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ABSTRACT

In a tissue engineering scaffold pore lined with cells, nutrient-rich culture medium flows through the scaffold and the cells proliferate. In this
process, both environmental factors—such as flow rate and shear stress—as well as cell properties have significant effects on tissue growth.
Recent studies have focused on the effects of scaffold pore geometry on tissue growth, while in this work, we focus on the nutrient depletion
and consumption rate by the cells, which cause a change in the nutrient concentration of the feed and influence the growth of cells lined
downstream. In this paper, our objectives are threefold: (i) design a mathematical model for the cell proliferation describing fluid dynamics,
nutrient concentration, and tissue growth; (ii) solve the models and then simulate the tissue proliferation process; (iii) design a “reverse algo-
rithm” to find the initial configuration of the scaffold with the knowledge of the desired property of the final tissue geometry. Our model
reduces the numerical burdens and captures the experimental observations from the literature. In addition, it provides an efficient algorithm
to simulate the cell proliferation and determine the design of a tissue engineering scaffold given a desired tissue profile outcome.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0071171

I. INTRODUCTION

Tissue engineering, which is the culturing of artificial tissue out-
side human body in order to replace damaged tissues and organs, has
been widely used for clinical therapies." In this process, both environ-
mental factors—such as flow rate and shear stress—and the cell prop-
erty have significant effects on tissue growth. Previous works have
discussed the effects of external factors on tissue growth, including
fluid mechanical forces with a focus on shear stress and pressure,‘; ©as
well as the scaffold geometric design.” ' In addition, many mathemat-
ical models of tissue growth have been built to provide simulations on
the final shape and the pore-filling process.'”'” While most of the
focus has been devoted to the influences of the external environment
such as the fluid dynamics and the scaffold geometric design, less
attention has been given to the effects of cell behavior. Note that, as
cells consume nutrients, the nutrient concentration in the flow
changes. In particular, as cells at the top of the scaffold pore consume
nutrients, the concentration of nutrient solution will be lower at the
bottom of the scaffold pore, which in turn results in a slower growth
rate for cells at the downstream side. Therefore, both the final scaffold

pore geometry and the total amount of tissue growth are influenced.
Previous works did not reveal the influence of this factor.”*"”
Numerous mathematical models have been developed by
researchers to study the mechanism of cell proliferation in a tissue
engineering scaffold. For example, Kumar et al.'® ' introduced mod-
els for a deformable cylindrical scaffold and neglected the effects of
nutrient depletion along the depth of the scaffold. In addition, the
researchers'” provided a semi-analytical solution for a short period of
time. Sanaei et al."* proposed a mathematical model for tissue engi-
neering in the context of a single pore of a scaffold. The authors con-
sidered the combined roles of fluid shear stress and geometry
curvature of a scaffold pore on the tissue growth and investigated how
these factors influence the total tissue growth in a scaffold pore. A criti-
cal assumption of all of the above-mentioned works”'* ' is that the
nutrient concentration is assumed to be constant throughout the scaf-
fold pore. In reality, however, the assumption does not hold. As cells
begin to consume nutrients, the concentration decreases and influen-
ces the cells’ growth rate at the downstream side of the scaffold. In this
work, we develop a model and introduce a parameter named “hunger
rate” to determine the homogeneous nutrient depletion rate of cells in
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a tissue engineering scaffold. We focus on the homogeneous property
of cells in the scaffold and assume that each individual cell in the scaf-
fold would consume nutrients at the same hunger rate. In this way, we
are able to compare the final geometries and the growth processes of
different kinds of cells with different hunger rates.

Another innovative part of our work is the implementation of a
“reverse algorithm,” which is used to design the initial configuration of
the tissue engineering scaffold. Though there are several mathematical
models to predict the tissue growth process and provide spatiotempo-
ral information on the scaffold pore final shape,'*'””" very few have
been devoted to designing tissue engineering scaffolds (see Refs. 21-24
and references therein). They mostly used comprehensive parametric
variation study to design and optimize the tissue engineering scaffold.
Specifically, what is missing from the literature is a model adopting a
predictive algorithm using first principles for optimizing and designing
the initial configuration of the tissue engineering scaffold based on the
final desired tissue geometry. For practical use, however, a correct ini-
tial configuration of the scaffold could be very critical.*** By incorpo-
rating the nutrient concentration and fluid dynamics, the algorithm is
able to return a precise three-dimensional scaffold design efficiently.

This paper is structured as follows: in Sec. II, we introduce the
mathematical model incorporating three parts—the governing equa-
tions for fluid dynamics through a single pore of a tissue engineering
scaffold in Sec. IT A; the rate of change of the nutrient concentration
and its boundary conditions in Sec. II B; and the partial derivative
equations governing tissue growth in Sec. IIC. We perform non-
dimensionalization of the models in Sec. I1I and then apply asymptotic
and quasi-static analysis to solve the partial differential equations in
Sec. IV, where we utilize the fact that the aspect ratio of the pore is
small and the timescale of cell proliferation is much longer compared
to that of nutrient flow transport. The results are shown in Sec. V and
we present the reverse algorithm and initial configuration. Finally, we
conclude in Sec. VI with a discussion of our model and results with
potential future improvements.

Il. MODEL DESCRIPTION

We consider a simple continuum model, in which the scaffold
consists of a series of identical nearly cylindrical pores spanning the
entire scaffold, with depth-dependent radius shown in Fig. I.
Therefore, we focus on a single scaffold pore, with cells initially lined
on the pore wall and nutrient solution flows through the pore. As time
passes, the cells proliferate and the fluid—cell-layer shrinks as the tissue
layer thickens. As a result, the shape and structure of the pore changes,
so do the nutrient concentration, shear stress, etc. We consider a
quasi-static assumption, which stems from the fact that the tissue
growth happens on a much longer timescale compared to that of the
transport of the fluid flow through the scaffold pore.”"*

Since the shape of the scaffold is fixed throughout the paper, we
primarily consider the change of the shape of fluid—cell-layer, which
represents the growth of tissue. Let L and R denote the length and the
typical pore radius, respectively, and, hence, also the length and radius
of the fluid—cell-layer at the initial state, since we assume initially the
thickness of cell sources is negligible. The aspect ratio € is defined to be
¢ = R/L < 1. The geometry of the underlying substrate is assumed
to be nearly circularly cylindrical with small azimuthal and axial varia-
tion, which later would be viewed as a control for optimization of the
tissue growth.
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FIG. 1. Schematic diagram of a possible geometry of a tissue-lined pore within a
tissue engineering construct.

The concentration of nutrient solution is allowed to change
throughout the length of pore, due to nutrient consumption by the
cells at the pore wall. We assume, as in many real world applica-
tions, that the inlet flux and concentration of fluid supplied to the
cells are held constant.”®?” Intuitively, if the rate of nutrient con-
sumption is low, which we will characterize by the “hunger rate” 7,
then our model should resemble the case considered in Ref. 14 so
that the nutrient is in excess. As in Ref. 14, we prescribe the influx
Q; and zero downstream pressure. The nutrient fluid is modeled as
an incompressible Newtonian viscous fluid with viscosity jt and
density p.

The system is constructed in cylindrical coordinates (7, 0,2),
where the vertical axis Z is aligned with the pore axis and e; , ey, e; are
the unit vectors in 7,0, directions, respectively. Let 7 = a(0,z,1)
describe the fluid—cell-layer interface, where the initial configuration
is given by # = a(6,z,0) as shown in Fig. 1.

A. Fluid dynamics

We denote the velocity of the fluid and the pressure across the
pore as it = iie; + Dey + Wwe; and p, respectively. Experiments and
literature reports have shown that the inertial force is negligi-
ble;”>”” therefore, we assume that the flow is governed by the
Stokes equations subject to no-slip and no-penetration boundary
conditions. The mechanics of the flow are therefore characterized

by
Vp=iVii, V-i=0, 1)

with boundary conditions
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where V is the dimensional gradient operator. Throughout the proce-
dure, we assume that the total flux passing through the pore is held
constant to keep a continued nutrient supply, i.e.,

2
J J || 7 d dO = Q; = constant. 3)
o Jo
As the pore radius shrinks, the pressure difference needs to increase in
order to sustain the flux. We therefore prescribe the pressure at the top
and the channel downstream as follows:

Pleco =L, plic =0, )

where { (%) is a function, which is monotonically increasing with time
t. In addition, the total shear stress & at the channel wall, exerted by
the nutrient flow, is obtained from the following expressions:

6.=1\/lonf — ((6n)-n)?, 6 =u(Va+Va")|._,, ()

where T shows the transpose of the matrix and # is the unit vector
normal to the fluid—cell-layer interface, pointing inward, given by

(6)

B. Nutrient concentration

We assume that the nutrient is diluted in fluid flow with concen-
tration ¢. The rate of change of the nutrient concentration ¢ satisfies
g 4
5 =V. Qm (7)

where

Q, = —-EVi+ it (8)
is the nutrient flux, with = being the diffusion coefficient of the
nutrient.”” ** The initial condition for the nutrient concentration

within the channel follows

tliso =0, 0<z<L (9

Note that, by employing the quasi-static assumption for (7), the initial
condition for the nutrient concentration given in (9) will not be
needed for further analysis of our model. This will be explained in
detail in Sec. I11 B. Nutrient concentration should also satisfy the fol-
lowing boundary conditions:™ **

-

o =0 | =0
. . oc oc 1o
o= B0l = 00,

where ¢; is the concentration of the nutrient at the pore inlet, pumped
into the scaffold. Here, we propose that the nutrient consumption hap-
pens at the interface where cells interact with nutrient flow, ie., the

scitation.org/journal/phf

fluid—cell-layer interface. We further propose that the nutrient con-
sumption is proportional to the nutrient concentration, with the coef-
ficient being 7, which we call the “hunger rate,” or heuristically, how
fast the cells consume nutrient,”” > that is,

Q, -n=ic, at 7 =a. (11)

C. Tissue growth

According to the experiments and observational facts,” cells
proliferate more quickly when exposed to a more concentrated nutri-
ent solution, higher shear stress at their surface and in regions where
the pore configuration has higher curvature.”** Therefore, we propose

da S
— = —ACKf(05). 12

o = e () (12)
Here, 7 is the characteristic growth rate (mol’1 m°® sfl), k=V.nis
the mean curvature, and the function f captures the influence on tissue
growth due to the total shear stress G, which will be defined later in
more detail.

8,33

lll. SCALING, NON-DIMENSIONALIZATION

To reduce the number of independent parameters, we non-
dimensionalize the models for the (i) flow; (ii) nutrient concentration;
and (iii) tissue growth described in Secs. IT A-II C, respectively, using
appropriate scaling factors introduced for each one below.

A. Fluid dynamics
We use the following scaling rules to non-dimensionalize the
model given by (1)—(6):

Q

L QQ
= ézu—?(eu,ev,w),
m s
LLQ; (13)
(b.8.60 =25 (b Lo),
nR

(?7a72) = i(er’ Ea7z)’

where p is the viscosity and Q; is the inlet flux. L and R are the length
and the typical pore radius, respectively. u, v, w, p, {, 6, 1, a, and z are
the corresponding dimensionless variables. From (1), the correspond-
ing dimensionless equations governing the flow are given by

l@_lg (r@>+i@ 2@7173@ (14)
eor ror\ or 2 90> “o9z 7 row
L@_lg <r@)+li2b 2@,34,3@ (15)
erdl ror \ Or r2 H60* ‘92 7o
op 10 ([ ow 1w 0w
P S 2% 16
0z ror (r8r>+r2 0k " oz (16)
10 10v ow
— 4 = 1
r&r(ru)+r80+az (17)

Substituting (13) into the dimensional boundary conditions given by
(2) yields the dimensionless boundary conditions
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u=v=w=0 on r=a(0z1),

0 18

u:v:—W:O at r=0. (18)
or

The dimensionless form of the constant fluid influx condition given by

(3)is

2 ra
J J Ve + @ + wlrdrdd = . (19)
o Jo

Corresponding to (4), we assume that the dimensionless pressure drop
across the length of the pore is given by {(#) (t is the dimensionless
time and the scale will be introduced later in Sec. 111 C), a function
monotonically increasing in ¢ to keep the flux constant, as the pore
shrinks due to cell proliferation. We therefore complete the system by
applying the dimensionless boundary conditions

p|z:0 = C(t)7 p|z:1 =0. (20)

The dimensionless total shear stress at the channel walls, exerted by
the nutrient flow, after manipulating (5), is given by

o=/ |on|* — ((6n) - n)*,

L (E%,E @) 20u Ow
“or \ro0 ror) oz or
o= (1%724,@) 2 <1@+E> 2@4,1@
\ro0 " or \ro0"r “oz ro0 |
20u_ ow 20v 10w 2
Oz Or 0z roo 0z

1)

where the unit normal vector to the fluid—cell-layer interface, pointing
inward in (6), is simplified as follows:

( _10a ~ 0Oa )
& o0 T 9%

)
2\a0) " \oz

B. Nutrient concentration

n= (22)

In order to non-dimensionalize the model given by (7)—(11) pre-
sented in Sec. II B, we use (13) along with a new scaling factor for the
nutrient concentration as follows:

¢ = Cic, (23)
to arrive at
1 [10( 0\ 18&c ,0%| 9 10c O
T{a_(a_> o€ @}:E”?%”&W’
. (24)
Pe:%
TR E
Oc
C|z=0 =1, a o =Y 05
clo—p = clo—2n> o = o )
N 000y 00 pss

1 (8c 10c 8c) _ _
Pe E,;%,e& n=—nc, at r=a,
~2, (26)

nR 7

6@1‘ 7
where Pe and 7 are the Péclet number associated with the ratio of
advective to diffusive transport rates of nutrients, and the dimen-
sionless hunger rate, respectively. Note that, the timescale of cell pro-
liferation is much longer compared to that of nutrient flow
transport;”'* therefore, we employ the quasi-static assumption for
(7) to obtain (24).

n

C. Tissue growth

Using the scaling relations given in (13) and (23) along with the
additional scaling relations

2

=3

1

f=—1t Rk==K, (27)

Gi

o

for time and curvature, respectively, we can simplify (12) and find the
dimensionless growth law as

Oa

— = —ckf(0os). 28

ET f (o) (28)
Experimental data and analytical refrences”'* reveal that the func-
tional form of f, introduced first in (12), can be interpreted as a piece-
wise constant function as shown in Fig. 2, which has a general form of

F) =B+ (Fa— ) {1 + tanh(m(x — al))}

5 {1 + tanh(f;(x - 02))} .

(29)

Here, F; < F,, 01 < 02, m > 1 and based on the shear—stress scaling
relation given in (13), o, and o, will typically be order-one quanti-
ties.”'" For large values of m, this corresponds to a function that has

3.5 T
2 o m=0.5
I, -=-m=1
? { I/,.' """"""""" v ——— =
o5l ¢ Y —m = 1000
' 17 \
4 3
2 % 1
g E
S
f 1.5¢ 1
F ! H
e -~ " 1
| 1
i v
05¢ | LI
! v
! PR
or i .
loy log
05 . i . i .
0 5 10 15 20 25

Shear stress, o

FIG. 2. The growth function f that appears in (28) and (29), with Fy = 1,F, =3,
o1 = 7, and o, = 15 for several values of m.
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three regions in which it is approximately constant, connected by
rapid but smooth transition regions.”'*** According to (29) as well as
Fig. 2, the tissue growth is low, enhanced, and zero when the total
shear stress at the channel walls, exerted by the nutrient flow, is low,
moderate, and high, respectively.

IV. ASYMPTOTIC ANALYSIS

The complete dimensionless system described in Sec. III is
extremely hard to solve analytically, and it is also computationally
costly to solve numerically by brute forces. Therefore, we make use of
the fact that the pore aspect ratio ¢ = R/L < 1. This allows us to
achieve a simpler, computationally feasible, reduced asymptotic model.
As stated earlier, we assume the initial fluid—cell-layer interface is suf-
ficiently thin, so that it can be approximated by the underlying sub-
strate geometry. Since the substrate is assumed to be roughly circular
with small azimuthal and axial variation, we implement the relegation
of spatial variations to first (axial) and second (azimuthal and axial)
order in the aspect ratio e.

We assume that the fluid—cell-layer interface is expressed as
follows:

a(0,z,t) = ao(t) + ear (z,1) + €a3(0,2,t) + O('),  (30)
where
ax(0,z,t) = Ay(z,t) cos (nl) + Yy(z,t), (31)

where Ay(z,t) and Y5 (z,t) are functions to be pinned down and # is
an integer that describes the number of lobes in the geometry of the
underlying substrate.'* Although the above assumption poses con-
straints on the class of pores we can study, it is essential in attaining a
balance between some level of generality and feasible asymptotic calcu-
lations. Here, the initial configuration of the fluid—cell-layer interface
a(0,z,0) is given by the shape of the underlying substrate, and its sub-
sequent evolution is described by the equation of cell growth given by
(28). Below, we asymptotically expand the variables u, v, w, p, {, ¢, 0, f,
and « in the form of

X = Xo + ex; + x; + O(E%), (32)

where x is any variable listed above. With (30), the unit vector normal
to fluid—cell-layer interface, pointing inward in (22) simplifies to

o _p10m, _ a0m ) :
n-(e, g€ 5 ly—a, + O(€). (33)

A. Fluid dynamics

Assuming that the flow is independent of 0 to leading order in €,
(14)—(21) along with the asymptotic expansions given by (32) yield the
leading-order velocities uq, v, o, pressure po, and pressure at the pore
inlet (. Therefore, at O(1)

up =0, vy=0, WO:@(ag—rl),
s (34)
po=0(1-2), (=-.
o

Similarly, for O(¢), we obtain

scitation.org/journal/phf

(35)

1 1
P = 747C0J. al(zla t) dzla Cl = 7‘;&‘[ al(z, t) dz. (36)

A
wy = {7261(1)7”1'" cos nl + wy(r, z, t)} o, (37)
g 1 1 e
Lp, = 3a(2)[ af(z’,t)dz’—agj Yz(z’,t)dz’—l——J aj(Z,t)dz | o,
4 Jz z 4 z
(38)
4 1 1 n
b=y 3 | atenad —ai | va@nar+ ] |,
g 0 0 4Jo
(39)
Ay 1 al
Wy = 76;(1) "r" cos nf) +a—g (—3a(2)af +aY; — i)
7 apY
x <r2 —ay) e+ 2} . (40)

In addition, the dimensionless shear stress at the fluid—cell-layer inter-
face is

05 = 0y, + eo, + (o, cosnd + a;,) + O(), (41)
where
ap ,
05y = 70407 05, = 2“1(07
42)
nA, ¢ 1 at (
T = 0 oy, = = <—6a§af +2a30; — ?1 Co.
0

Furthermore, the dimensionless curvature x can be found as follows:

K = Ko(t) + €152(z, t) cos nh + O(€),
1 A, (43)

Koy = —, Ky = 5 -
ap ag

B. Nutrient concentration

We substitute the asymptotic expansions given by (32) into
(24)—(26) to retain the nutrient concentration at O(1), O(e), and
O(€?). Note that the Péclet number is defined as the ratio of advective
to diffusive transport rates of nutrients. Here, we consider a distin-
guished limit of the nutrient Péclet number, which is Pe = O(1). One
may consider Pe = O(¢), if the main interest is on the effects of axial
diffusion of the nutrient.”” > Our model can be readily extended to
the general scenario. The dimensionless nutrient concentrations given
by (24) at O(2), O(1), O(e), and O(€?), respectively, simplify to the
following expressions:

1 [1 o < ac0>
pelror\"ar) "

1 82C0
_a—e] =0 (44
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Wo, (45)

1 {1 0 < 0c1> N
Pe |ror \' 0

1 82C1:| OCQ 1 860 (9

2oF] Tt et o,

1|10 ([ Oc 1 0%, e
Pe L’Br( or )+r_2ﬁ W}
Jdcoy Jcy 1 8c0 190¢; 8c0 ocy
Tt T e e e e
(46)
1110 [ Oc 180%; O
Pe [;5 <a_> +5W+W}
Oco da dcy 1 8c0 10¢,
Tar et T e e
10c, ey dc; Jcy
+;%Uo+a 2+6— 1+EW0 (47)

The corresponding dimensionless boundary conditions given in (26)
simplify to the following:

é%: . at = a, (48)

Pie% = —ncy, at r=a, (49)

1 (% — r_lz%%) = —nc;, at r=a, (50)
(%_%%%_%%) =—nc, at r=a, (51)

by using (33).

1. Leading-order analysis

From (44) and (48), we obtain ac" = 0, hence ¢, is a function of z
only. Using (34) in (45) yields
1 8261:|

L[10 (00 10

Pe [ror \' or 2 90*
Next, we integrate (52) over the pore cross section by applying
jzn .1 dr d0 operator, along with (25), to obtain

0
Jcy
0z

and together with the condition that ¢p|,_, = 1 [see (25)], we arrive at

90 G

=5 1 (aé — ). (52)

= —2naoco, (53)

co(z) = e %7, (54)

2. First-order analysis

We use (34), (35), and (54) to simplify (46) and then integrate
over the pore cross section and apply (25) to obtain

1 Oc, 1,0 Coag Ocy
— ) —at— | =222 55
e | ar e T 3% 52| T 16 oz 59
Simplifying (50) by (54) and then plugging into (55) gives
Oc
a—l + 2ag1c, = 44 b T (56)
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which is solved [by using the initial condition ¢;|,_, = 0 given in

(25)],

4a}
alz) = —Pe? 1P ze 2, (57)
3. Second-order analysis

Similarly, we plug in (34), (35), and (40) into (47) and (51) to
obtain

11,9 1 @al _ G(=2a50] +a1) 0co  ody Ocs
Pe |’ or —ay 2 002 | 16 0z 16 0z’
(58)
1 Jcs 1 Oa; Ocy
Pe Or r—a TPedz 0z % (59

Combining (58) and (59), with some manipulations and using (54),
(57),and ¢;],_, = 0 [see (25)], gives

4nat(a, — ar|,_ 16a]
Cz(Z) — 200z |:_ n 0( IPe 1‘z70) Peorl
848 202 gt
20T 2 2;1J (—1 - —é) dz/} . (60)
Pe o\ 4o ap

C. Tissue growth

We simplify (28) using (30), (42), and (43) along with Taylor
expansion of f[given in (29)] to obtain

da

ETtO = —coKof, (61)
da
8—1‘1 = —cokos,f — ciiof (62)
OA
8_1‘2 = —cokof — coko0s, f, (63)

oY 1
aTz = —Kof — c1ko0s, [ — coko (O'Sbe' + Eaflf"). (64)

Here, f,f,f" are all evaluated at o,, and the initial values for ao, a;,
A,, and Y, are prescribed. Note that f, Ky, k2, co, €1, and ¢, are given in
(29), (43), (54), (57), and (60), respectively.

V. RESULTS

In this section, we present and analyze simulations of the models
given by (29), (43), (54), (57), (60), (61)-(64). Our numerical scheme
is straightforward, based on implicit time-stepping of fluid—cell-layer
interface evolution [i.e., (61)-(64)], and trapezoidal quadrature to
evaluate the integrals in (60). To fully specify our model, various
dimensional and dimensionless parameters given in Tables I and I,
respectively, are estimated based on the typical ranges arising in
tissue engineering applications,”'""*"” * specifically, the dimen-
sionless parameter Péclet number Pe and hunger rate 1, which
show the ratio of advective to diffusive transport rates of nutrients
and how fast the cells consume the nutrients, respectively. Their
values vary for different nutrients and cells, respectively, and
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TABLE 1. Dimensional parameter values®“>** %" for the model.

Parameter Description Typical value
Q; Inlet flux 1 pl/min

R Fluid—cell-layer interface radius 400 um

L Fluid—cell-layer interface length 2mm

Ci Nutrient concentration at the pore inlet 1-10 mol/m’

) Diffusion coefficient of nutrient ~ 10~% — 107° m%/s
i Hunger rate 0—10"*m/s

TABLE II. Dimensionless parameter values® '***** " for the model.

Parameter Formula Typical value
€ R/L , 0.2

Pe (eiQi-)/(nlAi =) 1-10

n (nR777)/(eQi) 0-025

Pe=1-10,7=0—0.25, and ¢ = 0.2 are chosen in all simula-
tions (see Table II).

A. Incubation simulation

Figure 3 shows the shape of the fluid—cell-layer interface at dif-
ferent times for several values of hunger rate n =0, 0.05, and 0.1 in
panels (a), (b), and (c), respectively [see Fig. 3(d), Multimedia view].
The initial geometry of the pore is wider on the top and narrower at
the Dbottom with a¢(0) =0.9, a;(z,0) = —z — 0.5, A,(z,0)
= —z+2, Y3(z,0) = —z + 2 and n=4. Note that, with this chosen
initial pore profile, we are able to compare our results with the ones
from Sanaei et al.,'"* when the hunger rate is set to be zero. However,
our model is capable of generating results for any initial pore profile.
Note that the color map for the surface plots shows the nutrient
concentration within the channel, which will be explained in detail in
Fig. 5. At t=0, when the pore is at its initial configuration, cells with
negligible thickness are attached to the pore wall; therefore, a(6, z, t)
should be regarded as the initial shape of the pore. As nutrients pass
through the pore, cells consume the nutrients and proliferate, gradu-
ally filling the space within the pore, which can be observed from the
shrinkage of the fluid—cell-layer as time passes [a(0, z, t) is decreasing
in f]. This can be seen as the fluid—cell-layer shrinks more as time
passes. The dimensionless final time #; = 0.25 is chosen to be suffi-
ciently large so that the incubation process has terminated for all the
cases shown in the figure.

Another important observation is the “sequential eating” phe-
nomena of cells in the pore. Our results show that the larger the hun-
ger rate is, the longer time it takes for the incubation process to
terminate. This can be explained as below. Given a fixed nutrient sup-
ply, when hunger rate is large, initially a larger portion of the nutrient
is consumed by cells at the top, so very little is left for cells at the bot-
tom. Recall that cells at the top of the pore stop to proliferate as the
shear stress increases beyond its threshold o, [see (28) and (29)]. As
consumption by cells at the top decreases, more nutrient is left for cells
at the bottom. This demonstrates the “sequential eating” phenomenon,
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which also appears in experimental observations.”’ On the other hand,
when 7 = 0, the concentration is held constant across the pore, so cells
at different depths of the pore are exposed to the same amount of
nutrient. Thus, cells will proliferate simultaneously. The larger the
hunger rate, the more the “sequential eating” phenomenon will be,
and therefore it takes longer for the system to terminate and reach the
steady state (no proliferation happens). Such observations can be
more vividly seen in Fig. 3(d) (Multimedia view).

Figures 4(a) and 4(b) show the cross section of scaffold pore at
the initial and final (¢) times of the tissue growth process, respectively,
for two values of hunger rate 7 =0 and 0.1 with the initial pore radius
as in Fig. 3. As observed, the tissue will grow so that ultimately the
tube is circular in cross section, but the radius may vary along the axis,
depending on the initial tube geometry and the hunger rate. These two
figures are consistent with the results at = 0.25 shown in Figs. 3(a)-3
(c). Figures 4(c)-4(f) compare the radii of the fluid—cell-layer interface
of the model we propose in this paper with those of the model devel-
oped in Sanaei et al"* (see =0 curves). The leading order of the
radius of the fluid—cell-layer interface a, varies at different z levels
when # = 0.1, but with # =0, 4, is of the same value throughout the
scaffold pore. This is also observed in a; and Y,. The difference in
radii with respect to z for a non-zero value of # causes difference in the
shear stress and as a consequence affects the amount of tissue growth
in the tube. On the other hand, A, varies along the tube axis for both
hunger rate values. Figures 4(g) and 4(h) show that the leading order
of the shear stress g, varies with z, when 1 = 0.1 and the first order
of the shear stress oy, takes longer time to reach a steady state com-
pared to the scenario when 7 = 0. One can easily check that, for other
initial conditions prescribed in Sanaei et al,'* our model yields the
same results when hunger rate 1 is set to be zero, which is equivalent
to assuming that no nutrient depletion happens in the model. Hence,
our model is compatible with the models proposed in previous litera-
ture,"**>** and provides more insight on the reality when nutrient
concentration is not constant throughout the scaffold pores.

B. Nutrient consumption and “hunger rate”

There are several noticeable differences when the nutrient con-
centration depletion is taken into consideration. As mentioned before,
1 =0 corresponds to the assumption that nutrient supply is in excess,
so the nutrient concentration is held at constant across the pore
axis. As expected, o is uniform at different heights of the pore [see
Fig. 4(c), the black curves at different heights collapse to the red curve
at z=0]. The red curves in Fig. 4(b) show that when nutrient con-
sumption is considered, a is smaller for larger values of z, indicating
that there is more tissue growth at the bottom part of the pore. This
can be explained by the fact that the shear stress dominant term o, in
Fig. 4(g) grows more slowly when # = 0.1 compared to 7=0. As a
result, the shear stress would increase more slowly in the former case,
and due to the bell shape of f (see Fig. 2), cells in the former case will
experience a longer period of growth, which can be seen in Fig. 4(c)
(takes longer time for g to reach the steady state phase). In addition,
the curves for g, with 1 =0.1 in Fig. 4(h) also reveal a delayed
change compared to the case when 1 =0.

Evidently, the most dominant consequence of cells’ nutrient con-
sumption is the change in nutrient concentration across the pore. In
Fig. 5, we compare the nutrient concentration ¢ = ¢y + O(E) [see (54)
for ¢o] for two choices of two hunger rates, 7 = 0.05 and 0.10.
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(d) Multimedia view

Figures 5(a) and 5(b) show that, regardless of time ¢ and depth z cho-
sen, the concentration associated with the case # = 0.05 is always
larger than that associated with 7 = 0.10. This can be primarily attrib-
uted to the leading term of concentration c¢,. In Figs. 5(c) and 5(d), we
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t=0.25

1 FIG. 3. [(a)—(c)] Fluid—cell-layer interface
a(0,z,t) = ap(t) + ea(z,t) +e(Aa(z,
t) cos () +Ya(z,t)) + O(), at differ-
ent times with hunger rates # =0, 0.05
and 0.1, respectively. Here, ap(0) = 0.9,
a1(z,0)=—z—-0.5, A2(z,0) = —z+2,
Y;(z,0)=—-z+2, n=4, e=0.2 and
Pe =1. fis defined and graphed in (29)
and Fig. 2, respectively, with m— oo.
The color bar shows the nutrient concen-
tration. (d) Provides more details on the
pore evolution. Multimedia view: htips:/
doi.org/10.1063/5.0071171.1

t=0.25

t=025

1
i 0.77

concentration, ¢

o
o
a

observe that throughout the simulation, ¢, and ¢; are lower when 7 is
higher, regardless of the time f and depth z. Note that the dynamics in
concentration ¢ to the leading order is captured by the leading term c,.
Hence, it can be concluded that cells with a larger “hunger rate” i tend
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FIG. 4. [@) and (b)] Fluid—cell-layer
interface  a(0,z,t) = ap(t) + eay(z,t)
+E(Ag(2,)005(n0) + Y2(z,t))+O(e))
at the initial and final (tf) time, respectively.
(c)—(f) are profiles for a0, a1, Ay and Y5,
respectively. (g) and (h) are o5, and oy,
vs time, respectively. All graphs are for
n=0 and n=0.1 as well as several dif-
ferent times and z. Here, ap(0)=0.9,
a1(z,00=—z-0.5, As(z,00=—z+2,
Y(z,0) =—z+2, n=4, ¢=0.2 and
Pe=1. f is defined and graphed in (29)
and Fig. 2, respectively, with m— oo.
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FIG. 5. [(a) and (b)] Nutrient concentration profile c; [(c) and (d)] leading-order nutrient concentration profile ¢, vs t and z for # =0.05 and 0.1. Here,
ap(0) = 0.9, a1(z,0) = —z — 0.5, Ap(z,0) = —z+ 2, Y5(z,0) = —z+2,n=4, ¢ = 0.2 and Pe = 1. f is defined and graphed in (29) and Fig. 2, respectively, with

m — o0.

to “eat more,” resulting in a lower nutrient concentration in the
pore. Note that, depending on the cells and their properties, the
hunger rate would vary. In reality, experimentalists make sure that
there is always enough nutrients within the scaffold channels for
the cells to proliferate, otherwise they may die or be damaged.
Therefore, what is important in experiments is that the inlet flux of
nutrients Q; would be large enough such that autologous cell sour-
ces, seeded within the tissue engineering scaffold, proliferate as
the nutrient-rich culture medium flows through the scaffold.”"*
In other words, the value of the dimensionless hunger rate
n= (nﬁzﬁ) /(eQ;) could be adjusted with the inlet flux of nutrients
in order to provide appropriate environment for the cells to incu-
bate. Therefore, the value of nutrient concentration should not get
close to zero within the scaffold channel.

In addition to consuming more nutrients, cells with larger
n also “eat faster.” In Fig. 5(b), the concentration ¢ associated
with # = 0.10 decreases more rapidly with respect to z com-
pared to the case when # = 0.05. Since the nutrient flows into
the pore from z=0, it illustrates that the consumption of

nutrient by cells residing on the top part of the pore leads to an
obvious decrease in nutrient concentration there. As time goes,
however, the nutrient concentration decreases less rapidly. The
reasoning based on intuition is that the cells residing on the
top part in the scaffold have stopped growing; therefore, they
do not consume the nutrient anymore. They take the “best”
position to consume the nutrient, so they grow quickly and the
radii of the fluid—cell-layer have shrunk small enough so that
the shear stress o, > 0,. Then, according to (28) and (29) the
cell proliferation stops. At a specific depth zj, as cells above
gradually stop growing, less nutrient is being consumed and,
hence, the concentration at this depth c(z = zy,t) increases
with respect to t. Finally, when all cells above z, stop growing,
c(z = zp,t) becomes constant, as is evident in Fig. 6. The time
at which cells above z, stop growing is demonstrated by the
turning point where the average radius of the fluid—cell inter-
face defined as a(z,t) =5 |;" a(zo,t,0)d0 stops to decrease
and becomes flat. The average is introduced here because a
shows azimuthal variation with respect to 6.
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FIG. 6. Nutr|ent concentrat|on and averaged radius of fluid—cell-layer interface
defined as a(z,t) = j a(z,t,0)d0 vs time at several z for n = 0.05. Here,
ap(0) = 0.9, a1(z 0) 72705 Ay (2,0) = =2+ 2, Y5(2,0) = -2+ 2,
n=4,¢= 0.2 and Pe = 1. fis deﬁned and graphed in (29) and Fig. 2, respec-
tively, with m — oo. The vertical red dotted lines are added to guide the eyes.

C. Total tissue growth

We define the total tissue growth V(¢) to be the total volume of
the tissue growth within the pore at time ¢, i.e.,

1 2n pa(0,2,0)
V(#) :J [ J rdrd0dz

0Jo Ja(0zt)

1 p2n
1
. J J J(@(0,2,0) — @(0,2,0)d0dz. (69)
0Jo

Figures 7(a) and 7(b) show the total dimensionless tissue growth
V(t) vs time t, for several different values of hunger rate  and the
number of corners n, respectively. In Sec. V B, we have already men-
tioned that a larger hunger rate 7 implies a longer incubation process

-
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FIG. 7. (a) Total tissue growth V(t) vs time t for several values of hunger rate Vl Total tissue growth is defined as V/(t)
— 0.5, Ay(z,0) =

cally, the total volume occupied by tissue. Here, ap(0) = 0.9, as(z,0) =
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and the same conclusion can be observed in Fig. 7(a). The incubation
terminates when the curve for V() becomes flat. Notice that when
n = 0.1, this happens at around ¢ = 0.2, and when # = 0.01 this hap-
pens at around ¢ =0.1.

Recall that in Sec. VA, we discussed the phenomenon of
“sequential eating.” A smaller # (or even 7 = 0) implies less sequential
but more simultaneous proliferation. Correspondingly, one also
observes that the slope of the total tissue growth curve V(t), which
reflects how fast the total tissue growth is accumulating, is smaller
when 7 is higher, since simultaneous proliferation of all cells (when 7
is smaller) yields faster tissue growth than sequential proliferation
(when 7 is larger).”” Observe that, albeit tiny, the larger the hunger
rate, the more total tissue growth the system can accumulate as shown
in Fig. 7(a). This is straightforward to understand: as stated above,
when 7 is larger, it takes longer time for the system to terminate. So
the total supply, and hence the total consumption, of nutrients is
higher, yielding more tissue growth. We can conclude that cells with
high hunger rate would only yield marginal increase in the total tissue
growth.

Furthermore, in the work by Sanaei et al'* (or equivalently,
when 7 =0 in our work), the total tissue growth is piece-wise linear.
This occurs due to the piece-wise form of f [see (29)], when the shear
stress reaches its threshold levels o, and o,. In the case when =0,
cells at different tube depths experience a change in the value of the
growth function f simultaneously; so, the piece-wise linearity of f is
preserved and inherited in the total tissue growth. In contrast for
7 > 0, we see a more smooth total tissue curve, representing a more
natural transition process. The growth rate is not uniform along the
tube depth. The top cells proliferate first, the bottom cells then follow
[as is evident in Fig. 3(d), Multimedia view]. Our model is seen to
“smooth out” the original total tissue growth curve, capturing the tran-
sition process, which is also introduced in Fig. 7(a).

Another observation is that # rarely influences the simulation
results. In Fig. 7(b), we see that for different values of n (the number of
lobes, which we take as a proxy for the shape of the underlying scaffold
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fo 21 (&2(0,2,0) — &(0, z,t))d0 dz, or heuristi-

—z+2, Yoz, O) 2 n_4 e =0.2, and Pe = 1. f is defined

and graphed in (29) and Fig. 2, respectively, with m — oo. (b) Total tissue growth Vs time for different n with = 0.05. Other parameters and initial conditions are chosen to

be the same as in (a).
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pore),"* the total tissue growth would remain the same as the prolifera-
tion terminates. Moreover, since the curves corresponding to different
n collapse to exactly one curve, this also indicates that the rate of tissue
accumulation would be the same for different # throughout the whole
process. This observation is compatible with the one in the work by
Sanaei et al.,"* which reports that n does not influence the total tissue
growth without the dimension of concentration c. Therefore, the con-
clusion is the same when concentration is added.

D. Scaffold design with respect to the final pore
geometry

In a laboratory environment, researchers sometimes prescribe
the final geometry of the desired tissue growth, and try to figure out an
initial pore configuration so that the goal can be targeted. Our model
provides a convenient guidance to how the pore should be designed,
given the targeting tissue geometry. In this section, we propose an
algorithm that can guide the pore design, and demonstrate how it can
be used through several examples. Note that, the full advec-
tion—diffusion equation is a parabolic equation; therefore, it is not
reversible in time, but under quasi-static assumption, our system is
time reversible.”"**” Observe that the fluid dynamics for nutrient
flow would be the same in both the original and the reverse directions;
hence, the only part that shall be modified is the tissue growth. Instead
of tissue proliferation, now the tissue would be shrinking, i.e.,

% = +cif (05) (66)
in dimensionless form and in contrast to (28).

Though one may want different radii for the final geometry, after
the parameters related to cell growth are prescribed, the final radius
must fall in some feasible range, for if the radius is too small, shear
stress would be too large to support cell growth, as shown in the tail
part of Fig. 2. Recall from (34) and (42) that a5, = 4/a3. As f(a5) =0
for o, > 0, in order for cells to grow, we must require o5, < g, oth-
erwise the initial shear stress would be too large to support tissue
growth. Therefore, the smallest possible final radius, which also corre-
sponds to the largest possible volume of tissue growth, is precisely
achieved when ay > (4/0’2)(1/3>.

It is efficient to have a scaffold pore structure resulting in a uni-
form final pore profile, meaning that most of the tube is being used for
the cells to proliferate. As a demonstration, we solve (66) for the initial
scaffold pore design when the final geometry is uniform. As shown in
Figs. 8(a) and 8(b) [see also Fig. 8(c), Multimedia view], we prescribe
the final geometry, and run the algorithm to figure out the initial pore
design, specifying different number of corners. The algorithm termi-
nates when the pore radius does not increase. The uniformly circular
black curves show the prescribed final geometry, and the red curves
show the initial pore design calculated by our algorithm. We can see
from the figure that when # is small, or with few corners, we can afford
to have an initial pore design with larger radius. Therefore, more total
tissue growth is generated when # is smaller; in other words, with
more corners, we get a smaller initial pore design and less total tissue
growth.

Another observation is that, to sustain a uniform final geometry,
the initial pore must be designed in a funnel-like shape. The designed
pore should be wider at the top of the tube at z=0 and gradually
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become thinner toward the bottom at z= 1. Since the concentration is
higher at the top, cell growth is faster at the top; therefore to achieve
uniform final geometry, larger space is needed at the top to accommo-
date more tissue growth. This can be seen from Fig. 8(a) that in each
graph, the dotted red curve, which corresponds to the initial pore
design at the top of the tube, is wider than the solid red curve, which
corresponds to the initial pore design at the bottom. Note that, similar
to Fig. 3, the color map for the surface plots in Fig. 8(c) shows the
nutrient concentration within the channel.

VI. CONCLUSION

As a broad continuation of the model proposed by Sanaei
et al.,"" we present a more comprehensive and realistic mathematical
model by including the fluctuation of nutrient concentration during
proliferation. The flow of nutrients is captured by the Stokes equa-
tion, with no-slip and no-penetration boundary conditions at the
channel wall. The concentration of the flow is governed by the
advection—diffusion equation for nutrient flux, with the effects of
nutrient diffusion and fluid drift as a consequence of the flow inter-
acting with pore wall, while the boundary condition of nutrient flux
also depends on the “hunger rate” of the cells. Cell proliferation is
modeled based on the nutrient concentration, curvature of cell-layer
interface, as well as biological cell growth rule under fluid shear
stress. The resulting equations are analyzed using asymptotic analy-
sis [based on the small aspect ratio of the pore as well as the expres-
sion for the fluid—cell-layer interface given in (30) and (31)], where
we are able to determine the dominant equations for nutrient con-
centration. With the assumption that tissue growth happens on a
much longer timescale than that associated with transport of fluid
through the pore, we adopt the quasi-static assumption and update
the rate of tissue growth based on the nutrient concentration. The
numerical simulation results from our extended model are com-
pared with those from Sanaei et al,'* which assumes the nutrient
concentration is always constant along the pore depth. Our results
also demonstrate consistency with the experimental result from
Rumpler et al.” as also reported in Ref. 14.

Innovatively, our model includes a parameter representing the
rates of nutrient consumption of different cells. Our results show
that a larger “hunger rate” i, or in its dimensionless form #, yields
longer incubation time, lower nutrient concentration, different final
pore geometries, and more total tissue growth. Albeit the changes in
the final pore geometry are rather small, the processes during which
final geometries are achieved are noticeably different. With a higher
hunger rate, the pore geometry changes “sequentially” from top to
bottom as time passes. With a lower or even zero hunger rate (repre-
senting almost excess or excess nutrient supply), the top part and
bottom part of the pore react almost simultaneously, without the
sequential behavior. Furthermore, we present a corresponding
reverse algorithm, which, given the targeting final pore geometry,
can yield feasible initial scaffold pore designs. One simple example is
discussed in this paper, but the algorithm can be practically applied
to any final pore geometry to design an appropriate initial scaffold
pore geometry.

Finally, in terms of future improvements, our model considers the
homogeneous properties of cells while neglecting the possible variants
such as a changeable “hunger rate” when the environment varies.”’
Additionally, in this work, we do not consider scaffold deformations. In
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(c) Multimedia view

FIG. 8. (a) Channel cross section and (b) surface plots, respectively, for the scaffold design with uniform final radius a(6, z, t) = 0.6 for different values of the number of
lobes n. Here, e = 0.2, Pe = 1,7 = 0.1, and f is defined and graphed in (29) and Fig. 2, respectively, with m — oo. (c) More details on the reverse algorithm. The color bar
shows the nutrient concentration. Multimedia view: https:/doi.org/10.1063/5.0071171.2
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