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Abstract

Initiated chemical vapor deposition (iICVD) is a reactive process that creates polymeric materials
on a surface from vapor-phase monomers and thermal initiators. Our iCVD synthesis of
poly(perfluorodecyl acrylate) (PPFDA) resulted in the growth of micro- and nano-worms normal
to the surface. The micro- and nanostructures of the worms directly depend on iCVD process
conditions. They in turn influence bulk properties such as their liquid wettability. The current
absence of a physiochemical model that can explain the relationships between iCVD process
conditions and bulk properties of the polymers motivates the use of data-driven modeling to
capture and describe the relationships. In this work, we report iCVD data (contact angles of
heptane, octane, and water on PPFDA and process conditions) from 49 batches and use artificial
neural networks to model the relationships. The models are then used to determine the optimal

1CVD process conditions that maximize the contact angles on PPFDA.



Introduction

Wettability of a liquid with respect to a solid is the tendency of the liquid to spread over or adhere
to the surface of the solid in the presence of other immiscible fluids.! It can be expressed in terms
of the angle of contact at the liquid-solid surface, which is the angle formed by the liquid at the
three-phase boundary where the liquid, gas, and solid intersect. As the contact angle decreases,
the wettability of the liquid increases. Thus, a zero contact-angle indicates complete wettability,
while a contact angle of 180° is indicative of complete nonwetting. It is generally accepted that a
solid with contact angles of 60° to 90° repels the liquid. The solid surface roughness affects the
contact angle; surfaces with the same chemical composition but different roughness have different
contact angles.

Initiated chemical vapor deposition (1ICVD) is a reactive process, which creates a polymeric
film on a substrate surface, from vapor-phase monomer(s) and initiator(s). It usually produces
contiguous polymer thin films. However, in rare cases, it can instead form discrete micro- and
nano-structures. For example, our iCVD synthesis of poly(perfluorodecyl acrylate) (PPFDA)
resulted in the growth of micro- and nano-worms, which tend to grow perpendicular to the
surface.>. Due to the low surface energy of the fluorinated polymer and the heterogeneous worm-
like surface, liquid wetting can be substantially reduced by entering the Cassie-Baxter state. The
micro- and nanostructures of the worm-like features directly depend on iCVD operating
conditions. They in turn influence bulk properties such as repellency of liquids. With the contact
angle being dependent on iCVD operating conditions, it would be advantageous to create a model
that captures the dependence.

Using conventional reaction rate equations and parameters, the reaction kinetics can be
modeled with enough accuracy®. However, the mechanisms that determine the growth of the

worm-like structures are currently not fully understood.®> Given this currently-inadequate chemical
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and physical understanding, an alternative to first-principles (physical) modeling to relate product
(polymer) properties, such as contact angles of liquids on the polymer surface, to iCVD processing
conditions is to use an empirical (data-driven) modeling approach such as neural networks. A
typical neural network model can contain numerous fitting parameters, many times greater than
the number of observations available to fit the model with. This relatively large number of fitting
parameters provides a lot of flexibility for shaping the response surface of the target (output)
variable(s).

Traditional machine learning techniques require a significant number of training examples
to achieve high accuracy in model training. We experiment with different machine learning models
to score high accuracy with the limited training data available for modeling iCVDconditions.
Research has shown that, in general, training a classifier from scratch on small datasets does not
work well, Recently, Barz ef al. showed that using a cosine loss function provides better
performance than traditional objective functions on smaller datasets?®. Our first experiment is to
verify the validity of the hypothesis of using cosine loss on a multi-layer perceptron trained on few
data samples. Specifically, we experiment by modeling the iCVD data using a multi-layer
perceptron with a cosine loss function and evaluate the performance due to the limited amount of
data to train. We show the results of this experiment in the experimental section below. Our second
hypothesis is to use convolutional layers to generate higher order features to improve the
predictions. We verify this hypothesis by using a Convolutional Neural Network (CNN) with
convolutional layers as feature generation layers. We verify this hypothesis and ration that the use
of convolutional layers to generate higher-order features improves the quality of classification.
While in principle, the CNN developed to find the optimal reacting conditions could be optimized

using general optimization and extrapolation methods (i.e., Stochastic Gradient Descent), our final



contribution focuses on relaxing the problem to a convex setting. We implemented a convexified
convolutional neural network that approximates the best possible CNN and can estimate the
optimal conditions in a more efficient and explanatory method using convex optimization.

In this paper. for the first time we: (i) report iCVD data (contact angles of heptane, octane,
and water on PPFDA and process conditions) from 49 batches; (ii) capture and describe the
relationships using artificial neural networks; and (iii) use the models to determine the optimal
i1CVD process conditions that maximize the contact angles on PPFDA. The ability to create
surfaces with high contact angles and liquid repellency is important for a broad range of

applications, such as in oil-water separations, self-cleaning surfaces, and microfluidics.’

iICVD Process

iCVD is a technique used to deposit polymer thin films under vacuum. Monomer and initiator
vapors flow into the reactor. Inside the chamber, the initiator molecules are heated by a series of
heated filament wires, leading to the generation of free radicals. Here also, the monomer molecules
are adsorbed onto a temperature-controlled substrate surface. The free radicals initiate the surface
polymerization of the adsorbed monomer (Figure 1). The advantages of iCVD include its much
lower filament temperature (~200—400 °C) compared to other hot wire CVD techniques (>800 °C)
as well as the relative chemical purity and physical uniformity of polymer films produced on
surfaces. In addition, the substrate can be kept at near room temperature (~25 °C), which allows a
wide range of substrates to be coated, like wafers, glass, metals, plastics, and even non-volatile
liquids. Utilizing this approach, the entire substrate surface can be covered with polymer very
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efficiently®’. It is a proven technique for numerous applications, including biomaterials,®!* solar

cells,!! sensors,'? and various thin film coatings. Compared to other film deposition techniques,



like spin coating, iCVD does not use liquid solvents during processing. This is particularly
attractive as the use of liquid solvents during processing can often lead to solvent residue in the
coatings and solvent incompatibilities with existing substrate surfaces. Furthermore, the iCVD
process occurs in a single step, enabling simultaneous polymerization and coating deposition, and
provides the necessary physical and chemical control needed for targeted applications.'® In
general, the surface polymerization process allows iCVD to deposit thin uniform coatings that
conform to the substrate topology.'!"'* Besides planar substrates like silicon wafers, micro- and
nano-scale porous materials can also be conformally coated by iCVD.%!>!® By controlling the

relative rates of reactant diffusion and polymerization, uniform growth can be achieved.

iCVD Deposition of PPFDA Polymer

The monomer, 1H,1H,2H,2H-perfluorodecyl acrylate (99.6% Fluoryx), and the initiator, di-tert-
butyl peroxide (99% Acros Organics), were used without further purification for the
polymerization of PPFDA using iCVD (Figure 2). The polymer was deposited on silicon
substrates in a stainless steel custom-built vacuum reactor as described previously.'” The monomer
was heated in a source container to 80 °C, in order to attain sufficient vapor pressure, while the
initator was kept at room temperature. For iCVD of PPFDA, vapors of the monomer and the
initiator were sent into the reactor at set flow rates using precision needle valves. In some cases,
an inert nitrogen gas flow was also added that was metered into the reactor using a mass flow
controller (MKS Instruments). The precursor flowrates were set relative to the reactor leak rate;
i.e., the inherent flow from the surrounding atmosphere into the vacuum chamber without any
active precursor flow. Reactor pressure was maintained at a desired setpoint by using a pressure
controller (MKS Instruments) in a feedback loop with a capacitance manometer (MKS

Instruments) that adjusted the opening of a downstream throttle valve (MKS Instruments) to a
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rotary mechanical pump (Edwards). The reactor pressure was set relative to the reactor base
pressure, i.e., the inherent pressure inside the vacuum chamber without any reactant flow and with
the throttle valve fully open. A Chromaloy (Goodfellow) filament wire array was used to
resistively heat the reaction chamber to a desired temperature using a DC power supply (Sorensen)
that controlled the electrical voltage and current through the wires. The deposition substrate was
placed on a thermoelectric cooling stage (Custom Thermoelectric) positioned below the array of
filament wires, and the stage was cooled by backside contact with a thermal fluid flowing through
a recirculating chiller (Thermo Scientific). To minimize polymer deposition elsewhere in the
reactor, the walls and the reactor’s glass lid were heated. Filament, substrate, and reactor wall
temperatures were monitored by K-type thermocouples (Omega Engineering). A wide range of
1CVD process parameters were studied, controlled, and monitored for the deposition of PPFDA

polymer worms, as shown in Table 1.

After deposition, the PPFDA polymers were characterized for their composition,
morphology, and liquid wettability. In all deposition runs, Fourier transform infrared spectroscopy
(FTIR) and X-ray photoelectron spectroscopy (XPS) reveal the chemical composition and
stoichiometry expected of PPFDA, results of which have been shown previously.!” In terms
surface morphology, scanning electron microscopy (SEM) show the formation of micro- and nano-
scale worms. Depending on the iCVD process conditions (Table 1), worm morphology can change
in terms of the height, shape, and orientation. Figure 3 shows representative images of PPFDA
worm morphology that can be produced, which range from straight and narrow worms to highly
curled and tapered worms. The mechanism of worm formation and growth is not entirely
understood, but there is evidence to show that the reaction kinetics and crystallization of PPFDA

drives polymer chain and worm assembly.!” The resulting changes in surface morphology directly



impacts liquid wetting on the surface. To assess wettability, static contact angles of water and oil
(heptane, octane) droplets were measured for each corresponding deposited sample. Table 2 lists
1CVD reactor operating conditions used to synthesize the PPFDA samples and contact angles of
the samples. Contact angles measurements were performed using an automated contact angle
goniometer (ramé-hart) with droplet volumes in the range of 3—14 mL. In general, by coupling
greater surface roughness and a low surface energy fluorinated polymer like PPFDA, super
hydrophobicity can be achieved, where water contact angle exceeds 150°.2° However, to achieve
superoleophobicity where oil contact angle exceeds 150° is a greater challenge. Surface roughness
alone is not a sufficient criterion, but instead specific surface re-entrant structures, like overhangs,
umbrellas, and mushrooms, are needed to prevent the wetting of low surface tension oils. Given
the current lack of a physical model for understanding worm development of iCVD PPFDA, a
data-driven model that aims to capture the impact of a multitude of iCVD processing parameters

on PPFDA surface wettability would be valuable in helping us attain superoleophobicity.

Machine Learning

Machine Learning Problem

The machine learning problem to find the relationships between the input vector Z and y,, y,, and
V3, where

Z =[x, x4 X5 Xg Xg X1z (X13— X14) X15X16 Zo Z1i0 Z11 Ziz Z13 Zia] € RY,
Zq and z;q are the flowrate of the inert gas during the first period and the duration of the first
period, respectively; z;; and z;, are the flowrate of the inert gas during the second period and the
duration of the second period, respectively; z;3 and z;4 are the flowrate of the inert gas during the
third period and the duration of the third period, respectively. zg, Z19,211,Z12, Z13 ,and Z4

describe the flowrate of the inert gas, x4, during the reaction time of xg.



Machine Learning Methods

The first innovation in mimicking learning of human brains was the Artificial Neural Network
(ANN)?!. An ANN consists of a collection of connected nodes, artificial neurons, that loosely
model the neurons in a biological brain. The connections between the nodes follow the likeness of
synapses in the biological brain, which propagate signals to other neurons. In the ANN, these
signals are represented as Real numbers, which are then transformed at the outputs of each neuron
by some non-linear function of the sum of its inputs. The connections between the nodes, or edges,
have a weight associated with them to adjust the learning process. These weights are like that of
the natural threshold activations as seen in the biological brain. In general, the main objective of
training an ANN is to learn the proper weights such that when inputs are passed through the
complete collection of neurons and associated weights, the correct output is generated. ANNs can
be constructed in many ways; architectures can consist of ensembles of neurons together, a layer,
and more complicated models can consist of multiple layers connected to each other with outputs
of one layer passed as inputs to the next layer.

One of the simplest ANNS, is the Multilayer-Perceptron (MLP), a feedforward ANN?2. A
MLP is composed of at least three layers of nodes: an input layer, a hidden layer, and an output
layer. The input layer is simply the raw data; the hidden layer is as described above, an ensemble
of neurons that compute the product of the inputs and the weights, generates a summation, and
then applies a non-linear activation function as output. While the bare minimum for a MLP is a
single hidden layer, there can be an infinite number of hidden layers stacked on top of one another.
Finally, all MLPs are completed with an output layer that combines the last hidden layer and
generates a single output of the desired dimension. The most common non-linear activation
function applied to summations is the Rectified Linear Unit (ReLU) function, a piecewise linear

function that outputs the input if it is positive, and zero otherwise?’.
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f(x) = max(0, x)
MLPs and most if not all ANNSs are trained through the backpropagation algorithm?* that require
an activation function to look and act like a linear function but is non-linear to allow learning of
more complex relationships. As a result, the ReLU function is a perfect tool for achieving this,
since it is linear for all positive values, and is non-linear in the sense that it outputs all negative
values as zero.

The intuition for deploying an MLP with multiple hidden layers derives from the history
of using a single-layer neural network to represent linearly separable functions. As a result, simple
problems that must classify between two classes can easily be separated by a line; yet, most
problems, especially the problem of predicting iCVD reactor conditions are not necessarily linearly
separable. Therefore, MLPs with many hidden layers have been used to represent convex regions
such that they can learn to represent shapes around examples in some high-dimensional space.
This in turn can outperform the limitation of a network that can only solve linearly separable
classes. To select the number of nodes for each layer in a MLP, we systematically experiment to
find the best performing solution. We gradually decrease the number of neurons within each layer
and check the quality of the model prediction until we arrive at the simplest model that has
satisfactory prediction accuracy. The number of epochs is chosen in a similar fashion in a method
to determine the best accuracy without overfitting, we chose the number of epochs that converged
in the smallest number without overfitting in a series of trials. When choosing the hyperparameters
for the CNN architecture, we follow the principle that a choice of a small filter corresponds to a
good compromise between computational complexity and quality of the resulting convolution. In
disciplines such as computer vision, this compromise is most illustrative in noise reduction, while

preserving the sharpness for a median filter. Thus, we experiment with three different sizes of the



kernel saturating around the median values between 0 and the input size, 14. In general, the notion
of filters is to capture patterns; and the best effort to capture patterns for a small input size such as
14 is to try to extract them around 4-8. In view of these, we propose an MLP architecture with 4
hidden layers: 48, 24, 12, and 6 nodes respectively, as shown in Figure 4. The model takes as input
the 14 features as described before and outputs the predicted values for the three properties: water,
heptane, and octane contact angles of the resulting polymer.

ANNSs are known to overfit quickly on a training dataset with few samples; thus, the model
fails to generalize on inputs that the model has never seen before. As a result, to improve the
model’s ability to generalize, Dropout layers were included following each of the hidden layers?’.
A common solution employed is the notion of randomly dropping nodes from the network as a
form of regularization that approximates training many ANNs with different architectures in
parallel. Moreover, during training, a portion of layer outputs are randomly suppressed, dropped
out, to effect making the layer seem as though it had fewer input nodes passed in. Each iteration
of training, the learning algorithm in effect has a different perspective of the model in hopes to
adapt to mistakes from previous layers, making the model more robust. In our experimentation,
we modified the proportion of nodes to be dropped to explore the effect Dropout layers had on a
MLP for this small dataset.

Considering the limited number of samples in Table 2, we experimented with an alternative
learning algorithm; that is, Cosine Loss in an MLP. Previous work has shown that using a cosine
loss function as an objective function in an ANN provides substantially better performance trained
on fewer data samples than traditional objective functions like cross-entropy®®. The intuition of
this modification is that cosine loss can better integrate prior knowledge using class hierarchies

and improve performance in classification tasks. We used the existing architecture shown in Figure
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5 and modified its objective function to employ cosine loss instead of Mean Squared Error (MSE)
as used in the rest of the experiments.

Within the Deep Learning domain, Convolutional Neural Networks (CNNSs) have been the
most effective architectures in computer vision tasks?’. CNNs extract abstract features from images
by convolving the image with filters. These filters are then subsampled via pooling layers,
commonly using Max-pooling that partitions the image in regions and returns the maximum value
within each region. Finally, the last element of a CNN is the fully connected layer where each node
is directly connected to every node in the previous and next layer to pass forward the results from
the previous layer. These CNNs can successfully capture the spatial and temporal dependencies
within an image through the application of relevant filters. This experiment helps verify the
hypothesis that the use of a CNN could generate higher order features to improve predictions. One
of the most notable achievements in CNNs was displayed in the AlexNet architecture?® that used
a faster convolution operation implementation on Graphical Processing Units (GPUs) that
achieved state-of-the-art results when it was introduced. The convolutional layers of CNN have
parameters to specify the number of filters, strides, and size of the kernel. The number of filters
defines the dimensionality of the output space or the number of output filters in the convolution.
The strides define the stride length of the convolution, and the kernel size defines the length of the
1D convolutional window from which the data is sampled. We propose a 1D-CNN architecture
represented in Figure 5, that takes the 14 input features, passes them through a 1D convolutional
layer with 8 filters, a stride of 1, and a kernel size of 3. The output of the convolutional layer is

flattened and passed to 3 output nodes.
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Experimental Setup

Our experimental setup is run on a Linux machine with Intel(R) Xeon(R) E-2276M CPU @
2.80GHz 2.81 GHz, 6 cores, and 32GB RAM. The code was run and interpreted by Python 3.8.3
using NumPy 1.19.2 and TensorFlow 2.2.0 packages using Anaconda 4.10.3 as a package

manager.

Results and Discussion

Table 3 presents results of five experiments comparing the use of Dropout and Cosine Loss
modifications in the MLP as described before as well as two experiments on CNN
implementations. In these experiments, there are 14 input features because there are the 6 original
input features and the flowrate conditions are spread across six new features, three describing the
time in seconds, and three describing the flowrate of the inert gas, N». The first row highlights the
MLP with Dropout layers of a dropout proportion of 20% (0.2) following each hidden layer. The
second row is similar but with a dropout proportion of 40% (0.4), and the third row describes the
MLP architecture but trained using Cosine Loss instead of traditional MSE. The fourth row
illustrates the results of a CNN with 4 filters and the final row illustrates the results of a CNN with
8 filters as described in Figure 5. While the MLP trained with Cosine Loss performs the best for
the training data set, this model fails to generalize well as advertised in its proposal, since this
model had some of the worst performance in the test data set. As a result, we have concluded that
the hypothesis of using Cosine Loss on our dataset consisting of few samples trained on, does not
improve the performance of the model as much as other modeling approaches. Instead, the model
with Cosine Loss overfits on the training data and performs poorly on the test data. This follows
the intuition that Cosine Loss would try to overly concentrate on the few samples and when

provided with new samples, it has trouble predicting correctly. However, the CNN with 8 filters
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qualitatively performed the best since it has low train error and two of the lowest test errors for
heptane and octane contact angles, with the MLP model with 0.2 Dropout trailing closely behind.
Clearly, the use of convolutional layers to generate higher-order features does improve the quality
of the model and outperforms using Cosine Loss.

We also performed experiments without the separating the N> flowrate into the piecewise
representation; instead, we just recorded the total time in seconds as a whole and ignored the N>
flowrate. These results are recorded in Table 4 and follow the same structure as in Table 3, with
the only difference being that there are 9 input features as opposed to 14 when the N; flowrate
conditions are represented as a piecewise function. Across all experiments, the MLP with a dropout
of 0.2 performed the best. Moreover, it had the lowest error in all sections except for predicting
water contact angle in the test set in the experiments without recording the flowrate conditions.
However, the CNN with 4 filters outperformed this model with the flowrate conditions; yet, across
all experiments, this model, CNN with 4 filters, generalized the best and had the lowest errors for
almost all test datasets.

Optimization: Operating Conditions that Maximize Contact Angles

We propose to optimize the function learned in the previous section to find the optimal process
conditions that maximize the contact angles; that is, to find the maximizer of the function using
constrained linear programming. As noted in the previous section, the CNN had the best success
in learning the optimal iCVD conditions; however, to maximize the contact angles from the CNN
is quite difficult due to the sheer number of parameters and structure of the network. We propose
three different approaches to solving the optimization problem. We first attempt to optimize the
function by defining a surrogate function that relaxes the original problem. Instead of maximizing

the function directly, we relax the CNN model to a convexified setting using the method proposed
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by Zhang et al. in Convexified Convolutional Neural Networks?’. The proposed algorithm is to
relax a two-layer two-dimensional CNN to a convexified setting and use the Convexified
Convolutional Neural Network (CCNN) to estimate kernel functions for each contact-angle
function. This relaxation of the original Convolutional Neural Network to a convexified setting, a
CCNN, results in a simplified and easy method to investigate the model and explore the operating
conditions that maximize the contact angles. We alter the algorithm implemented in *° slightly by

using an even simpler model, a one-dimensional two-layer CNN instead of a two-dimensional one.

Optimization Using Convexification as a Surrogate Function

We first begin by extracting a collection of P vectors {Zp (x)}§=1 of the input vector x. We define

P = 12 since there are 14 distinct features and our CNN takes patches of size 3 with a stride of 1,
resulting in 12 total patches. As a result, these patches consist of overlapping elements of x and
each vector z,(x) € R% where d; = 3. We then followed the same steps to approximate feature
matrix @, through a Cholesky decomposition of kernel K, the Radial Basis Function (RBF) kernel.
Following, we trained the CCNN, represented by the feature matrix, Q, to learn the parameter
matrix, A, through Projected Stochastic Gradient Descent’! that solves the constrained
optimization problem. The estimated parameter matrix, A, along with the matrix consisting of
patches, Z(x) for input x € X, define the general form function of the CCNN. The function is

computed by taking the concatenation of products of the trace of each input and the parameter
matrix learned such that f, ., (x) = ((tr(Z (x))/fl) ) e (tr(Z (x))/fdz)), where d, = 3. With

that, we maximize the function, f,cn,(x), across all inputs x € X and use a multi-objective

optimizer to find the Pareto frontier*.
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To solve the problem of finding the optimal inputs that maximize our convexified function
we used coordinate ascent, an iterative algorithm beginning at the local minimum that ascends by
walking along the gradients of the function to arrive at the optima. Since the function we learned
in the previous section has inputs on the magnitude of fourteen dimensions, the optimization
procedure we used, works by maximizing the function along one direction at a time, in essence

solving a simpler single-variable optimization problem at a time 3°.

Optimization of Convexified Surrogate Function via Extrapolation Using Metric Sets

An alternative method of optimizing the convexified surrogate function in the previous section
builds upon the work by Kryanev et al**. Since the convex surrogate function is computed by

taking the concatenation of products of the trace of each input and the parameter matrix learned
such that f,.p, (x) = ((tr(Z ())4,), ..., (x(z (x))AdZ)), where d, = 3. With that, we attempt

to optimize the function, f..n,(x), which is the summation of the trace of multiple matrices
representing a multi-variable function. We then extrapolate the function by the means of metric
analysis. We build upon the work by Kryanev et al. ** and extrapolate the surrogate function that
is a function of several variables. We use an interpolation scheme of metric analysis to solve the
extrapolation of the function in two steps: use metric analysis to interpolate the points of the
domain; and then apply an auto regression model as well as the use of metric analysis to predict

the function values along the domain.

Optimization of Convolutional Neural Network via Coordinate Ascent

. c e . . . P
Like the first method of optimization, we start by extracting a collection of P vectors {zp (x)}p=1

of the input vector x and define P = 12 since there are 14 distinct features and our CNN takes

patches of size 3 with a stride of 1, resulting in 12 total patches. As a result, these patches consist
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of overlapping elements of x, where each vector z,(x) € R% and d; = 3. We then leverage the
CNN directly to solve the problem of finding the optimal inputs that maximize the output of the
CNN function. To find the optimal inputs that maximize the output of the CNN function, we use
coordinate ascent, an iterative algorithm beginning at the local minimum that ascends by walking
along the gradients of the function to arrive at the optima. As discussed in the previous section,
this optimization procedure works by maximizing the function along one direction at a time due
to the multi-variate nature of the objective function®’. This follows a similar process as in the
section on optimization using convexification except for the function that determines the direction

of the coordinate ascent is the original CNN and not the convexified surrogate function.

Experimental Setup

As in the previous section, the same hardware is used, a Linux machine with Intel(R) Xeon(R) E-
2276M CPU @ 2.80GHz 2.81 GHz, 6 cores, and 32GB RAM. The optimization code was also run
and interpreted by Python 3.8.3 using NumPy 1.19.2 and TensorFlow 2.2.0 packages using
Anaconda 4.10.3 as a package manager. To note, we adapted the code implemented in *° to fit the
constraints of convexifying a 1D CNN as described in the previous section.

Results and Discussion

Table 5 presents the optimal input values calculated using six distinct optimization methods:
(A) Coordinate ascent algorithm on the function defined by our CCNN model;
(B) Data sample with maximum values;
(C) Coordinate ascent algorithm for our CNN model with 8 filters;
(D) Coordinate ascent algorithm for our CNN model with 6 filters;
(E) Coordinate ascent algorithm for our CNN model with 4 filters; and

(F) Extrapolation of function of many variables by means of metric analysis.
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Our investigation indicated that the same optimal input values maximize the contact angles
of water, heptane, and octane. We then used the optimal input values listed in Table 5 for our six
approaches, calculated the contact angles corresponding to the optimal input values (Table 6). We
operated the iCVD process at the theoretically optimal process conditions reported in Table 5 and
measured the contact angles of the produced polymer films. The measured contact angles are
reported in Table 7. As shown in Figure 6, the contact angles predicted by the convex surrogate
model with optimal input values derived by the coordinate ascent algorithm perform very well and
are similar to the measured contact angles of samples produced by the iCVD process. Similarly,
in Figure 7, the absolute error in predicting the contact angle for the convex surrogate model does
very well in predicting water and heptane, but not as well in the case of octane. As Figures 6 and
7 illustrate, in 10 out of the 18 cases the absolute difference (error) between the theoretically
predicted (by an ML model with the optimal operation conditions calculated using the same ML
model as the input) and measured contact angles of samples (produced by the iCVD process
operated at the theoretically found optimal operation conditions found by the same ML model) is
less than 20°. In particular, the theoretically predicted optimum contact angles of water and
heptane and measured ones for convex surrogate grid search optimization (A) and data sample of
maximum values (B), as well as the theoretically predicted optimum contact angles of water,
heptane and octane and measured ones for data sample with maximum output (F) are in good
agreement with the measured ones. On the other hand, the theoretically predicted optimum contact
angles and the measured ones for the remaining cases are significantly different. These large
differences indicate that CNN (8 Filters) grid search optimization (C), CNN (6 Filters) grid search
optimization (D), and CNN (4 Filters) grid search optimization (E) are unable to capture the

complexity of the relationships between the process conditions and the contact angles.
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Concluding Remarks
In this work, for the first time we: (i) reported iCVD data (contact angles of heptane, octane, and
water on PPFDA and process conditions) from 49 batches; (i) captured and described the
relationships using artificial neural networks; (iii) used the models to determine the optimal iCVD
process conditions that maximize the contact angles on PPFDA; and (iv) experimentally validated
the optimal process conditions. We applied and tested several machine learning models to capture
the relationships. A challenge is this machine learning problem was the low ratio of the number of
input-output data points to the number of input features. We found that a CNN model with 4 filters
yields the best prediction performance in terms of MSE.

We maximized the contact angles using constrained linear programming. Instead of
maximizing the function directly, we relaxed the two-layer two-dimensional CNN to a convexified
setting using the method proposed by Zhang et al. *° and estimated kernel functions for each

contact-angle function.
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Supplementary Information

Section SI1. Convexified Convolutional Neural Network

This section includes a Jupyter Notebook that contains the methods for the convexification of a

CCNN applied to the input features of the iCVD reaction. The convexified model is then
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optimized via projected gradient descent to find the optimal parameters that fit the matrices such
that when applied to the input features, it predicts the ground truth contact angles of water,
heptane, and octane.

Section SI2. Convexified Convolutional Neural Network Optimization

This section includes a Jupyter Notebook that builds upon the optimized convexification of the
CCNN applied to the input features of the iCVD reaction and attempts to optimize the function
to find the reactor conditions that maximize the respective contact angles for water, heptane, and
octane via coordinate descent and extrapolation using metric sets.

Section SI3. Convolutional Neural Network

This section includes a Python script that contains the methods for learning the weights of a
CNN applied to the input features of the iCVD reaction. The CNN model is then optimized via
Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions
to find the optimal weights that fit the input features to the ground truth contact angles of water,
heptane, and octane.

Section SI4. Convolutional Neural Network Optimization

This section includes a Jupyter Notebook that builds upon the optimized CNN applied to the
input features of the iCVD reaction and attempts to optimize the function to find the reactor
conditions that maximize the respective contact angles for water, heptane, and octane via
coordinate descent.

Section SIS. Data

This section presents an Excel sheet that includes the data of the iCVD process conditions used

to synthesize the PPFDA samples and contact angles of the samples.

19



Section S16. Multi-Layer Perceptron

This section includes a Python script that contains the methods for learning the weights of a MLP
applied to the input features of the iCVD reaction. The MLP model is then optimized via Adam,
an algorithm for first-order gradient-based optimization of stochastic objective functions to find
the optimal weights that fit the input features to the ground truth contact angles of water,

heptane, and octane.
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Figure 1. Schematic of the iCVD process. Monomer and initiator are introduced as vapors into
the reaction chamber heated by filaments. The supplied thermal energy converts the thermal
initiator to free radicals. Monomer and the free-radicals are absorbed onto a temperature-controlled
substrate where surface polymerization between the free radicals and monomer occurs.

Figure 2. Polymerization chemistry of poly(perfluorodecyl acrylate) (PPFDA).

Figure 3. Cross-sectional SEM images showing PPFDA worms that are (a,b) narrower

and straighter, and (c,d) more tapered and curled, depending on the specific iCVD growth
conditions.

Figure 4. Overview of an MLP architecture.

Figure 5. Overview of a CNN architecture.

Figure 6. Theoretically predicted (by an ML model with the optimal operation conditions
calculated using the same ML model as the input) vs. measured contact angles of samples
(produced by the iICVD process with the theoretically found optimal operation conditions found
by the same ML model). A: Convex Surrogate Grid Search Optimization; B: Data Sample of
Maximum Values; C: CNN (8 Filters) Grid Search Optimization; D: CNN (6 Filters) Grid Search
Optimization; E: CNN (4 Filters) Grid Search Optimization; and F: Data Sample with Maximum
Output. Blue circles: water contact angles. Red circles: heptane contact angles. Green circles:

octane contact angles.
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Figure 7. The absolute difference (error) between the theoretically predicted (by an ML model
with the optimal operation conditions calculated using the same ML model as the input) and
measured contact angles of samples (produced by the iCVD process with the theoretically found

optimal operation conditions found by the same ML model). W: water; H: heptane; and O: octane.
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Figure 1. Schematic of the iCVD process. Monomer and initiator are introduced as vapors into
the reaction chamber heated by filaments. The supplied thermal energy converts the thermal
initiator to free radicals. Monomer and the free-radicals are absorbed onto a temperature-
controlled substrate where surface polymerization between the free radicals and monomer
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Figure 3. Cross-sectional SEM images showing PPFDA worms that are (a,b)
narrower and straighter, and (c,d) more tapered and curled, depending on the

specific iCVD growth conditions.
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Figure 6. Theoretically predicted (by an ML model with the optimal operation conditions
calculated using the same ML model as the input) vs. measured contact angles of samples
(produced by the iICVD process with the theoretically found optimal operation conditions found
by the same ML model). A: Convex Surrogate Grid Search Optimization; B: Data Sample of
Maximum Values; C: CNN (8 Filters) Grid Search Optimization; D: CNN (6 Filters) Grid Search
Optimization; E: CNN (4 Filters) Grid Search Optimization; and F: Data Sample with Maximum
Output. Blue circles: water contact angles. Red circles: heptane contact angles. Green circles:

octane contact angles.
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Figure 7. The absolute airterence (error) between the theoretically predictea (by an ML model
with the optimal operation conditions calculated using the same ML model as the input) and
measured contact angles of samples (produced by the iCVD process with the theoretically found
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Table 1. iCVD process conditions and measurements.

x, = filament resistance (€2) x, = initiator feed temperature (°C) X,3 = total pressure (torr) X19 = N3 flow rate (sccm)

X, = substrate temperature (°C) | xg = initiator feed flow rate setpoint X14 = base pressure (torr) y; = water contact angle (°)
x5 = chiller temperature (°C) X¢ = initiator feed flow rate (sccm) x15 = filament current (A) Yy, = heptane contact angle (°)
x4 = wall temperature (°C) X109 = monomer feed temperature (°C) X1 = filament voltage (V) Y3 = octane contact angle (°)
x5 = Glass heater power (%) x11 = monomer feed flow rate setpoint X1, = filament temperature (°C)

x¢ = leak rate (sccm) X412 = monomer feed flow rate (sccm) Xx1g = Reaction time (min)
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Table 2. iCVD process conditions used to synthesize the PPFDA samples and contact angles of the samples.

D | X | Xp | X3 | X4 | X5 | X¢ | Xy | Xg | X9 | X990 | X917 | Xq2 | X33 X14 | X35 | X136 | X17 | X138 X19 Vi | Y2 | V3
1179 | 42| 50 | 516 | 17 | 0026 | 20| 85| 0204 | 80| 1180120 | 020 | 00100 | 1.1 | 19.1 | 211.2 | 45.00 | 0.00for45min | 1447 | 708 | 776
2176 | 44| 50 | 516 | 17 | 0026 | 20 | 88 | 0204 | 80 | 180 | 0.118 | 020 | 0.0100 | 1.1 | 19.2 | 247.0 | 45.00 | 0.00for45min | 145 | 702 | 785
3174 | 48| 50| 516 | 17 | 0026 | 20| 9.0 | 0205 | 80 | 180 | 0119 | 020 | 0.0099 | 1.1 | 189 | 253.7 | 45.00 | 0.00for45min | 1265 | 69.0 | 724
4173 | 46| 50 | 516 | 17 | 0026 | 20 | 10.9 | 0201 | 80 | 130 | 0.121 | 020 | 0.0102 | 1.0 | 19.0 | 275.6 | 45.00 | 0.00for45min | 159.0 | 100.0 | 108.0
5174 | 46| 50 | 516 | 17 | 0026 | 20 | 10.6 | 0200 | 80 | 120 | 0117 | 0.5 | 0.0099 | 1.0 | 189 | 2857 | 25.00 |  0.00for25min | 147.0 | 86.0 | 100.0
6| 174 | 46| 50 | 516 | 17 | 0026 | 20 | 105 | 0198 | 80 | 220 | 0.116 | 0.15 | 0.0103 | 1.0 | 189 | 292.4 | 575 | 0.00for575min | 1450 | 820 | 870
7174 | 46| 50 | 516 | 17 | 0026 | 20 | 105 | 0197 | 80 | 120 | 0.034 | 015 | 00107 | 1.0 | 189 - | 23.50 | 0.00for23.50min | 149.0 | 720 | 86.0
8174 | 46| 50 | 516 | 17 | 0026 | 20 | 10.6 | 0198 | 80 | 128 | 0.119 | 0.10 | 0.0110 | 1.0 | 19.0 | 284.5 | 25.00 | 0.00for25min | 133.0 | 910 | 920
9| 174 | 46| 50 | 516 | 17 | 0.026 | 20 | 106 | 0.196 | 80 | 130 | 0119 | 0.10 | 00103 | 1.0 | 189 | 270.9 | 25.00 | 0.00for25min | 137.0 | 89.0 | 930

10 | 175 | 46| 50 | 516 | 17 | 0.026 | 20 | 10.6 | 0203 | 80 | 157 | 0117 | 0.10| 00125 | 1.0 | 18.9 | 255.6 | 45.00 | 0.35for45min | 168.0 | 111.5 | 124.0

11| 174 | 46| 50 | 516 | 17 | 0.026 | 20 | 10.6 | 0194 | 80 | 176 | 0122 | 0.0 | 00116 | 1.0 | 189 | 272.2 | 4500 | 0.35for45min | 169.2 | 104.5 | 117.7

12176 | 46| 50 | 516 | 17 | 0.026 | 20 | 10.6 | 0198 | 80 | 140 | 0.118 | 0.0 | 00121 | 1.0 | 189 - | 1000 | 0.35for10min | 156.0 | 700 | 76.0

13176 | 46| 50 | 516 | 17 | 0.026 | 20 | 10.7 | 0195 | 80 | 150 | 0119 | 0.10 | 0.0120 | 1.0 | 18.9 | 273.0 | 2000 | 0.35for20min | 160.0 | 912 | 986

14 | 176 | 46 | 50 | 516 | 17 | 0.026 | 20 | 10.7 | 0198 | 80 | 150 | 0.119 | 0.10 | 0.0119 | 1.0 | 18.9 | 289.4 | 30.00 | 0.35for30min | N/A | 102.0 | 113.0

15 [ 174 | 46| 50 | 516 | 17 | 0.026 | 20 | 9.2 | 0197 | 80 | 140 | 0.117 | 0.0 | 00119 | 1.0 | 189 -| 500 0.35for5min | 1230 | 640 | 69.0

16 | 169 | 46 | 50 | 516 | 17 | 0.026 | 20 | 10.1 | 0202 | 80 | 150 | 0.117 | 0.10 | 0.0120 | 1.0 | 18.8 -] 7.00 0.35for7min | 1288 | 680 | 69.0

17 [ 172 | 48| 50 | 516 | 17 | 0.026 | 20 | 10.7 | 0200 | 80 | 153 | 0.125 | 0.0 | 0.0118 | 1.0 | 189 - 13000 | 0.35for30min | 1750 | 97.0 | 107.0

18 | 172 | 44 | 50 | 516 | 17 | 0.026 | 20 | 10.7 | 0200 | 80 | 153 | 0.125 | 0.10 | 0.0118 | 1.0 | 189 30.00 | 0.35for30min | 1630 | 850 | 96.0

19 | 173 | 36| 50 | 516 | 17 | 0026 | 20 | 87 | 0195 | 80 | 155 | 0.123 | 0.0 | 00121 | 1.1 | 188 3000 | 0.35for30min | 1620 | 88.0 | 104.9

20 | 173 | 33| 43| 516 | 17 | 0026 | 20 | 107 | 0196 | 80 | 165 | 0.120 | 010 | 00119 | 1.0 | 189 | 302.0 | 14.42 | 0.35for1442min | 173.0 | 720 | 895

21 [ 175 | 42| 50 | 516 | 17 | 0026 | 20 | 9.2 | 0.205 | 80 | 165 | 0120 | 0.0 | 00128 | 1.0 | 18.9 | 255.8 | 45.00 |  0.00for45min | 1450 | 680 | 763

22 | 173 | 46| 50 | 516 | 17 | 0026 | 20 | 85| 0196 | 80| 145 | 0124 | 0.10| 00117 | 1.1 | 187 - | 4500 | 050for45min | 1330 | 680 | 715

23 | 172 | 46| 50 | 516 | 17 | 0.026 | 20 | 101 | 0199 | 80| 175 | 0122 | 0.10| 00100 | 1.1 | 188 - | 4500 | 0.10for45min | 155.0 | 108.0 | 1215

24 | 174 | 46| 50 | 516 | 17 | 0.026 | 20 | 105 | 0.200 | 80 | 175 | 0.121 | 0.0 | 00112 | 1.1 | 188 - | 55.00 | 0.35for25min; | 160.0 | 109.0 | 116.0

0.10 for 20 min
25 | 174 | 46| 50 | 516 | 17 | 0.026 | 20 | 11.0 | 0.203 | 80 | 160 | 0.125 | 0.10 | 00103 | 1.0 | 18.9 | 261.0 | 3.00 0.35for3min | 1245 | 662 | 71.0
26 | 176 | 46 | 50 | 516 | 17 | 0.026 | 20 | 11.0 | 0.196 80 | 160 | 0.118 0.10 0.0108 1.0 | 18.8 | 253.0 | 48.00 0.35for48 min | 162.5 | 111.4 | 125.0
27 | 174 | 46| 50 | 516 | 17 | 0.026 | 20 | 113 | 0.199 | 80 | 160 | 0122 | 0.10 | 00117 | 1.0 | 189 | 294.0 | 50.00 | 0.40for45min; | 163.0 | 103.0 | 109.5
0 for 7 min

28 | 177 | 46 | 50 | 51.6 | 17 | 0.026 | 20 | 11.3 | 0.205 80 | 175 | 0.120 0.10 0.0128 1.0 | 18.8 | 251.6 | 55.00 0.40 for 45 min; | 156.6 | 104.0 | 114.3
0 for 7 min

29 | 176 | 46 | 50 | 51.6 | 17 | 0.026 | 20 | 11.3 | 0.198 80 | 175 | 0.115 0.10 0.0130 1.0 | 18.8 | 250.6 | 65.00 0.40 for 45 min; | 145.0 742 80.0
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0 for 7 min

30 | 174 46 50 | 51.6 17 | 0.026 20 | 11.3 | 0.201 80 160 | 0.124 | 0.1-0.2 0.0122 1.0 | 18.9 | 227.0 | 55.00 0.40 for 45 min; | 156.0 | 106.3 | 111.7
0 for 7 min

31 17.3 46 50 | 51.6 17 | 0.026 20 | 10.5 | 0.198 80 90 | 0.120 0.10 0.0131 1.0 | 18.9 - | 45.00 0.35for45min | 167.0 | 105.0 | 111.5

32 | 172 46 50 | 51.6 17 | 0.026 20 | 10.3 | 0.196 80 95 | 0.124 0.10 0.0015 1.0 | 18.8 | 258.0 | 45.00 0.4 for45min | 165.0 | 106.0 | 115.0

33 | 172 46 50 | 51.6 17 | 0.026 20 | 10.7 | 0.200 80 95 | 0.121 0.10 0.0019 1.1 | 18.9 | 193.7 | 52.00 0.40 for 45 min; | 165.0 96.0 | 1084
0 for 7 min

34 | 173 46 50 | 51.6 17 | 0.026 20 | 10.2 | 0.200 80 95 | 0.119 0.10 0.0019 1.0 | 18.8 | 284.7 | 63.00 0.35 for 45 min; | 165.0 | 105.0 | 110.0
0 for 7 min;
0.35 for 10 min

35 | 172 46 50 | 51.6 17 | 0.026 20 | 11.3 | 0.196 80 80 | 0.125 0.09 1.8000 1.0 | 18.8 | 283.4 | 45.00 0.35for45min | 166.0 | 100.0 | 107.0

36 | 171 46 50 | 51.6 17 | 0.026 20 | 11.0 | 0.205 80 75 | 0.119 0.09 3.0000 1.0 | 18.9 | 219.7 | 45.00 0.50 for45min | 159.6 | 109.0 | 121.0

37 | 304 46 50 | 516 17 | 0.026 20 8.1 | 0.196 80 70 | 0.124 0.09 4.3000 0.9 | 285 | 258.8 | 45.00 0.50 for45min | 151.0 | 107.0 | 113.0

38 | 172 46 50 | 51.6 17 | 0.026 20 | 10.2 | 0.200 80 95 | 0.115 0.08 | -0.7000 1.0 | 18.8 | 320.8 | 45.00 0.50 for 45 min | 162.0 97.3 | 108.0

39 | 173 46 50 | 516 17 | 0.026 20 | 10.2 | 0.196 80 100 | 0.124 0.15 | -1.0000 1.0 | 18.8 | 269.4 | 15.00 0.00 for 15 min | 167.0 88.0 99.0

40 | 222 46 50 | 51.6 17 | 0.026 20 | 10.5 | 0.200 80 110 | 0.118 0.09 -0.1000 257.4 | 45.00 0.35for45min | 148.0 | 112.0 | 115.0

41 1 172 46 50 | 516 17 | 0.026 20 | 10.5 | 0.205 80 85 | 0.120 0.20 | -0.5000 1.0 | 18.7 | 262.0 | 15.00 0.00 for 15 min | 143.8 75.0 85.0

42 | 17.2 46 50 | 516 17 | 0.026 20 | 10.7 | 0.197 80 110 | 0.122 0.09 | -1.7000 1.0 | 18.7 | 308.4 | 45.00 0.50 for45 min | 157.9 95.0 | 101.0

43 | 174 46 50 | 51.6 17 | 0.026 20 9.1 | 0.118 80 90 | 0.124 0.08 | -0.2000 1.0 | 18.8 | 233.3 | 45.00 0.50 for45 min | 171.0 75.0 86.8

44 | 172 46 50 | 516 17 | 0.026 20 9.5 | 0.118 80 100 | 0.118 0.08 0.8000 1.0 | 18.9 | 182.0 | 45.00 0.35for45 min | 166.0 77.0 88.0

45 | 178 46 50 | 51.6 17 | 0.026 20 | 10.8 | 0.118 80 100 | 0.118 0.08 | -0.7000 1.0 | 18.8 | 280.2 | 55.00 0.35 for 45 min; | 156.5 955 | 103.7
0 for 10 min

46 | 17.0 46 50 | 516 17 | 0.026 20 | 10.9 | 0.197 80 110 | 0.118 0.08 | -0.2000 1.0 | 18.8 | 246.5 | 60.00 0.35 for 45 min; | 154.0 88.0 94.0
0 for 15 min

47 | 17.2 46 50 | 516 17 | 0.026 20 9.4 | 0.198 80 150 | 0.227 0.08 1. 0000 1.0 | 18.8 | 297.5 | 45.50 0.35 for 45.5 min | 140.0 83.7 96.0

48 | 17.2 46 50 | 51.6 17 | 0.026 20 11 | 0.204 80 170 | 0.300 0.08 | -0.3000 1.0 | 18.9 | 254.8 | 55.00 0.35 for 45 min; | 166.0 87.3 95.0
0 for 10 min

49 | 172 | 46 50 516 | 17 0.026 | 20 11.1 | 0.197 | 80 180 0.228 | 0.08 1.5000 1.0 18.9 | 242.4 | 45.00 0.35 159.0 | 93.0
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Table 3. Comparison of model performances (MSEs) using piecewise N> flowrate conditions.

Water Heptane Octane

Train Test Train Test Train Test
MLP Dropout (0.2) 4.5043 13.6808 | 3.029 11.646 | 2.959 10.982
MLP Dropout (0.4) 11.3727 | 12.8414 | 8.9308 16.4888 | 9.3543 16.7297
MLP Cosine Loss 0.6532 17.9388 | 1.385 14.6387 | 1.4134 15.4653
CNN (4 Filters) 8.4781 |12.3324 | 103334 |8.1957 | 11.4962 | 8.3518
CNN (8 Filters) 8.3272 | 16.0255 | 9.6154 7.9111 | 10.5427 | 7.8215
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Table 4. Comparison of model performances (MSEs) ignoring the N> flowrate.

Water Heptane Octane
Train Test Train Test Train Test
MLP Dropout (0.2) 4.247 11.808 3.120 9.158 3.135 8.475
MLP Dropout (0.4) 12.008 10.636 7.177 12.455 7.832 12.665
MLP Cosine Loss 11.930 9.703 13.163 10.292 14.889 10.604
CNN (4 Filters) 11.217 9.439 12.703 9.639 14.318 9.653
CNN (8 Filters) 9.836 9.604 11.219 11.977 12.327 11.608
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Table 5. Theoretically optimal process conditions that maximize the contact angles.

Substrate
Temperature
(°C)

Reactor Wall
Temperature
(°C)

Glass
Heating
(%)

Leak
Flowrate
(sccm)

Initiator
Flowrate
(sccm)

Monomer
Flowrate
(sccm)

P_total -
P_base
(torr)

I_Filament
(A) x
V_Filament
(V)

Reaction
Time 0
(sec)

N2
Flow 0
(sccm)

Reaction
Time 1
(sec)

N2
Flow 1
(sccm)

Reaction
Time 2
(sec)

N2
Flow 2
(sccm)

Convex
Surrogate
Grid Search
Optimization

47.90

56.10

17.00

0.04

0.20

0.22

0.19

25.60

2880

0.45

1,200

0.10

600

0.30

Data Sample
with
Maximum
Values

48.00

56.20

17.00

0.06

0.21

0.30

0.20

25.65

2,880

0.50

1,200

0.10

600

0.35

CNN (8
Filters) Grid
Search
Optimization

46.56

48.24

17.00

0.02

0.12

0.04

0.09

18.71

2,877

0.01

137

0.09

600

0.00

CNN (6
Filters) Grid
Search
Optimization

46.17

49.50

17.00

0.02

0.12

0.04

0.19

18.71

2,178

0.39

420

0.00

600

0.00

CNN (4
Filters) Grid
Search
Optimization

46.94

49.50

17.00

0.02

0.12

0.04

0.09

18.71

2,296

0.33

416

0.00

600

0.00

Data Sample
with
Maximum
Output

46.00

52.50

17.00

0.04

0.20

0.12

0.09

18.80

2,700

0.35

1,200

0.00

0.00
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Table 6. Contact angles predicted by the fived models with the inputs (optimal process

conditions) reported in Table 5.

Water | Heptane | Octane
A Convex Surrogate Grid Search Optimization 155.2 89.1 125.7
B Data Sample of Maximum Values 145.2 72.0 108.6
C CNN (8 Filters) Grid Search Optimization 154.6 43.5 45.4
D CNN (6 Filters) Grid Search Optimization 143.3 68.5 75.3
E CNN (4 Filters) Grid Search Optimization 132.9 82.8 98.6
F Data Sample with Maximum Output 145.0 74.2 80.0
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Table 7. Measured contact angles of the polymer films produced by the iCVD process operated

with the optimal process conditions reported in Table 5.

ML Modeling/Optimization Method Water | Heptane | Octane
A | Convex Surrogate Grid Search Optimization 150.7 88.0 97.3
B | Data Sample of Maximum Values 150.6 70.0 78.7
C | CNN (8 Filters) Grid Search Optimization 112.9 62.4 68.5
D | CNN (6 Filters) Grid Search Optimization 105.1 57.4 62.6
E | CNN (4 Filters) Grid Search Optimization 107.0 25.5 36.0
F | Data Sample with Maximum Output 150.6 63.6 79.7
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