. atoms

Article

Magic Wavelengths for 1S-nS and 25-nS Transitions in
Hydrogenlike Systems

Chandra M. Adhikari 1*(, Jonathan C. Canales 12, Thusitha P. W. Arthanayaka 2 and Ulrich D. Jentschura 3

check for

updates
Citation: Adhikari, C.M.; Canales,
J.C.; Arthanayaka, TP.W.; Jentschura,
U.D. Magic Wavelengths for 15-nS
and 25-nS Transitions in
Hydrogenlike Systems. Atoms 2022,
10, 1. https://doi.org/10.3390/
atoms10010001

Academic Editor: G. W. E. Drake

Received: 23 November 2021
Accepted: 16 December 2021
Published: 22 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Chemistry, Physics and Materials Science, Fayetteville State University,

Fayetteville, NC 28301, USA; jcanales@skidmore.edu

Department of Physics, Skidmore College, Saratoga Springs, NY 12866, USA; twkulati@skidmore.edu

3 Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409, USA; ulji@mst.edu
*  Correspondence: cadhikari@uncfsu.edu

Abstract: We study the magic wavelength for two-photon 15-#S transitions in a hydrogen and
deuterium atom, as well as 25-nS transitions, where the lower level is the metastable 2S5 state. At
the magic wavelength, the dynamic Stark shifts of the ground and the excited state of the transition
coincide, so that the transition frequency is independent of the intensity of the trapping laser
field. Experimentally feasible magic wavelengths of transitions with small slopes in the atomic
polarizabilities are determined; these are the most stable magic wavelengths against variations of the
laser frequency. We provide data for the magic wavelengths for the 15-1nS and 25-1S transitions in
hydrogen and deuterium, with n = 2,...,8. We also analyze the stability of the elimination of the ac
Stark shift at the magic wavelength against tiny variations of the trapping laser frequency from the
magic value.
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1. Introduction

Optical lattice-clocks and optical dipole traps are at the forefront of modern scientific
research in ultracold atoms [1-4]. An oscillating (ac) electric field plays a vital role in
trapping an atom by a laser. However, the ac Stark shift introduced by the trapping laser
field constitutes an obstacle, because the frequency of the transition whose frequency is
to be measured, gets shifted significantly by the trapping light field [5,6]. For a specific
atomic reference state |¢), the ac Stark shift is given as [7]:

AEaC(‘Per) = - “(4)/ (UL), (1)

2€c
where I} is the laser intensity, € is the permittivity of free space, c is the speed of light in a
vacuum, and a(¢, wy ) is the dynamic polarizability of the atomic state |¢) as a function
of the angular frequency w; of the incident (trapping) laser. The dynamic polarizability
is generally different for the ground state of an atom in comparison to its excited states.
There are, however, some distinct, so-called magic laser wavelengths, where the ac Stark
shifts of the two atomic states involved in a transition become equal to each other. At a
magic wavelength, the ac Stark shift does not alter the transition frequency as it cancels in
the difference of the shifts of the ground and excited states [4,8-12].

This work concentrates on the 15-nS and 25-nS transitions in hydrogen and deu-
terium. Transitions between different hydrogen and deuterium energy levels, their com-
parison with hydrogen, and the study of the isotope effect represent topics of fundamental
interest in atomic physics and precision measurements [13-17].
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The International System of Units (SI), sometimes referred to as the SI mksA unit
system, is used throughout the paper (base units are meter, second, kilogram, and Ampere).
We organize this paper as follows: In Section 2, we first evaluate a few matrix elements
useful in the calculation of the dynamic polarizability (see Refs. [18-30]). At first, angular
components of the matrix elements are calculated as presented in Ref. [31], and then
the radial components are evaluated. The evaluation of the radial components is done
using the Sturmian decomposition of the Schrodinger Green function [19-21], and then
the radial integrations are done. We take into account the summations over the discrete
and continuous spectra. The continuum states significantly contribute to the Stark shift
for the ground state of hydrogen [28,32]. In Section 3, magic wavelengths for 15-nS and
25-nS transitions are calculated for hydrogen and deuterium. In Section 4, we discuss the
leading reduced-mass and other corrections to the magic wavelengths. Finally, conclusions
are drawn in Section 5.

2. Dynamic Polarizability of nS States

We consider the following matrix element of the Schrodinger-Coulomb
propagator [23,33,34] of the hydrogen atom, for a reference state |¢,),

S 1 "
r(HS—En+hWL)r

where 7 is the electron position operator, and Hs = p2/(2u) — e?/(4megr) is the atomic
Schrodinger Hamiltonian. The bound-state energy is E,, = —(a?uc?)/(2n?). The momen-
tum operator is denoted as g, and the reduced mass of the system is y. Furthermore, E; is
the energy, and, in the context of the current investigation, wy, is the angular frequency of
the (trapping-field) laser. We use the well-known expression for the Schrodinger—-Coulomb
bound state ¥, (7) = Y0, (7,6, ) = Ryyp(r) Yo, (0, @) in the coordinate representation,

(el 1 Y o Ny (21
Rnf(r)_[ (Tl+f)! n2 ag/Z nay exp nag Lnféfl nag )’ ®)

Here,

2
P(¢pn;wr) = 3<‘Pn

Pn > , @)

a = TVC 4
is a generalized Bohr radius, adapted to the reduced mass of the system. The spherical
harmonic of the angular part is Y, (6, ¢),

20+ 1) (0 —m)1]?

Tl £ )t P} (cos(6)) e™? . ()

Yom (61 (P) =

Here, L!,(x) is the associated Laguerre polynomial, and P (cos(6)) is the associated
Legendre polynomial. Also, 1, £ and m are the principal, orbital angular and magnetic
orbital quantum numbers, respectively. The Green function G(7, 72, wy.) of the Schrodinger—
Coulomb Hamiltonian H; fulfills the second-order differential equation:

(HS —E,+ h(UL) G(?l,?z, (UL) = (5(3) (?1 — ?2) (6)

and can be expressed in terms of radial Green function g,(ry, 2, V), and spherical harmon-
ics Yy (0, ¢:) as [19]:

00 14
G, Tovn) =Y. Y. g(ri, 2, vn) Yom (61, 1) Y7, (62, 92) . ?)
(=0 m=—/(
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It is convenient to define the dimensionless energy variable t, = tn(wL), which
parameterizes the laser frequency,

2 1’12 th
aZpuc?

—-1/2 )
) )P = @)

antn(wL): <1+ Z(En—wL)'

The quantity v, acts as a generalization of the principal quantum number 7 of the
reference state, to non—integer vy, as follows,

vy = vp(wp) =nty, =nty(wy). )

The low-frequency limits are v, — n and t, — 1 for w; — 0, and the high-frequency
limit is t, — O for w; — oo. The fine-structure constant is denoted as «, and c is the speed
of light. In the so-called Sturmian form, the radial Green function g,(ry,72, wr) can be
written as [19-21]:

2;4 2 2641 ¢ r -+
ge(r,r2,wr) = 712<30Vn) (r1r2)" exp ety

1 72041 ( 21 2041 ( 2rp
k! Lk (aovn Lk agVp

Xk;(kue“)! (k+0+1—vy)’

(10)

where v, = v, (wp). If the reference states is an nS state with ¢ = 0, then one can express
Equation (2) in integral form,

62 0 )
P(pn;wr) = 3/0 dry r:{’/o dry 13 Ruo(r1) §o—1(r1, 72, vn = nty) Ruo(ra),  (11)

where t, is defined in Equation (8). For a ground state hydrogen (n = 1), for example,
the radial part of the wave function reads Rio(r) = 2 a, 3/2 exp(—r/ap). Substituting
the radial part Ryp(r) and using the Sturmian form of the radial Green function from

Equation (10) in Equation (11), one obtains:

2 IS )
P(1S;wp) = 764#6 /0 r%drl/o r%drz exp(—r1+r2)

3n% a8 3 apty
o 3(2r \13( 22
< ex (_rl +rz> k! Lk(a0t11>Lk<a0t1> (12)
PU & B G+ (k+2-h)’

which after some algebra works out to [9,24,25,28,29]:

2 2 2 3 4 5 7
P(1S;wy) h2e? [21&1(—3 + 3ty + 1282 — 1263 — 19¢F + 1965 + 261 + 38t7)

atpBct 3(—=1+41t)°(1+1t1)*

256 1 1—1\2
— Fl1,—t;1—t;(—— . 13
%—1+hﬁ0+hﬁ2l< ! l<1+t1) (13

We take the opportunity to correct a sign error in the term multiplying the hypergeo-
metric function in Equation (3a) of Ref. [9]. In the static limit t — 1 (w; — 0), Equation (13)
yields half the the static polarizability,

962h2 2
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For t; — 0 (wp — o), the leading asymptotic terms are:

3r%e 1 3h%e2 1

P(1S; = —
( S,wL — 00) azﬂzcz th 211 hzw%

+0(wr?). (15)

Following the same procedure for 25 and 3S states, one obtains [9,25,28,29]:

h2e2
o453t

1643
3(tp —1)0(t +1)4

16384t) (412 — 1 PR
a3 -y 4 21) - EBUB DD (1 gy, 20
3(5-1) 2

P(2S;wy) = (1181t§ — 314t] — 165 — 16685 + 14£4 + 13883

., (16)

for the 2S state. For the 3S state, one has the result:

(15538112 — 2852t} — 132834}° + 2090

i2e? 542
P3s(wr) = l 2

atpdct | (3 —1)3(t3 +1)°
+287115 + 40t] — 621§ — 49283 + 1285 + 23613 — 95t5 — 4615 + 23) (17)

(1 —f3)2)

| 69126(783 - 3)* (93 — 1)
1+ t3)2

(3-1)°

2F (1, —3t3;1 —3t3;

The dynamical polarizability ap, (wy,) for a reference state ¢, is the sum:

a(Ppn; wr) = P(¢n; wr) + P(pn; —wL) - (18)

As a check, in the static limit, we have a(¢; wp — 0) = 2P(¢pn; wr — 0), so that the
well-known static polarizability of the ground state:

9 ¢2h?

(19)
is confirmed. The above formalism is adapted to take into account the reduced mass of the
system, which is different for hydrogen as opposed to deuterium. If one were to carry out
the calculation with the reduced mass y of the system being replaced by the electron mass
m,, then the appropriate scaling factor for the magic angular frequency is y/m,, where m,
is the electron mass. The polarizability itself contains two matrix elements of the position
operator, which each scale with the factor m,/u, while the propagator denominator scales
with y/m,, resulting in a total scaling factor (m, /) for the polarizability.

3. Magic Wavelength

Whenever the wavelength of an incident laser matches its magic value, the ac Stark
shifts of the ground and excited states of a transition become identical. For example, in the
transition ¢; — ¢y (initial to final states), we have according to Equation (1),

AEac(¢i;wr = wm) = AEac(¢p; 0L = wm), (20)
where the magic angular frequency wj and the the magic frequency v, are given by:
wym =271c/Am,  vM=c/Aum, (21)

respectively. In addition, Aj; is the magic laser wavelength. In the following, we will use
the terms of magic wavelength and magic frequency interchangeably, with the conversion
being understood according to Equation (21). For a chosen laser intensity, the ac Stark
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shift of two levels depends on the polarizabilities of two atomic states. Thus, the magic
wavelength Ay of the 15—nS transition can be determined by the condition:

apn(Am) = a(Pr;wm) — a(piwom) =0, (22)

where |¢f) = [1nS), and |¢;) = [1S5) or |2S). The quantity vy = c/Aym = wpm/(27) gives
the magic frequency in Hz (see also Tables 1 and 2).

Table 1. The most stable magic wavelengths and slopes at that magic wavelengths for 15-nS and
25-nS transitions for hydrogen.

Transition M AMm
2 2

[10% Hz ] [nm] [Hz (5 )] 3% (539 )1 [ CalEn
15-2S 5.82521 514.646 —221.58 —1.3563 —5.2186
15-3S 2.18531 1371.85 —212.65 —20.192 —10.934
15-4S 1.06583 2812.77 —211.59 —179.26 —23.089
15-5S 0.60703 4938.67 —-211.37 —1271.8 —53.138
15-6S (I) 0.47495 6312.10 —211.33 —1058.6 —27.077
15-6S (II) 0.42254 7094.95 —211.32 +2445.1 +49.501
18-7S 0.32391 9255.47 —211.30 —5859.6 —69.707
15-8S 0.22944 13,066.4 —211.28 —18966. —113.21
25-3S 2.20479 1359.73 —7063.5 —24.202 —13.340
25-4S 1.06779 2807.60 —5909.3 —185.94 —24.039
25-5S 0.60730 4936.47 —5719.7 —1287.3 —53.831
25-6S (I) 0.47527 6307.82 —5686.1 —1077.7 —27.603
25-6S (1) 0.42241 7097.28 —5675.0 +2494.1 +50.459
25-7S8 0.32397 9253.80 —5657.9 —5887.3 —70.062
25-8S 0.22946 13,065.4 —5645.9 —19,007 —113.47

Table 2. The most stable magic wavelengths and slopes at that magic wavelengths for 15-nS and
25-nS transitions for deuterium.

Transition VM Am 4 ¢ X

2.2
Mo*Hz]  nml  [Hz($)1 A (s [CEE)
15-2S 5.82680 514.506 —221.40 —1.3549 —5.2129
15-3S 2.18590 1371.48 —212.48 —20.171 —10.922
15-4S 1.06612 2812.00 —211.42 —179.06 —23.065
15-5S 0.60720 4937.32 —211.20 —1270.4 —53.080
15-6S (I) 0.47508 6310.38 —211.16 —1057.5 —27.048
15-6S (1) 0.42266 7093.02 —211.15 +2442.5 +49.447
15-7S 0.32400 9252.95 —211.12 —5853.2 —69.631
15-8S 0.22950 13,062.9 —211.11 —18946. —113.08
25-3S 2.20539 1359.36 —7057.7 —24.175 —13.325
25-4S 1.06808 2806.84 —5904.5 —185.74 —24.013
25-5§ 0.60747 4935.12 —5715.1 —1285.9 —53.773
25-6S (I) 0.47540 6306.11 —5681.4 —1076.5 —27.573
25-6S (II) 0.42252 7095.35 —5670.4 +2491.4 +50.404
25-7S8 0.32406 9251.28 —5653.3 —5880.9 —69.985
25-8S 0.22952 13,061.8 —5641.2 —18,986. —113.34

The polarizabilities of the ground state and the 25 and 35 excited states of hydrogen,
as a function of the laser wavelength, are shown in Figure 1. The polarizabilities are ex-
pressed in atomic units, i.e., in units of ¢ a3/ Ej,. Wavelengths are presented in nanometers.
Images (a) and (b) of Figure 1 present a general picture of the dynamic polarizabilities with
the magic frequencies indicated. Images (b) and (d) of Figure 1 show the polarizabilities
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near their intersections, i.e., near the magic wavelength. Note that the polarizabilities of the
excited states vary over many orders of magnitude over the range of investigated frequen-
cies and becomes singular at resonances, while the ground-state polarizability remains
of the same order-of-magnitude as the static value as discussed in Equations (14), (18)
and (19).

600
- e are 49 ¥ v .
NE 400 [ ~ Nf\ 15
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P ArAY Y ¢ N Tl
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% 200 2
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Figure 1. We investigate the polarizabilities of 1S and 2S5 states of hydrogen as a function of incident
wavelength of the incident laser (a) and the same for 1S and 3S states of hydrogen (c). Polarizabilities
near the points of intersections are shown in (b,d), with the scale of the ordinate axis decreased.
Polarizabilities are expressed in atomic units, i.e., in units of &2 a% /Ey,, where ag = 1/ (amec) is the
Bohr radius (not adapted to the reduced mass of the system). We recall that the Bohr radius, adapted
to the reduced mass, is ag = 11/ (apc) (see Equation (4)). Also, m, is the electron mass, and c is the
speed of light. The Hartree energy is E;, = a’mpc?. The wavelengths corresponding to the points of
intersection are the magic wavelengths.

For reference, in Tables 1 and 2, we also give the ac Stark shifts, converted to frequency
units, of each individual level at the magic wavelength, normalized to the incident trapping

laser intensity,
11 11
It is essential to ensure the stability of the resonance frequency against small deviations
of the trapping laser field from the magic wavelength. The deviation of the ac Stark shift
from the zero value attained at the magic wavelength, due to a slight variation of the

trapping laser frequency from the magic value, is given as:

11 d

hI 2 E(AEacM)f/wL) — AEac(¢i, “)L)) . (24)

¢
where we refer to Equation (1). The prefactor 1/ divides out the intensity of the trapping
laser, while the other prefactor 1/h converts the result to frequency units. Finally, the
prefactor 27t converts the derivative with respect to the angular frequency to a derivative
with respect to the trapping laser frequency. Our quantity ¢ defined in Equation (24) differs
from the quantity # defined in Equation (9) of Ref. [9] by a factor 277. We also take the
opportunity to point out that the factor 1/ was inadvertently omitted from the expression
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in the middle of Equation (9) of Ref. [9] but is present in the final numerical value presented
in Ref. [9]. The unit of ¢ is the ac Stark shift, measured in Hz, divided by the deviation
of the laser frequency from the magic value, measured in GHz, and the intensity of the
exciting laser, measured in kW / cm?. The unit of ¢ is thus Hz/ (GHzkW/ cmz).

An alternative method of measuring the deviation is by calculating the change in the
polarizability a5, defined in Equation (22), against variations around the magic wavelength.
For convenience, one can divide by the atomic unit of polarizability, which is e*a3/Ej,

where Ej, is the Hartree energy. Then,

Eh aDCA((UL> 8wM Eh E)zxA(wL) 27tC

Er e s IR £l S B v ) ®
wL=wm IAm e iy dwy wWL=wm AM

- e2af ow,

The unit of x is thus the inverse nanometer, because a dimensionless quantity is
differentiated with respect to a wavelength.

According to the intersection points indicated with arrows in Figure 1a, some magic
wavelengths for the 25-1S transition are close to 514 nm, 443 nm, 414 nm, 399 nm, and
390nm. One desires a magic wavelength, in which the polarizability has the minimum
slope [9]. The polarizability has the minimum slope for the magic wavelength value near
514 nm. Hence it is the most stable one against small deviations of the laser frequency from
the magic value (see also Tables 1 and 2). The wavelength 514 nm lies in between the 25-3P
hydrogen transition of 656.275 nm and the 25—4P transition of 486.132 nm [13,14,35]. This
indicates that there is no loss of atoms due to resonant driving. For the 15-3S transition
in hydrogen, some magic wavelengths are near 1371 nm, 1122nm, 1018 nm, 961 nm, and
927 nm (see the intersection points indicated with arrows in Figure 1c). The 12-3S hydrogen
polarizability difference has the minimum slope value for the 1371.85nm wavelength, and
hence it is the most stable one. Wavelength 1371.85nm lies in between the 35—4P hydro-
gen transition of 1875.07 nm and the 35-5P hydrogen transition of 1281.80nm [13,14,35],
indicating that there is no loss of atoms due to resonant driving. For the 15-6S and 25-6S
transitions, we indicate two alternative magic wavelengths, with commensurate stability
coefficients ¢ and x. The smallest magic frequency, for 15-6S and 25-6S, has a somewhat
worse stability against deviations frequency instabilities of the trapping laser.

The most stable magic wavelengths and slopes for a various 15-1nS and 25-nS hy-
drogen and deuterium transitions are listed in Tables 1 and 2. The magic wavelengths in
deuterium are almost the same but slightly smaller than the reduced-mass-corrected value
in the analogous transitions in hydrogen. This is because the reduced mass of deuterium is
slightly larger than the reduced mass of hydrogen.

4. Relativistic and Field—Configuration Corrections to Magic Wavelengths

A discussion on the accuracy of the result we have obtained is in order. One of the
most important corrections comes from the reduced mass of the system, which is in the
order of 10~3; this correction is taken into account by the reduced-mass adapted treatment
outlined in Section 2. Another important correction is of a relativistic origin. In order to
account the relativistic corrections, one should make the following substitution [23] in the
7-matrix element of the polarizability as:

- 1 -
<§bn r<Hs _En+th)r ¢n> -

<4’n + d¢n

1
7 7|y + 0 , (26
(HS+5H—En —5En+th) Pn ¢’"> (26)
where §H is the relativistic Hamiltonian correction to the Schrodinger Hamiltonian H;, and
OE, is the corresponding relativistic energy correction. Furthermore, |6¢,) is the relativistic
wave function correction. All of these corrections have been discussed in the context
of Lamb shift calculations [23]. The relativistic correction is of relative order a? ~ 10~*
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and thus suppressed in comparison to the reduced-mass correction [36,37]. The dynamic
polarizability and, hence, the magic wavelength also receive field-configuration dependent
corrections [5], which depend on the exact position of the atom in the laser field (e.g.,
whether it is located at a minimum or maximum of the oscillating laser electric field). The
field-configuration dependent corrections are also of the order of a? ~ 10~# [5]. We refrain
from a discussion of these effects because the mentioned corrections are not expected
to limit experimental precision, in view of the relatively small slopes of the dynamic
polarizabilities near the magic wavelengths, as given by the quantities ¢ and x given in
Tables 1 and 2. The same applies to the hyperpolarizabilities, which give contributions to
the fourth-order ac Stark shift [38].

5. Conclusions

We studied the magic wavelengths for the 15-n5 and 25-nS transitions of hydrogen
and deuterium. We determined the magic wavelengths in these transitions by calculating
the polarizabilities of the atomic states of interest and then finding wavelengths at which
the polarizabilities of the respective states cancel in the difference. The polarizabilities
are provided by the 1S states 7-matrix elements of the Schrodinger-Coulomb propagator,
as discussed in Section 2. Following the determination of the magic wavelengths and
corresponding trapping laser frequencies, we calculated the slopes of the dynamic Stark
shifts with respect to the frequency of the trapping laser and summarized our results in
Tables 1 and 2. We find that the stability of the elimination of the ac Stark shift against
tiny deviations of the trapping laser frequency from the magic value decreases with the
increasing quantum number of the excited final state of the transition.
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