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In their accompanying Comment [ 1], Leys et al. question the modeling choice of our original study
[2] to focus on the skeletal motifs of Euplectella aspergillum may not be suited to gain insight into
the hydrodynamics within the body cavity of the sponge and its surroundings, based on two main
arguments: in living sponges (i) the skeleton is embedded within soft tissues, which rely on canals
and chambers of millimeter to submicron sizes, and (ii) active pumping governs the water flows
through the canals. Here, we provide evidence that the above comments, while stimulating an
interesting perspective for future studies, have marginal bearing on the conclusions drawn in our
original paper—whose level of detail is defined by the present state-of-the-art of modeling

technology.

Our modeling choice—supported by the peer-review process—is not unique to our work, and it is
informed by the classical description of E. aspergillum provided by Schulze (“We see in a well-
preserved piece of the tube-wall that the circular apertures in the skeleton, [...] correspond also
to circular apertures about 2 mm in diameter through the entire wall of the tube, by means of

which the water surrounding the sponge communicates directly with that contained in its inner

cavity”, [3]).

Whether or not this framework is adequate to capture the hydrodynamics of a living sponge with
an intact tissue is a reasonable question. Experimental endeavors in aquaria or in sifu should be
the cornerstone to build an improved understanding of the role of soft tissues in regulating the
hydrodynamic regime around and inside E. aspergillum. In the absence of these experiments and
on account of technological limitations that hinder computer modeling across widely different
physical scales, one can draw some conclusion based on fluid mechanics research on the
interaction between coherent fluid structures and porous media [4-6]. Although not directly
addressing the hydrodynamics of E. aspergillum, this literature provides evidence supporting that
the flow physics associated with the skeletal motifs of this sponge should be robust to the presence

of pores and canals from millimeter-to-submicron.

For example, experiments by Adhikari and Lim in [4] indicate that for Reynolds numbers above

1000, a vortex ring possesses sufficient energy to pass through a porous screen, with minimal
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structural changes. These findings are confirmed in the comprehensive computational study by
Cheng et al. [5] on the interplay between the screen microstructure and Reynolds (Re) number,
which further suggest that the transmission of vorticity through the screen is favored by a higher
porosity and a finer mesh. Experiments by Hrynuk et al. [6] further justify this prediction, by
demonstrating that at high Re (~2000), a porous wall with a fine mesh is virtually transparent to
an incoming vortex, whose downstream structure remains unaltered (Fig. 1). According to the
above studies, coherent vortical structures propagate through porous walls in a surprising and
somewhat counterintuitive manner, which supports our original modeling choice of focusing on

the skeletal motifs of E. aspergillum.
[Figure 1]

In this vein, a promising approach to incorporate the porosity of the soft tissue within the present
modeling technology is to homogenize the soft tissues through a permeable layer, thereby
capturing the flow through an effective permeability coefficient. Such an approximation would
constitute a first step to capture the complexity of soft tissues, preceding future research that could

model bidirectional fluid-structure interactions, resulting into local deformation of the sponge.

The omission of canals in our computational model is not the only approximation which is being
considered inadequate by Leys et al. [1]: our model also neglects active pumping. Assessing the
implications of such an approximation requires once again experiments in aquaria and in sifu that
could bring clarity on the actions of the choanocytes, aquaporins, and sub-micrometric channels
[7, 8]. Beyond practical challenges, the execution of these experiments calls for fine level of
control of flow conditions, whereby it may be difficult to tease out active versus passive
hydrodynamics from a mere flow visualization experiments. For example, Leys et al. offer as
evidence of active pumping the flow through the osculum in another living sponge, different from
E. aspergillum (Fig. 2 in [1]). Not surprisingly, an equivalent visualization is obtained by detailing
the streaklines within the body cavity, from our simulations (Fig. 2). Based on the above, whether
simulations “must” or “should” account for soft tissues is a matter of debate that can be resolved

through constructive collaboration at the interface between mechanics and biology.

[Figure 2]
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To study the fluid dynamics of E. aspergillum, we drew inspiration from the seminal studies by
Vogel in the 1970s that have laid the foundations of the present understanding of how marine
sponges take advantage of passive flow from ambient currents [9, 10]. In a pioneering experiment,
Vogel and Bretz have shown that “the same unidirectional flow” measured in living sponges in

controlled settings is also present in plastic models, which rely on passive ventilation and lack

organic tissues and flagellated chambers [10]. In this respect, our work can be viewed as an
extension of Vogel's theory, informed by state-of-the-art computational fluid mechanics.

Accounting for the difference in size of the models by Vogel and Bretz with respect to living

sponges (~2cm versus 10-30cm), our simulations cover higher flow regimes, up to Re of 2000.

Vogel’s theory on the use of current-induced flow by marine sponges is widely accepted in the
community, although its universality has been questioned by the authors of this Comment and
others, see, for example, [11, 12]. For instance, Leys et al. [12] found that passive ventilation plays
a minor role at low ambient velocities, with certain glass sponges relying more on active water
pumping. Yet, the high cost of active water pumping—which varies between species and
habitats—might be better sustained by large sponges that live in nutrient-rich waters at low
ambient currents. This cost is typically reduced by thin-walled sponges living in nutrient-poor
waters at high ambient currents, like E. aspergillum, through passive ventilation, which is crucial
for the survival of these organisms and provides a large proportion of the sponge's overall food
intake [12]. The classical work of Bidder [13], also cited by Leys et al. in their Comment [1],
points in this very same direction, indicating that fast and unchanging currents at great depths
could be responsible for limited hydraulic evolution and efficiency of active pumping in glass
sponges. As demonstrated by Vogel, the flow through live sponges is, in fact, often related to
environmental currents, whereby increasing the speed of the ambient currents “increase[s] the rate
at which water under natural conditions passes through” live sponges [9]. These studies support
our understanding that passive ventilation is essential for the flow physics of E. aspergillum—
underlying the evolution of its unique skeletal motifs as potentially regulating elements of the flow

patterns within and outside its body cavity, as unveiled in our original study [2].
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Leys et al. offer a potentially interesting perspective that might challenge the universality of

Vogel's theory, especially in the case of larger sponges living in nutrient-rich waters and exposed

to low and/or changing currents [14]. Should Vogel's theory be reconsidered? Perhaps, but such
an endeavor cannot be undertaken without major advances in fluid and solid mechanics, like the
one presented in our original article. We may concur with Leys et al. that future computational
modeling of sponges should consider the whole organism and not only its bare skeleton, with two
caveats, though: (i) without some simplifying approximations, this is unviable on practical
grounds, even with the most powerful current supercomputers, and (ii) clear, experimentally based
hypotheses shall be formulated to ensure better understanding of biological mechanisms that are

presently masked by incomplete empirical data.

Data availability
STL files for all of the models, raw data for the plots, and scripts to reproduce the figures are
available on GitHub at https://github.com/giacomofalcucci/Euplectella. HPC. Additional data that

support the findings of this study are available from the corresponding author on request.

Code availability
All codes necessary to reproduce results in main paper are available on GitHub at

https://github.com/giacomofalcucci/Euplectella. HPC.
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Figure 1: Free propagation of a vortex ring generated at a nozzle of ~1 cm radius traveling at ~10 cm/s versus the
impact of the same vortex on a porous screen with a mesh of porosity ~65% and wire radius of ~0.01 cm (courtesy of
Hrynuk et al. [6]). For sufficiently large incoming currents, the presence of a fine array of channels in the organic
tissues of E. aspergillum is unlikely to play a significant role on the flow patterns formed within and outside its body

cavity.

Figure 2: Detail of the flow streamlines exiting from the osculum of E. aspergillum complete model at Re=2000. The
plume is clearly visible. The flow out of the osculum is in qualitative agreement match with observations in the seminal

studies by Vogel on plastic, mockup sponges [9, 10].
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