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1. Introduction
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where the coefficients of P are real analytic.

The work generalizes the results proved for harmonic functions in [5], [15], [16] and
those in [12] for solutions of the Helmholtz’s equation Au + cu = 0, ¢ € R. See also [6],
[9] and [10].

These uniqueness phenomena extend the classical Hopf lemma about the nonvanish-
ing of the normal derivative at a boundary point where a nonconstant solution attains
an extremum: the assumption is local in nature and only imposes conditions at the
boundary.

For holomorphic functions of one variable with nonnegative real part on a piece of the
boundary, unique continuation and local forms of Hopf’s lemma were proved in [7], [15],
[16], and [18]. The results were used to prove unique continuation for CR mappings for
certain classes of CR manifolds. They were also used to prove a more general Schwarz
reflection principle for holomorphic functions mapping the real line into a totally real
manifold or a real analytic set. Earlier results along this line appeared in the works
[4], [8], [2] and [3]. H. Alexander’s paper [3] contains a general local Hopf lemma for
holomorphic functions of one variable with applications to unique continuation for CR
mappings. See also [11] for an extension of the latter results.

Further extensions of the results of Baouendi and Rothschild were proved by V.
Shklover ([22]) and H.S. Shapiro ([21]). In particular, Shklover showed that Theorem 3
in [5] (Theorem 2.1 in this paper) fails in general if the normal direction is replaced
with a transverse direction. Shapiro used convolution transforms as discussed in [14] to
obtain new proofs and generalizations of the theorems of Baouendi and Rothschild. In
the article [23], N. Suzuki established a local Hopf lemma in the spirit of [5] for the
one-dimensional heat equation.

The article is organized as follows: Section 2 contains the statements of the results in
this work. Section 3 is devoted to the construction of a kernel that effectively (for our
purposes here) serves as a Poisson kernel for P on the flat piece of the half ball B;f. The
proofs of the theorem and its corollaries are presented in section 4.

2. Statement of the results
We will say that a continuous function u defined on a half ball
Bf ={z = (2/,2,) €R" : || < 1,2, >0}
is flat at 0 if for every positive integer N, there is a constant C > 0 such that
Ju(z)| < Cla] ™.
Suppose now D C R"™ is a smoothly bounded domain, xg € dD. We will say a function u

vanishes to infinite order in a direction v at xg, where v is a unit vector pointing inside
D and transversal to 9D if for every N, there is a constant C > 0 such that:



S. Berhanu / Advances in Mathematics 389 (2021) 107912 3

lu(zo + tv)| < CntN.
We also say u vanishes to infinite order on a non-singular smooth curve S : z = x(t), 0 <

t <1, in D passing through zo and transversal to 0D if for every N there is Cy > 0
such that:

u(z(t)] < Cnt™.

It is easy to see that this latter definition is independent of the parametrization.
We recall the main result of [5]:
Theorem 2.1. Let u be harmonic on the half ball B, continuous on the closure. Suppose

T

(1) uw(z’,0) >0 for |2/| <r, 2’ e R*L;
(2) the function x, — u(0', x,) is flat at x,, = 0;

Then u(a’,0) = 0 for 2’ near the origin in R™"~*.

Somewhat similar but weaker results under the stronger hypothesis that u is harmonic
in the upper half plane and decays exponentially along the y-axis was obtained in [19)].
The theorem of Baouendi and Rothschild has the following immediate consequence on
boundary unique continuation for harmonic functions:

Corollary 2.2. Let u be harmonic in B, continuous on the closure of BY. Assume that

(1) u(@,0) > 0 for 2] < r;
(2) The function u is flat at 0.

Then u = 0.
Our generalization is as follows:
Theorem 2.3. Let u be a solution of

ou
8:@-

Pu= Au+ Z bi(x) + c(z)u(z) =0

in the half ball B}, C? on B_ﬂr Assume that the coefficients of P are real analytic on
B;t. Suppose

(1) w(z’,0) >0 for |2'| <r;
(2) the function x, — uw(0', x,) is flat at x,, = 0;
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(3) for every positive integer N, the function
2| Nu(a’,0)
is integrable on |z'| < r.
Then u(z’,0) =0 for 2’ small.

We remark that by the results in [20], u then extends as a solution in a neighborhood
of the origin in R™.
Theorem 2.3 has the following consequence on boundary unique continuation:

Corollary 2.4. Let u be a solution of Pu = 0 in B,;", C? on the closure of B,\. Assume
that

(1) u(a’,0) >0 for || < r;
(2) The function u is flat at 0.

Then u = 0.

In [22] the author considered the following refinement of Theorem 2.1 of Baouendi
and Rothschild:

Suppose D C R™ is a smoothly bounded domain, zqg € 0D, V C 0D real analytic,
xzo € V. If u is harmonic in D and continuous on D, vanishes to infinite order in a
direction v (or a curve) at xg, and u(xz) > 0 on V, then u(x) = 0 in some neighborhood
of g in V.

It was shown in [22] that in the plane, this property holds (for harmonic functions) if
and only if V' is locally symmetric about the normal to D at xg. The author also proved
further results for the situation when the normal is replaced by a transversal curve.

These results generalize to the operators P under study:

Corollary 2.5. Let n = 2 and u be a solution of Pu =0 in B;", C? on the closure of B;'.
Assume that

(1) w(x) >0 forzre VCR,0eV;
(2) w vanishes to infinite order on an analytic curve S through the origin orthogonal to
the x-axis and S is symmetric with respect to the x-axis.

Then u vanishes on some subinterval of V' about the origin.

In the case of a general domain D we have:



S. Berhanu / Advances in Mathematics 389 (2021) 107912 5

Corollary 2.6. Let n = 2 and u be a solution of Pu = 0 in a domain D, C? on the
closure of D. Suppose V. C 0D is real analytic, and is tangent to the real axis at the
origin. Assume that

(1) u(z) >0 forxeV;

(2) the function y — u(0,y) vanishes to infinite order at 0;

(3) V is locally symmetric about the imaginary axis. Then w vanishes on some subin-
terval of V' about the origin.

Corollary 2.7. Let n = 2 and u be a solution of Pu = 0 in a domain D, C? on the closure
of D. Suppose V- C 0D is real analytic and xog € V. Assume that

(1) u(z) >0 forxeV;
(2) The function u is flat at xg.

Then u vanishes on D.
3. Construction of a Poisson kernel for P

For elliptic differential operators of any order with constant coefficients, Poisson ker-
nels for the upper half space R™ were constructed by Agmon-Douglis-Nirenberg in the
work [1]. For elliptic operators with real analytic coefficients, the existence of a local
Poisson kernel was proved in [17]. However, this latter kernel is not explicit, and it
doesn’t serve our purpose since we will need precise estimates on arbitrarily high order
derivatives of the kernel. Let

P =P(D,) = AJerj(x)% + c(z)

be as in Theorem 2.3. In this section we will construct what will essentially serve as a
Poisson kernel K = K(x,y’) for P using the ideas and methods of Hadamard ([13]). In
[13] it is shown that P has a fundamental solution E(z,y) (z,y € R™) of a form that
depends on the parity of n.

Case 1: Assume n is odd. In that case, E has the form

1 o0
— > Ex(@,y)d(z,y)*,  dz,y) = |z —y|

o) = G gy &

for z,y in a ball B centered at the origin in R™.
We will use the same idea to construct first a solution

1 > -
F(Ivy) = W kZ:OFk(m7y)d(x’y)2k
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of P(D,)F(x,y) = 0 for x # ¥, where d(z,y) = |z — | and for any y = (y1,...,¥n),
7= (Y1,---,Yn-1, —Yn)- In addition, the Fj will be required to satisfy the initial condition

Fk(xlvoa y) = Ek(x/a Ovy)

Consider
PF — Z P< jZk n+2>
We have

P(Fk JZ’“‘"”) (z,y)

(PF )Cpk TL+2+2<VFk7V(?k n+2)>

+ FRA(dPF42) + B, ( E bjij%_"'ﬂ)
j=1

8xj
n—1
OF) OF,
_ Rk—n+2 _ . k k| 72k—n
— (PR)E*42 1 22k n+2>[j§_lj<wj G+ (o) 3L |0

n—1
+ (2k —n +2) <2kaJZk—" + > bi(@) (@5 — ) + b (@) (T + yn)) Fy, d*n

j=1
= (PFy) &7 "2 4+ 2(2k —n + 2)

n—l OF
Yo G (b ) G+ (B + = m = DE| P

i=1 Lj

<.

where m = "7_2 and

0(, i(2n+22b — ;) + 2by (x )(:cn—l—yn)).

Let
w(t) =tz +(1—t)y, 0<t<1.

Setting the coefficients of the powers of d(z,) equal to 0, we are led to the initial value
problems

+9 Fo(a(t).y) + (0(x(t),y) —m — V) Fo(x(t),y) = 0, (3.1)

dt
Fo(a:’,O,y) = Eo(x’,(),y) (32)
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and for any k > 1,

£ Fu(a(t),0) + (B(a(t),) + k= m— DFL(e(0), ) = — ot
Fk(‘rlv Oa y) = Ek(m/,ovy)' (34)

For 0 <t <1, define Fy by

Fo(x(t),y) = Eo(z',0,y) exp{2/b(§:(r (x —y)dr} - exp{— 2/b (z—y)dr}

where Z(r) = r(z’,0) + (1 — r)y.
Clearly,

FO(x/7an) = EO(m/707y)

and equation (3.1) is also satisfied. Thus

1 1
Fo,y) = Eo(a’,0, ) exp{2 / b(E(r) - (x — §)dr} - exp{—2 / b(x(r)) - (z — §)dr}.
0 0

For k > 1, define F} by

ARG -1 / HAPR L (a().y)
Fo(z(t),y)  4(k—m) / Fo(z(r),y)
1
1 P LPE, 1 (3(r),y) Erx(z',0,y)
* 4(k_m) O/ FO(i‘(r)ay) dr+ E0($/707y).

It is easy to see that Fi(a’,0,y) = Ex(2’,0,y). To show that equation (3.3) is satisfied,
note that since

i{thk(x(t), Y) } _ tk_lPFk,l(x(t),y)
d

k d ( F} b 1Fk tk_lkafl({L‘(t), )
th— | — | + kt =
dt \ F, Fo  A(k—m)Fo(z(t),y)
and hence
F F PF._
td_k_id ka+ka k-1

dt  Fy dt Ak —m)
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The latter together with equation (3.1) leads to (3.3).
Thus for £ > 1,

1 k—1 ~ Ek<x/70a y)
PF,_ d
Tat- )/T e (F) )+ B0 )
0
We will next show that there is 6 > 0 such that the series
> Fi(x,y)d(z,y)** (3.5)
k=0

converges uniformly on {(z,y) : € Bs(0), |z — y| < §}.
As in [13], this is accomplished by the method of majorants analogous to the Cauchy-
Kowalewski technique. For the purpose of the convergence proof, we may assume that

S

Fy = constant, since the substitution u; = 5

reduces Pu = 0 to a new partial differential
equation

Pl(ul) = P(Foul) =0 (36)

of the same type as P for which such an assumption is valid.
With Fy = const, for k> 1,

-1

m rkflPFk,l(x(r), y)dr

Fk(xay) =

b [ PR G0 + B 0) 37

O\’—‘ O\»—t

Assume y = 0 first. Let

[e%) k i
Ke K J
s (k)

Jj=0

be a majorant for the Taylor expansions in powers of x of all of the coefficients of P. In
[13] it is shown that if

My,

ENESEEN
(1 — Finl )2k

M{E.} =
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denotes a majorant of Ey, then

_ Mi 11
M{Ep1} = (1 — lzmaltetlznlyop o
with
k(2K + 1) n, 2n
o 1+ 242 km
k+1 2(k+1)(k—m+1)< +6+62> k

(note that [13] has Z—j, but in our particular case, it can be replaced with 2). Suppose
now

M,
(1— \r1\+~~+\rn|)2k

€

M{F} =

for some constant M, with M, > M, is a majorant of FJ.
Then

2k(2k + 1)(1 + 2 + 22) K M,

MA{PF,} = (1— M)%-&-S

We will show that for some constants Cy,
Mk+1 = QCkMk + Mk+1.
Recall that y = 0. Write

Fig1(x,0) = I + I + I,

where
1
I = e +_11_ m) /rkPFk(x(r),O)dr,
O1
I = i +11 ) /rkPFk(fv'(r),O)dr,
0
and

I3 = Ek—&-l(l‘/a O, O)

Using (3.8), with Ay, = 2k(2k + 1)(1 + 2 + 22) K M}, we get:
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[0}
—~
—_

dr
_ Eir\zi\)2k+3
€

1
_ Ayg /i rhtl d
TAkr1-mk+ 1) ) dr (7 - Soelyeeee |7

0
B Ay 1
Ak +T—m)(k+ 1)\ (1 — Skl )

Thus
ML) = k(2k +1)(1+ 2 + 22)K My, 1
Y 2(k+1)(k—m+1) (1_M)2k+2'
Likewise,
ML) = k(2k +1)(1+ 2 + 22)K My, 1
2 2k +1)(k—m+1) (1_M)2k+2

and from [13], we recall that

M1
M{I3} = , .
{ 3} (1 _ Zzn=1 || )2k:+2
It follows that when y = 0,
i
M{Fii} = (1 — Zicalzilyore
with
- kRE+1)(1+ 2+ B)KM, Y
LT Tk D) (k—m+ 1) L
We have
My kQRE+1)(1+ 242K My,
k(2k+1)(14+ 2+ 2K Mgy,
- (k+1D)(k-m+1) Mj,
Since
1 EL_ (g 4 L 2—”)[(
k—o0 Mk o € €2 ’
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given > 0, we can get N such that for £ > N,

k+1

< a+ 6,
k

where o = 3(1 + 2 + 2})K.
Therefore, for some ¢ > 0,

My, < c(a—l—é)k vk > 1.

If y # 0, we replace 2 with « — 7 and still arrive at the same estimate for the Mj.
It follows that the series

converges on the open set

(-3, —')}

~2
X, |l — <
{( v) sl =4 3(1+2+ 2K

where we used the notation

yi=yifor1 <i<n-—1, yp, = —yn.

Case 2: Suppose n is even. This time m = "7_2 is an integer and so the approach used
under case 1 breaks down because the formula for Fj involves division by k — m. We

recall from [13] that the fundamental solution S for P has the form

m—1

S=>" Uj(x,y)dx,y)” " + V(z,y) logd(z,y)* + W(x,y)

Jj=

with the U;, V, and W real analytic. Motivated by this, we seek a solution H = H(x,y)
of the form

m—1

H(z,y) = 3 Aj(a,y)d(e,y) " + B(z,y)log d(z,y)* + C(z,y)

=
where A;, B, C are real analytic,
P(D,)H(z,y) =0 forz # , (3.9)

Ai(2',0,y) =U;(2',0,y), 0<j<m—1, 3.10
J J
B(z',0,y) = V(a',0,y), (3.11)
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and
C(2',0,y) = W(2',0,y).
At a point (z(t),y), z(t) =tz + (1 — t)y, we have

P(A;d*~"%?)

= P(A;)d* "2 4 2(2j —n + z)t%cﬁj—"

+ A;(5 —m)4jd¥ T + A5 —m)<Zb 8d’)d23 n

(3.12)

— P(A) ™2 4 2(2) — n+ D[t Ay + (B(a(t).y) +j — m — DA

where

0(z,

<2n+226 )

»-lkl»—‘

yi=y for 1 <i<n-—1, 4y, = —Yn.
_ 2(n—2)B 4 B
P(Blog &) = (AB)log @+ 2128 = (x *gi)%

—~, OB 2B _
+ (Z:bja—xj)logcf2 + ?ij(xj — 4;) + cBlog d?

= (PB)logd? + %{(9— 1)B+Z(xi —yl)g—ﬁ}

We choose the A; like the F}, that is,

Aol y) = Uo(a'. 0, ) exp(2 / bE(r) - (x — §)dr}. exp{—2 / b(a(r) - (z —
0 0

and for 1 < j<m—1,

y)dr}



S. Berhanu / Advances in Mathematics 389 (2021) 107912 13

1
Aj(zy) _ -1 ri=1 _1(z(r T
ey " TG | T A0

0

1
/r’ 1PAJ 1(&(r),y)dr +
0

Uj(z',0,y)
Uo(',0,y)°
Thus
PH=0forx#y
if
1 dB -
?{P(Am_l) + 4[t% + (60 —1)B]} + P(B)logd* + P(W) = 0.

The logarithmic term has to cancel out and so we will also need B to satisfy
PB=0 (3.13)
Moreover, we need B to satisfy the equation

dB —P(An-1)

t— 0—1)B = 3.14
P01 : (3.14)
on the set where d(z,y) = 0.
We seek B of the form
z,y) =Y Bi(w,y)d(z,y)*
k=0
that satisfy (3.11), (3.13) and (3.14). This will be achieved if By solves
tdBo 4 (g —1)By = —LEmr
ar + (0 =15 ! (3.15)
Bo(:l?/, 0, y) = VO(J:/’ 0, y)
and for k> 1
tdﬁk + (0 + k — I)Bk = %éka—l (316)
Bk(xlv 0, y) = Vk(xlv 0, y)'

Define By by
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mBo(SU(t),y) _ = PAm 1( (r)ﬂy)rm—l r
e 4/ Ao(e().y) O
+40 203 (). 9) U F (@, 0,)

and for k > 1, By is defined by

pen Bie(05) 1 [ PBs(e()9)
. 4k/ ey

Ao(@(t)y)
1 [ PBy_1(3(r),y) . Vi(2',0,y)
4k0/ @)y T Ag(0.y)

To see that By defined by (3.17) solves (3.15) observe that since

d (t"By\ _ 1PA,_ Lym—1
a\ A ) 4 A ’
d ( By mBy  —PAp_
Ag Ay 44
which implies that
dB, t%r By —PAm
t—— — By=———.
i Ay TmBe=—4
Using
dAy
t—+ (0 —m—1)A
7 +@-m—-1)A=0

in the latter equation we conclude that

B (o 1), =

—PA,,_1
dt '

4

From the formula for By(z,y) = Bo(x(1),y), we see that
BO(m/7 07 y) = VO(:L'/v Oa y)

When k > 1, the equation

d <tk+mBk> _ —1 PBy_ PBe-1 ktm—

dt Ao 4k A

(3.17)

(3.18)
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leads to
dB, t%eB, —PBj_1
27k 2 dt TR B, = — —n~1
t— i + (k +m)By T
which together with
dA
td—tOJr(Gfmfl)Aozo
imply that
dBy, _ —PBy_
tﬁ+(9+k—1)Bk—T.

The formula for By (z,y) shows that
Bi(2,0,y) = Vi(2',0,y).

The convergence of the series

Z By, (LE, y)J(z, y)2k
k=0

is proved using the majorant method as in case 1.
The functions Aj(z,y) (0 <j <m —1) and B(z,y) were constructed so that

m—1
Q) = P(D.»( S A2 1 B(a,y)log Jz)
7=0

is real analytic. We choose C(z,y) that satisfies

{P<Dm>0<x,y> = —Q(z,y)
C(2',0,y) = W(z',0,y).

It follows that H = H(x,y) satisfies all the requirements.

By taking E(z,y) — F(x,y) when n is odd and S(z,y) — H(z,y) when n is even, we
have found a function G(z,y) defined for (z,y) € B;" x B (after decreasing r), = # v,
such that

{P(Dw)G(x, y) =0d(x —y) on Bf x B} (3.19)

G(2',0,y) = 0 when y,, > 0.

The transpose of P denoted by !P has the same form as P and so we also have G* that
solves
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{tP(x, D;)G'(z,y) = 6(x —y) on Bf x Bf (3.20)

Gt(2',0,y) = 0 when gy, > 0.

We will next show that the function G*(x,y) — G(y, z) extends as a real analytic function
in a neighborhood of (0,0) in R™ x R™.
Given a C'' domain D C B;t, for wy,ws € C?(D), by Green’s identity,

/ (wl(x)ng(x) — wy(2) thl(x))dx :a é (wl(x)ng(x) - wg(x)le(m)> - n(z)do

D

+ /wl(x)wg(x)b(x) -n(x)do (3.21)

oD

where b(z) = (b1 (x),...,b,(z)) and n(x) is unit outer normal vector.

Fix p,q € B;',p # q. Let wi(x) = G(z,q) and wa(x) = G(z,p). For € > 0 small, let
De = B} \ (Be(p) U Be(q))-

Since *Pw; = 0 and Pws =0 in Dy, (3.21) becomes

/ (wl(m)ng(x) - wg(x)le(x)) -n(z)do = — / wy (x)wa(z)b(x) - n(x)do (3.22)
oD, 9D,
Write 0B, = X UY where ¥ = {z € B, : z,, = 0}.

Since wq(z’,0) = 0 = wa(2’,0),

/ (wl(x)ng(x) - wg(x)le(x)> -n(z)do

0D,
_ / <w1(m)Vw2(x)—wg(ac)le(x)> n(z)do
_ / (wl(x)ng(:C)—wg(x)Vw1($)>~n(33)d0
dBc(p)

- (wl(x)ng(x) —ws (x)le(x)> -n(z)do (3.23)
9Be(q)

Consider the integral

/ wa(x)Vwy (x) - n(z)do.

9Bc(p)
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The function Vwi(x) - n(x) is continuous on Be(p). When n is odd, wa(z) = =2
with e(x) continuous on B.(p). When n is even, the principal singularity is of the same
form except when n = 2 in which case it is a logarithmic term. In both cases,

E1_i>r(1)1+ wa(z)Vwi (x) - n(z)do = 0.
9Be(p)
Likewise,
€lir(r)l+ / wi () Vws(z) - n(x)do = 0.
9Be(q)
Therefore,
61_i>%1+ / <w1 (z)Vwy(z) — wz(x)le(x)> -n(z)do
dBe(p)
= elirtr)l+ / wy(x)Vws(z) - n(x)do
dBc(p)
=wi(p) = G'(p.q) (3.24)
and
Elirgl+ / (w1 (x)Vws(x) — we(z)Vun (:U)) -n(x)do
9Be(q)
=— e]_igl+ / wa(x)Vwy (z) - n(z)do
9B (q)
= —ws(q) = ~G(q,p) (3.25)
/ wi (x)wa(z)b(x) - n(x)do = /wl(x)wQ(:r)b(x) -n(x)do
aD. Y
- / wy (z)we(x)b(z) - n(x)do
9Bc(p)UdB.(q)
and
elirgl+ / wy (x)wa(z)b(x) - n(x)do = 0. (3.26)

9B (p)UdBc(q)

From (3.23)-(3.26) we conclude that
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6! ()~ Glar) =~ [ (6'@.0V6(0) = Gle.pVG 0. ) nlo)

J
- / G (. )G, p)b(z) - n(x)do
J

= ¢(q,p) (3.27)

which is real analytic on a neighborhood of (0,0) in R™ x R", say B, (0) x B,.(0) (after
decreasing r).

Let g(z,y) be a real analytic function on B,(0) x B,(0) (r may have to be decreased)
that is a solution of

{wa)g(x,y) = P(D,)(¢y, (z,y))

g(z',0,9) =0
Define
oG!
K(xa y/) = W(ylvoa'r) - g(l‘,y,, 0)

We will show that K (x,y’) behaves like a local Poisson Kernel for P for the upper half
space.
Indeed, first note that for z,y € Bf, z # v,

P(D.) (ai%e%y,x) - g@;,y)) — P(D,) (%G%y,x) o <x7y>)
9 B

Second, in Section 4 we will show that if we define the function v on B by
wo) == [ Ky, 0 dy.
Rr-1

where 1) is a smooth cutoff function identically equal to 1 near the origin, and supported
in {z' : |2/| < r}, then v differs from u by a function that actually is real analytic in
a neighborhood of the origin in R™. In particular, the trace u(z’,0) — v(a’,0) is real
analytic in a neighborhood of the origin in R®~1.

4. Proofs of Theorem 2.3 and its corollaries

We begin by estimating the derivatives

oG!

0%, |50, e = 0.y #0.
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Assume first that n is odd. Recall that in that case
Gt(xu y) = E(.’E,y) - F(‘T7y)

with

E(.’L‘, y) = Z Ey, (JJ, y)d(l‘, y)Zk—Qm
k=0

and

F(x,y) = ZFk(x7y)J(x7y)2k‘i2m'
k=0

Using the identity
Ek (yl7 07 x) = Fk (yl7 0’ x) Vk’

we get

aGt - oF / 2%k—2m
000 = X Gk 0.0) = G0/ 0.0) )00

k=0
4{2 k—m)Ex(y,0, x)d(y’,O,m)Qk_2m_2] T
k=0

p(x,y') q(x,y')zn

T dy,0,2)?™  d(y',0,x)2m+?

with p(z,y’) and q(z,y’) real analytic.
For an odd integer M, we will estimate first

M
oM p _Z M oN g—2mgM—N
Tn \ J2m - N Tn Tn p

N=0

at £ = 0,7’ # 0. To compute higher order derivatives, we use the formula of Fad di

Bruno according to which

dN N f(J)
(N1+...+N )
G QU0) = X @ an T (] )

j=1

where the sum is over all N-tuples of nonnegative integers (Ny, ..., Ny) that satisfy the

constraint
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N1 +2Ny+ ...+ NNy = N.
Let
@) =1y'P+1* and Q(s) = s~

At t = 0 all the terms in the sum above equal zero except when 2Ny = N in which case
we get

N%wa(o».

Hence, at z = 0,73’ # 0, if N = 2Ns,

N, Nm(m+1)...(m+ Ny — 1)

N g—2m __ (_
aaznd _( 1) N2| ‘y/|N+2m

Since p and ¢ are real analytic, for some C > 0, and for all £ > 1,
|08 pl+ 0% ql < CFF1EL

It follows that at x = 0,13’ # 0,

a2k+1<i>‘< i’“: (2k + D! oy pm(m+1)... (m+ Na — 1)

Tn dz2m N even N2! |y/‘N+2m
C@k+DIC2 L mm4 1) (m+ Ny — 1)
/12m | N
|y | N=0,N even NQ(C|y,D
Using
mm+ 1) (m+ Ny —1) _ (m+1)-(m+k)
No! - k! ’

the sum above

C2(2k+ 1)l (m+1) - (m+ k) & _
= Kl 2k Z (Cly'* =~

N=0

and hence choosing r < & so that |y/| < &, for some C; > 0,

& P QCE+D!(m4+1)---(m+k)
5§n+1 <d2—m> ‘ S Cl k!|y/|2m+2k : (41)

For x =0,y #0,
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92k+1 ( qTn )

q
= (2k+1)02* < p +2>
2k—1
=(2k+1) > N (a2 N+ (2k + 1)02F (A" ?)g
N=0

2k 1)lCPRH (m—+1)---(m+Ny) 1

/|2m+-2 | I\
ly'|>™ N=0"F even No! (Cly'])

2k—1

+ (2k + 1)8317 (d—Qm—Q)q

2k 1 k) R o2kt
N:U

= k'|y ‘2m+2
C CEE+D(mA1) - (mt k) S 2N
o K|y |2k+2m+2 Z

N=0

(—DF2k+1)!(m+1)---(m+k)g

+ K[y [2k+2m+2
ARk+1)!(m+1)---(m+k) (=D*QE+D!(m+1)---(m+k)q 19
- Kl|y’|2m+2k + K[y |2k+2m+2 (4.2)

for some A > 0. In the second inequality above, we have used the fact that for any
N 2 S k?

(m+1)---(m+ Ny) - (m4+1)---(m+k)
No! - k! '

From (4.1) and (4.2), for k even, since ¢(0,0") = E(0,0) # 0, we get at « =0,y #0

aG! C(2k + 1)!

2k+1
9, Yn ——(y',0,2)| > |y [ Famt2

(4.3)

Suppose now n is even. In that case recall that G* = S — H Where

—1
S(z,y) =Y Ujlz,y)d(z,y)¥ " + V(z,y) logd(z,y)* + W(z,y)

3

<.
I
)

and

-1

3

H(z,y) = Y  Aj(z,y)d(z,y)” " + B(z,y)log d(z,y)* + C(z,y),

™

I
\o

J

Aj(2',0,y) = Uj(a',0,y), B(2',0,y) = V(2',0,y) and C(z',0,y) = W(a',0,y).
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Since
Uj(xlvovy) = Aj([L'I,O’y) (0 < .7 <m-— ]-)a

the arguments for the odd case show that for some C5 > 0, at x = 0,3 # 0,

921, (WLz_:l U;d¥ =2 mz_jl AjJ?J'—"“) > (s —;/chjzi); . (4.4)
j=0 =0
We have:
92K 19, (V logd?) = 92F11(V,, logd?) + 2 92+ (%)
The term
B, o) = 3 (%5 " )o o 2t
N=0

Faé di Bruno’s formula shows that
IY logd® =0 if N is odd
and when N = 2Ns,

(_1)N2+1N!

N logd? = ——2————.
n N2‘y/‘N

Choose C > 0 such that

ﬁﬁf“NVyn‘ < C?RH2=N(9k 41— N)L.

It then follows that

2k

|02 (Vy, log d®)| <
N=0

(2k + 1)IC2K+2-N
Naoly' |V

2k

2k +1)! _
< ( |y/|2k CQ Z(C‘Z‘/D% N
N=0

04(2]{7 + 1)!
— |y/|2k

where we have assumed that Cly’| < 1.
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We also have

o2kt (%)‘ =(2k+1)

Vv
()

(2k + 1)!

=y e (4.6)
for some C' > 0. Thus for some C > 0,
2k + 1)!
Likewise,
2k+1 2 (2k +1)!
am"+ 8 n(V logd )‘ S CW (48)

Since W (z,y) and C(z,y) are real analytic, from (4.4), (4.7) and (4.8), we conclude that
for some C > 0, at z = 0,y" # 0,

(2k +1)!

k
8§n+1a G'(y',0,2) > Ci\yq?kﬂm”'

Yn

(4.9)

It can easily be checked that (4.9) also holds when n = 2. Thus from (4.3) and (4.9), we
see that for any n, at x = 0,3’ # 0, when k is even,

ok (2k + 1)!
3xn+18ynGt(y', 0, IE) Z Cwm (410)
Recall that
oG*
K(LL', y/) = 8—(2/7 07 33) - g(.’l?, y/7 0)
Yn

Let ¢ = (a’) € Cg°(R™ 1) supported in |2/| <r, ¥(z') =1 on |¢/| < 5 and 0 <9 < 1.
Define

v(e) = - / K(z,y )¢y )uly',0)dy’, =€ B
Rn—l

Let w(z) = u(z) — v(z) for x € B;f. The function w extends as a real analytic function
to a neighborhood of the origin. To see this, recall from (3.21) that since u is a solution
on B and G'(y,0,z) = 0, for z € B, ¥ = {(2/,0) € 0B;'}, we have the following

representation formulas:
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uw) = [ )G oo~ [ TG a)do

oB;+ 8B
- [ w6 a)bly) - nly)do
OBt
=—/U(y’,0)g%(y’70,w)dy’— / U(y)aa—c;;(y7x)d0
by OB\
- [ SrwE i [ w6 o) n(do
OB\Z OBM\E
— - [ty 0Ky + f(@)
>
=v(z) + w(z)

where clearly w(z) is real analytic on some ball Bs(0). Note also that by (3.28) Pw =0
in B;f and so because of analyticity, Pw = 0 in Bs(0).

The integrability of |2/| = u(z’, 0) for all N and the nature of the singularity of K (z,y’)
imply that the function

)= / KO0,/ Y0y uly/, 0)dy

and hence
w0, 2y,) = v(0,2,) + w(0, 2,)

are C* up to z, = 0. Since u(0, x,,) is flat at z,, = 0, and v — v = w is real analytic on
B;s(0), we can find a constant D > 0 such that Vk

|02 0(0)] = 1975+ (u — v) (0)] < DPF2(2k +1)! (4.11)

Tn

On the other hand, since u(y’,0) > 0, for k even, by (4.10), we have, for e small,
020 0 / PR 20,y ) om0ty uly/. 0)dyf

w(y’)U(y’,O)dy/

> C(2k +1)! |y [2R+2m+2

u(y’, 0)

ly'|<e
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> Ok 1)1 / u(y’,0)dy’ (4.12)

e2k+2m+2
ly'|<e

Since (4.11) and (4.12) hold for any even integer k, by choosing € small enough (depending
only on D), taking the (2k + 2m + 2)th root and letting ¥ — oo, we conclude that
u(2’,0) = 0 for 2’ in a neighborhood of the origin in R™~1.

Proof of Corollary 2.4. The hypotheses of Theorem 2.3 are satisfied and so u(z’,0) =0
for 2’ small. By the boundary analyticity result of [20], u extends as a real analytic
function to some neighborhood of the origin. Since it is flat at an interior point, u = 0
in that neighborhood. But since w is real analytic on B;", u vanishes everywhere.

Proofs of Corollaries 2.5 and 2.6. Observe that a conformal map preserves the form of
the operator P. Therefore, the proofs of both corollaries follow from Theorem 2.3 and
the following lemma known in connection with Poincare’s local problem of conformal
geometry (see [22] for the proof).

Lemma 4.1. Given an arc V (or S), we can find a conformal map sending V into the
x-axis (S into the y-axis), z =0 to z = 0 and the y-azis (x-axis) into itself if and only
if V' is locally symmetric about the y— axis (S is locally symmetric about the x-axis).

Proof of Corollary 2.7. The proof follows from an application of Corollary 2.2 and the
boundary regularity of the Riemann mapping.
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