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ABSTRACT

In this work, we use the immersed boundary method with four extensions to simulate a moving liquid–gas interface on a solid surface. We
first define a moving contact line model and implements a static-dynamic friction condition at the immersed solid boundary. The dynamic
contact angle is endogenous instead of prescribed, and the solid boundary can be non-stationary with respect to time. Second, we simulate
both a surface tension force and a Young’s force with one general equation that does not involve estimating local curvature. In the third
extension, we splice liquid–gas interfaces to handle topological changes, such as the coalescence and separation of liquid droplets or gas bub-
bles. Finally, we re-sample liquid–gas interface markers to ensure a near-uniform distribution without exerting artificial forces. We demon-
strate empirical convergence of our methods on non-trivial examples and apply them to several benchmark cases, including a slipping
droplet on a wall and a rising bubble.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086452

I. INTRODUCTION

Physical systems involving the coupling between a fluid and
evolving immersed structures are usually impossible to describe ana-
lytically. The immersed boundary (IB) method is a numerical
approach for solving such problems. Traditionally, this method is used
with the assumption that the immersed boundaries are massless.1 The
method describes the fluid in Eulerian coordinates and the immersed
boundaries with arrays of linked Lagrangian markers. The fluid
advects the markers and the markers exert forces onto the fluid. The
massless-boundary assumption is suitable for describing thin elastic
membranes common in biological applications, for example, the inter-
action between blood flow and heart valves.1 Similarly, the massless-
boundary assumption is appropriate for liquid–gas interfaces. Thus,
with a surface tension model, the IB method is capable of modeling
multi-phase fluid flow.2–5 This introduces a new challenge, which is
the moving contact line (MCL) problem that emerges when a solid

boundary meets with a liquid–gas interface. To avoid the force singu-
larity at the contact line, Lai et al.6 proposed an MCL model that simu-
lates Navier slip with the IB method, but it is limited to fixed solid
boundaries.

In this work, we describe a static-dynamic friction condition
between a moving liquid–gas interface and an evolving immersed
boundary. Two types of immersed boundaries (liquid–gas interface,
solid surface) coexist and are governed by the same IB numerical
method. The slip condition used in this paper is informed by recent
molecular dynamics (MD) simulations.7 The resulting numerical
scheme, unlike related works that either prescribe the contact angle8,9

or the slip velocity,6,10 is capable of reaching the dynamic contact angle
in an endogenous way, i.e., the dynamic contact angle is the result of
droplet size, wall friction, gravity, and other local stresses.

In addition to the MCL model, we propose a surface tension
model within the IB method. Using the IB method to simulate surface
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tension is often classified as a front-tracking scheme. Most front-
tracking methods, including many IB variants, calculate the magnitude
of surface tension by estimating the local curvature of the interface
using three to six markers.2,5 This approach is susceptible to errors
and instability issues. Tryggvason et al.11 computed the surface tension
using tangent vector subtraction in every Eulerian cell, thus omitting
the need to estimate curvature. Popinet and Zaleski12 used tangent
vector subtraction for every link between adjacent Lagrangian
markers, exploiting the IB method’s Lagrangian representation of the
structure. Our method uses tangent vector summation for every
Lagrangian marker (instead of every link). The subtle shift in perspec-
tive brings a side benefit that the component of the Young’s force due
to liquid–gas surface tension13 at the contact point is readily computed
by the two markers at both ends of a liquid–gas interface. In addition,
our approach uses a stepwise re-sampling procedure to ensure a near-
uniform distribution of Lagrangian markers in the liquid–gas interface.
Finally, we employ a stepwise interface splicing method to implement
interface topological changes, including droplet coalescence and
separation.

This study is motivated by a real-life industrial problem, pre-
sented by W.L. Gore & Associates in 2018 during the Mathematical
Problems in Industry (MPI), which is a workshop that attracts leading
applied mathematicians and scientists from universities, industry, and
national laboratories.14 Catalysts are an integral part of many chemical
processes. They are usually made of a dense but porous material, such
as activated carbon or zeolites, which provide a large surface area.
Liquids that are produced as a by-product of a gas reaction at the cata-
lyst site are transported to the surface of the porous material, slowing
down transport of the gaseous reactants to the catalyst site. One exam-
ple of this is in a sulfur dioxide filter, which converts gaseous sulfur
dioxide to liquid sulfuric acid.15,16 Such filters are used in power plants
to remove the harmful sulfur dioxide that would otherwise contribute
to acid rain. Understanding the dynamics of liquid droplets in the gas
channel of a device is critical in order to maintain performance and
durability of the catalyst assembly. Among several other tests, the
methods presented in this paper are applied to simulate 2D droplets
moving on a vertical wall, which corresponds to this application. In
this paper, we also empirically study the spatial and temporal conver-
gence of our methods, compare simulation results at equilibrium
against an analytical solution, and benchmark our methods with sev-
eral standard test cases.

The paper is organized as follows: in Sec. II, we describe the IB
method, the boundary conditions, the surface tension, and Young’s
force formulation, the moving contact point friction, the static-dynamic
friction boundary condition, the stepwise interface re-sampling proce-
dure, and the interface splicing procedure. An approach for simulating
variable fluid density is also discussed. We then introduce the discretiza-
tion of the governing equations in Sec. III. In Sec. IV, we verify the accu-
racy of our simulation results. In Sec. V, we apply our methods to
several test cases. Finally, we conclude in Sec. VI with a discussion of
our model and results, along with some insight into real-world
applications.

II. EQUATIONS OF MOTION

In this section, we describe the IB method that we use in this
paper. IB has proven to be an extremely versatile method for fluid-
structure interaction problems since its development almost forty

years ago.1,17–23 The method represents the immersed structure with
Lagrangian coordinates and the fluid with Eulerian or “lab frame”
coordinates. The interactions between the two coordinate frames are
communicated with integral transforms involving Dirac delta function
kernels. For the solid surfaces and the variable density considered in
this paper, we adopt the penalty immersed boundary (pIB)
method.24,25 For example, the vertical wall introduces a set of tether
points that are fixed in space and represent the desired shape and loca-
tion of the structure. The boundary markers are connected to the
tether points via springs, and only the boundary markers interact with
the fluid. Stiff springs approximate a rigid boundary. These stiff
springs typically result in some numerical stiffness but simplify the
implementation. In practice, accurate results can be achieved with an
appropriate choice of the spring constant, spatial resolution, time step-
ping, and other numerical parameters.23–25 The penalty immersed
boundary method has been used to simulate a wide variety of prob-
lems that involve immersed structures with mass or variable density
fluids. For example, Kim and Peskin used this approach to study oscil-
lations of a cylinder in fluid as well as performed three-dimensional
simulations of windsocks and flags.26 The simulations of the oscillating
cylinder were in reasonable agreement with experimental data.26 For
variable density problems, this method has been used to simulate bub-
ble dynamics and Rayleigh–Taylor instabilities.24 A disadvantage of
this approach, as with many types of immersed boundary methods, is
the regularization of the interface between low and high density fluid
regions. The interface smoothing occurs because of the representation
of high density regions using a discrete set of Lagrangian markers and
the approximation of the Dirac delta function kernel, to be described
below.

The equations of motion for the coupled fluid-structure system
are

qg
@u
@t

þ u � ru

� �
¼ �rpþ lDuþ f 1 þ f 2 þ f 3 þ f 4 þ f 5;

r � u ¼ 0; (1)

f iðx; tÞ ¼

ð
Fiðs; tÞ dðx � Xiðs; tÞÞ ds; i ¼ 1; 2;

ð ð
Fiðr; s; tÞ dðx � Xiðr; s; tÞÞ ds dr; i ¼ 3;

FiðtÞ dðx � XiðtÞÞ; i ¼ 4; 5;

8>>>>><
>>>>>:

(2)

@Xi

@t
ðtÞ ¼

ð
uðx; tÞ dðx � XiðtÞÞ dx; i ¼ 1; 2; 3: (3)

Here, qg is the density of the gas, l is the dynamic viscosity of the
gas and the liquid, and t denotes the time variable. The function
uðx; tÞ is the velocity, and d is the 2D Dirac delta function. The vec-
tors x and Xi denote the Eulerian fluid coordinates and the Lagrangian
structure coordinates. In this paper, we consider three types of
immersed structures: a 1D wall boundary (X1), a 1D fluid–gas inter-
face boundary (X2), and a 2D variable density area (X3). The vectors
X4 and X5 are ephemeral markers used to impart the Young’s force
and the contact point friction force. For the 1D structures, s is the arc
length that specifies a point on the boundary (i.e., a parametrization of
the 1D boundary with respect to arc length). For the 2D structures, (r, s)
is a 2D equidistant parametrization of the area. The functions f i and
Fi are the Eulerian and the Lagrangian force densities corresponding
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to the immersed structures. The Lagrangian force densities F1 and F2

are 1D force densities, F3 is a 2D force density, and F4 and F5 are 0D
force densities. Subsections IIA–IIG will introduce each type of
immersed structure corresponding to Xi and define its Lagrangian
force density Fi. Equations (1) are the Navier–Stokes equations for
incompressible flow of a viscous fluid. In the regime, we study in the
paper, there is little compressibility since Mach number is low; there-
fore, we simplify the simulation by assuming that all fluids are incom-
pressible. Equation (2) calculates the force imparted from the
immersed structures onto the fluid by converting Lagrangian force
densities to Eulerian force densities using the Dirac delta function
kernel. Equation (3) also uses the Dirac delta function to enforce the
condition that the velocity of the immersed structure is equal to the
fluid velocity, corresponding to a no-slip and no-penetration condi-
tion between the fluid and structure.

A. Boundary conditions

Our code is adapted from the Matlab implementation of the IB
method by Peskin,27 which uses periodic boundary conditions for the
computational domain. In most of our simulations, we fold the
domain in half to obtain a symmetry boundary condition on the left
and right boundaries. This section describes our implementation of
symmetry boundary conditions within Peskin’s implementation. In
short, symmetry is prescribed in the Eulerian force density field, then
the Eulerian fluid treatment solves for both symmetric halves simulta-
neously on a periodic domain. Specifically, if the computational
domain exposed to the fluid solver is a square with side length L, as
shown in Fig. 1, then we select the left half of it to be the problem

domain. According to Fig. 1, L¼ 2 is chosen. During each time step,
once the Eulerian force densities (given by (2)) are imparted onto the
grid, the simulation mirrors the Eulerian force densities matrix around
x ¼ L=2 (i.e., the dashed line in Fig. 1) and adds them back to the
original Eulerian force field. In this way, the fluid velocity field is
always symmetric around x ¼ L=2. Analytically, this symmetry treat-
ment prevents structures from crossing the axis of symmetry.

B. Wall as an immersed boundary

The main case that motivates our study is the simulation of liquid
droplets moving on a solid vertical wall. We simulate the wall as an
immersed boundary. In this specific case, since the wall is static, it is
arguably easier to treat the wall as a boundary condition. However, we
want our MCL method to generalize to non-static solid surfaces (see,
e.g., Sec. IVC4), so we treat the wall as an immersed boundary to
maximize generality. Each Lagrangian marker of the wall is tethered to
its ground-truth location, thus ensuring no-penetration and no-slip. In
this case, the Lagrangian force density corresponding to the 1D wall is

F1ðs; tÞ ¼ �k1 ðX1ðs; tÞ � ZðsÞÞ: (4)

Equation (4) describes the tether-point construction and the associated
spring force on the boundary to model a no-slip and no-penetration
wall. The parameter k1 is the spring constant (taken to be
5000 g=ðs2 cmÞ in simulations) associated with the wall, which is a
trade-off parameter between accuracy and numerical stability. If the
spring constant is too small, the wall markers near the contact points
will significantly deform under stress. If it is too large, numerical insta-
bilities will likely arise. Since our domain is 2D, we define each solid-
liquid–gas intersection to be a contact point. The vector Z is the
ground-truth location for the markers. At the start of the simulation,
we usually initialize X1ðs; 0Þ ¼ ZðsÞ (with Sec. IVB as an exception).
The wall behavior will be later modified in the MCL model, as
described in Sec. II E.

C. Surface tension and Young’s force

We use the integral formulation as described by Popinet4 to
derive a model for surface tension. In this approach, each interface
marker is pulled by its two neighbors at a constant force magnitude. In
contrast to the work by Tryggvason et al.,11 our method is entirely in
the Lagrangian frame and does not estimate a tangent vector with a
four-point polynomial fit. Instead, we use a piecewise linear fit to
approximate the unit tangent vector T̂ , which is defined as

T̂ ðs; tÞ ¼ @X2ðs; tÞ
@s

: (5)

Then, the Lagrangian surface tension force density is

F2ðs; tÞ ¼ r
@T̂
@s

; (6)

where r is the surface tension coefficient. Therefore, for a segment AB
of the liquid–gas interface, as shown in Fig. 2, we have

ð
X
F2 ds ¼

ðB
A
r
@T̂
@s

ds ¼ rðT̂B � T̂AÞ; (7)

FIG. 1. The underlying computational domain exposed to the fluid solver is
2� 2 cm2. The effective boundary conditions for the 1� 2 cm2 problem domain are
shown via parenthesized texts. The effective symmetry boundary is obtained by
mirroring half of the simulation domain. The static-dynamic friction condition is
obtained by adding a wall (see Secs. II B and II E) at the left periodic boundary. The
droplet is initialized 0.4 cm away from the top boundary, leaving ample space below
for slipping.
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where X is the set of interface points s on segment AB. T̂A and T̂B are
the unit tangent vectors at A and B, respectively. With this approach,
the sum of surface tension forces in a closed loop is zero.4 In the dis-
crete implementation, as shown in Fig. 2, we first compute the tangent
vectors pointing from one marker to its adjacent markers and then
apply the corresponding force of magnitude r onto the marker.

A consequence of this implementation is that when the
gas–liquid interface meets a solid surface, the Young’s force,13 denoted
by FY , arises directly from the tension forces. As shown in Fig. 3, the
magnitude of the Young’s force is the tangential component of the
sum of three tension forces

FY ¼ t̂ � ðr T̂ þ rsl ~t � rsg ~tÞ t̂ ; (8)
where T̂ is the unit vector tangent to the liquid–gas interface, t̂ is the
upward unit vector tangent to the wall, and ~t is the unit vector tangent
to the wall and pointing toward the liquid phase. r;rsl, and rsg are the
liquid–gas, solid–liquid, and solid–gas tension coefficients, respec-
tively. The Young’s force is present at any three-phase contact point
and is responsible for phenomena like the capillary action. The
Young’s force also explains why slipping behaviors are often attributed
to the contact angle. The static contact angle hs is defined as the con-
tact angle that will make FY ¼ 0. Therefore, the static contact angle
can be calculated by the following equation:

r cos hs ¼ rsg � rsl: (9)

This also gives an alternate equation for the Young’s force that is based
on the static contact angle:

FY ¼ ~t rðcos hd � cos hsÞ: (10)

Here, hd is the dynamic contact angle. As shown in Fig. 3 and also dis-
cussed earlier, at a contact point, there is one interface marker that
only has one neighbor. Therefore, (6) already supplies the first term of
the three-force sum in (8). We compute the other two terms and add
them to each contact point, thus completing the implementation of
the Young’s force by

F4 ¼ t̂ � ðrsl ~t � rsg ~tÞ t̂ ¼ �~t r cos hs: (11)

Note that the points X4 are the locations where IB imparts F4, i.e., the
set of contact points.

D. Moving contact point friction

A frictional force is applied to each moving contact point. We
assume that the friction is proportional to the slip velocity and
depends on the dynamic contact angle. In this section, we first assume
that the wall is free-slip, contrary to the no-slip setup described in Sec.
II B. Toward the end of this section, we will relax this free-slip
assumption.

Specifically, for each three-phase contact point, we apply a 0D
force density at that point corresponding to a frictional force as

F5 ¼ �ðu � t̂Þ gðhdÞ t̂ ; (12)

and t̂ is the upward unit vector tangent to the wall (so v ¼ u � t̂ is the
slip velocity) and hd is the dynamic contact angle. The function g
defines a friction coefficient (of units g=s) in terms of the dynamic
contact angle hd and is given by

gðhdÞ ¼
1:54 if hd > 2;

�8:48 hd þ 18:5 if 1:117 < hd � 2;

�19:1 hd þ 30:31 if hd � 1:117:

8>><
>>:

(13)

The parameter values in (13) are based on measured results from the
simulation of water-silica contact line movement by Johansson and
Hess.7 Linear interpolation of measured data points is used to obtain
gðhdÞ as given in (13). Note that our MCL method is agnostic to the
specific implementation of g; therefore, future usages are free to mod-
ify g.

FIG. 2. An interface marker X2;‘ is responsible for the surface tension force on the
red segment AB. T̂ A (the unit tangent vector at A) is computed by subtracting the
marker X2;‘ from the adjacent marker X2;‘�1. The difference between T̂ A and T̂ B
(the unit tangent vector at B), multiplied by the tension coefficient r, gives the sur-
face tension force on the segment AB. X is the set of interface points s on segment
AB and F2 is the Lagrangian surface tension force density.

FIG. 3. The blue circles show the interface markers. The surface tension force with
magnitude r is applied in the tangent direction T̂ from every marker to its two adja-
cent markers. This scheme leaves the two markers at the wall with only one adja-
cent marker, whose pulling force becomes one of the three parts of the Young’s
force. The other two parts of the Young’s force are of magnitude rsg and rsl, which
are the solid–gas and solid–liquid tension coefficients, respectively. Here, t̂ is the
upward unit vector tangent to the wall and hd is the dynamic contact angle.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 053323 (2022); doi: 10.1063/5.0086452 34, 053323-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


The linear response of F5 to the slip velocity [see (12)] is sup-
ported by molecular simulations by Johansson and Hess.7 Such a lin-
ear relationship is related to the general Navier boundary condition
(GNBC), where the slip velocity is proportional to the sum of the
Young’s force and the fluid viscous stress:28

u � t̂ / t̂ � lðruþruTÞnþ t̂ � FY ;

where n is the normal vector to the boundary. Similar to the Young’s
force, which is also a 0D force density, X5 is the location where IB
imparts F5. We simply set X5 to be the contact point locations. We
can apply F5 to each contact point on an (otherwise) free-slip wall, but
that will fail to recreate these two phenomena:

• A sufficiently small droplet should be able to hang statically on
the wall without sliding down;

• The non-contact point region of the solid–liquid interface should
be no-slip.

To represent the above phenomena, we apply F5 to a wall that
otherwise follows the static-dynamic friction boundary condition,
which we describe in Sec. II E.

E. Static-dynamic friction boundary condition via
length-limited springs

The so-called moving contact line (MCL) problem refers to the
apparent contradiction that contact lines can move on a no-slip wall (in
the case of our 2D methods, it is rather a “moving contact point” prob-
lem; however, we still use the “MCL” abbreviation to align with the lit-
erature). The mechanism of an MCL and how to simulate it had been
largely a mystery until 1979.29 Since then, researchers have developed
many numerical models of MCLs.9,30 A recent study31 showed that
hydrogen bonds facilitate the no-slip behavior of water on hydrophilic
surfaces. These hydrogen bonds are orders of magnitudes stronger
compared to the fluid’s internal viscosity, so hydrophilic surfaces usu-
ally behave as if they were no-slip. This justifies the traditional no-slip
assumption between water and hydrophilic surfaces. An MCL contra-
dicts the no-slip assumption since the Young’s force at the contact point

is strong enough to break hydrogen bonds, therefore, allowing slip. In
this light, continuum models involving MCLs should have a mecha-
nism to allow for slip. For example, Lai et al.6 use the IB method with a
Navier boundary condition at the wall. As opposed to the no-slip condi-
tion, the Navier boundary condition prescribes the slip velocity to be
proportional to the viscous stress. However, their work has two limita-
tions: (i) their boundary condition is static and cannot be imposed on a
solid structure that changes shape; (ii) the entire boundary allows for
slip, including segments far away from the MCLs. This section proposes
a static-dynamic friction model for the wall, which (i) works with the IB
method, (ii) can be prescribed onto an immersed structure that changes
shape over time, and (iii) only allows slip near the MCLs.

Figure 4 shows that the friction force should sometimes balance
with other forces while other times be too weak to balance with other
forces. Panels (a) and (b) show the statically and dynamically balanced
cases, respectively, where the friction balances with other forces, such as
the Young’s force and the internal viscous stresses. In addition, the slip
velocity is zero in (a) and a constant nonzero value in (b). Panel (c)
depicts the situation in which friction is not strong enough to balance
with other forces, implying the slip velocity changes with time.We imple-
ment this conditional behavior using what we call length-limited springs.

The method still treats the wall as an immersed structure but
changes the penalty treatment by overriding the marker advection Eq.
(3) for i¼ 1. Let ~X1 denote the positions that (3) would have advected
the wall markers to, i.e.,

~X1ðt þ dtÞ ¼ X1ðtÞ þ dt
ð
uðx; tÞ dðx � X1ðtÞÞ dx; (14)

where dt is a small difference in time. Section III will define dt more
formally in the context of the numerical discretization of these
equations.

Then, Table I and Fig. 5 show the boundary conditions that can
be achieved by specifying how to update the tangential component of
wall marker positions. In the no-slip condition [Fig. 5(a)], we set
t̂ � X1ðt þ dtÞ ¼ t̂ � ~X1ðt þ dtÞ. This corresponds to the original form
of (3), so the wall markers strictly follow the fluid flow. The friction
always statically balances with other forces such as Young’s and the

FIG. 4. The schematic shows the solid–liquid–gas interfaces. In (a), the contact point is statically balanced. Here, the friction balances with the active forces, and the slip
velocity is zero. In (b), the contact point is dynamically balanced and the friction balances with the active forces. Therefore, the slip velocity is positive, but stays constant. In
(c), the contact point is not balanced, because the active forces exceed the friction force and as a result, the slip velocity changes.
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internal viscous stresses. In the free-slip condition [Fig. 5(b)], we set
t̂ � X1ðt þ dtÞ ¼ t̂ � Z, where Z is the ground-truth location. The wall
markers are not tangentially advected by the fluid flow, and their vertical
position remains at the vertical position of their ground-truth location.
The springs are at rest (tangentially), and thus, no friction force is applied
onto the fluid. In the static-dynamic friction condition [Figs. 5(c) and
5(d)], the length of the springs (when projected onto the wall) is
limited by an upper bound q. In this case, we set t̂ � X1ðt þ dtÞ
¼ maxðt̂ � Z � q; t̂ � ~X1ðt þ dtÞÞ. The friction force is at most q k1 and
otherwise statically balances with other forces. Effectively, if local tangen-
tial forces are strong, e.g., containing a strong Young’s force from a con-
tact point, then the spring lengths are set to q, the friction provided is
q k1, and local tangential slipping occurs. Figure 5(c) shows this slipping
case. On the other hand, if local tangential forces are weak, the spring
lengths do not exceed q and static friction is sufficient to produce a no-
slip result. Figure 5(d) shows this no-slip case. The slip is represented by

the difference between t̂ � ~X1ðt þ dtÞ and t̂ � Z � q. Dividing that by dt
gives the slip velocity. The heat dissipation rate is quantified by multiply-
ing the friction force with the slip velocity

q k1
t̂ � ~X1ðt þ dtÞ � ðt̂ � Z � qÞ

dt
: (15)

The free-slip and no-slip cases can be obtained from the static-
dynamic case for particular choices of q. When q goes to infinity, we
obtain the no-slip condition. The length limit is effectively removed
and X1 ¼ ~X1 . When q is set to zero, we obtain the free-slip condition.
In this light, the static-dynamic friction condition interpolates between
the no-slip and the free-slip condition by controlling the value of q.

In practice, we set q ¼ 5Newtons=k1. This parameter value was
chosen in order to obtain realistic results: The contact points can slip
while the non-MCL region of the wall is no-slip, and small droplets can
hang statically on the wall without sliding. To make q physically accu-
rate, further molecular simulations or physical experiments are needed.

The static-dynamic friction condition bears similarity to the
rigid-body static-dynamic friction model: The friction is a reactive
force that responds to the sum of all active forces. If the sum of active
forces is lower than a threshold, the rigid body is stationary and the
frictional force balances with the other forces. If the sum of active
forces exceeds a threshold, the rigid body slides and the dynamic fric-
tion equals the maximum static friction.

F. Step-wise interface re-sampling

The immersed markers, as parametrized by arc length s, are ini-
tialized to be uniform. During a simulation, the markers are advected
by the fluid flow, which may not conserve the arc length. The surface
tension is always normal to the interface, so the fluid flow easily dis-
rupts the distribution of the interface markers. To equi-distribute the
markers on the structure, Lai et al.32 used grid redistribution, while
Hou et al.,33 and Lai et al.6 applied artificial tangential velocity. Our
method is similar to grid redistribution in the sense that we add

TABLE I. Different rules to advect wall markers yield respective boundary condition
and friction model. X1 is the wall marker, and ~X1 denotes the positions that (3)
would have advected the wall markers to. t̂ is the upward unit vector tangent to the
wall, Z is the ground-truth location for wall markers, and k1 is the spring stiffness
associated with the penalty method. The length of the springs (when projected onto
t̂ ) is limited by an upper bound q.

t̂ � X1ðt þ dtÞ Boundary
condition

Friction,
i.e., tangential
force in spring

t̂ � ~X1ðt þ dtÞ No-slip Statically balances
with other forces

t̂ � Z Free-slip 0

maxðt̂ � Z � q; t̂ � ~X1ðt þ dtÞÞ Static-dynamic
friction

At most q k1,
otherwise statically

balances with
other forces

FIG. 5. The wall marker and its ground-truth location are denoted by X1 and Z, respectively. In (a), the wall is no-slip and the wall marker strictly follows the fluid flow. The
spring conserves all temporary slip and, thus, forbids consistent slip. In (b), the wall is free slip and the wall marker does not follow the wall-tangential component of the fluid
flow. The tangential component of the spring force is always zero; therefore, slip happens without friction. In (c) and (d), we apply the static-dynamic friction condition in which
the spring, when projected onto the wall, has a length upper bound q. (c) Shows the case where ~X1 is lower than Z � q t̂ , so the marker is sent to Z � q t̂ . (d) shows the
other case where the spring is within its (tangential) length limit, so the wall marker follow the fluid flow. There is no modifications to the horizontal displacement in order to pre-
serve the no-penetration condition.
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markers to wide gaps and remove them from tight spaces at every
time step. Specifically, at each time step, the program iterates over all
the interface markers. When the distance between any pair of markers
exceeds

ffiffiffi
2

p
times their initial distance, the program inserts a new

marker between them. When the distance between the outer two of
any three adjacent markers become smaller than

ffiffiffi
2

p
=2 times their ini-

tial distance, the program removes the inner marker of the three. Note
that the value

ffiffiffi
2

p
is the geometric mean of 1 and 2. Given the condi-

tions for adding and removing markers, the average distance between
adjacent markers will remain in the range ½ ffiffiffi

2
p

=2;
ffiffiffi
2

p � times their ini-
tial distance.

Whenever a marker is removed, the two adjacent markers are
joined together and their coordinates are left untouched. However, a
sharpness check compares cos a (where a is the angle formed by the
three markers) with a threshold (0.9, in our case) to prevent the pro-
gram from removing a marker that represents a relatively sharp corner
and breaking conservation of area and tension energy. The sharpness
check becomes irrelevant as the spatial resolution N approaches infin-
ity but improves simulation accuracy for finite values ofN.

On the other hand, when a marker is inserted (see Fig. 6), the
program calculates two locations: the midpoint (MP) between the two
markers and the intersection (IS) of the extrapolated lines from four
adjacent markers. A weighted average between MP and IS is used as
the location for the newly inserted marker. The averaging is weighted
by a re-sampling amendment factor. If there is too much weight on
the midpoint, the removal of markers will erroneously decrease ten-
sion energy while insertion will not increase tension energy. By having
an optimal weight on the extrapolated intersection, we can keep the
bias of the energy error to 0 (although the variance will still increase
with time). However, finding the optimal amendment factor depends
on an initial guess for the distribution of interface curvatures, which is
out of the scope of this work. On the other hand, too much weight on
the extrapolated intersection leads to alternating jagged edges and
eventually to instabilities. In our numerical experiments, we set the re-
sampling amendment factor to be 0.5. The amendment factor becomes
irrelevant as N approaches infinity but improves simulation accuracy
for finite values of N.

Our re-sampling routine constantly computes and records energy
errors due to the artificial removal and insertion of markers. At the
end of a simulation, these errors can be plotted for evaluation. See Sec.
VB for the apparent improvement that this procedure brings. This re-
sampling procedure, however, is very difficult to extend to 3D with a
surface mesh.

G. Interface splicing

Figure 7(a) shows six possible scenarios in which the liquid–gas
interface changes topology and the chain of interface markers needs to
be spliced: two droplets merging, one droplet splitting into two, a
droplet attaching to the wall, a droplet detaching from the wall, a drop-
let splitting on the wall, and two droplets merging on the wall. Those
six cases form three pairs of reversible processes as well as three pairs
of scenarios whose implementations are exactly the same. The same-
implementation cases are locally indistinguishable, since our splicing
implementation is agnostic to the phase (liquid or gas) on each side.

To implement splicing, we store the interface markers in circular
doubly linked lists. The linking direction preserves polarity informa-
tion; if one follows the links in the positive direction, the liquid will
always be on the right. Figure 7(b) illustrates a splicing event. When the
distance between two interfaces is smaller than a threshold, we check
whether the two interfaces are approaching using the sign of the dot
product of their velocities. If both conditions hold true, the interfaces
are spliced together. The method has two different distance thresholds,
one for interface-interface events (h), and the other for interface-wall

FIG. 6. The blue circles show four adjacent interface markers. When the distance
between the inner two is larger than

ffiffiffi
2

p
times its initial length, we insert a new

marker. IS is the intersection of two lines, one connecting X2;‘�1 to X2;‘ and the
other connecting X2;‘þ2 to X2;‘þ1. MP is the midpoint of the line segment between
X2;‘ and X2;‘þ1. The green cross shows the new marker, which is a linear combina-
tion of MP and IS weighted by an amendment factor.

FIG. 7. (a) Among the six interface splicing scenarios, three pairs are reversed in
time and three pairs share the same implementation. (b) An important condition for
splicing to occur is that the two interfaces are approaching each other, as shown
with the violet arrows representing the velocity of each interface. When the distance
between four involved markers become small enough, the algorithm splices the
interfaces (removing two black links and adding two green links).
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events (2:3h), where h is the meshwidth (i.e., diameter of one Eulerian
grid cell). These specific parameters result in stable splicing events
according to our numerical tests. Finally, a splicing event forces the
simulation to skip the splicing subroutine for two subsequent time
steps. This rule makes splicing events more atomic so that there will
not be multiple splicing events competing to accomplish the same mac-
roscopic effect.

H. Variable density

Our model uses the technique proposed by Kim and Peskin24 to
describe the different densities for the liquid and gas within and out-
side of the droplet, respectively. In this approach, a uniform 2D grid of
Lagrangian markers is constructed in the liquid phase to represent the
density difference. This difference is achieved by allowing the markers
to have an effective mass by tethering them to their massive,
Newtonian counterparts using the penalty immersed boundary (pIB)
method. More formally, the Newtonian particles have velocity v,

vðs; r; tÞ ¼ @Yðs; r; tÞ
@t

; (16)

where Y is the location of the Newtonian particles. The forces on the
Newtonian particles are the tether force and gravity

Dq
@vðs; r; tÞ

@t
¼ k3 ðX3ðs; r; tÞ � Yðs; r; tÞÞ � DqG ĵ; (17)

where Dq ¼ ql � qg is the 2D density difference between the liquid
and gas, G is the gravitational constant, ĵ is the vertical unit vector,
and k3 is the spring constant [taken to be 1000 g=ðs2 cm2Þ in our sim-
ulations] associated with the variable density method. If k3 is too high,
numerical instability occurs and if it is too low, the allowed distance
will be violated (explained below). A tether force is applied as a force
density onto the fluid,

F3ðs; r; tÞ ¼ k3 ðYðs; r; tÞ � X3ðs; r; tÞÞ; (18)

to couple the particles X3 with the Newtonian particles Y. Our imple-
mentation uses the variable density method,24 with several modifica-
tions. Kim and Peskin24 used a five-step update method for time
stepping, while we use a coarser, midpoint method (see Sec. III). We
also set the allowed distance34 to be one tenth the mesh-width, i.e.,
h=10.

III. NUMERICAL DISCRETIZATION

For the spatial discretization, we use a global Navier–Stokes
solver based on harmonics in the velocity field. This solver uses the
Fast Fourier Transform to accelerate the computation, but at the cost
of not being able to handle variable density/viscosity out-of-the-box
(which is why we need the variable density method (Sec. IIH) to dis-
tinguish the two phases). The time step is denoted by dt with units of
seconds. The spatial resolution parameter N is the number of Eulerian
cells in the problem domain along the y axis. The length of cell side in
the spatial discretization, i.e., the meshwidth, is denoted by h with
units of centimeters. Therefore, we always have N h ¼ L, where L is
the height of the square computational domain as shown in Fig. 1.

The time step index is denoted by n 2 f0; 1; 2;…g and the phys-
ical time at time step n is given by tn ¼ n dt. The discrete Eulerian
space coordinates that label the cells in the Cartesian mesh are

ði; jÞ 2 f0; 1; 2;…;N � 1g2. A physical cell position in the problem
domain is given by xij ¼ ði h; j hÞ. The fluid velocity uðxij; tnÞ at posi-
tion xij and time tn is approximated by the discrete fluid velocity,
denoted by unij . The array of discrete velocities at time step n is denoted
by un ¼ ðunijÞ. The discrete spatial parametrization variables for the
immersed structures are ‘ 2 f0; 1; 2;…; ‘maxg and
m 2 f0; 1; 2;…;mmaxg, where ‘max and mmax can change during sim-
ulation due to the interface re-sampling. A point within the parametri-
zation of the immersed structure is given by ðr‘; smÞ ¼ ð‘Dr;mDsÞ,
where Dr and Ds control the discrete spatial resolution of the struc-
tures. In our numerical experiments, we initialize ‘max and mmax so
that Dr ¼ Ds ¼ h=2. The spatial resolution of the structures corre-
sponding to the set of Lagrangian markers has implications on discrete
mass conservation and correspondingly the computed pressures. If the
resolution of the structures is too coarse, for example, the droplet
might “leak” through the interface and begin to nonphysically shrink
in volume. The Lagrangian resolution of h=2, which is explicitly finer
than the fluid resolution, is chosen to avoid these numerical artifacts.
The discrete 2D structure positions corresponding to the variable den-
sity area X3 are indexed as Xn

3;‘m � X3ðr‘; sm; tnÞ, and we collect them
in a single array denoted by Xn

3 ¼ ðXn
3;‘mÞ. We use the same notation

for the discretizations of the 1D wall boundary X1 as well as the 1D
fluid–gas interface boundary X2, although in these cases, there is only
a single parametrization variable. We represent the array of discrete
structure positions at time step n by Xn ¼ ðXn

1 ;X
n
2 ;X

n
3Þ. X4 and X5

correspond to 0D points, so there is not a need for their discretization.
We use a midpoint method for evolving the system in time that

relies on quantities at intermediate time steps 1
2 ;

3
2 ;…

� �
. This method

improves stability and constrains numerical errors. Following the
approach from works by Peskin,27,35 the procedure below describes
the time discretization for the equations of motion (1), (2), and (3):

(1) Given the marker positions Xn and the fluid velocity un, com-
pute the first-order approximation of the marker positions at
the midpoint step Xnþ1=2 using Eq. (3).

(2) Given the marker positions at the midpoint step Xnþ1=2, com-
pute the force densities at the midpoint, denoted f nþ1=2, using
Eq. (2).36

(3) Given the fluid velocity field un and the force densities at the
midpoint step f nþ1=2, compute the fluid velocity field at both
the midpoint unþ1=2 and the next time step unþ1, using Eq. (1).

(4) Given the marker positions Xn and the fluid velocity at the mid-
point step unþ1=2, advect the markers for time dt to obtain the
marker positions at the next time step Xnþ1 using Eq. (3).

IV. BENCHMARK AND CONVERGENCE TESTS

This section focuses on benchmark and convergence tests for our
methods. In Sec. IVA, we simulate a hanging droplet on a wall and
compare our steady state results with an analytical solution.14 In Sec.
IVB, we compare our simulation results with an established variable
density benchmark in which a bubble rises in a liquid column.37

Finally, in Sec. IVC, we describe results from nontrivial experiments
to empirically study the convergence of our methods.

A. Droplet in hydro-static equilibrium on a wall

In this test, we compare our simulation results with an analytical
solution for the interface shape of a droplet hanging on a vertical
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wall.14 The model describes the hydro-static equilibrium shape of a
droplet hanging on a vertical wall as a partial differential equation
expressed in Cartesian coordinates. The solution to this problem
implies a linear relationship between the local curvature of the inter-
face and the altitude. Details regarding derivation of the analytical
solution are given in the work by Cimpeanu et al.14

For these simulations, the time step is dt¼ 0.0001 s, the spatial
resolution parameter is N¼ 96, the height of the computational
domain is L¼ 2 cm, the surface tension coefficient is r¼ 100 g cm/s2,
the gas density is qg ¼ 0:1 g/cm2, the liquid density is ql ¼ 1 g/cm2,
the viscosity is l ¼ 1 g/s, and the static contact angle is hs ¼ p=2. We
run several simulations and vary the magnitude of gravity coefficient G
to compare curvatures in the equilibrium state with those from the ana-
lytical solution given in the work by Cimpeanu et al..14 To estimate
local curvature at each marker, we compute the circle that contains the
three interface markers and calculate the inverse of the circle’s signed
radius. The simulations are terminated at t¼ 0.2 s, at which time all
three cases have reached a steady state. Results are shown in Fig. 8.
From left to right, the gravitational constant G (cm2/s) is gradually
increased to alter the droplet shape. The upper panel depicts the equi-
librium droplet shape computed by our simulations. A linear relation is
observed between the 2D curvature and the altitude as shown in the
lower panel. In addition, there is excellent agreement between our
numerical results (blue scattered dots) and the analytical solution
(orange line) given in the work by Cimpeanu et al..14 In both panels,
the green line represents the location where curvature is zero, i.e., the
inflection point in the droplet shape.

B. Rising bubble in a liquid column

In this section, we describe an application of our methods to a
recently proposed transient multi-phase flow benchmark which
describes a gas bubble rising in a liquid column.37 This benchmark pro-
vides a reasonable experiment for the surface tension model, making it
suitable for testing multi-phase flow methods. Specifically, we compare
our simulation results to those calculated from Featflow, an open-source
CFD package by Turek and Mierka.37 Details of the benchmark setup
can be found in “test case 1” of the work by Turek and Mierka,37 except
that instead of a 1:10 viscosity ratio, our simulations use a 10:10 viscosity
ratio. Turek and Mierka37 kindly provided us with the 10:10 viscosity
ratio simulation results to benchmark against.

In this test, the time step is dt¼ 0.002 s, the spatial resolution
parameter is N¼ 128, the height of the computational domain is
L¼ 2 cm, the surface tension coefficient is r ¼ 24:5 g cm/s2, the gravita-
tional acceleration is G¼ 0.98 cm/s2, the gas density is qg¼ 100 g/cm2,
the liquid density is ql¼ 1000g/cm2, the viscosity is l¼ 10 g/s for both
fluids, and the Reynolds number is Re¼ 35.37 We use a symmetry
boundary condition on the left and right boundaries that corresponds
to a no-penetration condition. We treat the top wall (see Fig. 9) as a
penalty immersed boundary with a forcing scheme similar to Sec. II B to
make it a no-penetration and no-slip boundary. Note that the altitude of
the top wall is initialized so that the spring force is already in equilib-
rium with the gravitational force on the fluid. In other words, the initial
location of the top wall is slightly below the top boundary. Otherwise,
the fluid column would undergo damped oscillations at the beginning
of the simulation.

FIG. 8. The upper panel shows the equilibrium droplet shape computed from our simulations. The lower panel displays altitude vs curvature for the hanging droplet. The ana-
lytical solution obtained by Cimpeanu et al.14 is shown by the orange line, and the blue scattered dots correspond to the curvature calculated from our simulation results. From
left to right, the gravitational constant G (cm2/s) is gradually increased to alter the droplet shape. The green line highlights the location where curvature is zero, i.e., the inflec-
tion point in the droplet shape. To estimate curvature, we use a fixed-arc length sliding window over the interface markers, and fit a circle through three markers in the window.
The three markers consist of both ends of the window and the midpoint in the window.
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Figure 10 depicts the center of mass and the circularity index calcu-
lated from our simulation results compared against those from
Featflow.37 To keep track of the center of mass of the bubble, the simula-
tion initializes the problem domain with X6, an additional 2D equidis-
tant grid of markers inside the bubble. X6 is solely for accounting
purposes and does not exert any forces. The mean of the current posi-
tions of the markers X6 corresponds to the bubble’s center of mass. The
circularity index is defined in the work by Turek and Mierka,37 which is
the perimeter of an area-equivalent circle divided by the perimeter of the
bubble. Our simulation does not calculate an area-equivalent circle but
instead uses the initial circle circumference as a proxy, since in this test,
the area is well conserved. The center of mass and circularity index calcu-
lated from our simulations show good agreement with the Featflow
benchmark results. Figure 11(a) shows excellent agreement in the posi-
tion and shape of our simulated bubble vs the benchmark results. Figure
11(b) (Multimedia view) provides more details on the rising bubble.

In addition, Table II shows the order of accuracy with regard to
N for this test. The finest simulation (N¼ 162, dt¼ 0.0016) is used as
the ground truth, since in this case, we do not have an analytic solu-
tion. The fluid velocity (u) error is computed in the L2 norm. The table
shows that the velocity field converges at a second order rate and the
center of mass position converges with a rate of approximately 3/2.

C. Convergence tests

In this section, we describe the results of several tests in which we
vary the time step and the spatial resolution to empirically verify

FIG. 9. The schematic of the rising bubble benchmark case problem domain. The
top and bottom walls are no-slip and no-penetration, while the left and right walls
are no-penetration. The gas and the liquid form a 1:10 density ratio.

FIG. 10. A comparison of our simulation results against those computed from Featflow.37 The model is of a rising gas bubble in a liquid column. (a) and (b) show the altitude
evolution of the center of mass and the circularity index of the bubble, respectively, for our simulation (IB) and Featflow. (c) and (d) show the absolute error of the IB and
Featflow results corresponding to (a) and (b), respectively.
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convergence of our methods. For all tests in this section, the height of
the computational domain is L¼ 2 cm, the surface tension coefficient
is r¼ 50 g cm/s2, the gas density is qg ¼ 0:1 g/cm2, the liquid density
is ql ¼ 1 g/cm2, and the viscosity is l ¼ 0:01 g/s. The size of the com-
putational domain is 2� 2 cm2, and the size of the problem domain is
1� 2 cm2. Therefore, x 2 ½0; L=2�; y 2 ½0; L�, where L¼ 2. Periodic
boundary conditions are used for the top and bottom boundaries, and
a symmetry boundary condition is used for the left and right bound-
aries (see Sec. IIA).

1. Test 1: Sliding droplet

For this test, we simulate a droplet sliding down a vertical wall as
shown in Fig. 12 (Multimedia view). The Reynolds number is
Re¼ 200, where the typical length scale is the diameter of the droplet,
and the characteristic velocity is selected as the downward velocity of
the droplet at its maximum toward the end of the simulation.

There is a vertical wall at x¼ 0. The static contact angle is
hs ¼ 0:3 p. There is a uniform upward flow of gas, which corresponds

to a prescribed vertical component of the velocity at y¼ 0. More pre-
cisely, the boundary condition at y¼ 0 (i.e., top and bottom boundary)
for the vertical velocity component is 30tanhð4x=LÞ cm/s for
x 2 ½0; L=2�.

We vary the time step dt and the spatial resolution N. The sliding
droplet shape at time t¼ 0.09 s is shown. The results appear to con-
verge if we increase the spatial resolution N to 256.

2. Test 2: Coalescence of two droplets

In test 2, we simulate two droplets coalescing without gravity.
Each droplet is given a uniform initial velocity field, one upward and
one downward, to simulate their coalescence. Results are shown in
Fig. 13(a). The coalescence of two droplets is an extremely challenging
test case since the moment of droplet merging amplifies previous
numerical perturbations. We increase the spatial and temporal

FIG. 11. (a) shows a plot of the bubble shape over time for our simulation and the
results generated from Featflow.37 The axes units are in cm. The boundary of the
bubble is shown at different points in time, with time increasing from bottom to top.
The final bubble position corresponds to t¼ 3 s. Our method agrees extremely well
with the results from Featflow,37 even with a relatively coarse spatial resolution,
N¼ 128. (b) provides more details on the rising bubble. Multimedia view: https://
doi.org/10.1063/5.0086452.1

TABLE II. Order of accuracy for the rising bubble test.

N dt
M error

(center of mass)
CI error

(circularity index) u error (velocity) CM order CI order u order

32 0.0016 0.000 042 0.014 118 8.222 747 N/A N/A N/A
48 0.0016 0.000 036 0.000 358 4.860 008 0.378 784 9.063 589 1.296 941
72 0.0016 0.000 027 0.001 209 1.904 728 0.642 360 �3.002 786 2.310 188
108 0.0016 0.000 016 0.000 807 0.742756 1.307 378 0.996 498 2.322 585

FIG. 12. Test 1: this figure shows the shape of the sliding droplet when t ¼ 0:09 s
for several different values of dt and N. The axes units are in cm. The simulation is
terminated after the droplet stops moving. Notice the trail of fluid left by the droplet
as it slides down the wall. Multimedia view: https://doi.org/10.1063/5.0086452.2
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resolutions (holding other parameters constant), and the simulation
results show good spatial and temporal convergence with our surface
tension model and interface splicing procedures. Such observations
can be more vividly seen in Fig. 13(b) (Multimedia view).

3. Test 3: Coalescence of six droplets

Figure 14(a) shows our simulation results for coalescing six
droplets for three levels of spatial and temporal resolutions. An artifi-
cial radially symmetric, inward pointing body force for gravity

(G¼ 900 cm/s2) pulls the droplets together. This merging test is diffi-
cult since the variance of the system’s response to the first coalescence
event is amplified by the successive merging events. More details are
given in Fig. 14(b) (Multimedia view) for this test.

4. Test 4: Letters “IB” fall into an elastic pouch

Here we initialize liquid droplets in the shape of the letters “IB”
and let them fall into an elastic pouch. Results are shown in Fig. 15(a).
The Reynolds number Re¼ 8000, where the typical length scale is
2 cm, the width of the letter “I.” At the beginning of the simulation,
before the droplets interact with the pouch, they slightly change shape
because of surface tension. As the droplets hit the pouch, the pouch
deforms and the letter “B” changes topologically as the gas bubbles
exit the droplet. This test demonstrates the capabilities of our method
in an all-in-one setting. Note that here the solid membrane is dynamic,
rendering static boundary conditions unusable. This shows that our

FIG. 13. Test 2: (a) shows the coalescence of two droplets. Three levels of spatial
and temporal resolutions are shown. Little improvement is gained from N¼ 96 to
N¼ 128, rendering N¼ 128 a high enough spatial resolution, while holding other
parameters constant. (b) provides more details on the coalescence of two droplets.
Multimedia view: https://doi.org/10.1063/5.0086452.3

FIG. 14. Test 3: (a) six droplets coalesce under three levels of spatial and temporal
resolutions. Little improvement is achieved from N¼ 128 to N¼ 192, rendering
N¼ 192 a high enough spatial resolution, while holding other parameters constant.
(b) provides more details on coalescence of six droplets. Multimedia view: https://
doi.org/10.1063/5.0086452.4

FIG. 15. Test 4: (a) letter-shaped droplets falling into an elastic pouch, simulated with two levels of spatial and temporal resolutions. This test highlights our method’s ability to
simulate an MCL on a changing-shape solid surface. (b) provides more details on the falling of letter-shaped droplets. Multimedia view: https://doi.org/10.1063/5.0086452.5
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methods are capable of simulating a moving contact point between a
liquid–gas interface and a changing-shape solid surface, simulating
fluid dynamics, surface tension, Young’s force, moving contact line,
and solid elasticity all at the same time. See Fig. 15(b) (Multimedia
view) for a video of this test.

V. APPLICATIONS

In this section, we describe several applications of our methods.
In Sec. VA, we consider the effect of droplet size on its dynamics as it
slides down a wall. The importance of our interface re-sampling proce-
dure is explored in Sec. VB. Finally, in Sec. VC, we showcase some
additional tests in which interfaces are spliced to represent topological
changes. All tests in Sec. V share the setup for the computational and

problem domains found at the beginning of Sec. IVC1, as well as the
following parameters. The surface tension coefficient is r¼ 50 g cm/s2,
and the gravitational acceleration is G¼ 980 cm/s2. The gas density is
qg ¼ 0:1 g/cm2, and the liquid density is ql ¼ 1 g/cm2. The viscosity
for both the liquid and gas phases is l ¼ 0:01 g/s. The static contact
angle is hs ¼ 0:3p.

A. Droplets sliding down a wall

In this section, we consider droplets sliding down a wall, where
gravity competes against an upward air flow.

1. Effect of droplet size

In Fig. 16(a), we analyze the dynamics of various sized droplets. The
smallest droplet corresponding to the top panel of Fig. 16(a) does not
slide; rather, it obeys the “no-slip” rule. This is consistent with reality and
is implemented via the static-dynamic friction condition. Our method
tracks the wall markers that are vertically displaced by the MCL model at
every time step. We observe that vertical displacements only occur near
the contact point (usually within 6–8 cells). This means that although our
MCL model applies to the entire wall, the majority of the wall that inter-
acts with the droplet behaves as a no-slip boundary, and only the contact
region slips. This is consistent with previous literature, which suggests
that the fluid’s internal viscous stress is not enough to incur apparent slip
in subsonic flows with hydrophilic surfaces.38 The Young’s force is the
dominating tangential force near the contact point. Such observations can
be more vividly seen in Fig. 16(b) (Multimedia view).

2. Large droplet merges with a small droplet

In Fig. 17(a), we initialize two droplets of different sizes on the
wall. The larger droplet slides down faster than the smaller one.
Therefore, it catches the smaller droplet and coalesces with it. This test
case shows the system’s response to two different droplet sizes in one
simulation and, at the same time, demonstrates the capabilities of our
interface splicing capabilities at the wall. More details are given in
Fig. 17(b) (Multimedia view) for this experiment.

FIG. 16. (a) shows results from several simulations with various droplet sizes. We
initialize the droplets as semi circles with diameters corresponding to 0.36, 0.4, and
0.5 cm. The bigger droplets are heavier, so they slide down the wall more quickly.
The smallest droplet is stationary. For diameter 0.36 cm, the receding dynamic con-
tact angle is 29� and the advancing dynamic contact angle is 93�. For diameter
0.4 cm, the receding dynamic contact angle is 16� and the advancing dynamic con-
tact angle is 75�. For diameter 0.5 cm, the receding dynamic contact angle is 13�

and the advancing dynamic contact angle is 68�. These values are taken before
any splitting of droplets. (b) provides more details on sliding droplets with different
sizes. Multimedia view: https://doi.org/10.1063/5.0086452.6

FIG. 17. (a) shows results from a simulation in which a big droplet catches a
smaller droplet and coalesces with it. Time increases from the left to right. This test
demonstrates the effect of droplet size in a single simulation. (b) Provides more
details on the coalescence of two sliding droplets. Multimedia view: https://doi.org/
10.1063/5.0086452.7
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B. Performance of the re-sampling procedure

Figure 18(a) shows a comparison study on the effect of our step-
wise re-sampling technique. In the upper row, we do not re-sample,
resulting in badly distributed Lagrangian markers and, eventually,
topological errors. In the lower row, the re-sampling procedure is used
and resolves this issue. See Fig. 18(b) (Multimedia view) for a side-by-
side comparison video.

C. Demos of interface splicing

Figure 19(a) shows results from a simulation in which a single
droplet separates into two smaller ones. After the splicing moment,
surface tension quickly brings the sharp edge into the body of the

droplet. See Fig. 19(b) (Multimedia view) for a video of this experi-
ment. In Fig. 20(a), two droplets coalesce on the wall. This is one of
the six basic cases of interface splicing introduced earlier in Sec. IIG.
See Fig. 20(b) (Multimedia view) for a video of this experiment.
Additional simulations can be found in Figs. 21(a)–21(c) (Multimedia
views). In Fig. 21(a), a droplet on the wall separates into two droplets
as a results of a collision with the wall. A droplet attaches to the wall in
Fig. 21(b). Finally, in Fig. 21(c), an air bubble collides with a droplet,
showing the effect of variable density.

VI. CONCLUSIONS

In this paper, we use the immersed boundary method to simulate
droplets and their interaction with a wall. The static-dynamic friction
is modeled with an immersed boundary. The surface tension and the
Young’s force were readily integrated with the IB method by comput-
ing local unit vectors tangent to the interface. We showed that
interface marker re-sampling is necessary to obtain accurate results.
Our interface splicing method handles droplet coalescence, separation
and other topological changes with stable splicing events. We also

FIG. 18. (a) shows results from two simulations, one which uses the interface re-
sampling procedure (bottom), and one which does not (top). Without re-sampling,
the fluid flow advects the interface markers and the interface breaks into pieces,
allowing for penetration through the interface. This shows the importance of our
interface re-sampling procedure. (b) provides more details on the interface re-
sampling of a sliding droplet. Multimedia view: https://doi.org/10.1063/5.0086452.8

FIG. 19. (a) shows the results from a simulation in which a single droplet separates into two smaller ones. It showcases the ability of our interface splicing method to handle
droplet separation. (b) provides more details on the splicing of a droplet. Multimedia view: https://doi.org/10.1063/5.0086452.9

FIG. 20. (a) shows the results from a simulation in which two droplets coalesce on
the wall. This showcases the capacity of our interface splicing procedure to handle
droplet coalescence at the wall due to two approaching contact points. (b) provides
more details on the splicing of a droplet. Multimedia view: https://doi.org/10.1063/
5.0086452.10
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demonstrated empirical convergence of our methods on non-trivial
examples, and we applied them to several benchmark cases, including
a slipping droplet on a wall and a rising bubble.

The success of our methods demonstrates the flexibility and extensi-
bility of the IB method. We show that complex dynamics, like a moving
contact point on an evolving solid surface, can be successfully modeled
with the IBmethod. In the formulation of the static-dynamic friction con-
dition, we choose to implement contact point slip via length-limiting the
tether springs so that IB imparts the correct friction forces onto the fluid.
Conceivably there are other ways to impart this frictional force, which we
did not investigate in this study. For example, one could formulate the
friction as an additional external force that is imparted directly onto the
fluid without intermediate markers, or one could prescribe a boundary
condition for the fluid velocity according to viscous stress.

Our work is limited in several ways. The methods presented here
assume that the fluids are incompressible. This is a result of the

immersed boundary approach used here in which the entire domain is
modeled as an incompressible fluid. We expect the interface splicing
method to be fragile in the compressible-flow setting because inertia
and compressibility will likely make splicing events much less atomic.
In addition, although our methods can handle variable density, they
do not handle variable viscosity. Finally, the methods are limited to
2D. In 3D, the interface surface becomes a surface mesh (most com-
monly, a triangle mesh). Care needs to be taken in computing surface
tension in this case. Furthermore, the stepwise interface re-sampling
procedure, in 3D, needs to also repair local topology of the mesh while
preserving accuracy and numerical stability. Therefore, extending our
methods to 3D will be a nontrivial task.

An important application of our work is a real-life industrial
problem corresponding to the removal of gaseous reactants from
power plant exhaust by converting them into liquid at the catalyst site.
Future work will be geared toward understanding the dynamics of liq-
uid droplets for this application, in order to maintain performance
and durability of the catalyst assembly. More specifically, these types
of models will provide details for classifying droplet movement and
coalescence in the gas channel based on the filter surface and gas flow
properties, which will be used to guide operating conditions for sulfur
dioxide removal devices. Our goal is to develop such a mathematical
model, which will help us to understand how different surface proper-
ties and operating conditions affect the dynamics of the droplet or the
formation of a liquid film.
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