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ABSTRACT2

Zebrafish is a model organism that is receiving considerable attention in preclinical research.3
Particularly important is the use of zebrafish in behavioral pharmacology, where a number of high-4
throughput experimental paradigms have been proposed to quantify the effect of psychoactive5
substances consequences on individual and social behavior. In an effort to assist experimental6
research and improve animal welfare, we propose a mathematical model for the social behavior7
of groups of zebrafish swimming in a shallow water tank in response to the administration of8
psychoactive compounds to select individuals. We specialize the mathematical model to caffeine,9
a popular anxiogenic compound. Each fish is assigned to a Markov chain that describes transitions10
between freezing and swimming. When swimming, zebrafish locomotion is modeled as a pair of11
coupled stochastic differential equations, describing the time evolution of the turn-rate and speed12
in response to caffeine administration. Comparison with experimental results demonstrate the13
accuracy of the model and its potential use in the design of in-silico experiments.14
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1 INTRODUCTION
Animal experiments are a standard practice for hypothesis testing in preclinical research (Chow et al.,17
2008; Sánchez Morgado and Brønstad, 2021). However, experimental studies involving pharmacological18
treatment of sentient animals continue to raise ethical concerns regarding the well-being of the animals19
(Badyal and Desai, 2014). Computational methods can enable in-silico experiments that might help in20
the fulfillment of the 3Rs: Reducing the number of subjects, Refining experimental design and setup, and21
Replacing the use of live subjects (Ford, 2016; Raunio, 2011; Viceconti et al., 2021).22

Zebrafish (Danio rerio) has emerged as a species of choice in experimental studies in pharmacology where23
it is used in high throughput drug screening of several psychoactive compounds (Goldsmith, 2004; Guo,24
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2004). Its genetic and physiologic similarities with humans have made the zebrafish an attractive species for25
experimental investigations of human dysfunctional processes (Stewart et al., 2014). In particular, zebrafish26
experiments could clarify some of the open questions on anxiety-related behaviors in human (Stewart et al.,27
2012). In these experiments, fish behavior is monitored in an experimental setup to investigate how anxiety-28
related behavior is modulated by anxiolytic and anxiogenic compounds, such as caffeine, cocaine, and29
ethanol (da Silva Chaves et al., 2018; Egan et al., 2009; Gerlai et al., 2008; Kacprzak et al., 2017; Speedie30
and Gerlai, 2008). Experiments on fish treated with such compounds have revealed numerous anxiety-31
related behaviors; erratic activity (jump turns and sudden change in direction), thigmotaxis (tendency to32
stay near the wall), geotaxis (tendency to stay at the bottom of the tank), and freezing (Cachat et al., 2010;33
Khan et al., 2017; Maximino et al., 2010a).34

Previous efforts have leveraged data-driven, mathematical models to accurately describe the locomotion35
of isolated fish swimming in shallow or deep water tanks (Burbano-Lombana and Porfiri, 2020; Gautrais36
et al., 2009; Mwaffo and Porfiri, 2015; Mwaffo et al., 2017a; Zienkiewicz et al., 2015). With respect to37
zebrafish, a number of efforts have sought to incorporate their unique burst-and-coast swimming style,38
composed of sudden tail bursts that are followed by coasting phases (Blake, 2004; Chung, 2009). The39
general line of approach consists of formulating a stochastic differential equation (SDE) for the turn-rate40
evolution, in which white noise is superimposed to intermittent excitation in the form of a jump process41
(Mwaffo et al., 2015). The original jump persistent turning walker (JPTW) was later adapted to the study42
of the effect of psychoactive manipulations in two separate studies (Burbano-Lombana and Porfiri, 2020;43
Mwaffo and Porfiri, 2015). Mwaffo and Porfiri (2015) investigated the effect of acute ethanol treatment of44
zebrafish on model parameters of the JPTW, discovering a strong effect of concentration on the parameters45
of the jump process. Burbano-Lombana and Porfiri (2020) expanded on JPTW to simulate zebrafish46
response to acute caffeine administration. Not only did the model account for speed modulation during47
locomotion through an additional SDE, but also did it incorporate a detailed treatment of freezing episodes48
using discrete-time Markov chain. Overall, these studied provide indication of the sensitivity of model49
parameters to the administration of psychoactive compounds that must be considered when performing50
projective, in-silico experiments.51

Other studies have extended individual fish models to groups, thereby including fish social interactions in52
terms of schooling and shoaling behaviors. In these models, social interaction is introduced as a response53
function that modulates the speed and turn-rate. Visual stimuli associated with the presence of conspecifics54
have been often considered in these models (Butail et al., 2016; Calovi et al., 2015, 2018; Collignon et al.,55
2016; Gautrais et al., 2012; Mwaffo et al., 2017b; Zienkiewicz et al., 2015, 2018), where fish tend to56
align and swim closer to neighboring subjects accommodating to alignment and attraction forces. Related57
efforts have included hydrodynamic interactions to incorporate lateral line sensing of the flow caused by58
neighboring subjects (Filella et al., 2018; Gazzola et al., 2016; Jhawar et al., 2020; Porfiri et al., to appear).59
Overall, the mathematical underpinnings of these studies are common to the investigation of the structure60
of collective behavior of several species, from ants (Valentini et al., 2020) to bats (Shirazi and Abaid, 2018).61

To the best of our knowledge, models looking at the effect of psychoactive compounds on zebrafish62
social behavior have never been explained in the literature. Here, we fill this gap by proposing a model63
that not only captures the effect of caffeine administration on fish locomotory activity but also takes64
into consideration the influence of the social environment in modulating the pharmacological response.65
To this end, we model fish dynamics in terms of speed and turn-rate, along two time-scales similar to66
Burbano-Lombana and Porfiri (2020). We define a slow time-scale that captures the transitions between67
swimming and freezing states using a discrete-time Markov chain. During the swimming state, we model68
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Figure 1. Representative trajectories of a group of five subjects, with four untreated individuals and one
subjects treated at a caffeine concentration of: 0 (A), 25 (B), 50 (C), and 70 mg/L (D).

the speed and turn-rate evolution along a fast time-scale as a system of coupled SDEs. In the evolution of69
the turn-rate, we account for social interactions for each subject based on visual cues from neighboring70
individuals, therein, we utilize different interaction parameters depending on the treatment of the specific71
subject. To calibrate the model parameters, we rely on the experimental data-set from Neri et al. (2019),72
wherein a group of untreated subjects swam with a caffeine-treated individual. For each experimental73
trial, we estimate the transition probabilities of the Markov chain by counting the instances of freezing74
and swimming for each fish within the group. Further, we calibrate the locomotion and social interaction75
parameters of the governing SDEs for each fish in the group using maximum likelihood estimation.76

We investigate the value of the social group in modulating the response of fish to caffeine administration.77
Specifically, we compare calibrated model parameters for a treated fish swimming with an untreated group78
with those of a treated fish swimming in isolation from Burbano-Lombana and Porfiri (2020). We further79
highlight an asymmetric interaction between the treated individual and untreated subjects, associated with80
the effect of caffeine on locomotory activity of fish and how it is perceived by untreated subjects (Gupta81
et al., 2014; Miller and Gerlai, 2007; Speedie and Gerlai, 2008). Lastly, we verify the predictive ability of82
the proposed model in capturing the social behavior of the group by comparing a set of social interaction83
metrics obtained from in-silico experiments to those from real experiments.84

We structure the rest of the paper as follows. We start with a synoptic description of the experiments and85
data in Section 2. In Section 3, we present our modeling framework and define the speed and turn-rate86
evolution models. Additionally, we describe the model discretization and calibration approach. In Section87
4, we discuss the influence of caffeine concentration on individual and social parameters of the treated fish88
and validate the proposed model through comparisons with experimental data. We conclude in Section 589
with a discussion on the general findings of this work and possible research directions for future work.90

2 MATERIALS AND EQUIPMENT
Our theoretical endeavor is grounded in experiments from Neri et al. (2019) (approved by the Animal91
Welfare Committee of New York University: protocol number 13–1424) on the effect of acute caffeine92
treatment on social behavior. Below, we summarize the main components of the experimental framework93
and data analysis from Neri et al. (2019).94

2.1 Experiment setup and procedure95

The setup consisted of a circular tank of diameter d = 90 cm filled with water at depth h = 10 cm.96
Cameras were used to record fish behavior at 40 frames/s for a duration of five minutes (Texp = 300 s).97
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Videos were processed by an in-house multitarget tracking system developed in MATLAB (Ladu et al.,98
2014).99

Experiments were performed on groups of five adult subjects, including four untreated individuals and100
one treated individual, at four different caffeine concentrations: 0 (vehicle), 25, 50, and 70 mg/L. For each101
trial, five fish were randomly chosen from the holding tank. 50 fish where chosen at random to conduct ten102
experimental trials for each caffeine concentration (200 fish in total). One of the fish was kept in a 0.5 L103
beaker of a caffeine solution for one hour. Four untreated fish were introduced to the circular arena at the104
same time the beaker with the treated fish was placed in the arena. After ten minutes of habituation, the105
treated fish was hand-netted from the beaker and released into the arena. The average fish body length (BL)106
was approximately 3 cm.107

2.2 Data post-processing108

Fish trajectories were obtained by tracking the centroid of each fish. Figure 1 illustrates representative109
trajectories from each concentration. The trajectory of the i-th fish is denoted by (xi(k∆), yi(k∆)), where110

∆ = 0.025 s is the sampling time, and k ∈
[
1, ..., K =

Texp
∆

]
.111

Position increments between consecutive readings were used to obtain the velocity vi(k∆) =112

[vi,x(k∆), vi,y(k∆)]T and the speed vi(k∆) =
√
v2
i,x(k∆) + v2

i,y(k∆). To calculate the turn-rate, ωi(k∆),113

we estimated the fish heading, θi(k∆), by fitting three consecutive positions, (xi((k−1)∆), yi((k−1)∆)),114
(xi(k∆), yi(k∆)), and (xi((k + 1)∆), yi((k + 1)∆)), along a circle (Gautrais et al., 2009). The turn-rate115
was then inferred from the heading increment, δθi(k∆), between the two lines connecting the center of the116

circle with the (k − 1)-th and (k + 1)-th centroid position on the circle as ωi(k∆) = δθi(k∆)
2∆ . Without loss117

of generality, we take i = 1 as the treated fish throughout this paper.118

Fish trajectories were also used to score the time spent freezing, an anxiety-related behavior in zebrafish119
(Maximino et al., 2010a). Following Kopman et al. (2013), a fish was considered to be in a freezing episode120
if it stayed within 2 cm radius for at least TF = 2 s. From experimental data, we defined a binary Boolean121

variable Γi(nTF), with n =
[
1, ...,

Texp
TF

]
that recorded instances of swimming (Γi(nTF) = 1) and freezing122

(Γi(nTF) = 0).123

Four experimental trials were discarded due to recording issues (two from 0 mg/L, and two from124
50 mg/L). We omitted four additional experimental trials due to insufficient data points for experimental125
analysis and parameter calibration (two from 25 mg/L, and two from 70 mg/L), whereby the fish spent126
less than 10 s in the swimming state and more than two BL away from the wall. For this reason, the127
experimental results presented in this paper may differ from that presented in Neri et al. (2019) that relies128
on the same data-set.129

3 METHODS
Here, we introduce the proposed data-driven framework to study the effect of caffeine treatment on130
individual and social behavior. With respect to our previous work (Burbano-Lombana and Porfiri, 2020),131
this study contributes a detailed model of social behavior, including attraction and alignment between132
subjects. Most importantly, these parameters are functions of the caffeine concentration and vary between133
treated and untreated subjects.134

With respect to the state of the art on social behavior, the proposed model brings forward the critical role135
of the freezing response, by developing a two-time-scale modeling dichotomy where freezing evolves a136
slow time-scale that dictates when the animal is swimming or motionless. During locomotion, we use two137
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Figure 2. (A) Fish kinematics: at time t, the fish pose is denoted as [xi(t), yi(t), θi(t)]
T, swimming at

speed vi(t) and turn-rate ωi(t). (B) A close-up look at the interaction between a pair of fish within a group
of five fish. Alignment and attraction between the i- and j-th fish are functions of the relative orientation,
φij(t), and relative position, in terms of the distance between fish, sij(t), and relative angle, θij(t).

coupled stochastic differential equations (SDEs) to describe the evolution of the turn-rate and the speed.138
The variables and notation used in the manuscript are included in Tab. S1 in the supplemental material.139

3.1 Zebrafish kinematics140

The fish were swimming in a shallow water tank, such that we could consider a two-dimensional (2D)141
model to describe their motion. Each fish is modeled as a rigid body, moving in a global reference frame142
[X, Y ] with origin O. The position of the centroid of fish i at time t is denoted as [xi(t), yi(t)]

T. We also143
measure the heading θi(t) ∈ [−π, π) as the angle between the swimming velocity and the global reference144
frame. Hence, the pose of fish i is described as a three-dimensional vector [xi(t), yi(t), θi(t)]

T, as shown in145
Fig. 2A. The evolution of zebrafish pose is modeled as a first-order kinematic model146

⎡
⎣ẋi(t)ẏi(t)

θ̇i(t)

⎤
⎦ =

⎡
⎣vi(t) cos θi(t)vi(t) sin θi(t)

ωi(t)

⎤
⎦ , (1)

with initial conditions xi(0) = x0,i, y(0) = y0,i, and θi(0) = θ0,i. Here, vi(t) and ωi(t) are the speed and147
turn-rate of the fish, respectively. We develop a mathematical model for the time-evolution of vi(t) and148
ωi(t) to predict the individual and social response of zebrafish.149

3.2 Zebrafish dynamics150

3.2.1 Freezing model151

We adopt a discrete-time Markov chain to capture the transitions between freezing and swimming152
states. Building on the work of Burbano-Lombana and Porfiri (2020) on isolated animals, for the i-th153
fish, we introduce a binary process Γi(nTF) that takes values 0 (freezing, F) and 1 (swimming, S), where154
n = [1, ...,Υ], Υ = Tsim

TF
, and Tsim is the total simulation time. The Markov chain is determined by155

probabilities of persistence in swimming and freezing states, pS,i and pF,i, respectively, and probabilities156
of state transition, given by pSF,i = 1− pS,i and pFS,i = 1− pF,i, respectively.157
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The speed and turn-rate of the i-th fish are158

vi(t) =

{
0, if Γi(nTF) = 0

vS,i(t), if Γi(nTF) = 1
, (2a)

ωi(t) =

{
0, if Γi(nTF) = 0

ωS,i(t), if Γi(nTF) = 1
, (2b)

such that during a freezing episode both the speed and turn-rate are zero and during swimming they evolve159
on the basis of the SDEs described below.160

3.2.2 Locomotion and interaction models161

Speed and turn-rate in the swimming state are modeled as a system of two coupled SDEs. In the model, we162
include social interaction terms that modulate fish locomotion based on the visual cues from neighboring163
conspecifics. As illustrated in Fig. 2B, we describe fish schooling between the focal fish, i, and the164
neighboring fish, j, in terms of the relative orientation, φij(t) = θi(t)− θj(t). Further, we examine fish165
shoaling in terms of the relative position of the neighboring fish with respect to the focal fish expressed in166
terms of the distance between the pair of fish, sij(t), and relative angle, θij(t).167

To model the evolution of the speed, we adopt the following logistic model, similar to Burbano-Lombana168
and Porfiri (2020) for a single fish (Pasquali, 2001):169

dvS,i(t) =
(
ηivS,i(t)− g(ωS,i(t))v

2
S,i(t)

)
dt+ σv,ivS,i(t)dWv,i(t), (3)

where ηi
[
s−1
]

and σv,i
[
s−

1
2

]
are the linear expansion rate and the strength of the added noise, respectively;170

Wv,i(t) is a standard Wiener process; and g(ωS,i(t))
[
m−1

]
encapsulates the effect of the turn-rate.171

Specifically, the speed response function is172

g(ωS,i(t)) =
1

stdω,iBL
|ωS,i(t)|, (4)

where stdω,i is the standard deviation of the absolute instantaneous value of the turn-rate (Burbano-173
Lombana and Porfiri, 2020). This function captures the need of fish to slow down when turning, while174
attaining larger speeds during straight swimming.175

This model offers a first approximation of speed modulation during social behavior. For each fish, the176
model requires the calibration of two parameters, assuming that the body length is common to the entire177
group: ηi, and σv,i. In this basic incarnation, the model does not incorporate speed-based social interaction,178
which have been proposed by several authors to play some role in the social response of social fish (Berdahl179
et al., 2013; Herbert-Read et al., 2011, 2013; Katz et al., 2011; Krause et al., 2005). The choice of neglecting180
social interactions mediated by the speed is due to the need of reducing the number of model parameters,181
magnified by the presence of individual differences in the treatment of the group.182

The turn-rate dynamics are captured by the JPTW (Mwaffo et al., 2015; Zienkiewicz et al., 2018),183
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dωS,i(t) = −αi(ωS,i(t)− ω∗S,i(t) + fw(φw,i(t), dw,i(t)))dt+ σω,idWω,i(t) + dJi(t), (5)

where ω∗S,i(t)
[
rad s−1

]
is the turn-rate interaction response function; fw(φw,i(t), dw,i(t)) is the wall184

interaction function where φw,i(t) is the projected angle to collision and dw,i(t) is the distance from the185

wall; αi
[
s−1
]

is a positive parameter quantifying the relaxation rate; σω,i
[
rad s−

3
2

]
is the strength of the186

added noise; Wω,i(t) is a standard Wiener process; and Ji(t) is the jump noise term encapsulating sudden187
changes in the turn-rate.188

Due to the presence of the caffeine treatment, the social interaction gains will vary in the group. Not only189
do we expect untreated fish to respond differently to a treated fish compared to untreated fish, but also190
we anticipate the interaction between treated and untreated subjects to be asymmetric. These claims are191
grounded in two propositions from the literature. First, the anxiogenic value of caffeine has been shown192
to influence the tendency of the caffeine-treated fish to interact with untreated conspecifics (Miller and193
Gerlai, 2007; Speedie and Gerlai, 2008). Second, the psychostimulatory nature of caffeine is known to194
influence the locomotory response of the animals (Gupta et al., 2014), which may underlie differences in195
the appraisal of treated fish by untreated individuals. Accordingly, the turn-rate response function is written196
as197

ω∗S,i(t) =
N∑

j=1

Γj(nTF)[kp,ijsij(t) sin θij(t) + kv,ijvS,i(t) sinφij(t)], (6)

where kp,ij
[
rad m−1 s−1

]
and kv,ij

[
rad m−1

]
are the attraction and alignment gains of fish i toward fish198

j, respectively. For each trial, the model requires calibrating 2N − 1 pairs of gains. We categorize these199
parameters based on the direction of interaction as follows:200

kp,ij =





kpTU , if i = 1, j 6= i

kpUT,i , if i 6= 1, j = 1

kpUU,i , if i 6= 1, j 6= 1

, (7a)

kv,ij =





kvTU , if i = 1, j 6= i

kvUT,i , if i 6= 1, j = 1

kvUU,i , if i 6= 1, j 6= 1

, (7b)

where TU, UT, and UU identify the response of the treated to untreated fish, the untreated to the treated201
fish, and the interaction between untreated subjects, respectively. The presence of Γj(nTF) in Eq. (6) is202
used to selectively limit the social response of fish to the group members that are actively swimming. Fish203
that are freezing are excluded from the social interaction model, based on calibration of the model on real204
data as well as biological observations that suggest zebrafish are more responsive to dynamic, rather than205
static stimuli (Ruberto et al., 2016).206
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The wall interaction function is written as follows (Burbano-Lombana and Porfiri, 2020; Gautrais et al.,207
2009):208

fw(φw,i(t), dw,i(t)) = awsgn(φw,i(t))e
−dw,i(t)bw , (8)

where the intensity of wall interactions, aw
[
rad s−1

]
, and the sensitivity of the fish to visual stimulus to209

the wall, bw
[
cm−1

]
, are two positive parameters. We hypothesize that all fish interact in the same way210

with the environment, such that the two parameters aw and bw are the same for the entire group and for211
every trial. The selection of the form in Eq. (8) encapsulates wall avoidance behavior of the fish and ensures212
that fish remain within the boundary of the tank; this selection does not capture wall-following behavior.213

We finally model the jump noise for the i-th fish as a compounded Poisson process,214

Ji(t) =

mi(t)∑

k=1

Ak,i(t). (9)

Here, Ak,i(t)’s are independent and identically distributed Gaussian random variables with zero mean215
and variance γ2

i

[
rad2 s−2

]
, and the total number of jumps at time t, mi(t), is such that its increments216

are Poisson random variables with parameter λi(t′′ − t′) for time t′, t′′ and t′′ > t′, with λi
[
s−1
]

being217
frequency of jumps.218

3.3 Model calibration219

For each fish in the group, i = 1, . . . , N , we calibrated the set of locomotion and social interaction model220
parameters. The transition probabilities for the discrete-time Markov chain model were obtained by simply221
counting instances of freezing and transitions to swimming in the experimental time-series. On the other222
hand, maximum likelihood estimation was applied to calibrate the locomotion model parameters.223

In summary, we calibrated the following parameters: transition probabilities, pFS,i and pSF,i; linear224
expansion rate, ηi; strength of added noise on speed, σv,i; relaxation rate, αi; strength of added noise225
on turn-rate, σω,i; intensity of jump turns, γi; frequency of jump turns, λi; alignment gains of treated to226
untreated fish, kvTU , untreated to treated fish, kvUT,i , and between untreated fish, kvUU,i ; attraction gains of227
treated to untreated fish, kpTU , untreated to treated fish, kpUT,i , and between untreated fish, kpUU,i . Given228
that five fish comprised each of the groups, a total of 58 parameters were calibrated per trial.229

3.3.1 Calibration of the discrete-time Markov model for freezing230

We obtained the binary sequences {Γi(nTF)}Υn=1} from the experimental time-series for each fish in231
the group. Similar to Burbano-Lombana and Porfiri (2020), we estimated the transition probabilities as232
follows:233

pSF,i =
NSF,i

NSS,i +NSF,i
, (10a)

pFS,i =
NFS,i

NFF,i +NFS,i
, (10b)
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where NSF,i and NFS,i are the number of transitions by the i-th fish from swimming to freezing and234
from freezing to swimming, respectively. NSS,i and NFF,i are the number of instances in which the fish235
maintained the swimming or freezing state, respectively.236

Estimated transition probabilities for the treated fish in the group are shown in Tab. S2. For completeness,237
in Tab. S3, we also report a summary of the transition probabilities for the discrete-time Markov chain of238
the untreated fish in terms of mean and standard deviation calculated across all trials.239

3.3.2 Calibration of the locomotion and interaction models through maximum-likelihood240
estimation241

Using the experimental sampling time ∆ as the time-step for discretization, we approximated Eqs. (3)242
and (5) using the Euler-Maruyama method as follows (Higham., 2001):243

vS,i((k + 1)∆) = (1 + ηi∆)vS,i(k∆)− ∆

stdω,iBL
|ωS,i(k∆)|v2

S,i(k∆) + σv,i
√

∆vS,i(k∆)εvi(k), (11)

where εvi(k) is a standard Gaussian random variable, utilized to approximate the added noise.244

We followed the same discretization approach to approximate the JPTW in Eq. (5), leading to245

ωS,i((k + 1)∆) = (1− e−αi∆)ω∗S,i(k∆) + e−αi∆ωS,i(k∆) +
√
biε

1
ωi(k) + γiζi(k)ε2ωi(k), (12a)

bi =
σ2
ω,i(1− e−2αi∆)

2αi
, (12b)

where ε1ωi(k) and ε2ωi(k) are standard Gaussian random variables and ζi(k) is a Bernoulli process with a246
probability ∆λi. Wall interaction was not included in the approximation of the JPTW in Eq. (12) since we247
performed calibration only when the fish were more than 2 BL away from the wall.248

For each individual, we consolidated unknown parameters in two vectors, ϕv,i and ϕω,i, one for the249
speed and the other for the turn-rate dynamics, in Eqs. (11) and (12), respectively. These vectors were250
determined by solving two independent optimization problems for the speed and turn-rate. The parameters251
were estimated for each fish in the group independently for every trial.252

For the approximated logistic equation in Eq. (11), the vector of unknown parameters for each fish was253
ϕv,i = [ηi,

σv,i
κ ]T, where we used a scaling factor, κ, to avoid singularities at near zero swimming speed254

(Burbano-Lombana and Porfiri, 2020). The search was conducted within a set of admissible values χv255
selected from previous work (Mwaffo et al., 2017a). The optimization problem was solved by using as256
input the K∗i samples of the speed obtained by excluding instances of freezing or swimming in proximity257
of the wall.258

The maximum-likelihood estimation problem was formulated as259

ϕ̂v,i = argmin
ϕv,i∈χv

−



K∗

i∑

k=1

log lv,i(ϕv,i, vS,i(k∆), ωS,i(k∆))


 . (13)

Frontiers 9



Tuqan and Porfiri Zebrafish social response to caffeine

The likelihood function, lv,i(ϕv,i, vS,i(k∆), ωS,i(k∆)), was derived from the model approximation in Eq.260
(11) as261

lv,i(ϕv,i, vS,i(k∆), ωS,i(k∆)) = H
(
qi(k∆),

√
σ2
v,i∆

)
, (14)

where H(x, σ) is the Gaussian distribution at x with zero mean and variance σ2. Further, qi(k∆) is given262
by263

qi(k∆) = −1 + ηi
κ

+
ωS,i(k∆)vS,i(k∆)∆

κ BL stdω,i
+
vS,i((k + 1)∆)

κ vS,i(k∆)
. (15)

Heuristically, we found that κ = 5 guarantees convergence of the optimization problem.264

A similar approach was adopted to calibrate the discrete JPTW in Eq. (12). For each fish, we265
solved the optimization problem for the vector of unknown parameters for each fish, ϕω,i =266
[αi, σω,i, γi, λi, kpij , kvij ]

T, with j = 1, . . . , N , j 6= i, where the interaction gains are categorized in267
accordance with Eq. (7). We used an input of K∗i samples of the turn-rate obtained by excluding instances268
of freezing or swimming in proximity of the wall. In addition, the search was done within a set of admissible269
values χω selected from Butail et al. (2016) and Mwaffo et al. (2017a). The maximum-likelihood estimation270
problem was formulated as271

ϕ̂ω,i = argmin
ϕω,i∈χω

−



K∗

i∑

k=1

log lω,i(ϕω,i, vS,i(k∆), ωS,i(k∆))


 , (16)

where χω is in R6 for the treated fish (i = 1) and χω is in R8 for the untreated fish (i 6= 1). The likelihood272
function lω,i(ϕω,i, vS,i(k∆), ωS,i(k∆)) is defined as273

lω,i(ϕω,i, vS,i(k∆), ωS,i(k∆)) = (1− λi∆)H
(
zi(k∆),

√
bi

)
+ λi∆H

(
zi(k∆),

√
(bi + γ2

i )

)
, (17)

and zi(k∆) is274

zi(k∆) = ωS,i((k + 1)∆)− [ωS,i(k∆)e−αi∆ + ω∗S,i(k∆)(1− e−αi∆)]. (18)

The locomotion parameters of each treated fish for all trials are displayed in Tab. S4. A summary of the275
parameters of the untreated fish in Tab. S5 in terms of mean and standard deviation calculated across all276
trials.277
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Table S6 displays the attraction gains of the treated fish kpTU , and the attraction gains of the untreated278

subject towards treated neighbors k̂pUT and untreated neighbors k̂pUU where a hat denotes the average of279
untreated individuals in each trial. Similarly, Tab. S7 contains the alignment gains of the treated fish kvTU ,280
and the alignment gains of untreated subjects towards treated neighbors k̂vUT and untreated neighbors k̂vUU .281
We discarded two additional trials from 25 mg/L and one additional trial from 50 mg/L due to divergence282
of the estimator, where interaction gains converged to their upper bounds.283

3.3.3 Calibration of wall function284

We relied on the work of Burbano-Lombana and Porfiri (2020) to obtain the wall function parameters in285
Eq. (8). The wall interaction function was calibrated for a fish swimming alone, from the data-set of Neri286
et al. (2019), using a wall-corrected turn-rate from the real time-series of the turn-rate of fish swimming287
alone,288

ωc(k∆) =

{
|ωa(k∆)|, if sgn(ωa(k∆)) = sgn(φw(k∆))

−|ωa(k∆)|, otherwise
, (19)

where ωa(k∆) is the turn-rate of the fish swimming alone and ωc(k∆) is the corrected turn-rate. Next,289
ωc(k∆) was plotted against the distance from the wall dw(k∆) where only the positive values of the290
corrected turn-rate were considered to capture wall avoidance. A robust non-parametric locally weighted291
least squares (RLOESS) function in MATLAB was used to fit the signal to a parametric exponential292
function. As such, the wall interaction parameters were obtained by calculating the average across all trials293
as aw = 11.68 rad s−2 and bw = 0.19 cm−1.294

4 RESULTS
We began our analysis of the model by examining the influence of caffeine concentration on fish locomotion295
in terms of the variations of relevant model parameters. With respect to parameters pertaining to freezing296
response and locomotion, we compared with model parameters obtained in Burbano-Lombana and Porfiri297
(2020) to assess the effect of the social environment on fish response to caffeine administration. Finally,298
we conducted in-silico experiments to demonstrate the predictive power of the model in anticipating299
experimental results on schooling, and shoaling.300

4.1 Analysis of model parameters301

First, we investigated the effect of caffeine concentration and social environment on the locomotion302
parameters of the treated fish, utilizing two-way ANOVA with caffeine concentration and social303
environment (single or group) as independent variables. Second, we conducted ANOVA comparisons304
with caffeine concentration as a single independent variable to compare the interaction parameters across305
concentrations. Post-hoc comparisons were conducted using Tukey’s HSD (honestly significant difference).306
The significance level was set to 0.050 throughout.307

We found that caffeine concentration did not influence the Markov chain transition probabilities pFS308
(F3,50 = 0.424, p = 0.738) and pSF (F3,50 = 0.125, p = 0.944), neither in isolation nor in group (shown309
in Fig. 3A and 3B, respectively). No difference was found across social environment with respect to pFS310
(F1,50 = 0.630, p = 0.443). Although we registered a dependence on the social environment with respect311
to pSF (F1,50 = 5.416, p = 0.027), we did not detect any variation in post-hoc analysis. The interaction312
between the two independent variables was found to be not significant for both pFS (F3,50 = 1.733,313
p = 0.181) and pSF (F3,50 = 0.812, p = 0.497).314
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Likewise, the linear expansion rate, η, was not influenced by either caffeine concentration (F3,50 = 1.264,315
p = 0.297) or social environment (F1,50 = 0.698, p = 0.407), shown in Fig. 4A. Further we did not316
detect differences in the interaction of the independent variables on η (F3,50 = 0.048, p = 0.986). In317
terms of the strength of added noise on the speed evolution, σv, we found a dependence on caffeine318
concentration (F3,50 = 3.039, p = 0.038; Fig. 4B), which, however was not accompanied by variations in319
post-hoc analysis. We found that the presence of the social environment had an effect on σv (F1,50 = 33.21,320
p < 0.001), and post-hoc analysis indicated a decrease in the strength of added noise in the presence of321
untreated subjects for 0 mg/L. We did not detect a significant interaction between the independent variables322
on σv (F3,50 = 1.088, p = 0.363).323

With respect to the turn-rate model parameters, we did not detect an effect of caffeine concentration324
on the mean reversion rate, α (F3,50 = 1.368, p = 0.263). Although we found α to be affected by the325
social environment (F3,50 = 15.49, p < 0.001; Fig. 5A), post-hoc analysis did not reveal significant326
differences between concentrations. Likewise, we did not detect a significant interaction between caffeine327
concentration and social environment on α (F3,50 = 0.519, p = 0.672). While caffeine concentration was328
found to have an influence on the strength of added noise in the turn-rate evolution, σω (F3,50 = 2.926,329
p = 0.043; Fig. 5B), no variations were identified in post-hoc analysis. We determined a modulatory role330
of the social environment (F3,50 = 24.83, p < 0.001), where σω increased in the presence of a social331
group for 50 mg/L in post-hoc analysis. No significant interaction was detected between the independent332
variables with respect to σω (F3,50 = 0.866, p = 0.465). With respect to intensity of jumps, γ, we found333
caffeine concentration to play a modulatory role (F3,50 = 5.760, p = 0.002; Fig. 5C), with post-hoc334
analysis revealing a decrease in the intensity of jumps for treated fish swimming in isolation from 50335
to 70 mg/L. In addition, we found the social environment to influence γ (F1,50 = 15.90, p < 0.001),336
where we detected an increase in the jump intensity in the presence of untreated subjects for 0 mg/L337
in post-hoc analysis. We did not identify a significant interaction between caffeine concentration and338
social environment with respect to γ (F3,50 = 0.747, p = 0.529). Finally, the frequency of jumps, λ, was339
not affected by caffeine concentration (F3,50 = 2.166, p = 0.104). In contrast, we detected significant340
differences across social environment (F1,50 = 13.65, p < 0.001; Fig. 5D). Post-hoc analysis revealed that341
fish swimming in isolation had higher values of λ than those swimming in group for the 25 mg/L treatment.342
We registered a significant interaction of the independent variables on λ (F3,50 = 2.924, p = 0.048).343

Next, we investigated the effect of caffeine concentration on the interaction gains in the turn-rate model,344
as shown in Fig. 6. We identified an effect of caffeine concentration on the attraction gain of the treated fish345
towards untreated fish, kpTU (F3,22 = 3.323, p = 0.038), but post-hoc analysis did not detect differences346

between concentrations. The average attraction gain, k̂pUT , of the untreated fish towards treated fish347
was not found to vary with caffeine concentration (F3,22 = 0.588, p = 0.629). We determined that the348

average attraction gain of the untreated fish towards other untreated subjects, k̂pUU , varied with caffeine349
concentration (F3,22 = 3.679, p = 0.028), and post-hoc analysis brought to light a decrease from 0 to350
25 mg/L. Finally, the alignment gains were indistinguishable with respect to caffeine concentration: kvTU351
(F3,22 = 1.252, p = 0.315), k̂vUT (F3,22 = 0.756, p = 0.531), and k̂vUU (F3,22 = 0.596, p = 0.459).352

In summary, among all the freezing and locomotion parameters, we only found the intensity of jumps353
to depend on caffeine concentration, yet, without differences with respect to vehicle-treated individuals.354
Comparisons across social environment revealed variations in the strength of added noise on both speed and355
turn-rate and in the jump parameters. Swimming in group reduced the strength of the added noise on the356
speed evolution of vehicle-treated subjects, and it increased the strength of the added noise on the turn-rate357
evolution at the intermediate concentration. Further, while the presence of a social group increased the358
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intensity of jumps of vehicle-treated subjects, it reduced the frequency of jumps of individuals treated at a359
low concentration. Parameters pertaining to social response were generally robust with respect to caffeine360
concentration, except for the attraction of untreated fish towards other untreated subjects, with low caffeine361
concentration causing a reduction in alignment.362
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Figure 3. Comparisons of discrete-time Markov chain parameters of the treated fish across caffeine
concentrations and social environment (single or group). The bars represent the mean value of the probability
of transition from freezing to swimming (A), and the mean value of the probability of transition from
swimming to freezing (B). The striped bars correspond to the calibrated parameters for the case of a
single treated fish from Burbano-Lombana and Porfiri (2020). The solid bars correspond to the calibrated
parameters for the case of a treated fish swimming in a social group. The vertical red error bars represent
standard errors of the means.
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Figure 4. Comparisons of the locomotion parameters corresponding to the speed evolution of the treated
fish across caffeine concentrations and social environment (single or group). The bars represent the mean
value of the linear expansion rate (A), and strength of added noise in the speed evolution (B). The striped
bars correspond to the calibrated parameters for the case of a single treated fish from Burbano-Lombana
and Porfiri (2020). The solid bars correspond to the calibrated parameters for the case of a treated fish
swimming in a social group. The symbol $ indicates a significant difference (p < 0.050) in Tukey’s HSD
post-hoc analysis comparing individuals swimming alone or on group (single versus group). The vertical
red error bars represent standard errors of the means.

4.2 In-silico experiments363

We conducted in-silico experiments to validate the developed model and investigate its ability to predict364
the social behavior of fish detected from experimental time-series (Neri et al., 2019), for a range of365
interaction metrics that quantify schooling, and shoaling.366

Schooling is a measure of fish tendency to align their bodies during swimming (Pitcher et al., 1986;367
Miller and Gerlai, 2012). The degree of alignment among the four untreated fish was scored in terms of the368
instantaneous polarization (Aureli et al., 2012),369
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Figure 5. Comparisons of the locomotion parameters corresponding to the turn-rate evolution of the
treated fish across caffeine concentrations, and social environment (single or group). The bars represent
the mean value of the mean reversion rate (A), strength of added noise in the turn-rate evolution (B),
intensity of jumps in the turn-rate evolution (C), and frequency of jumps in turn-rate evolution (D). The
striped bars correspond to the calibrated parameters for the case of a single treated fish from Burbano-
Lombana and Porfiri (2020). The solid bars correspond to the calibrated parameters for the case of a
treated fish swimming in a social group. Different letters on top of the bars indicate a significant difference
(p < 0.050) in Tukey’s HSD post-hoc analysis across caffeine concentrations, comparing individuals
swimming in isolation (standard font) or in group (Italic font). The symbol $ indicates a significant
difference (p < 0.050) in Tukey’s HSD post-hoc analysis comparing individuals swimming alone or on
group (single versus group). The vertical red error bars represent standard errors of the means.

P (k∆) =
1

N − 1

∥∥∥∥∥
N∑

i=2

vi(k∆)

vi(k∆)

∥∥∥∥∥ , (20)

where N = 5 is the number of fish in the experiment. Polarization varies between 0 and 1, where 1370
identifies the case in which untreated fish are perfectly aligned in the same direction.371

The alignment between the treated fish and the untreated group of fish was scored in terms of the relative372
instantaneous polarization, R(k∆),373

R(k∆) =
v1(k∆)T

v1(k∆)

1

N − 1

N∑

i=2

vi(k∆)

vi(k∆)
, (21)

Relative polarization ranges between −1 and 1, where 1 corresponds to the group of untreated fish pointing374
in the same direction of the treated fish, and −1 indicates that the treated fish is pointing in the opposite375
direction to the group of untreated fish. These quantities were averaged in time to compute the average376
polarization and the average relative polarization.377

This is a provisional file, not the final typeset article 14



Tuqan and Porfiri Zebrafish social response to caffeine

0 25 50 70
0
2
4
6
8

10

C [mg/L]

k
p
T
U

[ m
−
1
s−

1
]

0 25 50 70
0
2
4
6
8
10

C [mg/L]

k
v
T
U

[ ra
d
m

−
1
]

0 25 50 70
0
2
4
6
8

10

C [mg/L]

k̂
p
U
T

[ m
−
1
s−

1
]

0 25 50 70
0
2
4
6
8

10

C [mg/L]

k̂
v
U
T

[ ra
d
m

−
1
]

0 25 50 70
0
2
4
6
8

10

C [mg/L]

k̂
p
U
U

[ m
−
1
s−

1
]

0 25 50 70
0
2
4
6
8

10

C [mg/L]

k̂
v
U
U

[ ra
d
m

−
1
]

A B

C D

E F

a
b ab ab

Figure 6. Calibrated interaction parameters in the turn-rate evolution across caffeine concentrations. The
bars represent the mean value of the attraction gain of treated fish towards untreated fish (A), alignment gain
of treated fish towards untreated fish (B), average attraction gain of untreated fish towards treated fish (C),
average alignment gain of untreated fish towards treated fish (D), average attraction gain between untreated
fish (E), and average alignment gain between untreated fish (F). Different letters on top of the bars indicate
a significant difference (p < 0.050) in Tukey’s HSD post-hoc analysis across caffeine concentrations. The
vertical red error bars represent standard errors of the means.

To quantify fish shoaling, the tendency of fish to swim in close proximity, we computed the inter-378
individual distance, dij(k∆), between each pair in the group. We scored the average distance between the379
treated and untreated subjects, and the average distance among untreated individuals.380

We conducted in-silico experiments using the model parameters for the case of in-group swimming,381
shown in solid bars in Fig. 3-6. Ten simulations were performed for each of the four caffeine concentrations.382
For each fish in all 40 trials, the interaction gains were sampled from a Gaussian distribution with mean383
and standard deviation of the corresponding parameter at that concentration. On the other hand, since we384
did not find any effect of caffeine concentration on the transition probabilities and locomotion parameters385
for in-group swimming, those parameters were taken as the average of all fish across all experimental trials386
based on treatment. The initial conditions xi(0), yi(0), θi(0), Γi(0), vi(0), and ωi(0) were chosen uniformly387
at random in their respective intervals. Time-series of four trajectories for each caffeine concentration are388
shown in Fig. 7; videos are presented in the supplemental material. Note that the wall function adopted in389
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A B C D

Figure 7. Representative in-silico trajectories of a group of five subjects, with four untreated individuals
and one subjects treated at a caffeine concentration of: 0 (A), 25 (B), 50 (C), and 70 mg/L (D).

this study does not take into consideration the wall following behavior of zebrafish, thus explaining the390
differences in wall interactions between in-silico trajectories in Fig. 7 and experimental ones in Fig. 1.391

We performed statistical analysis to compare the social interaction metrics across caffeine concentrations,392
and validate the in-silico results against those obtained from real experiments. For this purpose, we393
conducted two-way ANOVA with caffeine concentration and data-type (experiments or in-silico) as394
independent variables. Post-hoc comparisons were conducted using Tukey’s HSD. The significance level395
was set to 0.050 throughout.396

We detected influence of caffeine concentration on the average polarization, P (F3,61 = 7.781, p <397
0.001), shown in Fig. 8A. Post-hoc analysis revealed differences in experimental results, where the average398
polarization was found to increase from 0 to 50 mg/L. Comparisons across data-types did not indicate399
differences between real and in-silico experiments (F3,61 = 1.354, p = 0.249). Likewise, no interaction400
between the independent variables was identified on P (F3,61 = 0.675, p = 0.571). With respect to401
the average relative polarization, R (Fig. 8B), we did not find an effect on either caffeine concentration402
(F3,61 = 1.354, p = 0.071) or data-type (F1,61 = 0.229, p = 0.634), although we identified significant403
interaction (F3,61 = 3.855, p = 0.014).404

Next, we found that the shoaling tendency between the treated fish and untreated subjects, in terms of405
the average distance dT−U, was consistent across caffeine concentrations (F1,61 = 1.849, p = 0.179) and406
data-types (F1,61 = 1.461, p = 0.234), as shown in Fig. 9A. No interaction was detected between the407
independent variables on dT−U (F3,61 = 0.262, p = 0.853). In contrast, we detected an effect of caffeine408
concentration on the average distance between the untreated fish, dU−U (F3,61 = 12.16, p < 0.001;409
Fig. 9B). Post-hoc analysis revealed a decrease in dU−U from 25 to 50 mg/L in the experimental data-410
set. Similar differences were found in the in-silico data-set where dU−U was larger for 25 mg/L than 0411
and 50 mg/L. While comparisons between data-types revealed a significant difference (F1,61 = 11.29,412
p = 0.0.001), the results were indistinguishable between real and in-silico experiments in post-hoc413
analysis. Finally, we did not detect a significant interaction between the independent variables on dU−U414
(F3,61 = 2.354, p = 0.081).415

5 DISCUSSION
In this work, we developed a modeling framework to study the effect of acute caffeine treatment on the416
social behavior of zebrafish. We contributed two key advances to previous work on modeling collective417
behavior of zebrafish. First, similar to the analysis with respect to zebrafish swimming alone in Burbano-418
Lombana and Porfiri (2020), we included the freezing response of each individual within the group, which419
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Figure 8. Comparisons of the schooling tendency of the fish, measured in terms of average polarization
(A), and average relative polarization (B), across caffeine concentrations and data-types (experiment or
in-silico). Different letters on top of the bars indicate a significant difference (p < 0.050) in Tukey’s HSD
post-hoc analysis across caffeine concentrations, comparing interaction metrics in experiment (standard
font) or in-silico (Italic font) data-type. The vertical red error bars represent standard errors of the means.
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Figure 9. Comparisons of the shoaling tendency of the fish, measured in terms of the average distance
between treated fish and untreated fish (A), and average distance between untreated fish (B), across caffeine
concentrations and data-types (experiment or in-silico). Different letters on top of the bars indicate a
significant difference (p < 0.050) in Tukey’s HSD post-hoc analysis across caffeine concentrations,
comparing interaction metrics in experiment (standard font) or in-silico (Italic font) data-type. The vertical
red error bars represent standard errors of the means.

is necessary to capture anxiety-related behavior in response to caffeine (Maximino et al., 2011). For this420
purpose, we developed a two-time-scale modeling dichotomy. Along a slow time-scale, we used a discrete-421
time Markov chain to describe the transition between swimming and freezing states. At a fast time-scale,422
we modeled the evolution of the speed and turn-rate during swimming as a system of coupled SDEs: a423
logistic equation to represent the speed and a JPTW to describe the turn-rate. Second, we granularly tracked424
the directional interaction between each pair of fish based on the treatment of each fish within the pair. This425
approach takes into consideration previous experimental work highlighting the effect of caffeine on the426
behavioral response of treated fish and its appraisal by untreated conspecifics (Gupta et al., 2014; Miller427
and Gerlai, 2007).428

We calibrated the model on real experimental data from previous work (Neri et al., 2019), where we429
studied groups of caffeine-treated subject and untreated individuals swimming in a shallow water tank.430
For each group of five individuals, we estimated 20 parameters, entering the Markov chain and the SDEs.431
Calibration employed a combination of maximum likelihood estimation and classical plug-in estimation.432
We display our results on two fronts. First, we compared the model parameters obtained for a treated fish433
swimming with untreated subjects with those obtained by Burbano-Lombana and Porfiri (2020) for the case434
of an isolated fish. Second, we compared the social interaction metrics, in terms of average polarization,435
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average relative polarization, and average inter-individual distance, between the experimental and in-silico436
data-sets.437

In contrast with our expectations, we did not observe a modulatory role of caffeine on freezing and438
locomotion parameters. Our expectation was based on a number of previous studies documenting a robust439
dependence of zebrafish behavioral response to acute caffeine administration (Maximino et al., 2010a;440
Stewart et al., 2010). This was particularly evident for individuals swimming with untreated subjects, for441
which we failed to detect any effect of caffeine treatment. Likely, the explanation for the abolishment of a442
dose-dependent response should be sought in the presence of the social environment, which, indeed was443
responsible for a few, salient variations in locomotion parameters associated with the speed and turn-rate444
evolution. It is tenable that the presence of social cues had a leveling role on the anxiogenic effect of445
caffeine, which is indirectly evidenced by the tendency to enhance white noise with respect to the jump446
noise in the turn-rate evolution. Jumps have been associated with erratic activity of the animal, in the447
form of C- and U-turns, so that their reduction in favor of steady swimming offers an indication of an448
axiolytic value of the social environment, also discussed by Neri et al. (2019). With respect to the effect on449
untreated subjects, we recorded a decrease in their tendency to shoal with each other, which highlights450
an interesting, albeit indirect, effect of caffeine treatment. Caffeine treatment of one selected individuals451
might bear an anxiolytic effect on the rest of the group that reduce their tendency to stay close (Miller and452
Gerlai, 2007; Speedie and Gerlai, 2008); understanding this counter-intuitive finding should be the object453
of future research.454

The calibrated model is in good agreement with experimental observations on social metrics, related455
to shoaling and schooling. While this agreement should be desired in any calibrated model, it is not456
obvious to attain. In fact, in-silico experiments do not contain the fine-grain variations that are unique to the457
experimental subjects, whereby we excluded from the simulations any statistical variation in the locomotion458
and freezing parameters. Accounting for variations in the social gains due to caffeine administration through459
a simple normal distribution seems sufficient to capture the emergent response of the groups, as well as the460
role of the treated individual.461

The proposed model is not free of limitations. First, we assumed that the interaction between fish is solely462
based on visual stimuli. Incorporating other mechanisms of social interactions, such as hydro interactions463
(Gazzola et al., 2016; Porfiri et al., to appear), may help refine the mathematical model, especially in464
terms of short-range interactions related to the perturbations they create in the fluid environment (Porfiri465
et al., to appear). Second, the current model does not incorporate wall following behavior observed in466
real experiments, whereby interaction with the fall is limited to a simple repulsion (Gautrais et al., 2009).467
Third, the model is purely two-dimensional, thereby failing to capture salient anxiety-related responses that468
have been documented in zebrafish, such geotaxis (Maximino et al., 2010a,b). Fourth, the entire modeling469
framework is based on a single psychoactive compound, which bears limitations in the generalizations of470
the predictions to other substances that impinge on anxiety (da Silva Chaves et al., 2018; Kacprzak et al.,471
2017). Along this line, the most fundamental limitations of the model is the lack of a direct link between472
the molecular composition of the substance or the brain mechanisms it affects and the parameters of the473
model. In its present incarnation, the model requires knowledge of all the model parameters to perform474
in-silico experiments, without allowing for exploring different substances or even untested concentrations475
on caffeine.476

Despite these limitations, the proposed model offers a first step in the design of in-silico experiments that477
can aid the 3R’s with respect to zebrafish experimentation. The proposed model can be used to reduce the478
number of experiments, by affording statistical insight into the sample size. Likewise, the model can be479
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used to refine existing data-sets, by informing model-based analysis of the data and, potentially, assist in480
verification and tracking. Finally, pilot studies could be conducted on a computer, thereby reducing the481
number of subjects utilized in experimental research.482
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Calovi, D. S., Lopez, U., Schuhmacher, P., Chaté, H., Sire, C., and Theraulaz, G. (2015). Collective516
response to perturbations in a data-driven fish school model. Journal of The Royal Society Interface517
12(104), 20141362518

Chow, P. K. H., Ng, R. T. H., and Ogden, B. E. (2008). Using Animal Models in Biomedical Research519
(World Scientific)520

Chung, M.-H. (2009). On burst-and-coast swimming performance in fish-like locomotion. Bioinspiration521
& Biomimetics 4(3), 036001522

Collignon, B., Séguret, A., and Halloy, J. (2016). A stochastic vision-based model inspired by zebrafish523
collective behaviour in heterogeneous environments. Royal Society Open Science 3(1), 150473524

da Silva Chaves, S. N., Felı́cio, G. R., Costa, B. P. D., de Oliveira, W. E. A., Lima-Maximino, M. G.,525
de Siqueira Silva, D. H., et al. (2018). Behavioral and biochemical effects of ethanol withdrawal in526
zebrafish. Pharmacology Biochemistry and Behavior 169, 48 – 58527

Egan, R., Bergner, C., Hart, P., Cachat, J., Canavello, P., Elegante, M., et al. (2009). Understanding528
behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research529
205(1), 38–44530

Filella, A., Nadal, F., Sire, C., Kanso, E., and Eloy, C. (2018). Model of collective fish behavior with531
hydrodynamic interactions. Physical Review Letters 120, 198101532

Ford, K. (2016). Refinement, reduction, and replacement of animal toxicity tests by computational methods.533
ILAR Journal 57(2), 226–233534

Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chaté, H., et al. (2012). Deciphering interactions535
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