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Abstract 

Initiated chemical vapor deposition (iCVD) is a reactive process that creates polymeric materials 

on a surface from vapor-phase monomers and thermal initiators. Our iCVD synthesis of 

poly(perfluorodecyl acrylate) (PPFDA) resulted in the growth of micro- and nano-worms normal 

to the surface. The micro- and nanostructures of the worms directly depend on iCVD process 

conditions. They in turn influence bulk properties such as their liquid wettability. The current 

absence of a physiochemical model that can explain the relationships between iCVD process 

conditions and bulk properties of the polymers motivates the use of data-driven modeling to 

capture and describe the relationships.  In this work, we report iCVD data (contact angles of 

heptane, octane, and water on PPFDA and process conditions) from 49 batches and use artificial 

neural networks to model the relationships. The models are then used to determine the optimal 

iCVD process conditions that maximize the contact angles on PPFDA.  
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Introduction 

Wettability of a liquid with respect to a solid is the tendency of the liquid to spread over or adhere 

to the surface of the solid in the presence of other immiscible fluids.1  It can be expressed in terms 

of the angle of contact at the liquid-solid surface, which is the angle formed by the liquid at the 

three-phase boundary where the liquid, gas, and solid intersect.  As the contact angle decreases, 

the wettability of the liquid increases. Thus, a zero contact-angle indicates complete wettability, 

while a contact angle of 180° is indicative of complete nonwetting. It is generally accepted that a 

solid with contact angles of 60° to 90° repels the liquid. The solid surface roughness affects the 

contact angle; surfaces with the same chemical composition but different roughness have different 

contact angles.  

Initiated chemical vapor deposition (iCVD) is a reactive process, which creates a polymeric 

film on a substrate surface, from vapor-phase monomer(s) and initiator(s). It usually produces 

contiguous polymer thin films. However, in rare cases, it can instead form discrete micro- and 

nano-structures. For example, our iCVD synthesis of poly(perfluorodecyl acrylate) (PPFDA) 

resulted in the growth of micro- and nano-worms, which tend to grow perpendicular to the 

surface.2,3. Due to the low surface energy of the fluorinated polymer and the heterogeneous worm-

like surface, liquid wetting can be substantially reduced by entering the Cassie-Baxter state. The 

micro- and nanostructures of the worm-like features directly depend on iCVD operating 

conditions. They in turn influence bulk properties such as repellency of liquids. With the contact 

angle being dependent on iCVD operating conditions, it would be advantageous to create a model 

that captures the dependence.   

Using conventional reaction rate equations and parameters, the reaction kinetics can be 

modeled with enough accuracy4. However, the mechanisms that determine the growth of the 

worm-like structures are currently not fully understood.3  Given this currently-inadequate chemical 
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and physical understanding, an alternative to first-principles (physical) modeling to relate product 

(polymer) properties, such as contact angles of liquids on the polymer surface, to iCVD processing 

conditions is to use an empirical (data-driven) modeling approach such as neural networks. A 

typical neural network model can contain numerous fitting parameters, many times greater than 

the number of observations available to fit the model with. This relatively large number of fitting 

parameters provides a lot of flexibility for shaping the response surface of the target (output) 

variable(s). 

Traditional machine learning techniques require a significant number of training examples 

to achieve high accuracy in model training. We experiment with different machine learning models 

to score high accuracy with the limited training data available for modeling iCVDconditions. 

Research has shown that, in general, training a classifier from scratch on small datasets does not 

work well, Recently, Barz et al. showed that using a cosine loss function provides better 

performance than traditional objective functions on smaller datasets26. Our first experiment is to 

verify the validity of the hypothesis of using cosine loss on a multi-layer perceptron trained on few 

data samples. Specifically, we experiment by modeling the iCVD data using a multi-layer 

perceptron with a cosine loss function and evaluate the performance due to the limited amount of 

data to train. We show the results of this experiment in the experimental section below. Our second 

hypothesis is to use convolutional layers to generate higher order features to improve the 

predictions. We verify this hypothesis by using a Convolutional Neural Network (CNN) with 

convolutional layers as feature generation layers. We verify this hypothesis and ration that the use 

of convolutional layers to generate higher-order features improves the quality of classification. 

While in principle, the CNN developed to find the optimal reacting conditions could be optimized 

using general optimization and extrapolation methods (i.e., Stochastic Gradient Descent), our final 
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contribution focuses on relaxing the problem to a convex setting. We implemented a convexified 

convolutional neural network that approximates the best possible CNN and can estimate the 

optimal conditions in a more efficient and explanatory method using convex optimization. 

In this paper. for the first time we: (i) report iCVD data (contact angles of heptane, octane, 

and water on PPFDA and process conditions) from 49 batches; (ii) capture and describe the 

relationships using artificial neural networks; and (iii) use the models to determine the optimal 

iCVD process conditions that maximize the contact angles on PPFDA. The ability to create 

surfaces with high contact angles and liquid repellency is important for a broad range of 

applications, such as in oil-water separations, self-cleaning surfaces, and microfluidics.5 

 

iCVD Process 

iCVD is a technique used to deposit polymer thin films under vacuum. Monomer and initiator 

vapors flow into the reactor. Inside the chamber, the initiator molecules are heated by a series of 

heated filament wires, leading to the generation of free radicals. Here also, the monomer molecules 

are adsorbed onto a temperature-controlled substrate surface. The free radicals initiate the surface 

polymerization of the adsorbed monomer (Figure 1). The advantages of iCVD include its much 

lower filament temperature (~200–400 °C) compared to other hot wire CVD techniques (>800 °C) 

as well as the relative chemical purity and physical uniformity of polymer films produced on 

surfaces. In addition, the substrate can be kept at near room temperature (~25 °C), which allows a 

wide range of substrates to be coated, like wafers, glass, metals, plastics, and even non-volatile 

liquids. Utilizing this approach, the entire substrate surface can be covered with polymer very 

efficiently6,7. It is a proven technique for numerous applications, including biomaterials,8-10 solar 

cells,11 sensors,12 and various thin film coatings. Compared to other film deposition techniques, 
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like spin coating, iCVD does not use liquid solvents during processing. This is particularly 

attractive as the use of liquid solvents during processing can often lead to solvent residue in the 

coatings and solvent incompatibilities with existing substrate surfaces. Furthermore, the iCVD 

process occurs in a single step, enabling simultaneous polymerization and coating deposition, and 

provides the necessary physical and chemical control needed for targeted applications.13 In 

general, the surface polymerization process allows iCVD to deposit thin uniform coatings that 

conform to the substrate topology.11,14 Besides planar substrates like silicon wafers, micro- and 

nano-scale porous materials can also be conformally coated by iCVD.6,15-18 By controlling the 

relative rates of reactant diffusion and polymerization, uniform growth can be achieved.  

iCVD Deposition of PPFDA Polymer 

The monomer, 1H,1H,2H,2H-perfluorodecyl acrylate (99.6% Fluoryx), and the initiator, di-tert-

butyl peroxide (99% Acros Organics), were used without further purification for the 

polymerization of PPFDA using iCVD  (Figure 2). The polymer was deposited on silicon 

substrates in a stainless steel custom-built vacuum reactor as described previously.19 The monomer 

was heated in a source container to 80 °C, in order to attain sufficient vapor pressure, while the 

initator was kept at room temperature. For iCVD of PPFDA, vapors of the monomer and the 

initiator were sent into the reactor at set flow rates using precision needle valves. In some cases, 

an inert nitrogen gas flow was also added that was metered into the reactor using a mass flow 

controller (MKS Instruments). The precursor flowrates were set relative to the reactor leak rate; 

i.e., the inherent flow from the surrounding atmosphere into the vacuum chamber without any 

active precursor flow. Reactor pressure was maintained at a desired setpoint by using a pressure 

controller (MKS Instruments) in a feedback loop with a capacitance manometer (MKS 

Instruments) that adjusted the opening of a downstream throttle valve (MKS Instruments) to a 
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rotary mechanical pump (Edwards). The reactor pressure was set relative to the reactor base 

pressure, i.e., the inherent pressure inside the vacuum chamber without any reactant flow and with 

the throttle valve fully open. A Chromaloy (Goodfellow) filament wire array was used to 

resistively heat the reaction chamber to a desired temperature using a DC power supply (Sorensen) 

that controlled the electrical voltage and current through the wires. The deposition substrate was 

placed on a thermoelectric cooling stage (Custom Thermoelectric) positioned below the array of 

filament wires, and the stage was cooled by backside contact with a thermal fluid flowing through 

a recirculating chiller (Thermo Scientific). To minimize polymer deposition elsewhere in the 

reactor, the walls and the reactor’s glass lid were heated. Filament, substrate, and reactor wall 

temperatures were monitored by K-type thermocouples (Omega Engineering). A wide range of 

iCVD process parameters were studied, controlled, and monitored for the deposition of PPFDA 

polymer worms, as shown in Table 1. 

After deposition, the PPFDA polymers were characterized for their composition, 

morphology, and liquid wettability. In all deposition runs, Fourier transform infrared spectroscopy 

(FTIR) and X-ray photoelectron spectroscopy (XPS) reveal the chemical composition and 

stoichiometry expected of PPFDA, results of which have been shown previously.17 In terms 

surface morphology, scanning electron microscopy (SEM) show the formation of micro- and nano-

scale worms. Depending on the iCVD process conditions (Table 1), worm morphology can change 

in terms of the height, shape, and orientation. Figure 3 shows representative images of PPFDA 

worm morphology that can be produced, which range from straight and narrow worms to highly 

curled and tapered worms. The mechanism of worm formation and growth is not entirely 

understood, but there is evidence to show that the reaction kinetics and crystallization of PPFDA 

drives polymer chain and worm assembly.17 The resulting changes in surface morphology directly 
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impacts liquid wetting on the surface. To assess wettability, static contact angles of water and oil 

(heptane, octane) droplets were measured for each corresponding deposited sample.  Table 2 lists 

iCVD reactor operating conditions used to synthesize the PPFDA samples and contact angles of 

the samples. Contact angles measurements were performed using an automated contact angle 

goniometer (ramé-hart) with droplet volumes in the range of 3–14 mL. In general, by coupling 

greater surface roughness and a low surface energy fluorinated polymer like PPFDA, super 

hydrophobicity can be achieved, where water contact angle exceeds 150°.20 However, to achieve 

superoleophobicity where oil contact angle exceeds 150° is a greater challenge. Surface roughness 

alone is not a sufficient criterion, but instead specific surface re-entrant structures, like overhangs, 

umbrellas, and mushrooms, are needed to prevent the wetting of low surface tension oils. Given 

the current lack of a physical model for understanding worm development of iCVD PPFDA, a 

data-driven model that aims to capture the impact of a multitude of iCVD processing parameters 

on PPFDA surface wettability would be valuable in helping us attain superoleophobicity. 

Machine Learning 

Machine Learning Problem 

The machine learning problem to find the relationships between the input vector 𝑍 and 𝑦1,  𝑦2, and 

𝑦3, where 

𝑍 = [𝑥2   𝑥4   𝑥5   𝑥6   𝑥9   𝑥12  (𝑥13 −  𝑥14)  𝑥15𝑥16    𝑧9      𝑧10     𝑧11      𝑧12    𝑧13      𝑧14 ] ∈ ℝ14, 

𝑧9  and 𝑧10 are the flowrate of the inert gas during the first period and the duration of the first 

period, respectively; 𝑧11   and 𝑧12 are the flowrate of the inert gas during the second period and the 

duration of the second period, respectively; 𝑧13    and 𝑧14 are the flowrate of the inert gas during the 

third period and the duration of the third period, respectively. 𝑧9, 𝑧10, 𝑧11 , 𝑧12, 𝑧13  , and 𝑧14  

describe the flowrate of the inert gas, 𝑥19, during the reaction time of  𝑥18. 
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Machine Learning Methods 
 

The first innovation in mimicking learning of human brains was the Artificial Neural Network 

(ANN)21. An ANN consists of a collection of connected nodes, artificial neurons, that loosely 

model the neurons in a biological brain. The connections between the nodes follow the likeness of 

synapses in the biological brain, which propagate signals to other neurons. In the ANN, these 

signals are represented as Real numbers, which are then transformed at the outputs of each neuron 

by some non-linear function of the sum of its inputs. The connections between the nodes, or edges, 

have a weight associated with them to adjust the learning process. These weights are like that of 

the natural threshold activations as seen in the biological brain. In general, the main objective of 

training an ANN is to learn the proper weights such that when inputs are passed through the 

complete collection of neurons and associated weights, the correct output is generated. ANNs can 

be constructed in many ways; architectures can consist of ensembles of neurons together, a layer, 

and more complicated models can consist of multiple layers connected to each other with outputs 

of one layer passed as inputs to the next layer. 

One of the simplest ANNs, is the Multilayer-Perceptron (MLP), a feedforward ANN22. A 

MLP is composed of at least three layers of nodes: an input layer, a hidden layer, and an output 

layer. The input layer is simply the raw data; the hidden layer is as described above, an ensemble 

of neurons that compute the product of the inputs and the weights, generates a summation, and 

then applies a non-linear activation function as output. While the bare minimum for a MLP is a 

single hidden layer, there can be an infinite number of hidden layers stacked on top of one another. 

Finally, all MLPs are completed with an output layer that combines the last hidden layer and 

generates a single output of the desired dimension. The most common non-linear activation 

function applied to summations is the Rectified Linear Unit (ReLU) function, a piecewise linear 

function that outputs the input if it is positive, and zero otherwise23. 
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𝑓(𝑥) = max(0, 𝑥) 

MLPs and most if not all ANNs are trained through the backpropagation algorithm24 that require 

an activation function to look and act like a linear function but is non-linear to allow learning of 

more complex relationships. As a result, the ReLU function is a perfect tool for achieving this, 

since it is linear for all positive values, and is non-linear in the sense that it outputs all negative 

values as zero. 

The intuition for deploying an MLP with multiple hidden layers derives from the history 

of using a single-layer neural network to represent linearly separable functions. As a result, simple 

problems that must classify between two classes can easily be separated by a line; yet, most 

problems, especially the problem of predicting iCVD reactor conditions are not necessarily linearly 

separable. Therefore, MLPs with many hidden layers have been used to represent convex regions 

such that they can learn to represent shapes around examples in some high-dimensional space. 

This in turn can outperform the limitation of a network that can only solve linearly separable 

classes. To select the number of nodes for each layer in a MLP, we systematically experiment to 

find the best performing solution. We gradually decrease the number of neurons within each layer 

and check the quality of the model prediction until we arrive at the simplest model that has 

satisfactory prediction accuracy. The number of epochs is chosen in a similar fashion in a method 

to determine the best accuracy without overfitting, we chose the number of epochs that converged 

in the smallest number without overfitting in a series of trials. When choosing the hyperparameters 

for the CNN architecture, we follow the principle that a choice of a small filter corresponds to a 

good compromise between computational complexity and quality of the resulting convolution. In 

disciplines such as computer vision, this compromise is most illustrative in noise reduction, while 

preserving the sharpness for a median filter. Thus, we experiment with three different sizes of the 
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kernel saturating around the median values between 0 and the input size, 14. In general, the notion 

of filters is to capture patterns; and the best effort to capture patterns for a small input size such as 

14 is to try to extract them around 4-8. In view of these, we propose an MLP architecture with 4 

hidden layers: 48, 24, 12, and 6 nodes respectively, as shown in Figure 4. The model takes as input 

the 14 features as described before and outputs the predicted values for the three properties: water, 

heptane, and octane contact angles of the resulting polymer. 

ANNs are known to overfit quickly on a training dataset with few samples; thus, the model 

fails to generalize on inputs that the model has never seen before. As a result, to improve the 

model’s ability to generalize, Dropout layers were included following each of the hidden layers25. 

A common solution employed is the notion of randomly dropping nodes from the network as a 

form of regularization that approximates training many ANNs with different architectures in 

parallel. Moreover, during training, a portion of layer outputs are randomly suppressed, dropped 

out, to effect making the layer seem as though it had fewer input nodes passed in. Each iteration 

of training, the learning algorithm in effect has a different perspective of the model in hopes to 

adapt to mistakes from previous layers, making the model more robust. In our experimentation, 

we modified the proportion of nodes to be dropped to explore the effect Dropout layers had on a 

MLP for this small dataset. 

Considering the limited number of samples in Table 2, we experimented with an alternative 

learning algorithm; that is, Cosine Loss in an MLP. Previous work has shown that using a cosine 

loss function as an objective function in an ANN provides substantially better performance trained 

on fewer data samples than traditional objective functions like cross-entropy26. The intuition of 

this modification is that cosine loss can better integrate prior knowledge using class hierarchies 

and improve performance in classification tasks. We used the existing architecture shown in Figure 
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5 and modified its objective function to employ cosine loss instead of Mean Squared Error (MSE) 

as used in the rest of the experiments. 

Within the Deep Learning domain, Convolutional Neural Networks (CNNs) have been the 

most effective architectures in computer vision tasks27. CNNs extract abstract features from images 

by convolving the image with filters. These filters are then subsampled via pooling layers, 

commonly using Max-pooling that partitions the image in regions and returns the maximum value 

within each region. Finally, the last element of a CNN is the fully connected layer where each node 

is directly connected to every node in the previous and next layer to pass forward the results from 

the previous layer. These CNNs can successfully capture the spatial and temporal dependencies 

within an image through the application of relevant filters. This experiment helps verify the 

hypothesis that the use of a CNN could generate higher order features to improve predictions. One 

of the most notable achievements in CNNs was displayed in the AlexNet architecture28 that used 

a faster convolution operation implementation on Graphical Processing Units (GPUs) that 

achieved state-of-the-art results when it was introduced. The convolutional layers of CNN have 

parameters to specify the number of filters, strides, and size of the kernel. The number of filters 

defines the dimensionality of the output space or the number of output filters in the convolution. 

The strides define the stride length of the convolution, and the kernel size defines the length of the 

1D convolutional window from which the data is sampled. We propose a 1D-CNN architecture 

represented in Figure 5, that takes the 14 input features, passes them through a 1D convolutional 

layer with 8 filters, a stride of 1, and a kernel size of 3. The output of the convolutional layer is 

flattened and passed to 3 output nodes.  
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Experimental Setup 

Our experimental setup is run on a Linux machine with Intel(R) Xeon(R) E-2276M CPU @ 

2.80GHz 2.81 GHz, 6 cores, and 32GB RAM. The code was run and interpreted by Python 3.8.3 

using NumPy 1.19.2 and TensorFlow 2.2.0 packages using Anaconda 4.10.3 as a package 

manager. 

 
Results and Discussion 

 

Table 3 presents results of five experiments comparing the use of Dropout and Cosine Loss 

modifications in the MLP as described before as well as two experiments on CNN 

implementations. In these experiments, there are 14 input features because there are the 6 original 

input features and the flowrate conditions are spread across six new features, three describing the 

time in seconds, and three describing the flowrate of the inert gas, N2. The first row highlights the 

MLP with Dropout layers of a dropout proportion of 20% (0.2) following each hidden layer. The 

second row is similar but with a dropout proportion of 40% (0.4), and the third row describes the 

MLP architecture but trained using Cosine Loss instead of traditional MSE. The fourth row 

illustrates the results of a CNN with 4 filters and the final row illustrates the results of a CNN with 

8 filters as described in Figure 5. While the MLP trained with Cosine Loss performs the best for 

the training data set, this model fails to generalize well as advertised in its proposal, since this 

model had some of the worst performance in the test data set. As a result, we have concluded that 

the hypothesis of using Cosine Loss on our dataset consisting of few samples trained on, does not 

improve the performance of the model as much as other modeling approaches. Instead, the model 

with Cosine Loss overfits on the training data and performs poorly on the test data. This follows 

the intuition that Cosine Loss would try to overly concentrate on the few samples and when 

provided with new samples, it has trouble predicting correctly.  However, the CNN with 8 filters 
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qualitatively performed the best since it has low train error and two of the lowest test errors for 

heptane and octane contact angles, with the MLP model with 0.2 Dropout trailing closely behind. 

Clearly, the use of convolutional layers to generate higher-order features does improve the quality 

of the model and outperforms using Cosine Loss. 

We also performed experiments without the separating the N2 flowrate into the piecewise 

representation; instead, we just recorded the total time in seconds as a whole and ignored the N2 

flowrate. These results are recorded in Table 4 and follow the same structure as in Table 3, with 

the only difference being that there are 9 input features as opposed to 14 when the N2 flowrate 

conditions are represented as a piecewise function. Across all experiments, the MLP with a dropout 

of 0.2 performed the best. Moreover, it had the lowest error in all sections except for predicting 

water contact angle in the test set in the experiments without recording the flowrate conditions. 

However, the CNN with 4 filters outperformed this model with the flowrate conditions; yet, across 

all experiments, this model, CNN with 4 filters, generalized the best and had the lowest errors for 

almost all test datasets. 

Optimization: Operating Conditions that Maximize Contact Angles 

We propose to optimize the function learned in the previous section to find the optimal process 

conditions that maximize the contact angles; that is, to find the maximizer of the function using 

constrained linear programming. As noted in the previous section, the CNN had the best success 

in learning the optimal iCVD conditions; however, to maximize the contact angles from the CNN 

is quite difficult due to the sheer number of parameters and structure of the network. We propose 

three different approaches to solving the optimization problem. We first attempt to optimize the 

function by defining a surrogate function that relaxes the original problem. Instead of maximizing 

the function directly, we relax the CNN model to a convexified setting using the method proposed 
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by Zhang et al. in Convexified Convolutional Neural Networks29. The proposed algorithm is to 

relax a two-layer two-dimensional CNN to a convexified setting and use the Convexified 

Convolutional Neural Network (CCNN) to estimate kernel functions for each contact-angle 

function. This relaxation of the original Convolutional Neural Network to a convexified setting, a 

CCNN, results in a simplified and easy method to investigate the model and explore the operating 

conditions that maximize the contact angles. We alter the algorithm implemented in 30 slightly by 

using an even simpler model, a one-dimensional two-layer CNN instead of a two-dimensional one. 

Optimization Using Convexification as a Surrogate Function 

We first begin by extracting a collection of 𝑃 vectors {𝑧𝑝(𝑥)}
𝑝=1

𝑃
 of the input vector 𝑥. We define 

𝑃 = 12 since there are 14 distinct features and our CNN takes patches of size 3 with a stride of 1, 

resulting in 12 total patches. As a result, these patches consist of overlapping elements of 𝑥 and 

each vector 𝑧𝑝(𝑥) ∈ ℝ𝑑1 where 𝑑1 = 3. We then followed the same steps to approximate feature 

matrix 𝑄, through a Cholesky decomposition of kernel 𝐾, the Radial Basis Function (RBF) kernel. 

Following, we trained the CCNN, represented by the feature matrix, 𝑄, to learn the parameter 

matrix, 𝐴, through Projected Stochastic Gradient Descent31 that solves the constrained 

optimization problem. The estimated parameter matrix, 𝐴̂, along with the matrix consisting of 

patches, 𝑍(𝑥) for input 𝑥 ∈ 𝑋, define the general form function of the CCNN. The function is 

computed by taking the concatenation of products of the trace of each input and the parameter 

matrix learned such that 𝑓𝑐𝑐𝑛𝑛(𝑥) ≔ ((tr(𝑍(𝑥))𝐴̂1) , … , (tr(𝑍(𝑥))𝐴̂𝑑2
)), where 𝑑2 = 3. With 

that, we maximize the function, 𝑓𝑐𝑐𝑛𝑛(𝑥), across all inputs 𝑥 ∈ 𝑋 and use a multi-objective 

optimizer to find the Pareto frontier32. 
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To solve the problem of finding the optimal inputs that maximize our convexified function 

we used coordinate ascent, an iterative algorithm beginning at the local minimum that ascends by 

walking along the gradients of the function to arrive at the optima. Since the function we learned 

in the previous section has inputs on the magnitude of fourteen dimensions, the optimization 

procedure we used, works by maximizing the function along one direction at a time, in essence 

solving a simpler single-variable optimization problem at a time 33. 

Optimization of Convexified Surrogate Function via Extrapolation Using Metric Sets 

An alternative method of optimizing the convexified surrogate function in the previous section 

builds upon the work by Kryanev et al34. Since the convex surrogate function is computed by 

taking the concatenation of products of the trace of each input and the parameter matrix learned 

such that 𝑓𝑐𝑐𝑛𝑛(𝑥) ≔ ((tr(𝑍(𝑥))𝐴̂1) , … , (tr(𝑍(𝑥))𝐴̂𝑑2
)), where 𝑑2 = 3. With that, we attempt 

to optimize the function, 𝑓𝑐𝑐𝑛𝑛(𝑥), which is the summation of the trace of multiple matrices 

representing a multi-variable function. We then extrapolate the function by the means of metric 

analysis. We build upon the work by Kryanev et al. 34 and extrapolate the surrogate function that 

is a function of several variables. We use an interpolation scheme of metric analysis to solve the 

extrapolation of the function in two steps: use metric analysis to interpolate the points of the 

domain; and then apply an auto regression model as well as the use of metric analysis to predict 

the function values along the domain. 

Optimization of Convolutional Neural Network via Coordinate Ascent 

Like the first method of optimization, we start by extracting a collection of 𝑃 vectors {𝑧𝑝(𝑥)}
𝑝=1

𝑃
 

of the input vector 𝑥 and define 𝑃 = 12 since there are 14 distinct features and our CNN takes 

patches of size 3 with a stride of 1, resulting in 12 total patches. As a result, these patches consist 
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of overlapping elements of 𝑥, where each vector 𝑧𝑝(𝑥) ∈ ℝ𝑑1 and 𝑑1 = 3. We then leverage the 

CNN directly to solve the problem of finding the optimal inputs that maximize the output of the 

CNN function. To find the optimal inputs that maximize the output of the CNN function, we use 

coordinate ascent, an iterative algorithm beginning at the local minimum that ascends by walking 

along the gradients of the function to arrive at the optima. As discussed in the previous section, 

this optimization procedure works by maximizing the function along one direction at a time due 

to the multi-variate nature of the objective function33. This follows a similar process as in the 

section on optimization using convexification except for the function that determines the direction 

of the coordinate ascent is the original CNN and not the convexified surrogate function. 

Experimental Setup 

As in the previous section, the same hardware is used, a Linux machine with Intel(R) Xeon(R) E-

2276M CPU @ 2.80GHz 2.81 GHz, 6 cores, and 32GB RAM. The optimization code was also run 

and interpreted by Python 3.8.3 using NumPy 1.19.2 and TensorFlow 2.2.0 packages using 

Anaconda 4.10.3 as a package manager. To note, we adapted the code implemented in 30 to fit the 

constraints of convexifying a 1D CNN as described in the previous section. 

Results and Discussion 
 

Table 5 presents the optimal input values calculated using six distinct optimization methods:  

(A) Coordinate ascent algorithm on the function defined by our CCNN model;  

(B) Data sample with maximum values;  

(C) Coordinate ascent algorithm for our CNN model with 8 filters;  

(D) Coordinate ascent algorithm for our CNN model with 6 filters;  

(E) Coordinate ascent algorithm for our CNN model with 4 filters; and 

(F) Extrapolation of function of many variables by means of metric analysis.  
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Our investigation indicated that the same optimal input values maximize the contact angles 

of water, heptane, and octane. We then used the optimal input values listed in Table 5 for our six 

approaches, calculated the contact angles corresponding to the optimal input values (Table 6). We 

operated the iCVD process at the theoretically optimal process conditions reported in Table 5 and 

measured the contact angles of the produced polymer films. The measured contact angles are 

reported in Table 7. As shown in Figure 6, the contact angles predicted by the convex surrogate 

model with optimal input values derived by the coordinate ascent algorithm perform very well and 

are similar to the measured contact angles of samples produced by the iCVD process. Similarly, 

in Figure 7, the absolute error in predicting the contact angle for the convex surrogate model does 

very well in predicting water and heptane, but not as well in the case of octane. As Figures 6 and 

7 illustrate, in 10 out of the 18 cases the absolute difference (error) between the theoretically 

predicted (by an ML model with the optimal operation conditions calculated using the same ML 

model as the input) and measured contact angles of samples (produced by the iCVD process 

operated at the theoretically found optimal operation conditions found by the same ML model) is 

less than 20°. In particular, the theoretically predicted optimum contact angles of water and 

heptane and measured ones for convex surrogate grid search optimization (A) and data sample of 

maximum values (B), as well as the theoretically predicted optimum contact angles of water, 

heptane and octane and measured ones for data sample with maximum output (F) are in good 

agreement with the measured ones. On the other hand, the theoretically predicted optimum contact 

angles and the measured ones for the remaining cases are significantly different. These large 

differences indicate that CNN (8 Filters) grid search optimization (C), CNN (6 Filters) grid search 

optimization (D), and CNN (4 Filters) grid search optimization (E) are unable to capture the 

complexity of the relationships between the process conditions and the contact angles. 
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Concluding Remarks 

In this work, for the first time we: (i) reported iCVD data (contact angles of heptane, octane, and 

water on PPFDA and process conditions) from 49 batches; (ii) captured and described the 

relationships using artificial neural networks; (iii) used the models to determine the optimal iCVD 

process conditions that maximize the contact angles on PPFDA; and (iv) experimentally validated 

the optimal process conditions. We applied and tested several machine learning models to capture 

the relationships. A challenge is this machine learning problem was the low ratio of the number of 

input-output data points to the number of input features. We found that a CNN model with 4 filters 

yields the best prediction performance in terms of MSE.  

We maximized the contact angles using constrained linear programming. Instead of 

maximizing the function directly, we relaxed the two-layer two-dimensional CNN to a convexified 

setting using the  method proposed by Zhang et al. 29 and estimated kernel functions for each 

contact-angle function. 
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Supplementary Information 

Section SI1. Convexified Convolutional Neural Network 

This section includes a Jupyter Notebook that contains the methods for the convexification of a 

CCNN applied to the input features of the iCVD reaction. The convexified model is then 
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optimized via projected gradient descent to find the optimal parameters that fit the matrices such 

that when applied to the input features, it predicts the ground truth contact angles of water, 

heptane, and octane. 

Section SI2. Convexified Convolutional Neural Network Optimization 

This section includes a Jupyter Notebook that builds upon the optimized convexification of the 

CCNN applied to the input features of the iCVD reaction and attempts to optimize the function 

to find the reactor conditions that maximize the respective contact angles for water, heptane, and 

octane via coordinate descent and extrapolation using metric sets. 

Section SI3. Convolutional Neural Network 

This section includes a Python script that contains the methods for learning the weights of a 

CNN applied to the input features of the iCVD reaction. The CNN model is then optimized via 

Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions 

to find the optimal weights that fit the input features to the ground truth contact angles of water, 

heptane, and octane. 

Section SI4. Convolutional Neural Network Optimization 

This section includes a Jupyter Notebook that builds upon the optimized CNN applied to the 

input features of the iCVD reaction and attempts to optimize the function to find the reactor 

conditions that maximize the respective contact angles for water, heptane, and octane via 

coordinate descent. 

Section SI5. Data 

This section presents an Excel sheet that includes the data of the iCVD process conditions used 

to synthesize the PPFDA samples and contact angles of the samples. 
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Section SI6. Multi-Layer Perceptron 

This section includes a Python script that contains the methods for learning the weights of a MLP 

applied to the input features of the iCVD reaction. The MLP model is then optimized via Adam, 

an algorithm for first-order gradient-based optimization of stochastic objective functions to find 

the optimal weights that fit the input features to the ground truth contact angles of water, 

heptane, and octane. 
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Figure 1. Schematic of the iCVD process. Monomer and initiator are introduced as vapors into 

the reaction chamber heated by filaments. The supplied thermal energy converts the thermal 

initiator to free radicals. Monomer and the free-radicals are absorbed onto a temperature-controlled 

substrate where surface polymerization between the free radicals and monomer occurs.  

Figure 2. Polymerization chemistry of poly(perfluorodecyl acrylate) (PPFDA). 

Figure 3. Cross-sectional SEM images showing PPFDA worms that are (a,b) narrower 

and straighter, and (c,d) more tapered and curled, depending on the specific iCVD growth 

conditions. 

Figure 4. Overview of an MLP architecture. 

Figure 5. Overview of a CNN architecture. 

Figure 6. Theoretically predicted (by an ML model with the optimal operation conditions 

calculated using the same ML model as the input) vs. measured contact angles of samples 

(produced by the iCVD process with the theoretically found optimal operation conditions found 

by the same ML model). A: Convex Surrogate Grid Search Optimization; B: Data Sample of 

Maximum Values; C: CNN (8 Filters) Grid Search Optimization; D: CNN (6 Filters) Grid Search 

Optimization; E: CNN (4 Filters) Grid Search Optimization; and F: Data Sample with Maximum 

Output. Blue circles: water contact angles. Red circles: heptane contact angles. Green circles: 

octane contact angles. 
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Figure 7. The absolute difference (error) between the theoretically predicted (by an ML model 

with the optimal operation conditions calculated using the same ML model as the input) and 

measured contact angles of samples (produced by the iCVD process with the theoretically found 

optimal operation conditions found by the same ML model). W: water; H: heptane; and O: octane. 
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Figure 1. Schematic of the iCVD process. Monomer and initiator are introduced as vapors into 

the reaction chamber heated by filaments. The supplied thermal energy converts the thermal 

initiator to free radicals. Monomer and the free-radicals are absorbed onto a temperature-

controlled substrate where surface polymerization between the free radicals and monomer 

occurs.  
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Figure 2. Polymerization chemistry of poly(perfluorodecyl acrylate) (PPFDA). 
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Figure 3. Cross-sectional SEM images showing PPFDA worms that are (a,b) 

narrower and straighter, and (c,d) more tapered and curled, depending on the 

specific iCVD growth conditions. 

 

 

  



28 
 

 

 

 

Figure 4. Overview of an MLP architecture. 

 

 

 

Figure 5. Overview of a CNN architecture. 
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Figure 6. Theoretically predicted (by an ML model with the optimal operation conditions 

calculated using the same ML model as the input) vs. measured contact angles of samples 

(produced by the iCVD process with the theoretically found optimal operation conditions found 

by the same ML model). A: Convex Surrogate Grid Search Optimization; B: Data Sample of 

Maximum Values; C: CNN (8 Filters) Grid Search Optimization; D: CNN (6 Filters) Grid Search 

Optimization; E: CNN (4 Filters) Grid Search Optimization; and F: Data Sample with Maximum 

Output. Blue circles: water contact angles. Red circles: heptane contact angles. Green circles: 

octane contact angles. 
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Figure 7. The absolute difference (error) between the theoretically predicted (by an ML model 

with the optimal operation conditions calculated using the same ML model as the input) and 

measured contact angles of samples (produced by the iCVD process with the theoretically found 

optimal operation conditions found by the same ML model). W: water; H: heptane; and O: octane. 
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Table 1. iCVD process conditions and measurements. 

𝑥1 = filament resistance (Ω) 𝑥7 =  initiator feed temperature (°C) 𝑥13 =  total pressure (torr) 𝑥19 =  N2 flow rate (sccm) 

𝑥2 = substrate temperature (°C) 𝑥8 =  initiator feed flow rate setpoint 𝑥14 =  base pressure (torr) 𝑦1 =  water contact angle (°) 

𝑥3 = chiller temperature (°C) 𝑥9 =  initiator feed flow rate (sccm) 𝑥15 =  filament current (A) 𝑦2 =  heptane contact angle (°) 

𝑥4 = wall temperature (°C) 𝑥10 = monomer feed temperature (°C) 𝑥16 =  filament voltage (V) 𝑦3 =  octane contact angle (°) 

𝑥5 = Glass heater power (%) 𝑥11 = monomer feed flow rate setpoint 𝑥17 =  filament temperature (°C)  

𝑥6 = leak rate (sccm) 𝑥12 =  monomer feed flow rate (sccm) 𝑥18 =  Reaction time (min)  
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Table 2. iCVD process conditions used to synthesize the PPFDA samples and contact angles of the samples. 

ID 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16 𝑥17 𝑥18 𝑥19 𝑦1 𝑦2 𝑦3 

1 17.9 42 50 51.6 17 0.026 20 8.5 0.204 80 118 0.120 0.20 0.0100 1.1 19.1 211.2 45.00 0.00 for 45 min 144.7 70.8 77.6 

2 17.6 44 50 51.6 17 0.026 20 8.8 0.204 80 180 0.118 0.20 0.0100 1.1 19.2 247.0 45.00 0.00 for 45 min 145 70.2 78.5 

3 17.4 48 50 51.6 17 0.026 20 9.0 0.205 80 180 0.119 0.20 0.0099 1.1 18.9 253.7 45.00 0.00 for 45 min 126.5 69.0 72.4 

4 17.3 46 50 51.6 17 0.026 20 10.9 0.201 80 130 0.121 0.20 0.0102 1.0 19.0 275.6 45.00 0.00 for 45 min 159.0 100.0 108.0 

5 17.4 46 50 51.6 17 0.026 20 10.6 0.200 80 120 0.117 0.15 0.0099 1.0 18.9 285.7 25.00 0.00 for 25 min 147.0 86.0 100.0 

6 17.4 46 50 51.6 17 0.026 20 10.5 0.198 80 220 0.116 0.15 0.0103 1.0 18.9 292.4 5.75 0.00 for 5.75 min 145.0 82.0 87.0 

7 17.4 46 50 51.6 17 0.026 20 10.5 0.197 80 120 0.034 0.15 0.0107 1.0 18.9 - 23.50 0.00 for 23.50 min 149.0 72.0 86.0 

8 17.4 46 50 51.6 17 0.026 20 10.6 0.198 80 128 0.119 0.10 0.0110 1.0 19.0 284.5 25.00 0.00 for 25 min 133.0 91.0 92.0 

9 17.4 46 50 51.6 17 0.026 20 10.6 0.196 80 130 0.119 0.10 0.0103 1.0 18.9 270.9 25.00 0.00 for 25 min 137.0 89.0 93.0 

10 17.5 46 50 51.6 17 0.026 20 10.6 0.203 80 157 0.117 0.10 0.0125 1.0 18.9 255.6 45.00 0.35 for 45 min 168.0 111.5 124.0 

11 17.4 46 50 51.6 17 0.026 20 10.6 0.194 80 176 0.122 0.10 0.0116 1.0 18.9 272.2 45.00 0.35 for 45 min 169.2 104.5 117.7 

12 17.6 46 50 51.6 17 0.026 20 10.6 0.198 80 140 0.118 0.10 0.0121 1.0 18.9 - 10.00 0.35 for 10 min 156.0 70.0 76.0 

13 17.6 46 50 51.6 17 0.026 20 10.7 0.195 80 150 0.119 0.10 0.0120 1.0 18.9 273.0 20.00 0.35 for 20 min 160.0 91.2 98.6 

14 17.6 46 50 51.6 17 0.026 20 10.7 0.198 80 150 0.119 0.10 0.0119 1.0 18.9 289.4 30.00 0.35 for 30 min N/A 102.0 113.0 

15 17.4 46 50 51.6 17 0.026 20 9.2 0.197 80 140 0.117 0.10 0.0119 1.0 18.9 - 5.00 0.35 for 5 min 123.0 64.0 69.0 

16 16.9 46 50 51.6 17 0.026 20 10.1 0.202 80 150 0.117 0.10 0.0120 1.0 18.8 - 7.00 0.35 for 7 min 128.8 68.0 69.0 

17 17.2 48 50 51.6 17 0.026 20 10.7 0.200 80 153 0.125 0.10 0.0118 1.0 18.9 - 30.00 0.35 for 30 min 175.0 97.0 107.0 

18 17.2 44 50 51.6 17 0.026 20 10.7 0.200 80 153 0.125 0.10 0.0118 1.0 18.9  30.00 0.35 for 30 min 163.0 85.0 96.0 

19 17.3 36 50 51.6 17 0.026 20 8.7 0.195 80 155 0.123 0.10 0.0121 1.1 18.8  30.00 0.35 for 30 min 162.0 88.0 104.9 

20 17.3 33 43 51.6 17 0.026 20 10.7 0.196 80 165 0.120 0.10 0.0119 1.0 18.9 302.0 14.42 0.35 for 14.42 min 173.0 72.0 89.5 

21 17.5 42 50 51.6 17 0.026 20 9.2 0.205 80 165 0.120 0.10 0.0128 1.0 18.9 255.8 45.00 0.00 for 45 min 145.0 68.0 76.3 

22 17.3 46 50 51.6 17 0.026 20 8.5 0.196 80 145 0.124 0.10 0.0117 1.1 18.7 - 45.00 0.50 for 45 min 133.0 68.0 71.5 

23 17.2 46 50 51.6 17 0.026 20 10.1 0.199 80 175 0.122 0.10 0.0100 1.1 18.8 - 45.00 0.10 for 45 min 155.0 108.0 121.5 

24 17.4 46 50 51.6 17 0.026 20 10.5 0.200 80 175 0.121 0.10 0.0112 1.1 18.8 - 55.00 0.35 for 25 min; 

0.10 for 20 min 

160.0 109.0 116.0 

25 17.4 46 50 51.6 17 0.026 20 11.0 0.203 80 160 0.125 0.10 0.0103 1.0 18.9 261.0 3.00 0.35 for 3 min 124.5 66.2 71.0 

26 17.6 46 50 51.6 17 0.026 20 11.0 0.196 80 160 0.118 0.10 0.0108 1.0 18.8 253.0 48.00 0.35 for 48 min 162.5 111.4 125.0 

27 17.4 46 50 51.6 17 0.026 20 11.3 0.199 80 160 0.122 0.10 0.0117 1.0 18.9 294.0 50.00 0.40 for 45 min; 

0 for 7 min 

163.0 103.0 109.5 

28 17.7 46 50 51.6 17 0.026 20 11.3 0.205 80 175 0.120 0.10 0.0128 1.0 18.8 251.6 55.00  0.40 for 45 min; 

0 for 7 min 

156.6 104.0 114.3 

29 17.6 46 50 51.6 17 0.026 20 11.3 0.198 80 175 0.115 0.10 0.0130 1.0 18.8 250.6 65.00 0.40 for 45 min; 145.0 74.2 80.0 
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0 for 7 min 

30 17.4 46 50 51.6 17 0.026 20 11.3 0.201 80 160 0.124 0.1-0.2 0.0122 1.0 18.9 227.0 55.00 0.40 for 45 min; 

0 for 7 min 

156.0 106.3 111.7 

31 17.3 46 50 51.6 17 0.026 20 10.5 0.198 80 90 0.120 0.10 0.0131 1.0 18.9 - 45.00 0.35 for 45 min 167.0 105.0 111.5 

32 17.2 46 50 51.6 17 0.026 20 10.3 0.196 80 95 0.124 0.10 0.0015 1.0 18.8 258.0 45.00 0.4 for 45 min 165.0 106.0 115.0 

33 17.2 46 50 51.6 17 0.026 20 10.7 0.200 80 95 0.121 0.10 0.0019 1.1 18.9 193.7 52.00 0.40 for 45 min; 

0 for 7 min 

165.0 96.0 108.4 

34 17.3 46 50 51.6 17 0.026 20 10.2 0.200 80 95 0.119 0.10 0.0019 1.0 18.8 284.7 63.00  0.35 for 45 min; 

0 for 7 min; 

0.35 for 10 min 

165.0 105.0 110.0 

35 17.2 46 50 51.6 17 0.026 20 11.3 0.196 80 80 0.125 0.09 1.8000 1.0 18.8 283.4 45.00 0.35 for 45 min 166.0 100.0 107.0 

36 17.1 46 50 51.6 17 0.026 20 11.0 0.205 80 75 0.119 0.09 3.0000  1.0 18.9 219.7 45.00 0.50 for 45 min 159.6 109.0 121.0 

37 30.4 46 50 51.6 17 0.026 20 8.1 0.196 80 70 0.124 0.09 4.3000  0.9 28.5 258.8 45.00 0.50 for 45 min 151.0 107.0 113.0 

38 17.2 46 50 51.6 17 0.026 20 10.2 0.200 80 95 0.115 0.08 -0.7000  1.0 18.8 320.8 45.00 0.50 for 45 min 162.0 97.3 108.0 

39 17.3 46 50 51.6 17 0.026 20 10.2 0.196 80 100 0.124 0.15 -1 .0000 1.0 18.8 269.4 15.00 0.00 for 15 min 167.0 88.0 99.0 

40 22.2 46 50 51.6 17 0.026 20 10.5 0.200 80 110 0.118 0.09 -0.1000    257.4 45.00 0.35 for 45 min 148.0 112.0 115.0 

41 17.2 46 50 51.6 17 0.026 20 10.5 0.205 80 85 0.120 0.20 -0.5000  1.0 18.7 262.0 15.00 0.00 for 15 min 143.8 75.0 85.0 

42 17.2 46 50 51.6 17 0.026 20 10.7 0.197 80 110 0.122 0.09 -1.7000  1.0 18.7 308.4 45.00 0.50 for 45 min 157.9 95.0 101.0 

43 17.4 46 50 51.6 17 0.026 20 9.1 0.118 80 90 0.124 0.08 -0.2000  1.0 18.8 233.3 45.00 0.50 for 45 min 171.0 75.0 86.8 

44 17.2 46 50 51.6 17 0.026 20 9.5 0.118 80 100 0.118 0.08 0.8000  1.0 18.9 182.0 45.00 0.35 for 45 min 166.0 77.0 88.0 

45 17.8 46 50 51.6 17 0.026 20 10.8 0.118 80 100 0.118 0.08 -0.7000  1.0 18.8 280.2 55.00 0.35 for 45 min; 

0 for 10 min 

156.5 95.5 103.7 

46 17.0 46 50 51.6 17 0.026 20 10.9 0.197 80 110 0.118 0.08 -0.2000  1.0 18.8 246.5 60.00 0.35 for 45 min; 

0 for 15 min 

154.0 88.0 94.0 

47 17.2 46 50 51.6 17 0.026 20 9.4 0.198 80 150 0.227 0.08 1. 0000 1.0 18.8 297.5 45.50 0.35 for 45.5 min 

 

140.0 83.7 96.0 

48 17.2 46 50 51.6 17 0.026 20 11 0.204 80 170 0.300 0.08 -0.3000 1.0 18.9 254.8 55.00 0.35 for 45 min; 

0 for 10 min 

166.0 87.3 95.0 

49 17.2 46 50 51.6 17 0.026 20 11.1 0.197 80 180 0.228 0.08 1.5000 1.0 18.9 242.4 45.00  0.35 159.0 93.0  
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Table 3. Comparison of model performances (MSEs) using piecewise N2 flowrate conditions. 
 

 Water Heptane Octane 

Train Test Train Test Train Test 

MLP Dropout (0.2) 4.5043 13.6808 3.029 11.646 2.959 10.982 

MLP Dropout (0.4) 11.3727 12.8414 8.9308 16.4888 9.3543 16.7297 

MLP Cosine Loss 0.6532 17.9388 1.385 14.6387 1.4134 15.4653 

CNN (4 Filters) 8.4781 12.3324 10.3334 8.1957 11.4962 8.3518 

CNN (8 Filters) 8.3272 16.0255 9.6154 7.9111 10.5427 7.8215 
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Table 4. Comparison of model performances (MSEs) ignoring the N2 flowrate. 
 

  
Water Heptane Octane 

Train Test Train Test Train Test 

MLP Dropout (0.2) 4.247 11.808 3.120 9.158 3.135 8.475 

MLP Dropout (0.4) 12.008 10.636 7.177 12.455 7.832 12.665 

MLP Cosine Loss 11.930 9.703 13.163 10.292 14.889 10.604 

CNN (4 Filters) 11.217 9.439 12.703 9.639 14.318 9.653 

CNN (8 Filters) 9.836 9.604 11.219 11.977 12.327 11.608 
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Table 5. Theoretically optimal process conditions that maximize the contact angles. 

 

 
Substrate 

Temperature 
(°C) 

Reactor Wall 
Temperature 

(°C) 

Glass 
Heating 

(%) 

Leak 
Flowrate 
(sccm) 

Initiator 
Flowrate 
(sccm) 

Monomer 
Flowrate 
(sccm) 

P_total - 
P_base 

(torr) 

I_Filament 
(A) x 

V_Filament 
(V) 

Reaction 
Time 0 
(sec) 

N2 
Flow 0 
(sccm) 

Reaction 
Time 1 
(sec) 

N2 
Flow 1 
(sccm) 

Reaction 
Time 2 
(sec) 

N2 
Flow 2 
(sccm) 

Convex 
Surrogate 

Grid Search 
Optimization 

47.90 56.10 17.00 0.04 0.20 0.22 0.19 25.60 2880 0.45 1,200 0.10 600 0.30 

Data Sample 
with 

Maximum 
Values 

48.00 56.20 17.00 0.06 0.21 0.30 0.20 25.65 2,880 0.50 1,200 0.10 600 0.35 

CNN (8 
Filters) Grid 

Search 
Optimization 

46.56 48.24 17.00 0.02 0.12 0.04 0.09 18.71 2,877 0.01 137 0.09 600 0.00 

CNN (6 
Filters) Grid 

Search 
Optimization 

46.17 49.50 17.00 0.02 0.12 0.04 0.19 18.71 2,178 0.39 420 0.00 600 0.00 

CNN (4 
Filters) Grid 

Search 
Optimization 

46.94 49.50 17.00 0.02 0.12 0.04 0.09 18.71 2,296 0.33 416 0.00 600 0.00 

Data Sample 
with 

Maximum 
Output 

46.00 52.50 17.00 0.04 0.20 0.12 0.09 18.80 2,700 0.35 1,200 0.00 0 0.00 
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Table 6. Contact angles predicted by the fived models with the inputs (optimal process 

conditions) reported in Table 5. 

 

 
 

Water Heptane Octane 

A Convex Surrogate Grid Search Optimization 155.2 89.1 125.7 

B Data Sample of Maximum Values 145.2 72.0 108.6 

C CNN (8 Filters) Grid Search Optimization 154.6 43.5 45.4 

D CNN (6 Filters) Grid Search Optimization 143.3 68.5 75.3 

E CNN (4 Filters) Grid Search Optimization 132.9 82.8 98.6 

F Data Sample with Maximum Output 145.0 74.2 80.0 
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Table 7. Measured contact angles of the polymer films produced by the iCVD process operated 

with the optimal process conditions reported in Table 5. 

 

 ML Modeling/Optimization Method Water Heptane Octane 

A Convex Surrogate Grid Search Optimization 150.7 88.0 97.3 

B Data Sample of Maximum Values 150.6 70.0 78.7 

C CNN (8 Filters) Grid Search Optimization 112.9 62.4 68.5 

D CNN (6 Filters) Grid Search Optimization 105.1 57.4 62.6 

E CNN (4 Filters) Grid Search Optimization 107.0 25.5 36.0 

F Data Sample with Maximum Output 150.6 63.6 79.7 

 


