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Abstract. Due to its construction, the nonperturbative renormalization group (RG) evolution
of the constant, field-independent term (which is constant with respect to field variations
but depends on the RG scale k) requires special care within the Functional Renormalization
Group (FRG) approach. In several instances, the constant term of the potential has no
physical meaning. However, there are special cases where it receives important applications.
In low dimensions (d = 1), in a quantum mechanical model, this term is associated with
the ground-state energy of the anharmonic oscillator. In higher dimensions (d = 4), it is
identical to the A term of the Einstein equations and it plays a role in cosmic inflation. Thus,
in statistical field theory, in flat space, the constant term could be associated with the free
energy, while in curved space, it could be naturally associated with the cosmological constant.
It is known that one has to use a subtraction method for the quantum anharmonic oscillator
in d = 1 to remove the k% term that appears in the RG flow in its high-energy (UV) limit in
order to recover the correct results for the ground-state energy. The subtraction is needed
because the Gaussian fixed point is missing in the RG flow once the constant term is included.
However, if the Gaussian fixed point is there, no further subtraction is required. Here, we
propose a subtraction method for k* and k2 terms of the UV scaling of the RG equations for
d = 4 dimensions if the Gaussian fixed point is missing in the RG flow with the constant term.
Finally, comments on the application of our results to cosmological models are provided.
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1 Introduction

The quantum field theory of gravity, i.e., Quantum Einstein Gravity (QEG) is perturbatively
non-renormalizable. It requires infinitely many unknown parameters to be set by experiment. A
possible solution to perform renormalization is the use of a nonperturbative treatment. Indeed,
nonperturbative renormalizability, which is also referred to as asymptotic safety, provides us
with a nontrivial high energy, i.e., ultraviolet (UV) fixed point of the renormalization group
(RG) flow. The RG flow leads to a finite number of UV-attractive couplings; so, it is sufficient
to perform only a finite number of measurements. In other words, it controls the UV behavior
of the dimensionless couplings. They do not need to be small or tend to zero in the UV limit
but tend to finite values at the nontrivial UV fixed point. It was shown in [1] that for the
simplest truncation of QEG which is the Einstein-Hilbert action, such a nontrivial fixed point
is indeed present. Up to the present, many different works have already confirmed that the
asymptotic safety scenario is possible. For a recent review, we refer to [2]. For applications to
cosmology, one consults refs. [3, 4], and for applications to black-hole physics and instructive
explicit functional renormalization-group computations, we refer to [5—-16].

Asymptotic safety is the concept that a theory is UV completed by an interacting theory
which, in the RG formalism, is described by a nontrivial (non-Gaussian) UV fixed point and
includes the assumption that the RG formalism can be used to solve the so-called cosmological
constant problem, too. One can use different methods to test this assumption. The non-
perturbative RG is a possible method, but there are also others, including lattice and Monte
Carlo methods. In general, the nonperturbative RG method [17-21] has been used successfully
in many areas of physics from statistical mechanics to high energy physics [22-30] and in
cosmology [31-38] with particular attention to the cosmological constant problem [39-57].
It is obvious that the vacuum energy density induced by the quantum fluctuations would



add to the cosmological constant (see refs. [58, 59]). However, the calculated vacuum energy
density is larger by many orders of magnitude than the observed cosmological constant; this
is the essence of the cosmological constant problem [60, 61]. Also, it is well known that
the bare values of a physical theory are connected to the low-energy phenomenology by RG
transformations [62-67]. So, if one could establish a connection of the bare value of the
cosmological constant to its low-energy equivalent by an RG method, then one could possibly
solve the problem: the bare value of the cosmological constant carries no physical meaning and
is treated as a running parameter. Indeed, in principle, RG running can be used to connect
its UV value to the observed low energy, i.e., infrared (IR) one. Thus, in the functional
renormalization group (FRG) treatment of gravity, one sees that the cosmological constant
corresponds to a relevant direction. It means, there is no cosmological constant problem in
the nonperturbative treatment of gravity; it is a free parameter to be fixed by observations.
However, let us note that one has to distinguish between the RG scale k and the observational
scale, which we denote as p. One should compute the physical limit & — 0 by the RG method
first and then compute observables using the full quantum effective action. Unfortunately,
this is not yet possible in reasonable approximations, so, one has a qualitative understanding
of the implications of asymptotically safe gravity, assuming that the artificial flow with & is a
good approximation to the physical flow with respect to the physical momentum p, which
one can extract from the effective action in the limit k¥ — 0. The flow generated by the FRG
equation can be analysed in regard to the question of whether it allows trajectories that are
compatible with the observational constraints on the parameters of the action, since it is
related to the k-flow and not to the p-flow. In principle, the effective action, in the limit
k — 0, has infinitely many parameters, but only N of these parameters (those associated
with the N relevant directions of the non-Gaussian UV fixed point) must be fixed using N
experimental inputs.

The RG running could be associated with the temporal evolution of the Universe
according to the identification k o< 1/H (t) where H (t) is the time-dependent Hubble-parameter,
according to an idea promoted in ref. [4]. Thus, one could treat the field independent constant,
i.e., the A term in Einstein’s equations, as a running parameter which varies over the temporal
evolution of the Universe. If there is no other scalar field in the theory, the cosmological
constant must play an important role in the mechanism of cosmic inflation, too. So, its value
must be fixed to be large at a sub-Planckian scales. Thus, renormalization conditions must be
chosen very accurately in order to solve the corresponding hierarchy problem. In other words,
the running cosmological constant has to be scaled down from high to low energies; this cannot
be done straightforwardly in the framework of conventional perturbative renormalization. So,
again, a nonperturbative treatment is needed. As an example, a nonperturbative approach
has been used in [56] to study the RG evolution in the presence of compact extra dimensions.
As a consequence, the studied parameters can be substantially reduced to be comparable
with observational values. So, if there is a single scalar in the theory, then one would need to
adjust the running of the cosmological constant to accommodate both inflation and late-time
dark energy. However, FRG generates infinitely many operators, so that together with the
cosmological constant the theory is equipped with an additional scalar degree of freedom (the
one of Starobinsky inflation) that can take care of the inflationary era. This has been studied
extensively in the literature, see for instance [6, 68].

Therefore, the use of the FRG method and asymptotic safety can solve several important

problems of cosmology and quantum gravity. Nevertheless, the FRG approach has its own
drawbacks; the evolution of the constant (i.e., field-independent) term could be problematic



due to the construction of the method. In particular, divergent terms could appear in the
RG flow in its UV limit. These could represent non-physical behaviour. It can be quite a
subtle problem to analyze the renormalization of the field-independent term, because of the
conditions imposed canonically on the regulator function in the FRG equation (Wetterich
equation) [19, 20, 24]. These canonically imposed conditions imply that the solution of the
FRG equation reproduces the bare action in the UV only up to a field-independent, but
k-dependent term; the latter, in addition, could be infinite. Hence, the analysis becomes
subtle. Yet, physical conditions, to be imposed on the RG evolution of the constant term
due to consistency considerations, lead to subtracted RG equations whose solution fulfills all
physical boundary conditions in IR and UV limits.

Indeed, the idea to remove these UV divergent terms of the RG evolution of the field-
independent term in the framework of the FRG method is well known in quantum-mechanical
models, and in statistical mechanics. For example, as suggested by quantum mechanical
calculations [see eq. (37) of ref. [24] and additional discussions in refs. [25, 26]], the application
of a suitable subtraction reduces the quadratic (k?) divergence of the RG evolution in the
UV limit and produces correct results for the free energy in the IR limit. However, it is very
important to observe that the non-physical behaviour, i.e., the k? divergence of the UV limit
is the consequence of the absence of the Gaussian fixed point in the RG flow once the constant
term is included. Of course, one finds the Gaussian fixed point in the RG flow if the constant
term is explicitly set to zero and excluded from the model in its entirety. However, once the
constant term is included, the problem of the k? divergence in the UV limit emerges, and
the Gaussian fixed point not only disappears; it becomes unstable against tiny variations of
the initial conditions of the RG flow. Conversely, if the S-functions of a certain model allow
the existence of the Gaussian fixed point in the presence of the constant coupling, no further
subtraction is required.

It is possible to generalise the idea of the subtraction method for higher dimensions.
Indeed, a similar procedure has been proposed in ref. [69] for cosmological applications. In
d = 4 dimensions, in the absence of the Gaussian fixed point, k% and k? divergences appear in
the RG flow of the field-independent but k-dependent term in its UV limit which may need
special attention.

However, in the framework of the asymptotic-safety (AS) scenario, the situation is more
complex. The f-functions of AS gravity (without scalar degrees of freedom) predict the
existence of Gaussian and non-Gaussian UV fixed points, see for example [1-3] and the RG
flow diagram of figure 1. At the non-Gaussian UV fixed point, the dimensionless couplings
are required to attain a non-zero value. Thus, if we assume that the non-Gaussian UV fixed
point is found in the asymptotic region, then at least some of the dimensionful counterparts
of the couplings become divergent. For example, if we assume that the dimensionless
cosmological constant A(k) = A(k) k=2 tends to a finite value at the non-Gaussian UV fixed
point A(k = ki) = A4, then its dimensionful counterpart A(k), for large k, can have at most
a k? divergence. So, one could argue that a subtraction might be required which removes
the k2 divergence and leaves at most a logarithmic divergence, for large k. However, AS
gravity (without scalar fields) has the Gaussian UV fixed point, too. The S-functions derived
from the FRG equation signal the Gaussian UV fixed point, so the field independent term
vanishes if all the other couplings tend to zero in the UV limit. Thus, there is no need of
any further subtraction method and the scaling of the potential as k* is not a problem in
AS gravity since the S-functions predict the existence of the Gaussian UV fixed point, too.
However, if one adds scalar degrees of freedom as matter fields to the Einstein-Hilbert action



which is the simplest truncation for AS gravity models, the resulting action, i.e., the simplest
gravity-scalar system might have problem with the existence of the Gaussian fixed point. Of
course, by the application of the subtraction method [69], the Gaussian fixed point can be
restored and the method, i.e., the inclusion of subtraction terms does not affect the position
of the non-Gaussian UV fixed point.

Therefore, the quantum field theory and the renormalization of gravity and also the
consequences of the RG running on cosmology are well defined, well understood due to
asymptotic safety (and the presence of the Gaussian fixed point). However, one might ask
what would happen if one chooses different approaches to the problem of quantum gravity, for
example M-theory or loop quantum gravity. In these cases, one can use quantum field theory
maybe together with supersymmetry and RG considerations up to the Planck scale only. In
addition, it is maybe required to use an effective quantum field theory beyond the Standard
Model. As an example one can mention the effective branon theory in (341) dimensions which
involves the absolute value of the branon field, leading to a non-differentiable potential and
wave function renormalization [70]. For discussions of branons, see, e.g., refs. [71-77]. This
can re-open the discussion on the UV divergent nature of the RG flow of the field-independent
term, i.e., the cosmological constant which could play an important role in the mechanism
of cosmic inflation, too. For example, it is known that supersymmetric extensions of the
Standard Model deal with quadratic divergences. It may resolve major hierarchy problems
within the Standard Model, by guaranteeing that quadratic divergences of all orders will cancel
out in perturbation theory, however, there is no experimental evidence that a supersymmetric
extension to the Standard Model is correct. Due to the negative results from the LHC, it
has been a matter of discussion whether the Minimal Supersymmetric Standard Model is
no longer able to fully resolve the hierarchy problem. Thus, if not the asymptotic safety
scenario is the correct approach to quantum gravity, the problem of UV divergences of the
field independent term may require attention.

Indeed, in ref. [57], the so-called Running Vacuum Model has been studied; it assumes a
scale-dependent vacuum, i.e., a running cosmological constant. The authors of [57] proposed a
suitable subtraction of the so-called Minkowski contribution in the framework of the adiabatic
regularization method. It results in an RG scaling for the running vacuum described by
equation (6.9) of [57], where the running RG scale is denoted by the mass-like term M while
its UV value is given by My. The result of their subtraction method is the absence of the M*
term in the scaling relation for the running vacuum. In the UV limit (when M — o0), the
M* is a source of exceedingly large contributions. Due to the subtraction method of ref. [57],
the RG scale-dependence of the running vacuum is characterised with M? and log(M?) terms
only. Our goal here is to show how the subtraction method can be further improved in order
to eliminate from the RG scaling of the running vacuum, not just the k* (i.e., M* of ref. [57])
but also the k? (i.e., M? of ref. [57]) terms which results in a purely logarithmic dependence
on the scale.

2 Field-independent term in cosmology

While, in ordinary particle physics, a constant, field-independent term of the potential carries
no physical meaning, it has great importance in the case of gravity. For example, in order
to describe the observed accelerated expansion of the Universe at present [80, 81] a possible
solution is the inclusion of a constant term into Einstein’s equation which reads (in the absence



of matter)
1
G =Ry — §R9W = —Agu (2.1)

where R is the scalar curvature and A is the cosmological constant. The latter is assumed
to be related to dark energy [82-86] and is expected to cause the accelerated expansion of
the universe observed today. Indeed, by using the Friedmann-Lemaitre-Robertson-Walker
(FLRW, see refs. [87-90]) metric (in our units, the speed of light is c =1 and A= 1), g =
diag(—1,a?, a?, a?) the scale factor a(t) of the expanding homogeneous and isotropic Universe
can be calculated which results in an exponentially fast expansion, a(t) ~ exp(y/A/31).

There is, however, a serious problem with this scenario, namely the discrepancy between
the theoretical prediction for the cosmological constant by quantum field theory (vacuum
energy) and the energy density needed to explain the accelerated expansion of the present
Universe. In other words, the estimated value is 120 orders of magnitude greater than the
energy density of all the other matter. Thus, the cosmological constant which correctly
describes the acceleration rate is very small compared to the Planck scale. This is the so-called
cosmological constant problem.

One possible solution to this problem could be the existence of a hypothetical scalar
field, referred to as quintessence [91-100], which is minimally coupled to gravity. Compared
to other scalar-field models such as k-essence [101-103], quintessence is the simplest scenario
where the slowly varying field along a potential results in a negative pressure and accelerated
expansion. This mechanism is very similar to the particle physics model for cosmic inflation
in the early Universe, but the difference is that non-relativistic matter cannot be ignored and
the quintessence potential is much smaller than that of the inflaton potential. Let us first
review the inflationary mechanism of the early Universe.

The key observation is that scalar fields can mimic the equation of state for negative
pressure. Thus they represent an excellent model for inflation,

2
s= [dav= [TZR VLol Le=-30"000,0-V(e),  (22)

where \/—g = y/—det(g,,) = a® with the (reduced) Planck mass m]% =1/(87G), and G is
Newton’s constant. The Einstein equations have to be written in the presence of matter fields,

Gu =81G Ty, T} = diag(—p,p,p,p), (2.3)

where the stress-energy tensor of the scalar field has the following form,

ro_ 2 (/-9Ly)
Vg g

Since over the inflation the field can be considered to be homogeneous (V¢/a = 0), the
relation between the density and pressure reads as

p 3PV
L_P_39° -V

p 3P +V

= u¢ o9 + Guv ‘Cqﬁ- (2‘4)

1.
if §¢2 <V = w=-1, (2.5)

which results in exponential expansion similar to the case of the cosmological constant.
Although the cosmological constant and the special equation of state (p = —p) both results
in the same rate of expansion but the former cannot be used for inflation since it has to



end. There is another condition for slow roll inflation which ensures a sufficiently prolonged
inflation. These two slow-roll conditions in Planck units (m, = 1), have the following forms,

e=V2/2V) <1, gn=V")V<«1, (2.6)

which have to be fulfilled by a suitable potential for a prolonged exponential inflation with slow
roll down. The e-fold number N = — f(flf do % should be in the range 50 < N < 60 where ¢;
and ¢y are the initial and final configurations of the field, respectively. The power spectra
of scalar (Ps) and tensor (P7) fluctuations can be characterized by their scale dependence,
i.e., Ps ~ k™ where k is the comoving wave number. Then, slow-roll parameters are
encoded in expressions for the scalar tilt ng — 1 ~ 2n — 6¢ and for the tensor-to-scalar ratio
r = P7/Ps =~ 16¢, which can be directly compared to CMBR data [104-106].

The potential is determined by the slow-roll conditions (2.6) up to an overall multiplicative
factor, but this factor is fixed by the absolute normalisation. According to eq. (23) of ref. [107]
and eq. (218) of ref. [108], the normalisation condition is

r

oL (100 GeV)*. (2.7)

Vigi) =
The tensor-to-scalar ratio r is given by the slow-roll parameters which are fixed at the scale
of inflation (k;), according to remarks preceding eq. (218) of ref. [108]. Thus, the scale of
inflation is given by the following relation

1

V(g) =k, k= (T> 11016 Gev, (2.8)
0.01

which entirely fixes the inflationary potential including the constant term. Therefore, the

field-independent term is fixed at the scale of inflation, too.

Let us now come back to the idea of quintessence. The cosmological constant is static
which means once it is fixed (e.g., to describe the rate of accelerating expansion of the Universe
today) its value remains constant over the history of the Universe. Thus, extrapolating back in
time to the early Universe, it has a very small value compared to the Planck mass. It would be
more natural for the dark energy to start with an energy density similar to the density of matter
and radiation in the early Universe. The concept of quintessence was introduced to overcome
this problem which assumes a scalar field similar to inflaton with negative pressure but with a
very large wavelength. The equation of state of the quintessence is dynamic, time-evolving and
given by (2.5) which has been used for the inflaton case, too. Therefore, it does not matter
whether one relies on the idea of quintessence or on the cosmological constant. The field-
independent term of the action is involved in the theoretical model, and its value is determined.

Thus, the Standard Model of Cosmology requires two periods of accelerated expansion:
in the early Universe, when the Universe doubles in size in every 10~3%s, and today, when the
doubling time is 50 orders of magnitude greater. The field-independent term of the action has
to be fine-tuned in each period of acceleration, thus a reliable theory should take into account
the change of this term over the time-evolution of the Universe. If the time-evolution of the
Universe and the momentum scale of renormalization is related to each other (inversely), then
the required variation of the cosmological constant in time can be produced by RG methods.

Indeed, the essential idea of the nonperturbative RG analysis is to describe the evolution
of the self-interaction potential from the UV (from the Planck scale or from over the Planck
scale) to the scale of inflation and towards to the low-energy (IR) limit, and of course,



it is an important question how to describe the RG running of the constant term. The
asymptotic safety scenario of quantum gravity is designed for that purpose, and its essence
is the existence of a non-Gaussian UV fixed point. To summarise its cornerstones, one
can start from the simplest realization of Quantum Einstein Gravity (QEG) which is the
Einstein-Hilbert truncation of the effective average action

1
- 167Gy,

Tk /d%; V=9 (R —2Ay), (2.9)
where ¢ is the determinant of the metric tensor, R is the Ricci scalar and the scale-dependent
parameters are the cosmological constant Ay and the Newton coupling GG.. The field inde-
pendent term V(¢ = 0) of the scalar potential (2.2) is related to the cosmological constant,
ie, V(p=0)= mgA. The scale-dependence of Ay implies the scale-dependence of Vi (¢ = 0),
and it is analyzed in terms of dimensionless couplings, A\, = Apk~2, g = Grk? with the help
of the f-functions, see for example [3]

kOkgr = By, koA = B (2.10)
which are calculated by the Litim regulator [110]

gk 30

=(2 = — 2\ — —24 — 2.11
By = (2+1n) gk A= (v = 2)A + 5 o, o™V (2.11)
where the anomalous dimension of Newton’s constant ny = G,;l kO, Gy, is given by
gk B1
N=—rL 2.12
! 1 — gk By (212)
where
1 5 9 1 5 6
B = — 7, By = (2.13)

3w ll1—2\, (1—2))2 127 [1—2), (1 —2)\,)2

The RG flow diagram based on the above g-functions is plotted on figure 1.

The S-functions contain the information on fixed points g, and A of the RG flow where
the beta functions vanish simultaneously. They give rise to two fixed points: the Gaussian
(G) UV fixed point situated at (g, Ax) = (0,0) and the non-Gaussian (NG) UV fixed point
located at (gx, Ax) = (0.707,0.193). As we argued in the introduction, the existence of the
non-Gaussian UV fixed point can solve important problems of quantum gravity. In order to
find cosmological applications, the running RG cutoff k is identified with a typical length
scale of the system [5]. There are several types of cutoff identifications [5]; among these, one
finds k ~ ¢!, where t is the cosmic time, or k ~ H(t) where H(t) is the Hubble parameter,
or k ~ T, where T is the temperature of the cosmic plasma. The idea is to use RG running to
connect the physics of various energy scales. For example, one should find the non-Gaussian
fixed point above the Planck scale k > m, = 2.4 x 102" eV. By contrast, cosmic inflation
takes place below the Planck scale k = kins = 10?2 €V, and the well-known value of Newton’s
constant is fixed by laboratory experiments G, = G' = 6.67 x 10757 eV ™! at low-energies
k = kjap, = 107%eV. Finally, one should mention the accelerated expansion of the Universe
at present which requires Ay, = A = 4 x 10756 eV? at the scale k = kpup, = 10733 eV. The
nonperturbative RG (using various extension of the Einstein-Hilbert truncation, see for
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Figure 1. We present the RG flow diagram of QEG based on the Einstein-Hilbert trunction given in
eq. (2.9).

example [6]) is capable to build up connection between these scales and cover many orders of
magnitude in change of couplings, like the Newton and the cosmological constants.

Our goal here is to consider the RG flow of the field independent term in the presence of
scalar fields, i.e. when the coupling constants of the action (2.2) are considered as running
parameters similarly to (2.9),

L r-Lomwo.p0,0-vio) . (2.14)

Tile] = /d%*/__g {16ka 2

where the scalar potential is usually expanded in terms of the field. If this expansion is

terminated at the quartic order, it has the following form

20y,
167Gy’

Vi(¢) = Vi(0) + %mqu? — %)\M o*, Vi(0) = (2.15)
which is one of the simplest scenarios when a single real scalar field is coupled to gravity.
For a detailed study of scalar fields coupled to asymptotically safe quantum gravity see for
example [78] where the existence of the non-Gaussian fixed point was shown for the simple
case of (2.15) with non-minimal coupling to gravity. The fixed points of the RG flow for a
scalar field in curved space with non-minimal coupling is discussed in [79], too where the
RG equation for the scalar potential in the so-called Local Potential Approximation of the
Wetterich equation with the Litim cutoff reads as

k‘2

_ d

(2.16)

with g = 1/[(47)%?T(d/2 +1)]. The existence of the Gaussian (G) and non-Gaussian (NG)
fixed points and the RG flow of the full (dimensionless) potential is discussed, for example, in
refs. [78] and [79] but no 8 function is given for the field-independent term. In this work, we



are interested in the RG flow of the field-independent term, V}(0), with a special attention on
its UV limit.

Let us discuss the RG flow of the cosmological constant in the absence of quantum
gravity effects, but take into account the RG equation (2.16) for the scalar potential (2.15).

We use the relation Vk(()) = 125& which connects dimensionless couplings and gives
kOpAL, = 87 (gkk‘akvk(()) + Vk(O)k‘akgk) (2.17)

In the absence of quantum gravity effects, i.e., assuming a scale-independent dimensionful
Newton’s constant, G, = G, the anomalous dimension vanishes because ny = G~ k9,G = 0,
and one finds kg, = 2g; which results in a trivial RG scaling g, ~ k2. The RG flow equation
for the dimensionless field-independent term obtained from (2.16) reads as

- 1 1 ~
koRVi.(0) = 392 (Hm,%) — 4V4(0) (2.18)

which can be used to obtain the RG flow equation for the dimensionless cosmological constant,

1 1
kO A\, = — — | — 2. 2.1
Ok 4ﬂgk<1+mz> k (2.19)

In this approximation, g has a trivial scaling, g, ~ k2, it tends to infinity in the UV
limit. The UV scaling of the dimensionless mass term is ”ﬁli ~ k™2, so, it tends to zero in
the UV limit. Although the UV Gaussian fixed point formally exists, it cannot be reached

because the corresponding S-function diverges in the UV limit, gx > — o0 if K — o0.

Our goal in this work is to show that one has to apply additional subtraction terms in order
to restore the Gaussian fixed point in (2.19).

We will discuss that, even though the Gaussian fixed point is known to exist in many
quantum field theories, there may be questions regarding the proper definition and retention
of the Gaussian fixed point due to presence of the divergent constant term. A point emerging
in our discussion is that with the use of subtractions, one can restore the Gaussian fixed point
of the pure scalar theory in the RG flow based on the S-functions even if the field-independent
term is included. We will show that the inclusion of these subtraction terms do not influence
the non-Gaussian fixed point of the gravity-scalar models, but could modify their IR behavior.

In summary, the constant term, i.e. the cosmological constant plays an important role (i)
in the physics above the Planck scale, (ii) in the mechanism of inflation in the early Universe,
(iii) in the accelerating expansion at present. This justifies our main interest in the RG
evolution of the constant term in general, which we extensively discuss in the next section.

3 Field-independent term in RG

The modern formulation of nonperturbative RG usually referred as the Wetterich RG equa-
tion [19, 20] has the following form for the one-component scalar field theory:

1 [ dp kOkRk(p)
kORL[0] = 5/ 2m)% Ry(p) + TP (g

(3.1)



where k is the RG scale, I'y[¢] is the running effective action with its Hessian Fl(f) [¢], and
Ry (p) is the so-called regulator function. It is illustrative to discuss its connection to the
effective action, which has the following form at the one-loop level:

d
Tenlé] = Sale] + 5 [ s tn [SE(01] + 00, (32)

where Sy is the classical (bare) action. A Pauli-Villars approach is used to regularise the
momentum integral which can be divergent at its upper (UV) and lower (IR) bounds. This
can be achieved by adding a momentum dependent mass term % [ Ri(p)¢? to the bare action,
and introduce a scale-dependent action

d
Ti[¢] = Sald] + % / (;’;dln [Be(p) + 510 (3.3)

which recovers the effective action (at one-loop) in the IR limit if the regulator function Ry(p)
fulfils the requirements, Ri_o(p) = 0, Ri(p — 0) > 0 [see eqgs. (13)—(15) of ref. [24]]. The
latter condition is important to avoid IR divergences. However, one canonically also imposes
the condition

Ri—n(p) = o0 (3.4)

(see ref. [24]), and thus, in the UV limit, the scale-dependent action reproduces the classical
(bare) action only up to a field-independent, constant term. If one can differentiate eq. (3.3)
with respect to the running scale k (and multiplies both sides by k), then one finds

which recovers the “exact” Wetterich RG equation (3.1) up to the replacement 51(\2) — F,(f).

Let us come back to various limits of the scale-dependent action eq. (3.3). It recovers the
effective action in the limit k& — 0 and the bare action for k — A, up to a field-independent
but k-dependent term, which we will denote as V;(0) for reasons which will become obvious
immediately,

Ty oa[é] = Tal@] = Sa6] + const. = Sx[é] + / %z Vi, 0 (0). (3.6)

This clearly signals that the formulation of the RG evolution of the constant, field-independent
term V% (0) requires special care within the nonperturbative approach implied by the Wetterich
equation (see also section 2.3 of ref. [24]). Moreover, if we implement the condition Ry, (p) =
oo on the regulator, then it turns out that in many cases, the “constant term” V4 (0) in eq. (3.6),
actually is given by a divergent integral.

Therefore, the constant term Vj(0) needs a special treatment in the framework of the
nonperturbative RG method. In the following, we will consider cases where V}(0) can naturally
be identified with the zeroth-order term (in ¢) obtained from the scale-dependent potential
Vi(¢). One might argue that, for many purposes, the precise form of the function Vj(0)
is physically irrelevant as it constitutes a field-independent constant. However, there are
special cases where the RG evolution of a constant (field-independent) part of the potential
has physical meaning. For example, if one aims at a determination of the free energy in a
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flat background or of the cosmological constant in a general non-flat background, then the
problem of unambiguously determining V}(0) has to be seriously considered.

The explicit form of the nonperturbative RG equation which is suitable for application
can be obtained by from (3.1) using various approximations. Derivative expansion is one
of the widely used approximation and its leading order is the local potential approximation
(LPA) [109]. Within the LPA, the RG equation (3.1), using the so-called Litim cutoff [110],

reads as

20, k.d+2

d k*+03Vy’
where V} is the dimensionful scaling potential in d dimensions, k is the running momentum,
and ag = Qq/(2(2m)9) is related to the d-dimensional solid angle Qg = 27%2/T'(d/2). One
can obtain eq. (3.7) by projecting the exact functional RG equation [17-21] [see eq. (3.1)]
on a functional ansatz for the scalar field effective action, which contains only the bare
kinetic term plus a scale dependent effective potential Vj. Then, eq. (3.7) represents the
non-perturbative S-function of the effective potential in absence of any renormalization for
the non-local operators in the action [22-24, 27-30].

In the following, we will investigate the role of the RG evolution of the field-independent
terms in the framework of the nonperturbative RG approach. We would like to use the
RG treatment of the constant term developed for low-dimensional quantum mechanical
systems [24] and extend this method to higher dimensions.

kORVi = (3.7)

4 RG evolution of the constant term

We now come to the most important point to be discussed in the context of the current work.
Namely, from eq. (3.7), one could in principle derive an RG equation for the constant term
Vi(¢ = 0). Written for the dimensionful potential, one would naively obtain the following RG
equation for Vj(0) from eq. (3.7) in d = 4 dimensions:

k4 k2

?
kOp Vi (0) = 3o 1 8§Vk(¢)|¢:0 . (4.1)

It has already been mentioned above that, within the nonperturbative RG equations used by
us, extra care is needed in the analysis of the field-independent terms.

The essence of the problem of the RG scaling of the constant term is the (possible)
absence of the Gaussian fixed point which, otherwise, is present, if the constant term is not
considered. In other words, the S-function of the constant term should vanish if all couplings
are set to zero. If the Gaussian fixed point is retained when the RG flow of the constant term
is considered, which is the case in QEG, then one finds no problem with the RG scaling of
the constant term. However, if the Gaussian fixed point is missing once the field-independent
coupling is included, then one finds problematic UV divergences which require a subtraction
method. It was shown that such divergences occur for the quantum anharmonic oscillator
and if one considers it in higher dimensions one has to generalise the subtraction method for
d = 4 dimensions. Indeed, in the limit k2 > 8£Vk(0), the solution to eq. (4.1) is

k4 o A4
12872 7

which would otherwise indicate a rampant quartic divergence of V;(0) in the limit of large A
and lead to a considerable change in Vj(0) between the Planck and the GUT scales, possibly

Vi(0) £ VA (0) + (4.2)
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requiring some fine-tuning of our model in the UV, i.e., at the Planck scale. In view of the
quartic divergence of Vi (0) in the UV, the fine-tuning problem would be of quite an extreme
nature and conceivably render the model rather questionable.

In order to address the problem, it is necessary to include a longer discussion. The problem
is exacerbated by the fact that Vj(0) could in principle be associated with a cosmological
constant term. As shown in the discussion surrounding eq. (A.2)—(A.5), for an FLRW metric,
one can bring the action into a form resembling a flat-space theory, but upon going back to
the original FLRW coordinates, one would realize that V}(0) indeed can take the role of a
cosmological constant [see also eq. (A.6)].

One should observe that the rampant k* behavior in eq. (4.2) persists, even if we set,
e.g., all coupling terms of the model to zero. In principle, one might think that it would
be difficult to argue that a quartic divergence could be obtained for the RG running of the
constant term Vj(0) of a potential that completely vanishes in the IR. The suspicion arises
that the behavior implied by eq. (4.2) cannot be physical and must be spurious.

5 Divergences in d = 1 oscillators

We start this section by observing that questions related to the RG running of field-independent
constant terms belong to the more subtle questions connected with nonperturbative RG
equations. In section 2.3 of ref. [24], a (0 + 1)-dimensional model problem is studied which
illustrates the spurious nature of these terms, namely, an anharmonic quantum mechanical
oscillator. For a potential of the form

Ncut

1 1
Vie(x) :E0k+§wgm2+ﬂ)\%x4+... = Z %x%, (5.1)
n=0 '

where Eo, = go, w]% = go, and )\i = g4k

One may investigate what happens if one drops the anharmonic term (A = 0), which
implies that wy = wp—p = w. In this limit, the following RG equation is obtained for the
constant term Egy [see eq. (40) of ref. [24]],

d 21 k2

a7 L S 2
dk % T T k2 F w2 (5.2)

When integrating this equation, one would obtain a spurious linearly divergent ground-state
energy of the anharmonic oscillator in the harmonic limit (A — 0, i.e., when the anharmonicity
vanishes).

This behavior cannot be physical and cannot be trusted. The answer is connected with
the observation surrounding eq. (3.6), which implies the necessity of subtracting a spurious
field-independent constant term if one would like to recover the bare action (in the UV) from
the nonperturbative RG equation. In the case of the (0 4 1)-dimensional field theory, the
solution is given by subtracting the spurious term from the right-hand side RG equation (5.2),

and to solve instead
d 12 1 k2
—Fp=— | ———1]. 5.3
dk= " T <k2+w2 ) (5:3)

Integrating this equation, one obtains the correct ground-state energy %w [see eq. (40) of
ref. [24]].
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Figure 2. The dependence of the ground state energy of the quantum anharmonic oscillator on the
g4, initial condition, obtained for a single-well potential (go o = 4, go,o = 0), using the truncation
Necus = 2. The solid curve is from the solutions of the Schrédinger equations, while the dashed curve is
computed by FRG.

_____

O00 20 40 60 80 10094/\
Figure 3. The dependence of the ground state energy of the quantum anharmonic oscillator on
2
the g4 4 initial condition, obtained for a double-well potential (g2,A = —4, goa = %), using the
truncation N¢u = 2. The solid curve is from the solutions of the Schrédinger equations, while the
dashed curve is computed by FRG.

Let us consider what happens if one keeps the anharmonic term (A # 0). In order to
study the dependence of the results on the truncation N, we use the general form for the
potential where the couplings are denoted by go,. One can derive the flow equations for the
running couplings goy, by using the subtraction method explained above. For example by
using the Litim regulator [110], and the truncation Ny = 2 the flow equations become

k k?

1 Kgap
kakgg’k = —;m, (55)
6 k?’gik

SR .

kOkgar =

By solving these differential equations we computed the ground state energy, Ey = go k-0,
with different initial conditions and got consistent results with the solutions of the Schrédinger
equation as shown in figure 2 and figure 3.
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Figure 4. The dependence of the ground state energy of the quantum anharmonic oscillator on
2
the g4 initial condition, obtained for a double-well potential (g2, A = —4, goa = %), using the

truncation N¢ut = 3. The solid curve is from the solutions of the Schrédinger equations, while the
dashed curve is computed by FRG.

The unphysical behaviour of the ground state energy for the double-well potential in low
g4, is just the result of our approximations. In fact better approximations improve these
results, for example improving the truncation (N.y; = 3) gives an improved curve, see figure 4.

Therefore, the use of the subtraction method for the set of RG flow equations recovers
the correct results for the quantum anharmonic oscillator in d = 1.

6 Divergences in the cosmological model

6.1 General discussion and idea

If the need for such subtractions arises in the context of (0 + 1)-dimensional field theories,
then we can expect similar or even aggravated problems in our (3 + 1)-dimensional case.
We should clarify that the subtraction leading from eq. (5.2) to eq. (5.3) is not rigorously
derived in ref. [24], but constitutes more than an ad hoc subtraction. Namely, as pointed
out in the text preceding eq. (37) of ref. [24], the physical requirement is that the constant
term in the potential must remain zero under the RG in the limit of vanishing parameters
w — 0, and A — 0. As pointed out in between egs. (36) and (37) of ref. [24], this requirement
fixes the subtraction term. The subtraction leading to eq. (5.3) is justified by the fact that it
reproduces the known ground-state energy of the harmonic oscillator.

Based on the analogy with ref. [24], one might investigate if a valid subtraction scheme
for the field-independent term in a nonperturbative RG could be obtained by subtracting from
the naive RG equation (4.1) the spurious asymptotic (UV) terms which cause the unphysical
divergences. One should take into account that one single subtraction, as in eq. (5.3), may
not be enough. In a different context, namely, in the case of perturbatively renormalizable
theories such as quantum electrodynamics (QED), one sometimes has to introduce more than
one subtraction term. E.g., the regularization of the vacuum polarization integral, discussed
in eq. (7.3) ff. of ref. [111], necessitates the introduction of more than one “heavy fermion” in
order to eliminate a spurious quadratic divergence, for large loop momenta. In the case of the
nonperturbative RG method used here, one can show that, in general, the RG equation for
V(0) implies a dependence with the functional form k% in the UV (when no subtractions are
applied), consistent with the cases d = 1 discussed in eq. (5.2) and the case d = 4 discussed in
eq. (4.2). This observation might suggest that more than one subtraction could be required
for higher dimensions.
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Let us try to formulate possible, but not unique, further requirements, in terms of
conjectures, that could be imposed on the subtracted, physical, RG evolution of the constant
term. These constitute mild generalizations of the considerations reported in ref. [24].

(i) The RG evolution of Vj(0) must vanish in the UV, in the limit of vanishing expansion
coefficients of the model.

(77) The subtraction terms, originating from the UV, should have a polynomial functional
form (in k), as they are obtained from an asymptotic expansion of integrals obtained in
the limit £ — A, which typically gives rise to an asymptotic expansion with polynomial
terms.

(7i) The subtractions cannot possibly influence the IR behavior of the RG, as they originate
purely from the UV behavior of the regulator given in eq. (3.4).

Condition (#7) implies that the subtractions cannot induce IR divergences. This means that
one cannot subtract “too many” terms; otherwise one incurs infrared problems.

6.2 Double subtraction

As suggested by the above general considerations, we observe that a single subtraction, based
on the replacement

k‘2 2

et 2 et
-1 v
k2 + 32Vi(0) ] T 3on2

kDL Vio(0) =
Ve 0) = 55 i +02Vi(0) 3272

BVi(0),  k— oo,

(6.1)
in eq. (4.1), leaves a quadratic term (in k) on the right-hand side of eq. (4.1) in the UV
limit. This subtraction term modifies the RG evolution of the cosmological constant. Thus,
eq. (2.19) is changed as

1 1

from which one observes that the corresponding S-function does not diverge in the UV limit

1
1+m3

but tends to a non-vanishing finite value, i.e., the expression g ( - 1) approaches a

negative constant, where we keep in mind that g, ~ k? and mi ~ k=2 in the UV limit.

It is well known that comparable subtractions produce the correct result for the free
energy of certain interacting quantum-statistical mechanics models (see chapter 8 of ref. [112]).
Further remarks on related issues can also be found in refs. [113, 114]. One might argue that
the negative value of Vj(0) in the UV, implied if we assume eq. (6.1) to be valid in the UV, is
akin to the negative mass square acquired by the Higgs particle upon considering tadpole
diagrams involving fermionic loops (Yukawa coupling), which also diverge quadratically in A.
Furthermore, one might argue that this problem would be on the same level as the so-called
hierarchy problem of the Standard Model. Conversely, if a subtraction is carried out in the
RG evolution of the field-independent term [see eq. (6.1)], the hierarchy problem for the
field-independent term in our model for the inflaton, is reduced to the same level at which
the Higgs particle mass of the Standard Model itself suffers from a comparable RG running
and concomitant hierarchy problem. (The lack of experimental evidence for supersymmetric
particles, whose presence could potentially alleviate the hierarchy problem of the Standard
Model, does not need to be stressed in the current context.)
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The leading term on the right-hand side of eq. (6.1) has a peculiar property: it vanishes
for vanishing couplings of the model but diverges for A — oco. The physical condition of a
vanishing RG evolution for the field-independent term in the limit of vanishing couplings
is implemented in eq. (6.1), but the limit is not approached uniformly in the sense that,
colloquially speaking, if A goes to infinity faster than the couplings go to zero, there is a
remaining term. If, in addition to conjectures (7), (77), and (iii), we also conjecture that
the limit of vanishing parameters (expansion coefficients) be approached smoothly, then the
second subtraction would be required. Of course, this additional subtraction eventually has to
be justified on a calculation based on first principles. It is permissible, though, to consider a
more favourable scenario where the use of an optimized regulator, which enables us to recover
the bare action from the solution of the RG equation in the UV, will translate into a modified
RG evolution for the constant term, which involves more than one subtraction in the UV, for
our four-dimensional case. Let us therefore investigate the doubly-subtracted RG evolution

k4 k2 92V (0)
k&ka(O) = 3072 <k2 T 8(]25Vk(0) -1+ T , k — o0, (6.3)

which is still infrared safe because of the k? prefactor. The subtraction of even more asymptotic
terms would contradict conjecture (7i¢). In the UV limit, one then obtains

[05Vi(0)]?

kORVi(0) ~ —0 5

k—oo. (6.4)
If the double subtraction implied by eq. (6.3) holds for a modified RG evolution which avoids
the unphysical divergences, then this would lead to a cosmological constant that diverges in
the UV, but only logarithmically.

Indeed, the RG flow equation (2.19) of the dimensionless cosmological constant is

modified as
1 1
kKON = — g | ———= —1+m7 | — 2\ 6.5
Ak 4ﬂ9k<1+m% +mk> ks (6.5)

from which one observes that the S-function tends to zero in the UV limit, since we have the
gr ~ k? and mi ~ k72 in the UV limit.

In ref. [57] the authors show that no M4 term is present (due to the subtraction) and
the RG scale-dependence is characterised by M? and log(M?) terms, where M denotes the
running RG scale. Here we use a double subtraction in (6.4), thus, there is no k* term in
the UV limit of the RG equation. If one neglects the scaling of the mass term my — m, the
solution of the flow equation can be obtained and reads

asymptotic behavior that g ( -1+ fn%) — 0 if k — oo, where we keep in mind that

Vi (0) m?*log(k), k — oo. (6.6)

"~ 3272
Relating the RG scales k ~ M in (6.6) and by setting £ = 0 in equation (6.9) of [57], the two
runnings can be compared, as is done in section 6.3.

Let us explore a (possibly curious) analogy to the emergence of other logarithmic
divergences in quantum field theory, which seem to have a long history, ever since Bethe, in his
first calculation of the Lamb shift [115], obtained a logarithmically divergent result (expressed
in terms of a UV cutoff parameter), in addition to the logarithmic sum over hydrogenic excited
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state which bears his name. The logarithmic divergence was classified as nonproblematic in
ref. [115], as it was clear that a natural cutoff (in the case of ref. [115], the electron mass
scale) exists. (In our case, of course, a natural UV cutoff is found at k£ ~ A, the Planck
scale.) The problem was later analyzed in greater detail by French and Weisskopf [116], and
Kroll and Lamb [117], as well as Feynman [118], who clarified the matching of UV and IR
divergences (see p. 777 of ref. [118]). Without drawing any further analogies here, we note
that the original subtraction introduced by Bethe in ref. [115] was completely ad hoc at the
time; the full physical picture was clarified later. May it be permissible to mention that
corresponding subtractions, to obtain physically acceptable results in problems of advanced
classical electrodynamics, have recently been discussed in chapter 8 of ref. [119].

The subtractions introduced in egs. (6.1) or (6.3) are not unique, and we do not have
a rigorous derivation at present beyond the considerations described above. However, the
physical requirements that should to be fulfilled by the subtracted RG evolution of the
constant term, as formulated in the conjectures (7)—(iii) above, are in agreement with the
physical requirements expressed between egs. (36) and (37) of ref. [24]. The conjecture and
the subtraction terms enter as an additional input into our calculations. In general, it might
be possible to avoid the unphysical divergences of the constant, field-independent terms via a
suitable modification of the condition (3.4) imposed on the regulator function.

6.3 Comparison with other results

In the previous subsection we proposed a new subtraction in order to get rid of the spurious
divergent terms k* and k? in the RG flow equation of the constant (field-indepedent) term of
the action, which is related to the cosmological constant. In the literature, the RG running of
the cosmological constant has been already suggested using subtraction ideas in order to solve
the cosmological constant problem. Thus, let us compare them to our double-subtracted RG
equation (6.4) and its solution.

In [120], slightly generalized DeWitt-Schwinger adiabatic renormalization subtractions
are proposed in curved space to include an arbitrary renormalization mass scale u. The
running of the cosmological constant is obtained in equation (21) of ref. [120]. A similar
running is given by eq. (14) of ref. [121], which reads as

1 4 4 2/ 92 2 4 m? + i
A(p) = Ao — 1282 <—(M — pg) + 2m(pu” — pg) — 2m*log Rl ; (6.7)

and it only differs from equation (21) of [120] in the prefactor of the second term of the right
hand side by a multiplicative factor of 2. The prefactor is, however, scheme dependent and it
also depends on the physical content of the studied Lagrangian. Thus, it is not surprising
that one finds different values in the literature [see eq. (33) of [121]]. In eq. (6.7), the running
RG scale is denoted by p with the UV value pg. Regarding the RG running, three distinct
scale dependencies are present; a term that is proportional to u*, one with y? and lastly a
logarithmic term log ;2. The RG running of the first two, especially of the u? term, can cause
a rampant divergent behavior.

Now, let us take a look at the leading terms of eq. (4.1) that do not yet contain
subtractions. Insted of i we denoted the RG running scale by k. In the limit &% > Q%Vk(O),
the solution to eq. (4.1) is eq. (4.2),

L4

Vk(o) ~ +128772k )

k — oo, (6.8)
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which indicates the same rampant quartic divergence of Vj(0). The prefactor 1/(12872) is
also identical to the one in eq. (6.7). If one uses a single subtraction (6.1) also proposed
in [24], then the leading term in the UV yields the solution

1

2k2, k — oco. (6.9)

This still contains a k? divergence in the UV limit, so, we propose a double subtraction, see
equation (6.4), which has only a mild logarithmic divergence in the UV limit. For constant
mass, its solution can be written as (6.6)

Vi (0) ~ + m*log(k?), kE — oo. (6.10)

6472

Again, the prefactor 1/(6472) also matches exactly the prefactor of equation (6.7).

In ref. [57] the so-called Running Vacuum Model has been studied which assumes a
scale-dependent vacuum, i.e, a running cosmological constant. The authors of [57] propose a
suitable subtraction of the so-called Minkowski contribution in the framework of the adiabatic
regularization method which results in an RG scaling for the running vacuum described by
equation (6.9) of [57]

3 LY o | ap2 2 2y M?
pvac(M) = pyac(Mo) + 162 §— 6 H*|M* - My —m“ln ﬁg
N2/, . o M2
(g—ﬁ) (H? — 2HI - 6HH) In 375 (6.11)

9
1672

where the running RG scale is denoted by the mass-like term M while its UV value is given
by My. The result of the author’s subtraction method is the absence of the M* term in the
scaling relation for the running vacuum. This has great importance; in the UV limit (when
M — 00), the M* is a well-known source of exceedingly large contributions. The term ¢
stands for the non-minimal coupling to gravity.

One can relate the RG scale of ref. [57] [denoted as M? in eq. (6.11)] and the one used
by us (which we denote as k); the result is the proportionality k& oc M. Therefore, one can
find very interesting similarities between our approaches. In our case, we have minimal
coupling, i.e., we do not include an extra £R¢? coupling between gravity and the matter
content, and thus £ = 0. Thus, for minimal coupling, i.e., for £ = 0, the numerical prefactors
of the M? and log(M?) terms are —1/(327%) and 1/(3272). Despite the factor of 2 difference
compared to our results, we can say that the functional forms encountered in the RG running
in ref. [57] and here are compatible. In ref. [57] the authors show that no M* term is present
(due to their subtraction of the Minkowskian contribution), and the RG scale-dependence is
characterised by the M? and log(M?) terms only. Arguments for the absence of the quartic
M* term are also presented in refs. [122, 123], where similar flow equations are obtained. If a
double-subtraction method is used (6.6), only a logarithmic scale dependence remains.

7 Conclusions

In this work, we have discussed the role of the constant term in the non-perturbative RG
evolution. In particular, we investigated whether the rampant divergent terms k? and k*
which naturally appear in the RG equation for d = 4 dimensions for the scalar inflaton field

~ 18 —



(in the absence of the Gaussian fixed point) can be removed by a suitable subtraction method.
These divergent terms are the consequence of the construction of the functional RG method
and considered as unphysical. They make the application of the functional RG method on
the proper treatment of the cosmological constant very questionable if the Gaussian fixed
point is absent.

Renormalisation and RG scaling could be a possible tool to handle the cosmological
problem and they are under intense debate, see for example the recent works, [56, 57]. In
ref. [57] the Running Vacuum Model has been studied which assumes a running cosmological
constant where the running vacuum described by equation (6.9) of [57] and the running RG
scale is denoted by the mass-like term M. Based on the subtraction method of [57] it is
possible to remove the divergent M* term and RG scale-dependence of the running vacuum
is characterised with M? and log(M?) terms only.

Here we showed how the subtraction method can be improved further in order to
eliminate from the RG scaling of the running vacuum, not just the k* (i.e., M* of ref. [57])
but also the k? (i.e., M? of ref. [57]) terms which results in a purely logarithmic dependence
on the scale; thus, the unphysical rampant behaviour of the naive approach is handled. As a
future improvement on our subtraction method we think it would be interesting to include
the contributions of a theory that is non-minimally coupled to gravity (£ # 0).
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A Field-independent term and cosmological constant

The standard model of cosmology implies the requirement of an exponentially fast expan-
sion [124-128] of the early Universe which is usually achieved by assuming a hypothetic
inflaton field which slowly rolls down from a potential hill towards its minimum. Particle
physics provides us with possible candidates for the inflaton field. A first guess involves a
scalar field, ¢, as a candidate for the inflaton field, with a (Euclidean) action that includes
the scalar curvature R with minimal coupling to gravity,

m2
Sle] = /d4x\/fg Eg’” VoV + V() + QPR] : (A1)

where the Planck mass m2 = 1/(87G) has been used and \/—g = \/—detg,, = o® with
g = diag(—1,a% a%, a?). Here, the scale factor a = a(t) describes the cosmological scaling
in the Friedmann-Lemaitre-Robertson-Walker (FLRW, see refs. [87-90]) metric (in our units,
the speed of light is c=1 and A =1).

The FLRW metric is given by

g = ding(~1,a(t), a(®)?, a(t)?) (A.2)
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with the line element
ds® = —dt* + a(t) di? (A.3)

where ¥ = (z,y, z). For scalar fields, the partial and covariant derivatives coincide, and hence,
we can replace, in eq. (A.1),

. 0* 1 o
gV Vo = —oVHV 0 = —¢ <_8t? + MOE 8772) 0. (A4)

One may stretch the spatial coordinates, in a “flattening” transformation, according to
7 = a(t)F, o(t,7) = ¢’ (t',7), t'=t. (A.5)

After this transformation, the action is brought into the form
1 82 82 m2
/ 3./ / / / ¥4
_ _ - 4= —LR| . A.
5[0 /dt/dr[ 2¢< 8t,2+8ﬁ2>¢+V<¢>+2R (A.6)
If we now re-identify

t'— it (Wick rotation), 7T, &) = o(t, 1), V(g') = V(p), (A7)

and ignore the curvature term which is the cosmological constant term, then we obtain
1
Stol = [ d'a |50 + Vi) (A.5)

with a fully local (Euclidean) action of our theory, formulated in Euclidean four-dimensional
space. In comparison to egs. (A.1), eq. (A.8) has the same structure as would otherwise be
expected for flat space, and makes the model amenable to a nonperturbative RG analysis
using established techniques [110].
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