reached by RBM with further refine-
ment in energy. In practice, this turns out to be hard, due to
the flatness of the energy landscape (since different covering
patterns have close energies) and the diminishing probabil-
ity of settling into a highly symmetric configuration with a
large unit cell by pure stochastic moves in a huge parameter
space. Our attempts to further improve the energy frequently
encounter numerical instabilities. We conjecture that this bar-
rier can be overcome by applying symmetry constraints [11,
43, 44] to the RBM states, e.g. by enforcing C¢ symmetry and
fixing the unit cell shape and size. This should also improve the
convergence and numerical stability. The downside is that one
must compare the energies of all candidate states with different
symmetries. Testing this proposal is left for future work.
Figure 4 illustrates another caveat of unconstrained learning
in large systems: there are small but visible fluctuations in the
bond energy even in the Neel phase. For an ideal Neel state, one
expects AB = 0. While the algorithm successfully approaches
the antiferromagnetic ground state with excellent energy, the
RBM rarely settles into a completely frozen state with uniform
bond energy. The stochastic nature of the algorithm unavoid-
ably introduces low lying excitations, which for larger sys-
tems are increasingly harder to eliminate. A similar situation
is observed in figure 2, where the order parameter C, drops to
almost zero within the bond ordered phase, but small fluctua-
tions are still visible. This presents a dilemma: on the one hand

we need large clusters to accommodate orders with long mod-
ulation periods, on the other hand for large systems it becomes
more challenging to relax to pristine long-range ordered states.

Given these considerations, we advocate the following
strategy to make the best out of the neural network ansatz.
First, the unconstrained network is trained to find the rough
phase diagram and symmetry breaking patterns. It has the
virtue of being unbiased. Then, other methods, such as analyt-
ical variational wave functions or neural network with symme-
try, are used to further improve the energetics and elucidate the
long-range order. We envision such a hybrid approach will be
especially useful in understanding complex spin systems, for
example models inspired by a large class of Kitaev materials
[45, 46]. Our results suggest that, with further refinements and
complemented by other approaches, variational ansatz based
on neural network quantum states can serve as a powerful
tool to understand frustrated quantum spin models and more
generally strongly interacting many-body systems.
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