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In their accompanying Comment [1], Leys et al. question the modeling choice of our original study 26 

[2] to focus on the skeletal motifs of Euplectella aspergillum may not be suited to gain insight into 27 

the hydrodynamics within the body cavity of the sponge and its surroundings, based on two main 28 

arguments: in living sponges (i) the skeleton is embedded within soft tissues, which rely on canals 29 

and chambers of millimeter to submicron sizes, and (ii) active pumping governs the water flows 30 

through the canals. Here, we provide evidence that the above comments, while stimulating an 31 

interesting perspective for future studies, have marginal bearing on the conclusions drawn in our 32 

original paper—whose level of detail is defined by the present state-of-the-art of modeling 33 

technology. 34 

 35 

Our modeling choice—supported by the peer-review process—is not unique to our work, and it is 36 

informed by the classical description of E. aspergillum provided by Schulze (“We see in a well-37 

preserved piece of the tube-wall that the circular apertures in the skeleton, […] correspond also 38 

to circular apertures about 2 mm in diameter through the entire wall of the tube, by means of 39 

which the water surrounding the sponge communicates directly with that contained in its inner 40 

cavity”, [3]). 41 

 42 

Whether or not this framework is adequate to capture the hydrodynamics of a living sponge with 43 

an intact tissue is a reasonable question. Experimental endeavors in aquaria or in situ should be 44 

the cornerstone to build an improved understanding of the role of soft tissues in regulating the 45 

hydrodynamic regime around and inside E. aspergillum. In the absence of these experiments and 46 

on account of technological limitations that hinder computer modeling across widely different 47 

physical scales, one can draw some conclusion based on fluid mechanics research on the 48 

interaction between coherent fluid structures and porous media [4-6]. Although not directly 49 

addressing the hydrodynamics of E. aspergillum, this literature provides evidence supporting that 50 

the flow physics associated with the skeletal motifs of this sponge should be robust to the presence 51 

of pores and canals from millimeter-to-submicron.  52 

 53 

For example, experiments by Adhikari and Lim in [4] indicate that for Reynolds numbers above 54 

1000, a vortex ring possesses sufficient energy to pass through a porous screen, with minimal 55 



 

 

structural changes. These findings are confirmed in the comprehensive computational study by 56 

Cheng et al. [5] on the interplay between the screen microstructure and Reynolds (Re) number, 57 

which further suggest that the transmission of vorticity through the screen is favored by a higher 58 

porosity and a finer mesh. Experiments by Hrynuk et al. [6] further justify this prediction, by 59 

demonstrating that at high Re (~2000), a porous wall with a fine mesh is virtually transparent to 60 

an incoming vortex, whose downstream structure remains unaltered (Fig. 1). According to the 61 

above studies, coherent vortical structures propagate through porous walls in a surprising and 62 

somewhat counterintuitive manner, which supports our original modeling choice of focusing on 63 

the skeletal motifs of E. aspergillum.  64 

[Figure 1] 65 

In this vein, a promising approach to incorporate the porosity of the soft tissue within the present 66 

modeling technology is to homogenize the soft tissues through a permeable layer, thereby 67 

capturing the flow through an effective permeability coefficient. Such an approximation would 68 

constitute a first step to capture the complexity of soft tissues, preceding future research that could 69 

model bidirectional fluid-structure interactions, resulting into local deformation of the sponge. 70 

 71 

The omission of canals in our computational model is not the only approximation which is being 72 

considered inadequate by Leys et al. [1]: our model also neglects active pumping. Assessing the 73 

implications of such an approximation requires once again experiments in aquaria and in situ that 74 

could bring clarity on the actions of the choanocytes, aquaporins, and sub-micrometric channels 75 

[7, 8]. Beyond practical challenges, the execution of these experiments calls for fine level of 76 

control of flow conditions, whereby it may be difficult to tease out active versus passive 77 

hydrodynamics from a mere flow visualization experiments. For example, Leys et al. offer as 78 

evidence of active pumping the flow through the osculum in another living sponge, different from 79 

E. aspergillum (Fig. 2 in [1]). Not surprisingly, an equivalent visualization is obtained by detailing 80 

the streaklines within the body cavity, from our simulations (Fig. 2). Based on the above, whether 81 

simulations “must” or “should” account for soft tissues is a matter of debate that can be resolved 82 

through constructive collaboration at the interface between mechanics and biology. 83 

[Figure 2] 84 



 

 

To study the fluid dynamics of E. aspergillum, we drew inspiration from the seminal studies by 85 

Vogel in the 1970s that have laid the foundations of the present understanding of how marine 86 

sponges take advantage of passive flow from ambient currents [9, 10]. In a pioneering experiment, 87 

Vogel and Bretz have shown that “the same unidirectional flow” measured in living sponges in 88 

controlled settings is also present in plastic models, which rely on passive ventilation and lack 89 

organic tissues and flagellated chambers [10]. In this respect, our work can be viewed as an 90 

extension of Vogel’s theory, informed by state-of-the-art computational fluid mechanics. 91 

Accounting for the difference in size of the models by Vogel and Bretz with respect to living 92 

sponges (~2cm versus 10-30cm), our simulations cover higher flow regimes, up to Re of 2000. 93 

 94 

Vogel’s theory on the use of current-induced flow by marine sponges is widely accepted in the 95 

community, although its universality has been questioned by the authors of this Comment and 96 

others, see, for example, [11, 12]. For instance, Leys et al. [12] found that passive ventilation plays 97 

a minor role at low ambient velocities, with certain glass sponges relying more on active water 98 

pumping. Yet, the high cost of active water pumping—which varies between species and 99 

habitats—might be better sustained by large sponges that live in nutrient-rich waters at low 100 

ambient currents. This cost is typically reduced by thin-walled sponges living in nutrient-poor 101 

waters at high ambient currents, like E. aspergillum, through passive ventilation, which is crucial 102 

for the survival of these organisms and provides a large proportion of the sponge’s overall food 103 

intake [12]. The classical work of Bidder [13], also cited by Leys et al. in their Comment [1], 104 

points in this very same direction, indicating that fast and unchanging currents at great depths 105 

could be responsible for limited hydraulic evolution and efficiency of active pumping in glass 106 

sponges. As demonstrated by Vogel, the flow through live sponges is, in fact, often related to 107 

environmental currents, whereby increasing the speed of the ambient currents “increase[s] the rate 108 

at which water under natural conditions passes through” live sponges [9]. These studies support 109 

our understanding that passive ventilation is essential for the flow physics of E. aspergillum—110 

underlying the evolution of its unique skeletal motifs as potentially regulating elements of the flow 111 

patterns within and outside its body cavity, as unveiled in our original study [2].  112 

 113 



 

 

Leys et al. offer a potentially interesting perspective that might challenge the universality of 114 

Vogel’s theory, especially in the case of larger sponges living in nutrient-rich waters and exposed 115 

to low and/or changing currents [14]. Should Vogel’s theory be reconsidered? Perhaps, but such 116 

an endeavor cannot be undertaken without major advances in fluid and solid mechanics, like the 117 

one presented in our original article. We may concur with Leys et al. that future computational 118 

modeling of sponges should consider the whole organism and not only its bare skeleton, with two 119 

caveats, though: (i) without some simplifying approximations, this is unviable on practical 120 

grounds, even with the most powerful current supercomputers, and (ii) clear, experimentally based 121 

hypotheses shall be formulated to ensure better understanding of biological mechanisms that are 122 

presently masked by incomplete empirical data. 123 

 124 

Data availability 125 

STL files for all of the models, raw data for the plots, and scripts to reproduce the figures are 126 

available on GitHub at https://github.com/giacomofalcucci/Euplectella_HPC. Additional data that 127 

support the findings of this study are available from the corresponding author on request. 128 

 129 

Code availability 130 

All codes necessary to reproduce results in main paper are available on GitHub at 131 

https://github.com/giacomofalcucci/Euplectella_HPC. 132 
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Figure Legends 204 
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Figure 1: Free propagation of a vortex ring generated at a nozzle of ~1 cm radius traveling at ~10 cm/s versus the 206 
impact of the same vortex on a porous screen with a mesh of porosity ~65% and wire radius of ~0.01 cm (courtesy of 207 
Hrynuk et al. [6]). For sufficiently large incoming currents, the presence of a fine array of channels in the organic 208 
tissues of E. aspergillum is unlikely to play a significant role on the flow patterns formed within and outside its body 209 
cavity. 210 
 211 
Figure 2: Detail of the flow streamlines exiting from the osculum of E. aspergillum complete model at Re=2000. The 212 
plume is clearly visible. The flow out of the osculum is in qualitative agreement match with observations in the seminal 213 
studies by Vogel on plastic, mockup sponges [9, 10]. 214 
 215 
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