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Abstract: We study the magic wavelength for two-photon 1S–nS transitions in a hydrogen and

deuterium atom, as well as 2S–nS transitions, where the lower level is the metastable 2S state. At

the magic wavelength, the dynamic Stark shifts of the ground and the excited state of the transition

coincide, so that the transition frequency is independent of the intensity of the trapping laser

field. Experimentally feasible magic wavelengths of transitions with small slopes in the atomic

polarizabilities are determined; these are the most stable magic wavelengths against variations of the

laser frequency. We provide data for the magic wavelengths for the 1S–nS and 2S–nS transitions in

hydrogen and deuterium, with n = 2, . . . , 8. We also analyze the stability of the elimination of the ac

Stark shift at the magic wavelength against tiny variations of the trapping laser frequency from the

magic value.

Keywords: magic wavelength; polarizabilities; atomic transitions; optical trapping

PACS: 11.15.Bt; 11.10.Jj

1. Introduction

Optical lattice-clocks and optical dipole traps are at the forefront of modern scientific
research in ultracold atoms [1–4]. An oscillating (ac) electric field plays a vital role in
trapping an atom by a laser. However, the ac Stark shift introduced by the trapping laser
field constitutes an obstacle, because the frequency of the transition whose frequency is
to be measured, gets shifted significantly by the trapping light field [5,6]. For a specific
atomic reference state |φ〉, the ac Stark shift is given as [7]:

∆Eac(φ, ωL) = −
IL

2ǫ0c
α(φ, ωL) , (1)

where IL is the laser intensity, ǫ0 is the permittivity of free space, c is the speed of light in a
vacuum, and α(φ, ωL) is the dynamic polarizability of the atomic state |φ〉 as a function
of the angular frequency ωL of the incident (trapping) laser. The dynamic polarizability
is generally different for the ground state of an atom in comparison to its excited states.
There are, however, some distinct, so-called magic laser wavelengths, where the ac Stark
shifts of the two atomic states involved in a transition become equal to each other. At a
magic wavelength, the ac Stark shift does not alter the transition frequency as it cancels in
the difference of the shifts of the ground and excited states [4,8–12].

This work concentrates on the 1S–nS and 2S–nS transitions in hydrogen and deu-
terium. Transitions between different hydrogen and deuterium energy levels, their com-
parison with hydrogen, and the study of the isotope effect represent topics of fundamental
interest in atomic physics and precision measurements [13–17].
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The International System of Units (SI), sometimes referred to as the SI mksA unit
system, is used throughout the paper (base units are meter, second, kilogram, and Ampere).
We organize this paper as follows: In Section 2, we first evaluate a few matrix elements
useful in the calculation of the dynamic polarizability (see Refs. [18–30]). At first, angular
components of the matrix elements are calculated as presented in Ref. [31], and then
the radial components are evaluated. The evaluation of the radial components is done
using the Sturmian decomposition of the Schrödinger Green function [19–21], and then
the radial integrations are done. We take into account the summations over the discrete
and continuous spectra. The continuum states significantly contribute to the Stark shift
for the ground state of hydrogen [28,32]. In Section 3, magic wavelengths for 1S–nS and
2S–nS transitions are calculated for hydrogen and deuterium. In Section 4, we discuss the
leading reduced-mass and other corrections to the magic wavelengths. Finally, conclusions
are drawn in Section 5.

2. Dynamic Polarizability of nS States

We consider the following matrix element of the Schrödinger–Coulomb
propagator [23,33,34] of the hydrogen atom, for a reference state |φn〉,

P(φn; ωL) =
e2

3

〈

φn

∣

∣

∣

∣

~r

(

1
Hs − En + h̄ωL

)

~r

∣

∣

∣

∣

φn

〉

, (2)

where~r is the electron position operator, and Hs = ~p 2/(2µ)− e2/(4πǫ0r) is the atomic
Schrödinger Hamiltonian. The bound-state energy is En = −(α2µc2)/(2n2). The momen-
tum operator is denoted as ~p, and the reduced mass of the system is µ. Furthermore, En is
the energy, and, in the context of the current investigation, ωL is the angular frequency of
the (trapping-field) laser. We use the well-known expression for the Schrödinger–Coulomb
bound state Ψnℓm(~r) = Ψnℓm(r, θ, ϕ) = Rnℓ(r) Yℓm(θ, ϕ) in the coordinate representation,

Rnℓ(r) =

[

(n − ℓ− 1)!
(n + ℓ)!

]1/2 2ℓ+1

n2
1

a3/2
0

(

r

n a0

)ℓ

exp
(

−
r

n a0

)

L2ℓ+1
n−ℓ−1

(

2r

na0

)

. (3)

Here,

a0 =
h̄

αµc
(4)

is a generalized Bohr radius, adapted to the reduced mass of the system. The spherical
harmonic of the angular part is Yℓm(θ, ϕ),

Yℓm(θ, ϕ) =

[

(2ℓ+ 1)(ℓ− m)!
4π(ℓ+ m)!

]1/2

Pm
ℓ
(cos(θ)) eimϕ . (5)

Here, Lℓ
n(x) is the associated Laguerre polynomial, and Pm

ℓ
(cos(θ)) is the associated

Legendre polynomial. Also, n, ℓ and m are the principal, orbital angular and magnetic
orbital quantum numbers, respectively. The Green function G(~r1,~r2, ωL) of the Schrödinger–
Coulomb Hamiltonian Hs fulfills the second-order differential equation:

(Hs − En + h̄ωL) G(~r1,~r2, ωL) = δ(3)(~r1 −~r2) (6)

and can be expressed in terms of radial Green function gℓ(r1, r2, νn), and spherical harmon-
ics Yℓm(θi, ϕi) as [19]:

G(~r1,~r2, νn) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

gℓ(r1, r2, νn) Yℓm(θ1, ϕ1) Y∗
ℓm(θ2, ϕ2) . (7)
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It is convenient to define the dimensionless energy variable tn = tn(ωL), which
parameterizes the laser frequency,

tn ≡ tn(ωL) =

(

1 +
2 n2 h̄ωL

α2µc2

)−1/2

, [n tn(ωL)]
2 = −

α2 µ c2

2(En − ωL)
. (8)

The quantity νn acts as a generalization of the principal quantum number n of the
reference state, to non-integer νn, as follows,

νn ≡ νn(ωL) = n tn = n tn(ωL) . (9)

The low-frequency limits are νn → n and tn → 1 for ωL → 0, and the high-frequency
limit is tn → 0 for ωL → ∞. The fine-structure constant is denoted as α, and c is the speed
of light. In the so-called Sturmian form, the radial Green function gℓ(r1, r2, ωL) can be
written as [19–21]:

gℓ(r1, r2, ωL) =
2µ

h̄2

(

2
a0νn

)2ℓ+1

(r1r2)
ℓ exp

(

−
r1 + r2

a0νn

)

×
∞

∑
k=0

k! L2ℓ+1
k

(

2r1
a0νn

)

L2ℓ+1
k

(

2r2
a0νn

)

(k + 2ℓ+ 1)! (k + ℓ+ 1 − νn)
, (10)

where νn ≡ νn(ωL). If the reference states is an nS state with ℓ = 0, then one can express
Equation (2) in integral form,

P(φn; ωL) =
e2

3

∫ ∞

0
dr1 r3

1

∫ ∞

0
dr2 r3

2 Rn0(r1) gℓ=1(r1, r2, νn = ntn) Rn0(r2) , (11)

where tn is defined in Equation (8). For a ground state hydrogen (n = 1), for example,
the radial part of the wave function reads R10(r) = 2 a−3/2

0 exp(−r/a0). Substituting
the radial part R10(r) and using the Sturmian form of the radial Green function from
Equation (10) in Equation (11), one obtains:

P(1S; ωL) =
64 µ e2

3h̄2 a6
0 t3

1

∫ ∞

0
r4

1 dr1

∫ ∞

0
r4

2 dr2 exp
(

−
r1 + r2

a0t1

)

× exp
(

−
r1 + r2

a0

) ∞

∑
k=0

k! L3
k

(

2 r1
a0t1

)

L3
k

(

2r2
a0t1

)

(k + 3)! (k + 2 − t1)
, (12)

which after some algebra works out to [9,24,25,28,29]:

P(1S; ωL) =
h̄2e2

α4µ3c4

[

2 t2
1(−3 + 3t1 + 12t2

1 − 12t3
1 − 19t4

1 + 19t5
1 + 26t6

1 + 38t7
1)

3(−1 + t1)5 (1 + t1)4

−
256 t9

1
3(−1 + t1)5(1 + t1)5 2F1

(

1,−t1; 1 − t1;
(1 − t1

1 + t1

)2
)]

. (13)

We take the opportunity to correct a sign error in the term multiplying the hypergeo-
metric function in Equation (3a) of Ref. [9]. In the static limit t1 → 1 (ωL → 0), Equation (13)
yields half the the static polarizability,

P(1S; ωL → 0) =
9e2h̄2

4α4µ3c4 +O(ω2
L) . (14)
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For t1 → 0 (ωL → ∞), the leading asymptotic terms are:

P(1S; ωL → ∞) =
3 h̄2e2

α2µ2c2
1

h̄ωL
−

3h̄2e2

2µ

1

h̄2ω2
L

+O(ω−3
L ) . (15)

Following the same procedure for 2S and 3S states, one obtains [9,25,28,29]:

P(2S; ωL) =
h̄2e2

α4µ3c4

[

16t2
2

3(t2 − 1)6(t2 + 1)4

(

1181t8
2 − 314t7

2 − 16t6
2 − 166t5

2 + 14t4
2 + 138t3

2

−48t2
2 − 42t2 + 21

)

−
16384t9

2

(

4t2
2 − 1

)

3
(

t2
2 − 1

)6 2F1

(

1,−2t2; 1 − 2t2;
(1 − t2)

2

(1 + t2)2

)

]

, (16)

for the 2S state. For the 3S state, one has the result:

P3S(ωL) =
h̄2e2

α4µ3c4

[

54t2
3

(t3 − 1)8(t3 + 1)6

(

15538t12
3 − 2852t11

3 − 13283t10
3 + 2090t9

3

+2871t8
3 + 40t7

3 − 62t6
3 − 492t5

3 + 128t4
3 + 236t3

3 − 95t2
3 − 46t3 + 23

)

(17)

−
6912t9

3

(

7t2
3 − 3

)2(
9t2

3 − 1
)

(

t2
3 − 1

)8 2F1

(

1,−3t3; 1 − 3t3;
(1 − t3)

2

(1 + t3)2

)

]

.

The dynamical polarizability αφn(ωL) for a reference state φn is the sum:

α(φn; ωL) = P(φn; ωL) + P(φn;−ωL) . (18)

As a check, in the static limit, we have α(φn; ωL → 0) = 2P(φn; ωL → 0), so that the
well-known static polarizability of the ground state:

α(1S; ωL → 0) =
9 e2h̄2

2α4µ3c4 (19)

is confirmed. The above formalism is adapted to take into account the reduced mass of the
system, which is different for hydrogen as opposed to deuterium. If one were to carry out
the calculation with the reduced mass µ of the system being replaced by the electron mass
me, then the appropriate scaling factor for the magic angular frequency is µ/me, where me

is the electron mass. The polarizability itself contains two matrix elements of the position
operator, which each scale with the factor me/µ, while the propagator denominator scales
with µ/me, resulting in a total scaling factor (me/µ)3 for the polarizability.

3. Magic Wavelength

Whenever the wavelength of an incident laser matches its magic value, the ac Stark
shifts of the ground and excited states of a transition become identical. For example, in the
transition φi → φ f (initial to final states), we have according to Equation (1),

∆Eac(φi; ωL = ωM) = ∆Eac(φ f ; ωL = ωM) , (20)

where the magic angular frequency ωM and the the magic frequency νM are given by:

ωM = 2πc/λM , νM = c/λM , (21)

respectively. In addition, λM is the magic laser wavelength. In the following, we will use
the terms of magic wavelength and magic frequency interchangeably, with the conversion
being understood according to Equation (21). For a chosen laser intensity, the ac Stark
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shift of two levels depends on the polarizabilities of two atomic states. Thus, the magic
wavelength λM of the 1S–nS transition can be determined by the condition:

α∆(λM) ≡ α(φ f ; ωM)− α(φi; ωM) = 0 , (22)

where |φ f 〉 = |nS〉, and |φi〉 = |1S〉 or |2S〉. The quantity νM = c/λM = ωM/(2π) gives
the magic frequency in Hz (see also Tables 1 and 2).

Table 1. The most stable magic wavelengths and slopes at that magic wavelengths for 1S–nS and
2S–nS transitions for hydrogen.

Transition νM λM ζ ξ χ

[1014 Hz ] [nm] [Hz
(

cm2

kW

)

] [ Hz
GHz

(

cm2

kW

)

]
[ e2 a2

0/Eh

nm

]

1S–2S 5.82521 514.646 −221.58 −1.3563 −5.2186
1S–3S 2.18531 1371.85 −212.65 −20.192 −10.934
1S–4S 1.06583 2812.77 −211.59 −179.26 −23.089
1S–5S 0.60703 4938.67 −211.37 −1271.8 −53.138

1S–6S (I) 0.47495 6312.10 −211.33 −1058.6 −27.077
1S–6S (II) 0.42254 7094.95 −211.32 +2445.1 +49.501

1S–7S 0.32391 9255.47 −211.30 −5859.6 −69.707
1S–8S 0.22944 13, 066.4 −211.28 −18966. −113.21

2S–3S 2.20479 1359.73 −7063.5 −24.202 −13.340
2S–4S 1.06779 2807.60 −5909.3 −185.94 −24.039
2S–5S 0.60730 4936.47 −5719.7 −1287.3 −53.831

2S–6S (I) 0.47527 6307.82 −5686.1 −1077.7 −27.603
2S–6S (II) 0.42241 7097.28 −5675.0 +2494.1 +50.459

2S–7S 0.32397 9253.80 −5657.9 −5887.3 −70.062
2S–8S 0.22946 13, 065.4 −5645.9 −19, 007 −113.47

Table 2. The most stable magic wavelengths and slopes at that magic wavelengths for 1S–nS and
2S–nS transitions for deuterium.

Transition νM λM ζ ξ χ

[1014 Hz ] [nm] [Hz
(

cm2

kW

)

] [ Hz
GHz

(

cm2

kW

)

]
[ e2 a2

0/Eh

nm

]

1S–2S 5.82680 514.506 −221.40 −1.3549 −5.2129
1S–3S 2.18590 1371.48 −212.48 −20.171 −10.922
1S–4S 1.06612 2812.00 −211.42 −179.06 −23.065
1S–5S 0.60720 4937.32 −211.20 −1270.4 −53.080

1S–6S (I) 0.47508 6310.38 −211.16 −1057.5 −27.048
1S–6S (II) 0.42266 7093.02 −211.15 +2442.5 +49.447

1S–7S 0.32400 9252.95 −211.12 −5853.2 −69.631
1S–8S 0.22950 13, 062.9 −211.11 −18946. −113.08

2S–3S 2.20539 1359.36 −7057.7 −24.175 −13.325
2S–4S 1.06808 2806.84 −5904.5 −185.74 −24.013
2S–5S 0.60747 4935.12 −5715.1 −1285.9 −53.773

2S–6S (I) 0.47540 6306.11 −5681.4 −1076.5 −27.573
2S–6S (II) 0.42252 7095.35 −5670.4 +2491.4 +50.404

2S–7S 0.32406 9251.28 −5653.3 −5880.9 −69.985
2S–8S 0.22952 13, 061.8 −5641.2 −18, 986. −113.34

The polarizabilities of the ground state and the 2S and 3S excited states of hydrogen,
as a function of the laser wavelength, are shown in Figure 1. The polarizabilities are ex-
pressed in atomic units, i.e., in units of e2 a2

0/Eh. Wavelengths are presented in nanometers.
Images (a) and (b) of Figure 1 present a general picture of the dynamic polarizabilities with
the magic frequencies indicated. Images (b) and (d) of Figure 1 show the polarizabilities
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near their intersections, i.e., near the magic wavelength. Note that the polarizabilities of the
excited states vary over many orders of magnitude over the range of investigated frequen-
cies and becomes singular at resonances, while the ground-state polarizability remains
of the same order-of-magnitude as the static value as discussed in Equations (14), (18)
and (19).

(a) (b)

(c) (d)

Figure 1. We investigate the polarizabilities of 1S and 2S states of hydrogen as a function of incident
wavelength of the incident laser (a) and the same for 1S and 3S states of hydrogen (c). Polarizabilities
near the points of intersections are shown in (b,d), with the scale of the ordinate axis decreased.
Polarizabilities are expressed in atomic units, i.e., in units of e2 a2

0/Eh, where a0 = h̄/(αmec) is the
Bohr radius (not adapted to the reduced mass of the system). We recall that the Bohr radius, adapted
to the reduced mass, is a0 = h̄/(αµc) (see Equation (4)). Also, me is the electron mass, and c is the
speed of light. The Hartree energy is Eh = α2mec2. The wavelengths corresponding to the points of
intersection are the magic wavelengths.

For reference, in Tables 1 and 2, we also give the ac Stark shifts, converted to frequency
units, of each individual level at the magic wavelength, normalized to the incident trapping
laser intensity,

ζ =
1
h

1
IL

∆Eac(φ f , ωM) =
1
h

1
IL

∆Eac(φi, ωM) . (23)

It is essential to ensure the stability of the resonance frequency against small deviations
of the trapping laser field from the magic wavelength. The deviation of the ac Stark shift
from the zero value attained at the magic wavelength, due to a slight variation of the
trapping laser frequency from the magic value, is given as:

ξ =
1
h

1
IL

2π
∂

∂ωL

(

∆Eac(φ f , ωL)− ∆Eac(φi, ωL)
)

∣

∣

∣

∣

ωL=ωM

(24)

where we refer to Equation (1). The prefactor 1/IL divides out the intensity of the trapping
laser, while the other prefactor 1/h converts the result to frequency units. Finally, the
prefactor 2π converts the derivative with respect to the angular frequency to a derivative
with respect to the trapping laser frequency. Our quantity ξ defined in Equation (24) differs
from the quantity η defined in Equation (9) of Ref. [9] by a factor 2π. We also take the
opportunity to point out that the factor 1/IL was inadvertently omitted from the expression
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in the middle of Equation (9) of Ref. [9] but is present in the final numerical value presented
in Ref. [9]. The unit of ξ is the ac Stark shift, measured in Hz, divided by the deviation
of the laser frequency from the magic value, measured in GHz, and the intensity of the
exciting laser, measured in kW/cm2. The unit of ξ is thus Hz/(GHz kW/cm2).

An alternative method of measuring the deviation is by calculating the change in the
polarizability α∆, defined in Equation (22), against variations around the magic wavelength.
For convenience, one can divide by the atomic unit of polarizability, which is e2a2

0/Eh,
where Eh is the Hartree energy. Then,

χ =
Eh

e2a2
0

{

∂α∆(ωL)

∂ωL

∣

∣

∣

∣

ωL=ωM

}

∂ωM

∂λM
=

Eh

e2a2
0

{

∂α∆(ωL)

∂ωL

∣

∣

∣

∣

ωL=ωM

}(

−
2πc

λ2
M

)

. (25)

The unit of χ is thus the inverse nanometer, because a dimensionless quantity is
differentiated with respect to a wavelength.

According to the intersection points indicated with arrows in Figure 1a, some magic
wavelengths for the 2S–1S transition are close to 514 nm, 443 nm, 414 nm, 399 nm, and
390 nm. One desires a magic wavelength, in which the polarizability has the minimum
slope [9]. The polarizability has the minimum slope for the magic wavelength value near
514 nm. Hence it is the most stable one against small deviations of the laser frequency from
the magic value (see also Tables 1 and 2). The wavelength 514 nm lies in between the 2S–3P
hydrogen transition of 656.275 nm and the 2S–4P transition of 486.132 nm [13,14,35]. This
indicates that there is no loss of atoms due to resonant driving. For the 1S–3S transition
in hydrogen, some magic wavelengths are near 1371 nm, 1122 nm, 1018 nm, 961 nm, and
927 nm (see the intersection points indicated with arrows in Figure 1c). The 12-3S hydrogen
polarizability difference has the minimum slope value for the 1371.85 nm wavelength, and
hence it is the most stable one. Wavelength 1371.85 nm lies in between the 3S–4P hydro-
gen transition of 1875.07 nm and the 3S–5P hydrogen transition of 1281.80 nm [13,14,35],
indicating that there is no loss of atoms due to resonant driving. For the 1S–6S and 2S–6S
transitions, we indicate two alternative magic wavelengths, with commensurate stability
coefficients ξ and χ. The smallest magic frequency, for 1S–6S and 2S–6S, has a somewhat
worse stability against deviations frequency instabilities of the trapping laser.

The most stable magic wavelengths and slopes for a various 1S–nS and 2S–nS hy-
drogen and deuterium transitions are listed in Tables 1 and 2. The magic wavelengths in
deuterium are almost the same but slightly smaller than the reduced-mass-corrected value
in the analogous transitions in hydrogen. This is because the reduced mass of deuterium is
slightly larger than the reduced mass of hydrogen.

4. Relativistic and Field–Configuration Corrections to Magic Wavelengths

A discussion on the accuracy of the result we have obtained is in order. One of the
most important corrections comes from the reduced mass of the system, which is in the
order of 10−3; this correction is taken into account by the reduced-mass adapted treatment
outlined in Section 2. Another important correction is of a relativistic origin. In order to
account the relativistic corrections, one should make the following substitution [23] in the
~r-matrix element of the polarizability as:

〈

φn

∣

∣

∣

∣

~r

(

1
Hs − En + h̄ωL

)

~r

∣

∣

∣

∣

φn

〉

→

〈

φn + δφn

∣

∣

∣

∣

~r

(

1
Hs + δH − En − δEn + h̄ωL

)

~r

∣

∣

∣

∣

φn + δφn

〉

, (26)

where δH is the relativistic Hamiltonian correction to the Schrödinger Hamiltonian Hs, and
δEn is the corresponding relativistic energy correction. Furthermore, |δφn〉 is the relativistic
wave function correction. All of these corrections have been discussed in the context
of Lamb shift calculations [23]. The relativistic correction is of relative order α2 ∼ 10−4
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and thus suppressed in comparison to the reduced-mass correction [36,37]. The dynamic
polarizability and, hence, the magic wavelength also receive field-configuration dependent
corrections [5], which depend on the exact position of the atom in the laser field (e.g.,
whether it is located at a minimum or maximum of the oscillating laser electric field). The
field-configuration dependent corrections are also of the order of α2 ∼ 10−4 [5]. We refrain
from a discussion of these effects because the mentioned corrections are not expected
to limit experimental precision, in view of the relatively small slopes of the dynamic
polarizabilities near the magic wavelengths, as given by the quantities ξ and χ given in
Tables 1 and 2. The same applies to the hyperpolarizabilities, which give contributions to
the fourth-order ac Stark shift [38].

5. Conclusions

We studied the magic wavelengths for the 1S–nS and 2S–nS transitions of hydrogen
and deuterium. We determined the magic wavelengths in these transitions by calculating
the polarizabilities of the atomic states of interest and then finding wavelengths at which
the polarizabilities of the respective states cancel in the difference. The polarizabilities
are provided by the nS states~r-matrix elements of the Schrödinger–Coulomb propagator,
as discussed in Section 2. Following the determination of the magic wavelengths and
corresponding trapping laser frequencies, we calculated the slopes of the dynamic Stark
shifts with respect to the frequency of the trapping laser and summarized our results in
Tables 1 and 2. We find that the stability of the elimination of the ac Stark shift against
tiny deviations of the trapping laser frequency from the magic value decreases with the
increasing quantum number of the excited final state of the transition.
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