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We demonstrate a few unique dynamical properties of point-gap Weyl semimetal, an intrinsic non-Hermitian

topological phase in three dimensions. We consider a concrete model where a pair of Weyl points reside on the

imaginary axis of the complex energy plane, opening a point gap characterized by a topological invariant, the

three-winding number W3. This gives rise to surface spectra and dynamical responses that differ fundamentally

from those in Hermitian Weyl semimetals. First, we predict a time-dependent current flow along the magnetic

field in the absence of an electric field, in sharp contrast to the current driven by the chiral anomaly, which

requires both electric and magnetic fields. Second, we reveal a type of boundary-skin mode in the wire geometry

which becomes localized at two corners of the wire cross section. We explain its origin and show its experimental

signatures in wave-packet dynamics.
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I. INTRODUCTION

Weyl semimetals (WSMs) are three-dimensional (3D)

crystals with pairs of isolated band degeneracy points known

as Weyl points (WPs) [1–9]. When the chemical potential

lies near the degeneracy points, the low-energy quasiparticles

are Weyl fermions, i.e., massless chiral fermions obeying the

Weyl equation. In the simplest case, a Weyl semimetal has two

WPs with opposite chirality ±1 located at ±b in momentum

space with effective Hamiltonian H± = ±v(k ∓ b) · s ± b0.

Here s refers to the (pseudo)spin and v plays the role of

the speed of light. The two WPs, as the source and drain

of Berry flux in momentum space, carry integer topological

charge ±1. This gives rise to a host of fascinating phenomena,

including the emergence of gapless excitations in the form of

Fermi arcs on surfaces and anomalous Hall effect. Remark-

ably, WSMs realize the so-called chiral anomaly in quantum

field theory [10–16]. For example, in the presence of both E

and B fields, an effective chiral chemical potential b0 ∝ E · B

is established, leading to an electrical current j ∝ B(E · B).

WPs have been realized and probed in a wide range

of physical systems [8,9,17–21]. In solids, Weyl quasipar-

ticles are often coupled to other degrees of freedom such

as phonons, magnons, or external fields or bath to acquire

finite lifetime [22–24]. In recent years, non-Hermitian (NH)

Hamiltonians [25–28] have been fruitfully applied to model

electronic materials [29–32] and photonic systems with gain

and loss [33–40], fueled by the state of the art experimental
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capability for NH engineering. This motivates us to exam-

ine generalized models of WSM as open quantum systems

described by NH effective Hamiltonians. The rich, unique

topological properties of NH systems cannot be captured by

the classification framework developed for Hermitian topo-

logical band insulators [41–46]. Since the energy eigenvalues

live on the complex plane, the bands can have point gaps

[47–49]: The spectrum encloses a simply connected area that

contains the reference energy and cannot be smoothly de-

formed into a gap along the real or imaginary axis. The point

gap lies at the heart of a few spectacular properties [27,28]

such as the NH skin effect [50–64], where an extensive num-

ber of eigenmodes are localized at the boundary.

Recent work has begun to reveal some unique features of

NH semimetals [65–79]. Reference [69] analyzed a model

with eight WPs on the complex energy plane to predict the

appearance of skin modes at surfaces perpendicular to an

applied magnetic field. Reference [70] considered WPs with

different lifetimes as a limit of exceptional topological insu-

lators and related the emergence of Fermi arcs to a point-gap

invariant. Experimentally, another kind of Weyl exceptional

ring [72] has been realized both in optical waveguides [78]

and phononic crystals [79]. Despite the progress and ex-

tensive studies which focus on the static properties of NH

topological systems, their dynamical properties remain poorly

understood. What are the unique effects in dynamics and

electromagnetic response dictated by the NH band topology?

In this paper, we investigate a minimal model of NH WSM,

with a pair of WPs located on the imaginary axis, E = iγ±, see

Fig. 1. The point gap on the complex energy plane dictates the

bulk topology and dynamical response. We predict an effect–

time-dependent current induced by magnetic field, j(t ) ∝ B,

that saturates at long time. This dynamical chiral magnetic
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FIG. 1. Schematics of point-gap WSM. (a) A pair of WPs are

split along the kz axis, leading to surface Fermi arcs. The two WPs

carry opposite charges (±) and have different imaginary energies

iγ±, i.e., different dissipation rates. (b) The energy spectra of the

lattice model Eq. (2) on the complex plane. The two WPs are located

on the imaginary energy axis. The point gap surrounded by the

bulk bands is characterized by invariant W3(Ep) = 1 for reference

energy Ep inside the point gap. The parameters are b = 0.9, δ = 0.2,

γ = −0.5, m = 3.1

effect here differs fundamentally from that in Hermitian WSM

because it does not require an E field, is time dependent,

and is driven by the different dissipation rates of the WPs.

Furthermore, we showcase the existence of a unique type of

boundary-skin mode using the Chern number and the spectral

winding number, and propose their observation through wave-

packet dynamics.

This paper is organized as follows. In Sec. II, we introduce

a minimal model of NH WSM with a pair of EPs of different

imaginary energies and demonstrate the existence of point gap

and the relevant bulk topological invariants. In Sec. III, we

study the dynamical charge pumping effect in the presence

of electromagnetic field. We solve the Landau levels and cal-

culate the pumped charge during time evolution. In Sec. IV,

we discuss the boundary-skin modes in wire geometry due to

the point-gap topology. In Sec. V, we turn to the wave-packet

dynamics as an alternative signature of the point-gap WSM.

We conclude in Sec. VI and discuss possible experimental

realizations of the point-gap WSM in photonic and condensed

matter system. We leave detailed derivations and calculations

to the Appendices. Appendix A provides details on our lattice

model’s spectral windings and symmetries. In Appendixes

B and C, we explicitly derive the Landau levels under an

orbital magnetic field and dynamical charge pumping with

imaginary Landau levels, respectively. We investigate the sur-

face Fermi arcs as the bulk-edge correspondence of point-gap

WSM in Appendix D and the energy spectra and wave-packet

dynamics along a z wire in Appendix E. In Appendix F, we

propose the possible realizations of the lattice Hamiltonian in

coupled microring resonators and condensed matter systems.

In Appendix G, we discuss the observation of the dynamical

effects.

II. MODEL HAMILTONIANS AND

TOPOLOGICAL INVARIANTS

Consider a pair of WPs, labeled by subscripts ± and lo-

cated at k = (0, 0,∓bz ) with imaginary energies E = iγ±.

They are described by the effective Hamiltonian

H± = kxsx + kysy ± (kz ± bz )sz + iγ±s0. (1)

Here the Pauli matrices s j with j = x, y, z denote the

(pseudo)spin degrees of freedom and s0 is the identity matrix.

The two WPs are separated in momentum space by 2b =
(0, 0, 2bz ). Note they have opposite chirality ±1 and different

dissipation rates, i.e., inverse lifetimes. For simplicity, we

assume the group velocity of the Weyl fermions is isotropic

and set v = 1. We also assume the system overall is dissipative

and γ± < 0.

As a concrete example, we consider a four-band lattice

model. Its Hamiltonian in momentum space reads

Hk = τxak · σ + mkτzσ0 + bτ0σz + iδτxσ0 + iγ τ0σ0. (2)

Here the Pauli matrices τ j (σ j) denote the orbital (spin) de-

grees of freedom, τ0 and σ0 are identity matrices. The first

term with ak = (sin kx, sin ky, sin kz ) describes spin-orbit cou-

pling, and mk = cos kx + cos ky + cos kz − m. Without the last

two NH terms, the model furnishes a prototype of WSM [3]

with a pair of zero-energy WPs separated along the kz axis.

Upon the introduction of γ and δ, the two WPs split along the

imaginary axis, accompanied by the opening of a point gap

inside the bulk bands as depicted in Fig. 1(b). Near the WPs,

Hk reduces to the continuum model Eq. (1), with bz and γ±
functions of b, m, and δ, after we rescale the momentum so

the group velocity along x, y, z becomes the same v. A more

general lattice model was previously introduced in Ref. [70].

The key features of point-gap WSM do not depend on the

specific lattice model chosen.

The band topology of Hk is characterized by a point-gap

invariant, the three-winding number [41,42]

W3(Ep) = −
1

24π2

∫

BZ

d3
k εi jkTr[QiQ jQk], (3)

where Ep is a chosen reference energy inside the point gap,

Qi = (Hk − Ep)−1∂ki
(Hk − Ep), and εi jk is the Levi-Civita

symbol. This is possible owing to the existence of a point

gap, so Hk for each momentum k within the Brillouin zone

(BZ) can be continuously deformed into a unitary matrix

[41,42,69–71]. It can be checked that for our model W3(Ep) =
1. To understand the boundary and skin modes in point-gap

WSM, two kinds of topological indices of lower dimensions

are also needed. Consider a general direction l̂ , let us label

the momentum along l̂ as kl and define transverse momen-

tum k⊥ = k − kl l̂ . For fixed values of k⊥, Hk defines a 1D

Hamiltonian h1D(kl ) where the parametric dependence on k⊥
is suppressed for brevity. The spectral winding number for

h1D(kl ),

wl (Ep) =
1

2π i

∫

dkl∂kl
[ln det(h1D(kl ) − Ep)], (4)

is an integer when Ep lies within the point gap of h1D. In

particular, we find wx = wy = 0, due to the NH time-reversal

symmetry [42,80]: TxH (kx, ky, kz )T −1
x = H (−kx, ky, kz ) and

TyH (kx, ky, kz )T −1
y = H (kx,−ky, kz ), where Tx = τ0σzT ,

Ty = T and T stands for transposition. Note the difference

from the Hermitian systems; here time-reversal symmetry Tx,

Ty include the transpose operation. For a fixed value of kl ,

Hk reduces to a 2D Hamiltonian h2D(k⊥). Provided that the

094305-2



DYNAMICAL SIGNATURES OF POINT-GAP WEYL … PHYSICAL REVIEW B 106, 094305 (2022)

FIG. 2. Dynamical charge. pumping by magnetic field B along y.

(a) The complex energy spectra for B = 2π/Lx . The color indicates

the biorthogonal expectation value 〈ψL|τxσy|ψR〉 for each eigenstate.

The two chiral Landau levels in Eq. (5) carry opposite pseudospin

sy = τxσy. The inset schematic: A net current j(t ) arises due to the

imbalance of the current carried by the two chiral Landau levels.

(b) The total pumped charge Q(T ) with respect to time T for B =
2pπ/Lx , with p = −4, −3, ..., 4 from bottom to top. The parameters

are b = 0.9, δ = 0.2, γ = −0.5, m = 3.1, and Lx = 50.

bands of h2D at Re(E ) < 0 and Re(E ) > 0 are separated, we

can define a total Chern number C(kl ) for all the Re(E ) < 0

bands. For example, we find C(kz ) = 1 for kz ∈ [−bz, bz] and

zero otherwise.

III. DYNAMICAL CHARGE PUMPING

BY MAGNETIC FIELD

The electromagnetic response of point-gap WSMs deviates

drastically from Hermitian WSMs. To illustrate this, we first

provide an intuitive picture for the chiral magnetic response

using the low-energy Hamiltonian Eq. (1). Without loss of

generality, suppose the magnetic field is along the y direction

with magnitude B [81]. In Landau gauge A = (0, 0,−Bx),

solving for the eigenvalues of Eq. (1) with minimal cou-

pling yields the Landau levels [see detailed derivations in

Appendix B]:

E±
n=0 = ±ky + iγ±, (5)

E±
n �=0 = sgn(n)

√

k2
y + 2eB|n| + iγ±. (6)

Here the superscripts ± denote the two Weyl nodes, while the

subscript n labels the Landau levels. The two zeroth Landau

levels E±
0 are chiral: They have opposite group velocity and

different dissipation rate γ+ �= γ−. Thus, as time goes on, the

difference in dissipation rate sets up a density imbalance of

fermions moving in the y and −y directions, resulting in a net

charge current j(t ) along the magnetic field, see the inset of

Fig. 2(a). (The n �= 0 levels are particle-hole symmetric and

do not contribute to the net current.) More specifically, let us

assume at t = 0 the system is Hermitian (γ± = 0) and all the

Landau levels at negative energies are filled. After the NH

terms are turned on, the net current at t > 0 is [see detailed

derivations in Appendix C]

j(t ) =

D

2π
(e2tγ+ − e2tγ− ), (7)

where 
 is a high-energy cutoff and D = BLxLz/2π , with

Lx,z, the system length along the x, z direction is the degen-

eracy of each chiral Landau level. The total charge pumped

by magnetic field over time lapse T is

Q
(T ) =
∫ T

0

dt j(t ) =

D

4π

[

e2γ+T − 1

γ+
−

e2γ−T − 1

γ−

]

. (8)

After a long time, it saturates to a finite value

Q
(∞) =

D(γ+ − γ−)

4πγ+γ−
∝ B|γ+ − γ−|, (9)

where in the last step |γ+ − γ−| 
 |γ+ + γ−| is assumed.

We stress that the current is time-dependent and flows in

the absence of electric field. In contrast, in Hermitian WSM

the current is zero if no electric field is applied [13]. The

accumulation of charge leads to a finite electric polarization

P ∝ B in finite-size samples, which can be taken as a defining

signature of point-gap WSM.

More generally, if an electric field of magnitude E is ap-

plied in parallel to B, chiral anomaly also contributes to the

current. In this case, the density of left- and right-moving

fermions, N±, can be found to take the form [see detailed

derivations in Appendix C]:

N±(t ) =
(


D

2π
±

e2EB

8π2γ±

)

e2γ±t ∓
e2EB

8π2γ±
. (10)

In the limit E = 0, it reduces to Eq. (7) above by identifying

j(t ) = N+ − N− (recall the velocity is set to 1). After a long

time, a steady current is achieved:

jE (t → ∞) = −
e2EB

8π2

(

1

γ+
+

1

γ−

)

. (11)

Alternatively, we can numerically compute the current in-

duced by magnetic field based on the lattice Hamiltonian

Eq. (2). Figure 2(a) shows the energy spectra. In the presence

of B = Bŷ, the original WPs are replaced by a pair of highly

degenerate chiral modes that fill the Landau gap of size ∼
√

B

to connect the bulk bands with Re(E ) < 0 and Re(E ) > 0.

Assume the initial state |�0〉 is a half-filled trivial insulator

with dispersion ετσ (k) = −(cos kx + cos ky + cos kz ) for each

spin and orbital component. The time evolution is governed by

the density matrix ρ(t ) = |�(t )〉〈�(t )| with the time-evolved

state |�(t )〉 = e−iHt |�0〉. The total charge pumped by mag-

netic field after time lapse T is

Q(T ) =
1

Lz

∑

kx,kz

∫ T

0

dt

∫

dky Tr[ρ(t )∂ky
H]. (12)

Here ∂ky
H is the velocity operator along y. Figure 2(b) plots

the function Q(T ) for different magnetic fields. The saturation

value Q(∞) is proportional to the magnetic field and vanishes

for B = 0, in agreement with the analytical results above.

Flipping the magnetic field results in a charge pumped to the

opposite direction.

The electromagnetic response of Hermitian WSM

can be described by a field theory with action S =
(e/2π )2

∫

dtd3r θ (r, t )E · B [12–16]. Here the axion field

θ (r, t ) = 2(b · r − b0t ) is linear in the separation of WPs

in energy and momentum bμ = (b0, b) with natural units

c = h̄ = 1. It predicts the chiral magnetic effect, i.e., a
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FIG. 3. Boundary-skin modes and wave-packet dynamics for a

wire along m̂ = [101]. (a) Energy spectra with open (in blue) versus

periodic (in purple) boundary conditions in the ŷ and n̂ = [101̄]

direction, showing the emergence of in-gap modes for open bound-

aries. The in-gap modes in green are obtained under open y and

periodic n̂ boundaries. The inset illustrates the wire with cross-

section boundaries (red lines). (b) Total probability distribution ρin

of the corner-localized in-gap modes. Middle inset: Total probability

distribution of all other modes, which exhibit skin effect along n̂.

(c) The time evolution of a wave-packet initially localized at site

(1,13) (left panel) and (13,25) (right panel) of the cross section that

measures 25 × 25. The wave packet has width W 2
1 = 1, W 2

2 = 6. The

spinor wave function is |ξ0〉 = (1, 1, 0, 0)T . The lattice momentum

along the wire is chosen as km = −0.25. Other parameters are the

same as Fig. 1.

current j = −(e2/2π2)b0B which vanishes in equilibrium

with b0 = 0. The attempt to generalize the field theory to

point-gap WSM is hampered by an obstacle: the divergence

of the Fujikawa integral even for small NH perturbations

such as γ±. Thus, the dynamical chiral magnetic response

found here cannot be explained by analytically continuing

j = −(e2/2π2)b0B via 2b0 = i(γ+ − γ−). The failure of

this formula illustrates that we are dealing with a genuinely

unique effect [82]. The theory developed in Ref. [71] cannot

be applied here either, because the charge U(1) symmetry

assumed in Ref. [71] is broken by the NH terms in Eq. (1).

IV. BOUNDARY-SKIN MODES IN WIRE GEOMETRY

The nontrivial bulk topology leads to the appearance of

Fermi-arc surface states that fill the entire point gap [70]. In

Appendix D, we studied the in-gap Fermi arcs for different

surface terminations. It also manifests in the emergence of a

unique type of boundary-skin modes when the semimetal is

cleaved to have intersecting surface planes. Consider, for ex-

ample, a wire with a rectangular cross section and extending in

the [101] direction m̂ = x̂ + ẑ (red arrow, insets of Fig. 3). For

convenience, we label the [101̄] directions as n̂ = x̂ − ẑ, so

(ŷ, m̂, n̂) are orthogonal to each other. The spectra of the wire

for different boundary conditions are compared in Fig. 3(a)

for a particular value of km = k · m̂. Shown in purple is the

spectrum for periodic boundary conditions along ŷ and n̂, and

blue is for open ŷ and n̂ boundaries where the in-gap modes

are visible. It turns out that these in-gap modes are concen-

trated around two corners of the cross section, according to

their total probability distribution ρin(i, j) =
∑

q |ψq(i, j)|2
shown in Fig. 3(b). Here (i, j) labels the sites, q labels the

in-gap modes, and ρin is rescaled to have maximum 1. As

km is varied, the spatial distribution of these corner modes

evolves smoothly, e.g., it is extended for km = 0 and localizes

at two other corners as km switches signs. Clearly, they are

distinct from the chiral edge modes in Chern insulators and

cannot be described by the Chern number C(km) [defined

below Eq. (4)] alone. For open boundaries, the continuum

modes with energies overlapping with the bulk spectrum are

pushed to localized at the left and right edges, as shown

by their total probability distribution ρcont(i, j) in the middle

inset of Fig. 3(b). An extensive number of continuum modes

residing near the boundary is known as the NH skin effect.

Here the skin effect depends on the orientation/geometry of

the surfaces. For example, the skin effect is absent for a z wire

with open x, y boundaries [see Appendix E for details]. This is

due to the vanishing of the 1D spectral winding wx = wy = 0

protected by the NH symmetries Tx and Ty. For a given kz,

the 2D Hamiltonian H2D(kx, ky) describes a NH Chern insu-

lator, with the chiral edge modes revealed from the Chern

number C(kz ).

We now show that these corner modes can be understood

as chiral edge states under the spell of 1D skin effect. Let

us start from a point-gap WSM with two open surfaces at

y = 1, L and periodic in the two other directions m̂ and n̂. This

realizes a 2D slab described by Hamiltonian h2D(km, kn). Its

spectrum, shown in green in Fig. 3(a) for a given km, features

two chiral edge modes at y = 1, L, respectively, that cross the

bulk gap and disperse with kn. Note that for given km, h2D

can be regarded as a 1D effective Hamiltonian h1D(kn). h1D

has point gaps on the complex energy plane, and the corre-

sponding 1D spectral winding number wn along the direction

n̂ is finite, giving rise to 1D skin effect. Thus, upon opening

two additional boundaries normal to m̂, the skin effect leads

to further localization of the surface modes to the left/right

corner. These corner modes [in blue, Fig. 3(a)] indeed reside

within the point gap of h1D(kn). We call them boundary-skin

modes because they derive from the chiral edge modes of NH

Chern insulators due to the 1D skin effect. Since the finite

Chern number is in turn derived from W3, the emergence

of boundary-skin modes observed in Figs. 3(a) and 3(b) can

serve as signatures of point-gap WSM. We note the number of

boundary-skin modes, bulk-skin modes, and chiral-edge states

scale with system size as L, L2, and L, respectively.

V. WAVE-PACKET DYNAMICS

Besides dynamical charge pumping, we propose an alter-

native route to extract the topological signatures of point-gap

WSM from wave-packet dynamics which can be performed

in photonics experiments [63]. Let (x1, x2) be the coordinates

within the cross-section area in the wire geometry. At time

t = 0, we prepare a Gaussian wave packet localized at (a1, a2)
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of zero velocity in the plane

|ψ0〉 = N0e−(x1−a1 )2/W 2
1 −(x2−a2 )2/W 2

2 eikl xl |ξ0〉, (13)

where W1,2 are the width of the packet, N0 is the normalization

factor, |ξ0〉 denotes the spinor part of the wave function, and kl

is the momentum along the wire at a fixed value. Figure 3(c)

depicts the time evolution of a wave packet in the cross sec-

tion of a [101] wire. The left panel shows that the wave packet

initially residing near the middle point of the y edge travels di-

rectly through the bulk to reach the opposite edge. This occurs

because the wave packet has large overlap with the skin modes

that reside on the y edge [see Fig. 3(b)] but negligible overlap

with the in-gap states which are more concentrated around the

corners. The skin modes are not completely localized, giving

the wave packet the chance to permeate into the bulk, while

for a wave packet initially on the [101̄] edge (right panel),

it first moves counter-clockwise along the edges and starts

to permeate into the bulk more significantly once it arrives

at the y edge. The evolution dynamics is distinct from that

of a z wire, where the wave packet moves chirally along the

edges of the cross section and does not go into the bulk; see

numerical simulations in Appendix E. Thus, the existence of

boundary-skin modes can be inferred from the wave-packet

dynamics.

VI. CONCLUSION AND DISCUSSION

To conclude, we predict dynamical charge pumping and

boundary skin modes as unique features of NH WSM and

attribute them to the point-gap topology and non-Hermicity.

These phenomena have no analogs in Hermitian semimetals

and cannot be described by the previous field theory frame-

work. Our work lays a foundation for future experiments

to explore the dynamics of NH semimetals. The dynamical

effects do not rely on fine-tuning to a specific energy window

and are more feasible to identify for simulations in photonic

and cold atomic platforms. It is straightforward to extend the

analysis to other types of topological semimetals [3,83]. For

example, by setting ak = (sin kx sin ky, cos ky − cos kx, sin kz ),

we obtain a double-charged NH WSM with point-gap invari-

ant W3(Ep) = 2. The lattice Hamiltonian can, in principle, be

implemented in photonic lattices and electrical metamaterials

[84–86]. As detailed in Appendixes F and G, we propose

a realization of the lattice Hamiltonian Eq. (2) using micr-

ring resonator arrays with losses, where the couplings (both

phase and amplitude) between neighboring resonators can

be controlled independently through intermediate waveguides

[87–90]. In condensed matter systems, the NH dissipation

terms can be implemented either through a tailored orbital-

dependent coupling with a lossy mode or electron-phonon

scattering [70].
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APPENDIX A: SPECTRAL WINDINGS AND

NON-HERMITIAN SYMMETRY

The lattice Hamiltonian Hk [see model Eq. (2) in the main

text] contains both Hermitian and NH terms. The Hermitian

part describes a prototype WSM with a pair of WPs inside

the kz axis. The NH terms further split the two WPs along the

imaginary axis. Such WP configuration breaks time-reversal

symmetry; however, if we consider the one-dimensional (1D)

Hamiltonian h1D(kx ) with fixed (ky, kz ) momentum or h1D(ky)

with fixed (ky, kz ) momentum, the lattice Hamiltonian re-

spects the following NH time-reversal symmetry [42,80]:

TxH (kx, ky, kz )T −1
x = H (−kx, ky, kz ), (A1)

TyH (kx, ky, kz )T −1
y = H (kx,−ky, kz ), (A2)

where Tx = τ0σzT , Ty = T and T represents for transposi-

tion. The symmetry Tx (or Ty) relates the (100)/(1̄00) (or

(010)/(01̄0)) surfaces to each other and rules out the skin

effect along x (or y) direction. To visualize this, we plot the

energy spectra along each momentum direction, while keep

the other two momenta fixed. As depicted below in Figs. 4(a)

and 4(b), the spectra by varying kx or ky trace open arcs on

the complex plane, indicating the absence of skin modes once

the open boundary along the x or y direction is taken. The

spectra by varying kz form closed loops. For an open z bound-

ary, the extended modes under periodic boundary conditions

would collapse into skin mode [47–49]. Further, the presence

or absence of skin modes under open boundary can be ver-

ified from the 1D winding number along the correspondin

g momentum direction. Due to the above NH time-reversal

symmetry, W1x(Ep) = W1y(Ep) = 0, while W1z(Ep) can be
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nonzero when the reference energy Ep is suitably chosen [see

Fig. 4(c)].

APPENDIX B: CHIRAL LANDAU LEVELS

WITH AN APPLIED MAGNETIC FIELD

In the presence of a background magnetic field (for neutral

atoms, the magnetic field can be mimicked utilizing the syn-

thetic gauge field technique), the Weyl Hamiltonian coupled

to a gauge field is obtained through replacing k → k − eA.

For a magnetic field along y direction, we take the gauge

potential A = (0, 0,−Bx). The low-energy Hamiltonian near

the two WPs with opposite charge ±1 (or chirality) reads

(h̄ = c = 1)

H±(B) = kxsx + kysy ± (kz + eBx ± bz )sz + iγ±s0. (B1)

We take the +1 Weyl node with imaginary energy γ+ as an

example. Squaring the Hamiltonian yields

[H+(B) − iγ+s0]2 = k2
y + k2

x + (kz + eBx + bz )2 − eBsy.

(B2)

Note the motion in the xz plane (perpendicular to B) is exactly

described by the quantum harmonic oscillator, except with

the minimum of the potential shifted in coordinate space. The

Landau quantization in the xz plane leads to the familiar levels

(E+ − iγ+)2 = eB(2n + 1) + k2
y − eBsy (n = 0, 1, 2, ...),

(B3)

each with degeneracy D = eBLxLz

2π
. The last term (Zeemann

splitting) depends on the spin polarization along the magnetic-

field direction. When sy = +1 and n = 0, we get the zeroth

Landau level in the main text with linear dispersion,

E0+ = ky + iγ+, (B4)

while for n � 1, The n-th states of sy = −1 are degenerate

with the (n + 1)-th states of sy = +1. They together constitute

the higher Landau levels in the main text, with dispersion

En+ = ±
√

k2
y + 2eBn + iγ+ (n � 1). (B5)

It is worth mentioning only the zeroth Landau level has def-

inite spin polarization along the magnetic field; while the

higher Landau levels are constituted of both polarization com-

ponents, with degeneracy 2D. Similarly, for the −1 Weyl node

with imaginary energy γ−, the zeroth Landau level has spin

polarization sy = −1 and dispersion

E0− = −ky + iγ−. (B6)

APPENDIX C: DYNAMICAL CHARGE PUMPING

WITH IMAGINARY LANDAU LEVELS

We start from the zeroth Landau levels, which are chiral

and possess different dissipation rates as depicted in Fig. 5.

The chiral Landau levels that emerge under a magnetic field

produce a time-dependent parallel current. To see this, we

calculate the amount of charge pumped over time lapse T .

We suppose the system at t = 0 fills all the Landau levels

(i.e., Dirac sea) of Re(E ) < 0 and denote the initial state as

FIG. 5. Schematics of the zeroth Landau levels with linear dis-

persions along ky. The right-moving (red) and left-moving (blue)

fermions have imaginary energy iγ+ and iγ−, respectively. 
 is the

momentum cutoff. At time t = 0, all the Re(E ) levels are filled

(solid dots).

|�0〉. The subsequent time evolution |�(t )〉 = e−iHt |�0〉 is

nonunitary and governed by the density matrix

ρ(t ) = |�(t )〉〈�(t )|

=
∑

m,n

e−i(En−E∗
m )t |φn〉〈φn|�0〉〈�0|φm〉〈φm|, (C1)

where |φn〉 denotes the eigenfunction of the corresponding

Landau level. We set the momentum cutoff as 
. The time-

dependent current along the magnetic field is then

j(t ) =
∫ 


−


dky

2π
Tr[ρ(t )∂ky

H]. (C2)

Here ∂ky
H is the particle velocity along the magnetic field.

The 1
2π

factor is the density of states. As the higher Landau

levels are symmetric with respect to the ky axis, only the chiral

Landau levels contribute to the current. The time-dependent

current is simply given by

j(t ) =

D

2π
[e2γ+t − e2γ−t ]. (C3)

We can clearly see j(t ) is the net current coming from both the

left and right movers. The total pumped charge during time

T is

Q
(T ) =
∫ T

0

dt j(t ) =

D

4π

[

e2γ+T − 1

γ+
−

e2γ−T − 1

γ−

]

.

(C4)

In the following, we provide a field-theory perspective

of the dynamical current. The dynamical charge pumping is

due to interplay of non-Hermiticity and the chiral Landau

levels. We restrict to the zeroth Landau levels with oppo-

site chirality and denote the corresponding field operator

describing the chiral fermions as χ (t, y). In this notation,

we have incorporated the (x, z) dependence into χ (t, y). The

effective (1 + 1)D action describing the two chiral landau

levels is

S =
∫

dtdy iχ̄ (t, y)

[

∂/−
γ+ − γ−

2
γ 1 −

γ+ + γ−

2
γ 0

]

χ (t, y).

(C5)
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Here we have utilized the notation of gamma matrices as γ 0 =
σx, γ 1 = −iσy and γ 5 = γ 0γ 1 = σz, which obey the Clifford

algebra {γ μ, γ ν} = 2gμν in signature (1,−1).

The field χ (t, y) can be decomposed into two chiral

components χ±(t, y) = 1
2
(1 ± γ 5)χ (t, y), corresponding to

different eigenvalues of γ 5. In terms of χ±(t, y), the action

reads

S =
∫

dtdy i[χ†
+(t, y)(∂t + ∂y − γ+)χ+(t, y)

+χ
†
−(t, y)(∂t − ∂y − γ−)χ−(t, y)]. (C6)

Without the dissipation terms, the action Eq. (C5) has both

the charge and chiral U(1) symmetry, indicating the con-

servation of gauge current jμ = χ̄γ μχ and chiral current

j
μ

5
= χ̄γ μγ 5χ in classical level. In terms of the two chiral

components, j0 = χ
†
+χ+ + χ

†
−χ− ≡ N+ + N− measures the

total density of right- and left-moving fermions and j1 =
χ

†
+χ+ − χ

†
−χ− ≡ N+ − N− measures their density difference

(or current). Vice versa for j
μ

5
, j0

5 = N+ − N− and j0
5 = N+ +

N−, respectively, measures their density difference and total

density. The existence of the dissipation terms breaks both

symmetries, leading to the nonconservation for both the left-

and right-movers.

The equation of motion extracted from action Eq. (C5) is

∂/χ −
[

γ+ + γ−

2
γ 0 +

γ+ − γ−

2
γ 1

]

χ = 0. (C7)

The solutions are given by

χ+(t, y) = (t − y)eγ+t , χ−(t, y) = (t + y)eγ−t . (C8)

We can clearly see their physical meaning: χ± represents

the right/left-moving fermions with damping rate γ±, respec-

tively. The fermion density operator satisfies the following

damping relation:

∂t N+ = 2γ+N+, ∂t N− = 2γ−N−. (C9)

The fermion density of the right and left movers are then

N+(t ) ∝ e2γ+t and N−(t ) ∝ e2γ−t . As the two chiral compo-

nents move in opposite directions (y and −y), their density

difference j1(t ) = j0
5 (t ) = N+(t ) − N−(t ) induces a net cur-

rent proportional to (e2γ+t − e2γ−t ) along the magnetic field,

which coincides with the previous density-matrix calcula-

tions.

It is worth mentioning the case when an additional electric

field E parallel to magnetic field B is applied. As is well-

known in quantum field theory, the electric field would induce

the chiral anomaly, which breaks the chiral symmetry in the

quantum level. The chiral anomaly shifts the density of right

and left movers by ± eE
2π

, respectively. Taking into account this

effect, we arrive at the following relation:

∂t N± = ±
e2EB

4π2
+ 2γ±N±. (C10)

The solutions are given by

N±(t ) =
(

N0± ±
e2EB

8π2γ±

)

e2γ±t ∓
e2EB

8π2γ±
. (C11)

Here N0,± is the initial fermion density for the right (+)

and left (−) movers, respectively. For the initial configuration

FIG. 6. Complex Fermi arcs and skin effect at open surfaces.

(a) Energy spectra for a point-gap WSM with two open surfaces

(see the pink surface in inset) normal to the x direction, separated by

distance Lx = 25. The colors indicate the inverse participation ratio

(IPR) that measures the localization of eigenstates. The in-gap modes

consist of Fermi arcs to fill the entire point gap. (b) Same as (a) but

for open surfaces normal to the [101̄] direction with L[101̄] = 25.

The IPR shows skin effect, i.e., an extensive number of continuum

modes (outside the point gap) become localized near the surfaces.

The parameters are b = 0.9, δ = 0.2, γ = −0.5, m = 3.1.

depicted in Fig. 5 with momentum cutoff 
, N0± = 
D
2π

. It is

easy to see:

Case (i): When γ+ = γ− = 0, i.e., no dissipation for both

the left and right movers, ∂t j0 = 0, ∂t j1 = e2
EB

2π2 , which returns

to the well-known chiral anomaly. The total particle density is

conserved; however, the chiral density is not conserved.

Case (ii): When γ+ = γ− �= 0, i.e., the left and right

movers have the same dissipation rate, j1(t ) = e2
EB

4π2γ+
(e2γ+t −

1). When the electric field E = 0, the net current is zero.

Case (iii): When γ+ �= γ− �= 0 and E = 0, i.e., without the

electric field, j1(t ) = 
D
2π

(e2γ+t − e2γ−t ), which is consistent

with the previous density-matrix discussions. Even without

electric field, a time-dependent current is induced due to the

dynamical imbalance between left and right movers.

Case (iv): When t is very large, the competition between

the NH dissipation and electric-field driving is balanced, and

we arrive at the steady-state solution: N±(t → ∞) = ∓ e2
EB

8π2γ±
.

APPENDIX D: ANISOTROPIC SURFACE FERMI ARCS

The bulk-boundary correspondence in point-gap WSM is

more complicated than the Hermitian case. This is partly

due to the appearance of skin modes, which depends on the

orientation of the surfaces. We first focus on one of the key

signatures of WSM, Fermi arcs on open surfaces. Figure 6(a)

shows the spectra for open boundaries at x = 1, L (the pink

surface parallel to the Weyl node separation in the inset)

obtained from numerical solution of the lattice model. Owing

to the point-gap invariant W3(Ep) = 1, surface modes emerge

inside the point gap. Here, for clarity, only the spectra of a

few dozen discrete values of transverse momenta k‖ = (ky, kz )

are shown. The surface modes become close packed to fill the

entire point gap region if all k‖ are included. Consider, for ex-

ample, the zero-energy surface states at ky,z = 0, whose wave

functions can be found analytically. (The solution is provided
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at the end of this section.) The complex energy spectrum for

small values of ky,z is given by

Es(k‖) ∝ ±ky + iαkz, (D1)

where ± is for the surface at x = 1 and L, respectively, and

α depends on system parameters. At zero chemical poten-

tial, μ = ReEs = 0, the surface modes disperses as Es ∝ ikz

and form a continuum with varying ImEs for kz ∈ [−bz, bz]

to connect the two WPs, i.e., a complex Fermi arc. Fermi

arcs for other values of μ are obtained similarly by solv-

ing ReEs(k‖) = μ. The in-gap modes can be viewed as a

collection of Fermi arcs. Remarkably, together they form a

single-sheet handkerchief on the complex E plane, covering

the hole of the point gap area exactly once (recall W3 = 1 in

our model). More generally, one can prove that the complex

Fermi arcs cover the point-gap area W3(Ep) times [70].

In comparison, Fig. 6(b) depicts the spectra for the

(101̄)/(1̄01) open surfaces perpendicular to the diagonal x̂ −
ẑ. The false color represents the inverse participation ratio

(IPR) that measures the wave function localization

IPR[|ψ〉] =
∑

j

|〈 j|ψ〉|4. (D2)

Here j labels the lattice layers along x̂ − ẑ, and a high IPR

value indicates the localization of wave function |ψ〉 near the

two open surfaces. While the complex Fermi arcs fill the point

gap, certain states with energies belonging to the continuum

bulk bands have appreciable IPR, i.e., they are pushed from

the bulk to localize near the surfaces. This is an example

of NH skin effect and it can be understood by analyzing

h1D(kl ) with l̂ = x̂ − ẑ. Skin effect occurs whenever the spec-

tral windings along l̂ , as defined in Eq. (4), are nonzero. We

can check that wl (Ep) is indeed finite for certain Ep outside

the point-gap region, in agreement with Fig. 6(b). Note the

skin effect depends on the orientation of the open surface. For

the x-open boundary shown in Fig. 6(a), all the continuum

states remain extended. Skin effect is absent in this case be-

cause spectral windings along the x and y direction vanish,

wx = wy = 0.

1. Solution of the surface states Eq. (D1)

For the lattice Hamiltonian Hk [see Eq. (2) in the main

text], when the x direction is open, ky and kz are good quantum

numbers and surface states emerge inside the point gap. We

first consider the special case with ky = kz = 0. The surface

states can be either on the (100) or (1̄00) surfaces. To pro-

ceed, we rewrite the tight-binding form of Hamiltonian Hk

along x direction (the constant NH term iγ τ0σ0 is dropped

off):

Hx−open =
∑

c
†
x+1

τzσ0 + iτxσx

2
cx + c

†
x−1

τzσ0 − iτxσx

2
cx + c†

x [(2 − m)τzσ0 + bτ0σz + iδτxσ0]cx. (D3)

Here cx denotes the annihilation operator for the xth lattice

site. Suppose there are L unit cells along x direction. We

take the trial wave function for the (1̄00) surface state (i.e.,

localized at x = 1) as

|χ1̄00〉 =
∑

x

βx
1 |x〉|φ1〉, (D4)

where |φ1〉 is the spinor part and |β1| < 1. At site x, the Harper

equation is (�0 = τzσ0)

�0

[

1 − τyσx

2
β−1

1 +
1 + τyσx

2
β1 + (2 − m + bτzσz − δτyσ0)

]

|φ1〉 = 0, (D5)

In the above equation, we have assumed the surface-state

energy to be zero, which will be validated at the end of the

discussion. The b term and δ term in parentheses commute

with τyσx. The eigenstates of τyσx with eigenvalue +1 are

|+1〉 =
(−i, 0, 0, 1)T

√
2

, |+2〉=
(0,−i, 1, 0)T

√
2

. (D6)

The eigenstates of τyσx with eigenvalue −1 are

|−1〉 =
(i, 0, 0, 1)T

√
2

, |−2〉 =
(0, i, 1, 0)T

√
2

. (D7)

It is easy to see from Eq. (D5) that | + 1〉 and | + 2〉 can be

taken as the basis of the (1̄00) surface states. We assume the

spinor part of the solution to be

|φ1〉 = p1| + 1〉 + p2| + 2〉. (D8)

Combing the normalization condition |p1|2 + |p2|2 = 1, we

set p1 = cos θ , p2 = sin θeiφ ; the Harper equation reduces to

following complex equations

(β1 − m + 2 + b) cos θ − δ sin θeiφ = 0,

−δ cos θ + (β1 − m + 2 − b) sin θeiφ = 0. (D9)

The solutions are given by β1 = −
√

δ2 + b2 + m − 2

(note |β1| < 1 is required for the (1̄00) surface), θ =
arctan

β1−m+2+b

δ
, and φ = 0. For the (100) surface, we take

the trial wave function as

|χ100〉 =
∑

x

βL−x
2 |x〉|φ2〉, (D10)

where |φ2〉 denotes the spinor part. |−1〉 and |−2〉 can be taken

as the basis of the (100) surface states. A similar procedure

yields the solution of the Harper equation. To summarize,
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we have the following surface states solutions (neglecting the

total normalization factor):

|χ1̄00〉 ∼
∑

x

βx|x〉[cos θ | + 1〉 + sin θ | + 2〉], (D11)

|χ100〉 ∼
∑

x

βL−x|x〉[cos θ | − 1〉 − sin θ | − 2〉]. (D12)

Now we are ready to work out the surface states of a

finite-size system along the x direction. For a finite x layer,

the top and bottom surface states couple together. The surface

modes should be the superposition of both |χ1̄00〉 and |χ100〉
and simultaneously localized on both x = 1 and x = L. It is

easy to calculate the finite-layer coupling:

〈χ100|Hx−open|χ100〉 = 〈|χ1̄00|Hx−open|χ1̄00〉 = 0,

〈χ100|Hx−open|χ1̄00〉 = 〈|χ1̄00|Hx−open|χ100〉

∼ βL[−b − (2 − m)]. (D13)

The small off-diagonal term (scaling as βL) will pin the sur-

face state to be the superposition of |χ100〉 and |χ1̄00〉 as

|χ±〉 =
|χ100〉 ± |χ1̄00〉√

2
. (D14)

In the following, we consider the effect of nonzero

but small ky, kz terms. To be concise, we only consider

the spinor part and neglect the total normalization fac-

tor of |χ1̄00〉 and |χ100〉. For the ky term, we have the

following relations: 〈+1|τxσy| + 1〉 = −〈+2|τxσy| + 2〉 =

−〈−1|τxσy| − 1〉 = 〈−2|τxσy| − 2〉 = 1 and other terms are

zero. Hence 〈χ1̄00|τxσy|χ1̄00〉 = −〈χ100|τxσy|χ100〉 = cos 2θ ,

and 〈χ1̄00|τxσy|χ100〉 = 〈χ100|τxσy|χ1̄00〉 = 0. In the surface-

state subspace spanned by |χ1̄00〉 and |χ100〉, the ky term yields

an energy splitting proportional to ± cos 2θky, which would

pin the surface states to be localized at one single surface.

For the kz term, 〈+1|τxσz| + 2〉 = −〈+2|τxσz| + 1〉 =
−〈−1|τxσz| − 2〉 = 〈−2|τxσz| − 1〉 = i and all other terms

are zero. Unlike the ky term which is diagonal in the basis,

the kz term is nondiagonal. |χ1̄00〉 and |χ100〉 are not the eigen-

vectors of the new Hamiltonian when a nonzero kz term is

included. To extract the effect of kz term, we first solve the

following Harper equation without NH δ term:

�0

[

1 − τyσx

2
β−1

1 +
1 + τyσx

2
β1

+ (1 + cos kz − m + bτzσz + i sin kzτyσz )

]

|φ1〉 = 0.

(D15)

Following the same procedure before, we solve the zero-

energy surface states of this Hermitian topological insulator.

As {τyσz, τyσx} = 0, the τyσz term would mix the ± subspace

of τyσx: τyσz| + 1〉 = | − 2〉; τyσz| + 2〉 = −| − 1〉; τyσz| −
1〉 = −| + 2〉; τyσz| − 2〉 = | + 1〉. We set the trivial spinor

wave function for the (1̄00) surface to be

|φH1〉 = cos θH | + 1〉 + sin θH eiφH | − 2〉. (D16)

Solving the Harper equation yields (m′ = 1 + cos kz − m)

βH1 =
−1 + b2 − sin2 kz − m′2 −

√

4(b2 − m′2) + (1 − b2 + sin2 kz + m′2)2

2(m′ − b)
,

θH = − arctan
sin kz

β−1
H1 + m′ + b

,

φH = −
π

2
. (D17)

Similarly, we can solve the spinor wave function for the (100)

surface. The solutions are listed as below:

|φH1〉 = cos θH | + 1〉 − i sin θH | − 2〉, (D18)

|φH2〉 = cos θH | − 1〉 + i sin θH | + 2〉. (D19)

Now let us consider the effect of NH δ term on the

basis |φH1,2〉: 〈φH1|iτxσ0|φH1〉 = 〈φH2|iτxσ0|φH2〉 = i sin 2θH

and 〈φH1|iτxσ0|φH2〉 = 〈φH2|iτxσ0|φH1〉 = 0. These relations

mean that the NH δ term induces an equal energy shift for both

surface states. When kz is nonzero but small, θH ∝ kz, and the

energy shift for the surface states is ∝ ikz. In Eq. (D5), we

have implicitly taken the surface-state energy to be zero for

a finite NH δ term. Note that when kz = 0, θH = 0, hence

the NH term does not change the surface-state energy for

kz = 0.

APPENDIX E: ENERGY SPECTRA AND WAVE-PACKET

DYNAMICS ALONG z WIRE

In the main text, we have considered the energy spectra

under [101]-wire and the corresponding wave-packet dynam-

ics. Here, as a comparison, we investigate energy spectra and

wave-packet motion along the z wire and show the anisotropic

nature of NH WSM. The spectrum of a z wire with open

x, y boundaries is shown in Fig. 7(a) in blue for a particular

kz. Boundary modes with energies inside the point gap are

revealed by comparing to the continuum spectrum (in purple,

overlaid by blue) obtained by assuming periodic boundary

conditions in both the x and y directions. The spatial distribu-

tion ρ of the in-gap modes in Fig. 7(b) clearly shows that they

reside along the four edges. Here ρ is the probability at each

site (i, j), ρ(i, j) =
∑

n |ψn(i, j)|2/ρmax, with ρmax the maxi-

mum value of ρ(i, j) and n labeling the in-gap modes shown

in Fig. 7(a). For a given kz, the 2D Hamiltonian H2D(kx, ky) de-

scribes a NH Chern insulator. The appearance of edge modes

can be predicted from the Chern number C(kz ). Skin effect
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FIG. 7. Energy spectra and wave-packet dynamics along z wire. (a) Energy spectra for a wire extending along z with open (in blue) versus

periodic (in purple) boundary conditions in the x, y directions, showing the emergence of in-gap edge modes for open boundaries. The inset

illustrates the z wire with its cross-section boundaries indicated by red lines. The lattice momentum along the wire (red arrow) is chosen as

kz = −0.5. (b) Total probability distribution ρ of the in-gap modes, which confirms that they are localized at the edge of the cross section.

The middle inset show the total probability distribution of all other modes, and there is no sign of skin effect. (c) The time evolution of a

wave packet initially localized at site (1,13) with momentum kz = −0.5. It undergoes chiral motion along the edges of the cross section that

measures 25 × 25 [91]. The wave packet has width W 2
1 = 2, W 2

2 = 6. The spinor wave function is set as |ξ0〉 = (1, i, 0, 0)T . Other parameters

are the same as Fig. 1.

is absent in this geometry: The total probability distribution

of the continuum (as opposed to in-gap) modes shown in the

middle inset of Fig. 7(b) is almost a constant, in accordance

with wx = wy = 0. Here ρ(i, j) is defined similarly, with n

summed over all continuum modes. Recently, it was argued

that NH skin effect is universal: It occurs whenever the energy

spectra of a 2D or 3D system take up a finite area on the com-

plex energy plane [60]. In point-gap WSM, the bulk spectra

unavoidably occupy a finite area due to the splitting of WPs

along the imaginary axis. One can check that skin modes do

appear for other (e.g., diamond shaped, not shown) geometries

of the z-wire cross section. Such geometry-dependent skin

effect is typical of many 2D and 3D NH systems.

Figure 7(c) depicts the time evolution of a wave packet

initially localized at the left edge of a z wire. It moves counter-

clockwise along the edges (see animation in Ref. [91]). This

unambiguously demonstrates the edge modes [see Fig. 7(b)]

are chiral. This is because the cross section of the z wire, as a

2D system for fixed kz, can be regarded as a Chern insulator.

APPENDIX F: POSSIBLE REALIZATION IN MICRO-RING

RESONATORS AND CONDENSED MATTER MATERIALS

The lattice model -see Eq. (2) in the main text] can be

realized using coupled micro-ring resonators. Let us rewrite

the Hamiltonian Eq. (2) in a new basis: τx → τz, τz → −τx;

σx → σz, σz → −σx, which corresponds to a unitary trans-

formation U = ei π
4
τyσ0 ei π

4
τ0σy . In the new basis, the imaginary

terms are on-site lossy terms, and the lattice model reads

Hk = sin kxτzσz + sin kyτzσy − sin kzτzσx

− (cos kx + cos ky + cos kz − m)τxσ0 − bτ0σx

+ iδτzσ0 + iγ τ0σ0. (F1)

We consider a 3D cubic lattice formed by ring resonators,

as depicted in Fig. 8(a). Each unit cell consists of four

ring resonators (denoted by different colors and numbered

1,2,3,4) to mimic the 2 × 2 orbital and spin degrees of free-

dom. In our notation, the τz = 1 subspace corresponds to

{1, 2} sites; τz = −1 subspace corresponds to {3, 4} sites.

σz = +1 subspace corresponds to {1, 3} sites; σz = −1 sub-

space corresponds to {2, 4} sites. The resonators have the

same resonant frequency and different loss rates, denoted as

γ1,2,3,4, respectively. For our case, we set γ1 = γ2 �= γ3 = γ4.

The Hamiltonian Eq. (F1) contains both intercell and intracell

couplings. The key ingredient implementing the couplings

between two resonators is the intermediate connecting ring

[87,88] as depicted in Fig. 8(b). The corresponding Hamilto-

nian describing the couplings of the two resonators (labeled L

and R) takes the following form:

−κa
†
RaLei2πϕ − κa

†
LaRe−i2πϕ, (F2)

where aL/R represents the annihilation operator of optical

modes in the left/right resonator. κ is the coupling rate and

can be tuned by the overlapping between waveguide modes.

4πϕ is the propagating phase difference inside the connecting

ring, coming from the different lengths of the upper and lower

branches. The phase ϕ can be adjusted through, e.g., changing

the length (or the refraction index) of the connecting waveg-

uides [87,88].

Through the intermediate waveguide, all terms in Hamilto-

nian Eq. (F1) can be realized. For the intercell couplings, we

take sin kxτzσz term as an example. Similar discussions apply

FIG. 8. Experimental implementation of the lattice Hamiltonian

using coupled arrays of microring resonators. (a) Cubic lattice

formed by the microring resonators. Each unit cell contains four

sites, denoted by 1 (green), 2 (blue), 3 (purple), 4 (red), with loss rate

γ1,2,3,4, respectively. For each resonator, only the counter-clockwise

(or clockwise) propagating modes are considered. (b) Schematics of

the coupling between two resonators (denoted as L and R) through

an intermediate waveguide (gray). Due to the different lengths of the

upper and lower branch, a phase difference 4πϕ is induced.
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to the other terms. We rewrite this term in real space:

∑

r

−
i

2
[a†

1(x + 1, y, z)a1(x, y, z) − a
†
1(x, y, z)a1(x + 1, y, z)]

+
i

2
[a†

2(x + 1, y, z)a2(x, y, z) − a
†
2(x, y, z)a2(x + 1, y, z)]

+
i

2
[a†

3(x + 1, y, z)a3(x, y, z) − a
†
3(x, y, z)a3(x + 1, y, z)]

−
i

2
[a†

4(x + 1, y, z)a4(x, y, z) − a
†
4(x, y, z)a4(x + 1, y, z)].

(F3)

Here the summation is over the unit cells r = (x, y, z). The

subscript labels the lattice site inside each unit cell. For ex-

ample, the first term represents the coupling between site-1

[green color in Fig 8(a)] at nearest unit cells along the x

direction. It is easy to see from Eq. (F2) that this term can

be reproduced by setting ϕ = 1
4
. Similarly, we can reproduce

the other three terms by simply adjusting the phase difference

of the intermediate waveguides as ϕ = − 1
4
, − 1

4
, and 1

4
, re-

spectively. For the intracell coupling term, we take the −bτ0σx

term as an example. In real space, this term is expanded as

∑

r

−b[a†
1(x, y, z)a2(x, y, z) + a

†
2(x, y, z)a1(x, y, z)]

− b[a†
3(x, y, z)a4(x, y, z) + a

†
4(x, y, z)a3(x, y, z)]. (F4)

To realize this term, we can set the phase difference of the

intermediate waveguide (connecting 1,2 or 3,4 inside the same

unit cell) as ϕ = 0.

In practice, the 3D configuration does not require arranging

the resonators on the cubic lattice. All one needs is to establish

the connectivity (coordinate number) of the resonators. Also,

it is worth mentioning that instead of coupling together mul-

tiple resonators to form a genuine 3D lattice, one can utilize

the so-called synthetic dimension [92–96], e.g., the equally

spaced resonant frequency, to effectively realize the 3D lattice

model on a 2D resonator array. The couplings between the

multiple resonances are implemented through external modu-

lation [97] and applying the external perturbation corresponds

to choosing the lattice coupling scheme and the gauge fields.

Besides microring resonators, the lattice model can also be

mimicked using electric circuits, where the NH Hamiltonians

can be simulated by the admittance matrix. In condensed mat-

ter materials, the NH dissipation terms can be implemented

either through a tailored orbital-dependent coupling with a

lossy mode or electron-phonon scattering [70]. For the case of

coupling to an additional f orbital, when the f electron has no

dispersion and sits close to the chemical potential, an effective

NH term of the form as in Eq. (2) dominates. In a recent work

on Kondo-WSM [24] (candidate material Ce3Bi4Pd3) which

contains strongly correlated localized f electrons and itinerant

conduction electrons in a zincblende lattice, DMFT studies

revealed that due to the breaking of inversion symmetry, the

quasiparticle lifetimes at different sublattices are distinct. For

the case of electron-phonon couplings, at low energies (on the

scale of the point gap, measured from the energy of the WPs),

the imaginary part of the electron self-energy is approximately

a constant but depends on momentum and hence differs at the

two WPs. Since Weyl materials typically have strong spin-

orbit coupling, the anisotropy (or momentum dependence) of

the lifetime is natural when there is a spin imbalance in the

bath to which the electrons are coupled, such as in magnetic

WSMs [98].

APPENDIX G: OBSERVATION OF

THE DYNAMICAL EFFECTS

As discussed in the main text, the dynamical charge pump-

ing effect comes from the two chiral Landau levels with

mismatched dissipation rates. The effective magnetic field

for photons is equivalent to the complex, position-dependent

coupling. For example, we can take the magnetic field B =
Bŷ along the y direction and its associated gauge potential

A = (0, 0, Bx). Through Peierls substitution k → k − eA, the

coupling along the z direction is replaced by an x-dependent

phase. In coupled-resonator settings, the effective magnetic

field can be fine-tuned as in Fig. 8(b) by adjusting the length

(or refraction index) of the connecting waveguides or by

dynamical modulating [97] the refraction index through an

electro-optic modulation on the ring resonator. To observe

the complex chiral Landau levels, a continuous-wave laser

light is injected into the resonator, with a tunable detun-

ing δω. The complex band structures can be extracted from

the momentum- and detuning-dependent transmission signal

s(k, δω) from the output port [96,99,100].

Taking the advantage that the system parameters, in partic-

ular, the dissipative terms, as well as their time-dependence

(e.g., sudden quench of model parameters) can be easily and

precisely controlled in photonic systems, it is promising to

implement quantum dynamics and experimentally observe

the dynamical effects induced by the NH band topology. In

contrast, in condensed matter materials, it is challenging to

implement quantum quench or wave-packet motion detection.

The topological features, including the surface Fermi arcs,

the chiral Landau levels, and the boundary-skin modes, may

be directly observed from the momentum-resolved spectrum

measurement. In microring resonators, the amplitude proba-

bility c(t ) = (cnx,ny,nz
(t )) serves as the wave function. Here

n = (nx, ny, nz ) is the index of the lattice site. Its time evo-

lution explicitly reads

i
dc(t )

dt
= Hc(t ). (G1)

In the main text, we have discussed the wave-packet dynamics

for different system parameters and boundary conditions [see

Figs. 3(c) and 7(c)]. As the wave-packet motion depends on

the overlapping of the initial wave-packet with the eigenstates

of the Hamiltonian, it can reveal the existence of surface Fermi

arcs and boundary skin modes. These dynamical effects do not

depend on the fine-tuning of the system parameter to some

specific energies. For the dynamical charge pumping effect,

we can prepare a sequence of initial wave packets (with each

one localized mainly at one lattice site to mimic the trivial

ground state) and measure the time-dependent amplitude dis-

tributions.
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T. Neupert, Reciprocal skin effect and its realization

in a topolectrical circuit, Phys. Rev. Res. 2, 023265

(2020).

[65] F. Terrier and F. K. Kunst, Dissipative analog of four-

dimensional quantum Hall physics, Phys. Rev. Res. 2, 023364

(2020).

[66] A. A. Zyuzin and A. Yu. Zyuzin, Flat band in disorder-driven

non-Hermitian Weyl semimetals, Phys. Rev. B 97, 041203

(2018).

[67] E. J. Bergholtz and J. Carl Budich, Non-Hermitian Weyl

physics in topological insulator ferromagnet junctions, Phys.

Rev. Res. 1, 012003 (2019).

[68] X. Yang, Y. Cao, Y. Zhai, Non-Hermitian Weyl semimetals:

Non-Hermitian skin effect and non-Bloch bulk-boundary cor-

respondence, arXiv:1904.02492.

[69] T. Bessho and M. Sato, Nielsen-Ninomiya Theorem with Bulk

Topology: Duality in Floquet and Non-Hermitian Systems,

Phys. Rev. Lett. 127, 196404 (2021).

[70] M. M. Denner, A. Skurativska, F. Schindler, M. H. Fischer, R.

Thomale, T. Bzdušek, and T. Neupert, Exceptional topological

insulators, Nat. Commun. 12, 5681 (2021).

[71] K. Kawabata, K. Shiozaki, and S. Ryu, Topological Field The-

ory of Non-Hermitian Systems, Phys. Rev. Lett. 126, 216405

(2021).

[72] Y. Xu, S.-T. Wang, and L.-M. Duan, Weyl Exceptional Rings

in a Three-Dimensional Dissipative Cold Atomic Gas, Phys.

Rev. Lett. 118, 045701 (2017).

[73] K. Kawabata, T. Bessho, and M. Sato, Classification of Ex-

ceptional Points and Non-Hermitian Topological Semimetals,

Phys. Rev. Lett. 123, 066405 (2019).

[74] X. Zhang, G. Li, Y. Liu, T. Tai, R. Thomale and C. Hua Lee,

Tidal surface states as fingerprints of non-Hermitian nodal

knot metals, Commun. Phys. 4, 47 (2021).

[75] Z. Yang, C.-K. Chiu, C. Fang, and J. Hu, Jones Polynomial and

Knot Transitions in Hermitian and Non-Hermitian Topological

Semimetals, Phys. Rev. Lett. 124, 186402 (2020).

[76] Z. Zhang, Z. Yang, and J. Hu, Bulk-boundary correspondence

in non-Hermitian Hopf-link exceptional line semimetals,

Phys. Rev. B 102, 045412 (2020).

094305-13



HAIPING HU, ERHAI ZHAO, AND W. VINCENT LIU PHYSICAL REVIEW B 106, 094305 (2022)

[77] S. A. Akbar Ghorashi, T. Li, and M. Sato, Non-Hermitian

higher-order Weyl semimetals, Phys. Rev. B 104, L161117

(2021).

[78] A. Cerjan, S. Huang, M. Wang, K. P. Chen, Y. Chong, and

M. C. Rechtsman, Experimental realization of a Weyl excep-

tional ring, Nat. Photonics 13, 623 (2019).

[79] J.-j. Liu, Z.-w. Li, Z.-G. Chen, W. Tang, A. Chen, B. Liang,

G. Ma, and J.-C. Cheng, Experimental Realization of Weyl

Exceptional Rings in a Synthetic Three-Dimensional Non-

Hermitian Phononic Crystal, Phys. Rev. Lett. 129, 084301

(2022).

[80] Y. Yi and Z. Yang, Non-Hermitian Skin Modes Induced by

On-Site Dissipations and Chiral Tunneling Effect, Phys. Rev.

Lett. 125, 186802 (2020).

[81] Similar effects arise when the magnetic field is along the x or

z direction.

[82] In fact, the form of the axion field θ = 2(b · r − δit ) implies

that a promising direction is to construct an Euclidean action

by a Wick rotation to imaginary time τ = it .

[83] H. Hu, J. Hou, F. Zhang, and C. Zhang, Topological Triply

Degenerate Points Induced by Spin-Tensor-Momentum Cou-

plings, Phys. Rev. Lett. 120, 240401 (2018).

[84] E. Zhao, Topological circuits of inductors and capacitors, Ann.

Phys. 399, 289 (2018).

[85] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T.

Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and

R. Thomale, Topolectrical-circuit, realization of topological

corner modes, Nat. Phys. 14, 925 (2018).

[86] T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W.

Molenkamp, and T. Kiessling, Band structure engineering and

reconstruction in electric circuit networks, Phys. Rev. B 99,

161114 (2019).

[87] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Coupled-resonator

optical waveguide: A proposal and analysis, Opt. Lett. 24, 711

(1999).

[88] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor,

Robust optical delay lines with topological protection, Nat.

Phys. 7, 907 (2011).

[89] S. Mittal, V. Vikram Orre, G. Zhu, M. A. Gorlach, A.

Poddubny, and M. Hafezi, Photonic quadrupole topological

phases, Nat. Photonics 13, 692 (2019).

[90] H. Zhao, P. Miao, H. M. Teimourpour, S. Malzard, R. El-

Ganainy, H. Schomerus, and L. Feng, Topological hybrid

silicon microlasers, Nat. Commun. 9, 981 (2018).

[91] Please click the link to find the animation of the wave-packet

motion for the [001] wire and [101] wire.

[92] L. Yuan, Q. Lin, M. Xiao, and S. Fan, Synthetic dimension in

photonics, Optica 5, 1396 (2018).

[93] Q. Lin, M. Xiao, L. Yuan, and S. Fan, Photonic Weyl point in

a two-dimensional resonator lattice with a synthetic frequency

dimension, Nat. Commun. 7, 13731 (2016).

[94] T. Ozawa and H. M. Price, Topological quantum matter in

synthetic dimensions, Nat. Rev. Phys. 1, 349 (2019).

[95] E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres,

A. Szameit, and M. Segev, Photonic topological insulator in

synthetic dimensions, Nature (London) 567, 356 (2019).

[96] K. Wang, A. Dutt, C. C. Wojcik, and S. Fan, Topologi-

cal complex-energy braiding of non-Hermitian bands, Nature

(London) 598, 59 (2021).

[97] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field

for photons by controlling the phase of dynamic modulation,

Nat. Photonics 6, 782 (2012).

[98] Y. Araki, Magnetic textures and dynamics in magnetic Weyl

semimetals, Ann. Phys. (Berlin) 532, 1900287 (2019).

[99] K. Wang, A. Dutt, K. Youl Yang, C. C. Wojcik, J. Vučković,
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