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1. Introduction
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where the coefficients of P are real analytic.

The work generalizes the results proved for harmonic functions in [5], [15], [16] and 

those in [12] for solutions of the Helmholtz’s equation Δu + cu = 0, c ∈ R. See also [6], 

[9] and [10].

These uniqueness phenomena extend the classical Hopf lemma about the nonvanish-

ing of the normal derivative at a boundary point where a nonconstant solution attains 

an extremum: the assumption is local in nature and only imposes conditions at the 

boundary.

For holomorphic functions of one variable with nonnegative real part on a piece of the 

boundary, unique continuation and local forms of Hopf’s lemma were proved in [7], [15], 

[16], and [18]. The results were used to prove unique continuation for CR mappings for 

certain classes of CR manifolds. They were also used to prove a more general Schwarz 

reflection principle for holomorphic functions mapping the real line into a totally real 

manifold or a real analytic set. Earlier results along this line appeared in the works 

[4], [8], [2] and [3]. H. Alexander’s paper [3] contains a general local Hopf lemma for 

holomorphic functions of one variable with applications to unique continuation for CR 

mappings. See also [11] for an extension of the latter results.

Further extensions of the results of Baouendi and Rothschild were proved by V. 

Shklover ([22]) and H.S. Shapiro ([21]). In particular, Shklover showed that Theorem 3 

in [5] (Theorem 2.1 in this paper) fails in general if the normal direction is replaced 

with a transverse direction. Shapiro used convolution transforms as discussed in [14] to 

obtain new proofs and generalizations of the theorems of Baouendi and Rothschild. In 

the article [23], N. Suzuki established a local Hopf lemma in the spirit of [5] for the 

one-dimensional heat equation.

The article is organized as follows: Section 2 contains the statements of the results in 

this work. Section 3 is devoted to the construction of a kernel that effectively (for our 

purposes here) serves as a Poisson kernel for P on the flat piece of the half ball B+
r . The 

proofs of the theorem and its corollaries are presented in section 4.

2. Statement of the results

We will say that a continuous function u defined on a half ball

B+
r = {x = (x′, xn) ∈ R

n : |x| < r, xn > 0}

is flat at 0 if for every positive integer N , there is a constant CN > 0 such that

|u(x)| ≤ CN |x|N .

Suppose now D ⊆ R
n is a smoothly bounded domain, x0 ∈ ∂D. We will say a function u

vanishes to infinite order in a direction v at x0, where v is a unit vector pointing inside 

D and transversal to ∂D if for every N , there is a constant CN > 0 such that:
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|u(x0 + tv)| ≤ CN tN .

We also say u vanishes to infinite order on a non-singular smooth curve S : x = x(t), 0 ≤

t ≤ 1, in D passing through x0 and transversal to ∂D if for every N there is CN > 0

such that:

|u(x(t))| ≤ CN tN .

It is easy to see that this latter definition is independent of the parametrization.

We recall the main result of [5]:

Theorem 2.1. Let u be harmonic on the half ball B+
r , continuous on the closure. Suppose

(1) u(x′, 0) ≥ 0 for |x′| ≤ r, x′ ∈ R
n−1;

(2) the function xn �→ u(0′, xn) is flat at xn = 0;

Then u(x′, 0) ≡ 0 for x′ near the origin in Rn−1.

Somewhat similar but weaker results under the stronger hypothesis that u is harmonic 

in the upper half plane and decays exponentially along the y-axis was obtained in [19]. 

The theorem of Baouendi and Rothschild has the following immediate consequence on 

boundary unique continuation for harmonic functions:

Corollary 2.2. Let u be harmonic in B+
r , continuous on the closure of B+

r . Assume that

(1) u(x′, 0) ≥ 0 for |x′| ≤ r;

(2) The function u is flat at 0.

Then u ≡ 0.

Our generalization is as follows:

Theorem 2.3. Let u be a solution of

Pu = Δu +

n
∑

i=1

bi(x)
∂u

∂xi

+ c(x)u(x) = 0

in the half ball B+
r , C2 on B+

r . Assume that the coefficients of P are real analytic on 

B+
r . Suppose

(1) u(x′, 0) ≥ 0 for |x′| ≤ r;

(2) the function xn �→ u(0′, xn) is flat at xn = 0;
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(3) for every positive integer N , the function

|x′|−N u(x′, 0)

is integrable on |x′| ≤ r.

Then u(x′, 0) ≡ 0 for x′ small.

We remark that by the results in [20], u then extends as a solution in a neighborhood 

of the origin in Rn.

Theorem 2.3 has the following consequence on boundary unique continuation:

Corollary 2.4. Let u be a solution of Pu = 0 in B+
r , C2 on the closure of B+

r . Assume 

that

(1) u(x′, 0) ≥ 0 for |x′| ≤ r;

(2) The function u is flat at 0.

Then u ≡ 0.

In [22] the author considered the following refinement of Theorem 2.1 of Baouendi 

and Rothschild:

Suppose D ⊆ R
n is a smoothly bounded domain, x0 ∈ ∂D, V ⊂ ∂D real analytic, 

x0 ∈ V . If u is harmonic in D and continuous on D, vanishes to infinite order in a 

direction v (or a curve) at x0, and u(x) ≥ 0 on V , then u(x) ≡ 0 in some neighborhood 

of x0 in V .

It was shown in [22] that in the plane, this property holds (for harmonic functions) if 

and only if V is locally symmetric about the normal to ∂D at x0. The author also proved 

further results for the situation when the normal is replaced by a transversal curve.

These results generalize to the operators P under study:

Corollary 2.5. Let n = 2 and u be a solution of Pu = 0 in B+
r , C2 on the closure of B+

r . 

Assume that

(1) u(x) ≥ 0 for x ∈ V ⊂ R, 0 ∈ V ;

(2) u vanishes to infinite order on an analytic curve S through the origin orthogonal to 

the x-axis and S is symmetric with respect to the x-axis.

Then u vanishes on some subinterval of V about the origin.

In the case of a general domain D we have:
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Corollary 2.6. Let n = 2 and u be a solution of Pu = 0 in a domain D, C2 on the 

closure of D. Suppose V ⊆ ∂D is real analytic, and is tangent to the real axis at the 

origin. Assume that

(1) u(x) ≥ 0 for x ∈ V ;

(2) the function y �→ u(0, y) vanishes to infinite order at 0;

(3) V is locally symmetric about the imaginary axis. Then u vanishes on some subin-

terval of V about the origin.

Corollary 2.7. Let n = 2 and u be a solution of Pu = 0 in a domain D, C2 on the closure 

of D. Suppose V ⊆ ∂D is real analytic and x0 ∈ V . Assume that

(1) u(x) ≥ 0 for x ∈ V ;

(2) The function u is flat at x0.

Then u vanishes on D.

3. Construction of a Poisson kernel for P

For elliptic differential operators of any order with constant coefficients, Poisson ker-

nels for the upper half space Rn were constructed by Agmon-Douglis-Nirenberg in the 

work [1]. For elliptic operators with real analytic coefficients, the existence of a local 

Poisson kernel was proved in [17]. However, this latter kernel is not explicit, and it 

doesn’t serve our purpose since we will need precise estimates on arbitrarily high order 

derivatives of the kernel. Let

P = P (Dx) = Δ +
n

∑

j=1

bj(x)
∂

∂xj

+ c(x)

be as in Theorem 2.3. In this section we will construct what will essentially serve as a 

Poisson kernel K = K(x, y′) for P using the ideas and methods of Hadamard ([13]). In 

[13] it is shown that P has a fundamental solution E(x, y) (x, y ∈ R
n) of a form that 

depends on the parity of n.

Case 1: Assume n is odd. In that case, E has the form

E(x, y) =
1

d(x, y)n−2

∞
∑

k=0

Ek(x, y)d(x, y)2k, d(x, y) = |x − y|

for x, y in a ball B centered at the origin in Rn.

We will use the same idea to construct first a solution

F (x, y) =
1

d̄(x, y)n−2

∞
∑

k=0

Fk(x, y)d̄(x, y)2k
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of P (Dx)F (x, y) = 0 for x 
= ȳ, where d̄(x, y) = |x − ȳ| and for any y = (y1, . . . , yn), 

ȳ = (y1, . . . , yn−1, −yn). In addition, the Fk will be required to satisfy the initial condition

Fk(x′, 0, y) = Ek(x′, 0, y).

Consider

PF =

∞
∑

k=0

P

(

Fkd̄2k−n+2

)

.

We have

P

(

Fk d̄2k−n+2

)

(x, y)

= (PFk)d̄2k−n+2 + 2〈∇Fk, ∇(d̄2k−n+2)〉

+ FkΔ(d̄2k−n+2) + Fk

( n
∑

j=1

bj

∂

∂xj

d̄2k−n+2

)

= (PFk)d̄2k−n+2 + 2(2k − n + 2)

[ n−1
∑

j=1

(xj − yj)
∂Fk

∂xj

+ (xn + yn)
∂Fk

∂xn

]

d̄ 2k−n

+ (2k − n + 2)

(

2kFkd̄2k−n +

n−1
∑

j=1

bj(x)(xj − yj) + bn(x)(xn + yn)

)

Fk d̄2k−n

= (PFk) d̄2k−n+2 + 2(2k − n + 2)
[ n−1

∑

j=1

(xj − yj)
∂Fk

∂xj

+ (xn + yn)
∂Fk

∂xn

+ (θ(x, y) + k − m − 1)Fk

]

d̄2k−n

where m = n−2
2 and

θ(x, y) =
1

4

(

2n + 2
n−1
∑

i=1

bi(x)(xi − yi) + 2bn(x)(xn + yn)

)

.

Let

x(t) = tx + (1 − t)ȳ, 0 < t ≤ 1.

Setting the coefficients of the powers of d̄(x, y) equal to 0, we are led to the initial value 

problems

t
d

dt
F0(x(t), y) + (θ(x(t), y) − m − 1)F0(x(t), y) = 0, (3.1)

F0(x′, 0, y) = E0(x′, 0, y) (3.2)
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and for any k ≥ 1,

t
d

dt
Fk(x(t), y)+(θ(x(t), y)+k −m−1)Fk(x(t), y) = −

1

4(k − m)
P (Fk−1)(x(t), y), (3.3)

Fk(x′, 0, y) = Ek(x′, 0, y). (3.4)

For 0 < t ≤ 1, define F0 by

F0(x(t), y) = E0(x′, 0, y) exp{2

1
∫

0

b(x̃(r)) · (x − ȳ)dr} · exp{−2

t
∫

0

b(x(r)) · (x − ȳ)dr}

where x̃(r) = r(x′, 0) + (1 − r)ȳ.

Clearly,

F0(x′, 0, y) = E0(x′, 0, y)

and equation (3.1) is also satisfied. Thus

F0(x, y) = E0(x′, 0, y) exp{2

1
∫

0

b(x̃(r)) · (x − ȳ)dr} · exp{−2

1
∫

0

b(x(r)) · (x − ȳ)dr}.

For k ≥ 1, define Fk by

tkFk(x(t), y)

F0(x(t), y)
=

−1

4(k − m)

t
∫

0

rk−1PFk−1(x(r), y)

F0(x(r), y)
dr

+
1

4(k − m)

1
∫

0

rk−1PFk−1(x̃(r), y)

F0(x̃(r), y)
dr +

Ek(x′, 0, y)

E0(x′, 0, y)
.

It is easy to see that Fk(x′, 0, y) = Ek(x′, 0, y). To show that equation (3.3) is satisfied, 

note that since

d

dt

{

tkFk(x(t), y)

F0(x(t), y)

}

= −
tk−1PFk−1(x(t), y)

4(k − m)F0(x(t), y)
,

tk d

dt

(

Fk

F0

)

+ ktk−1 Fk

F0
= −

tk−1PFk−1(x(t), y)

4(k − m)F0(x(t), y)

and hence

t
dFk

dt
−

t

F0

dFk

dt
Fk + kFk = −

PFk−1

4(k − m)
.
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The latter together with equation (3.1) leads to (3.3).

Thus for k ≥ 1,

Fk(x, y)

F0(x, y)
=

−1

4(k − m)

1
∫

0

rk−1PFk−1(x(r), y)dr

+
1

4(k − m)

1
∫

0

rk−1PFk−1(x̃(r), y)dr +
Ek(x′, 0, y)

E0(x′, 0, y)
.

We will next show that there is δ > 0 such that the series

∞
∑

k=0

Fk(x, y)d̄(x, y)2k (3.5)

converges uniformly on {(x, y) : x ∈ Bδ(0), |x − ȳ| < δ}.

As in [13], this is accomplished by the method of majorants analogous to the Cauchy-

Kowalewski technique. For the purpose of the convergence proof, we may assume that 

F0 ≡ constant, since the substitution u1 = u
F0

reduces Pu = 0 to a new partial differential 

equation

P1(u1) = P (F0u1) = 0 (3.6)

of the same type as P for which such an assumption is valid.

With F0 ≡ const, for k ≥ 1,

Fk(x, y) =
−1

4(k − m)

1
∫

0

rk−1PFk−1(x(r), y)dr

+
1

4(k − m)

1
∫

0

rk−1PFk−1(x̃(r), y)dr + Ek(x′, 0, y). (3.7)

Assume y = 0 first. Let

Kǫ

ǫ − |x1| − . . . − |xn|
=

∞
∑

j=0

K

ǫj

( k
∑

i=1

|xj |

)j

be a majorant for the Taylor expansions in powers of x of all of the coefficients of P . In 

[13] it is shown that if

M{Ek} =
Mk

(1 − |x1|+...+|xn|
ǫ

)2k
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denotes a majorant of Ek, then

M{Ek+1} =
Mk+1

(1 − |x1|+...+|xn|
ǫ

)2k+2

with

Mk+1 =
k(2k + 1)

2(k + 1)(k − m + 1)

(

1 +
n

ǫ
+

2n

ǫ2

)

KMk

(note that [13] has n2

ǫ2 , but in our particular case, it can be replaced with 2n
ǫ2 ). Suppose 

now

M{Fk} =
M̃k

(1 − |x1|+...+|xn|
ǫ

)2k

for some constant M̃k with M̃k ≥ Mk is a majorant of Fk.

Then

M{PFk} =
2k(2k + 1)(1 + n

ǫ
+ 2n

ǫ2 )KM̃k

(1 −
∑

n
j=1

|xj |

ǫ
)2k+3

. (3.8)

We will show that for some constants Ck,

M̃k+1 = 2CkM̃k + Mk+1.

Recall that y = 0. Write

Fk+1(x, 0) = I1 + I2 + I3,

where

I1 =
−1

4(k + 1 − m)

1
∫

0

rkPFk(x(r), 0)dr,

I2 =
1

4(k + 1 − m)

1
∫

0

rkPFk(x̃(r), 0)dr,

and

I3 = Ek+1(x′, 0, 0).

Using (3.8), with Ak = 2k(2k + 1)(1 + n
ǫ

+ 2n
ǫ2 )KM̃k, we get:
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M{I1} =
Ak

4(k + 1 − m)

1
∫

0

[1 + (
|rx1| + . . . + |rxn|

ǫ
)]

rk

(1 −
∑

i
r|xi|

ǫ
)2k+3

dr

=
Ak

4(k + 1 − m)(k + 1)

1
∫

0

d

dr

[

rk+1

(1 −
∑

i
r|xi|

ǫ
)2k+2

]

dr

=
Ak

4(k + 1 − m)(k + 1)

(

1

(1 −
∑

n
i=1

|xi|

ǫ
)2k+2

)

.

Thus

M{I1} =
k(2k + 1)(1 + n

ǫ
+ 2n

ǫ2 )KM̃k

2(k + 1)(k − m + 1)
·

1

(1 −
∑

n
i=1

|xi|

ǫ
)2k+2

.

Likewise,

M{I2} =
k(2k + 1)(1 + n

ǫ
+ 2n

ǫ2 )KM̃k

2(k + 1)(k − m + 1)
·

1

(1 −
∑

n
i=1

|xi|

ǫ
)2k+2

and from [13], we recall that

M{I3} =
Mk+1

(1 −
∑

n
i=1

|xi|

ǫ
)2k+2

.

It follows that when y = 0,

M{Fk+1} =
M̃k+1

(1 −
∑

n
i=1

|xi|

ǫ
)2k+2

with

M̃k+1 =
k(2k + 1)(1 + n

ǫ
+ 2n

ǫ2 )KM̃k

(k + 1)(k − m + 1)
+ Mk+1.

We have

M̃k+1

M̃k

=
k(2k + 1)(1 + n

ǫ
+ 2n

ǫ2 )K

(k + 1)(k − m + 1)
+

Mk+1

M̃k

≤
k(2k + 1)(1 + n

ǫ
+ 2n

ǫ2 )K

(k + 1)(k − m + 1)
+

Mk+1

Mk

.

Since

lim
k→∞

Mk+1

Mk

= (1 +
n

ǫ
+

2n

ǫ2
)K,
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given δ > 0, we can get N such that for k ≥ N ,

M̃k+1

M̃k

< α + δ,

where α = 3(1 + n
ǫ

+ 2n
ǫ2 )K.

Therefore, for some c > 0,

M̃k ≤ c(α + δ)k ∀k ≥ 1.

If y 
= 0, we replace x with x − ȳ and still arrive at the same estimate for the M̃k.

It follows that the series

∞
∑

k=0

Fk(x, y)d̄(x, y)2k

converges on the open set

{

(x, y) : |x − ȳ|2 <
(1 −

∑n
i=1

|xi−ȳi|2

ǫ
)2

3(1 + n
ǫ

+ 2n
ǫ2 )K

}

where we used the notation

ȳi = yi for 1 ≤ i ≤ n − 1, ȳn = −yn.

Case 2: Suppose n is even. This time m = n−2
2 is an integer and so the approach used 

under case 1 breaks down because the formula for Fk involves division by k − m. We 

recall from [13] that the fundamental solution S for P has the form

S =
m−1
∑

j=0

Uj(x, y)d(x, y)2j−n+2 + V (x, y) log d(x, y)2 + W (x, y)

with the Uj , V , and W real analytic. Motivated by this, we seek a solution H = H(x, y)

of the form

H(x, y) =

m−1
∑

j=0

Aj(x, y)d̄(x, y)2j−n+2 + B(x, y) log d̄(x, y)2 + C(x, y)

where Aj , B, C are real analytic,

P (Dx)H(x, y) = 0 for x 
= ȳ, (3.9)

Aj(x′, 0, y) = Uj(x′, 0, y), 0 ≤ j ≤ m − 1, (3.10)

B(x′, 0, y) = V (x′, 0, y), (3.11)
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and

C(x′, 0, y) = W (x′, 0, y). (3.12)

At a point (x(t), y), x(t) = tx + (1 − t)ȳ, we have

P (Aj d̄2j−n+2)

= P (Aj)d̄2j−n+2 + 2(2j − n + 2)t
dAj

dt
d̄2j−n

+ Aj(j − m)4jd̄2j−n + Aj(j − m)

( n
∑

j=1

bj

∂d̄2

∂xj

)

d̄2j−n

= P (Aj)d̄2j−n+2 + 2(2j − n + 2)[t
d

dt
Aj + (θ(x(t), y) + j − m − 1)Aj ]d̄2j−n

where

θ(x, y) =
1

4

(

2n + 2
n

∑

i=1

bi(x)(xi − ȳi)

)

,

ȳi = yi for 1 ≤ i ≤ n − 1, ȳn = −yn.

P (B log d̄2) = (ΔB) log d̄2 +
2(n − 2)B

d̄2
+

4

d̄2

n
∑

i=1

(xi − ȳi)
∂B

∂xi

+ (
n

∑

j=1

bj

∂B

∂xj

) log d̄2 +
2B

d̄2

n
∑

j=1

bj(xj − ȳj) + cB log d̄2

= (PB) log d̄2 +
2(n − 2)

d̄2
B +

2B

d̄2

n
∑

j=1

bj(xj − ȳj) +
4

d̄2

n
∑

j=1

(xj − ȳj)
∂B

∂xj

= (PB) log d̄2 +
4

d̄2

{

(θ − 1)B +
n

∑

i=1

(xi − ȳi)
∂B

∂xi

}

.

We choose the Aj like the Fj , that is,

A0(x, y) = U0(x′, 0, y) exp{2

1
∫

0

b(x̃(r) · (x − ȳ)dr}. exp{−2

1
∫

0

b(x(r) · (x − ȳ)dr}

and for 1 ≤ j ≤ m − 1,
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Aj(x, y)

A0(x, y)
=

−1

4(j − m)

1
∫

0

rj−1PAj−1(x(r), y)dr

+
1

4(j − m)

1
∫

0

rj−1PAj−1(x̃(r), y)dr +
Uj(x′, 0, y)

U0(x′, 0, y)
.

Thus

PH = 0 for x 
= ȳ

if

1

d̄2
{P (Am−1) + 4[t

dB

dt
+ (θ − 1)B]} + P (B) log d̄2 + P (W ) = 0.

The logarithmic term has to cancel out and so we will also need B to satisfy

PB = 0 (3.13)

Moreover, we need B to satisfy the equation

t
dB

dt
+ (θ − 1)B =

−P (Am−1)

4
(3.14)

on the set where d̄(x, y) = 0.

We seek B of the form

B(x, y) =
∞

∑

k=0

Bk(x, y)d̄(x, y)2k

that satisfy (3.11), (3.13) and (3.14). This will be achieved if B0 solves

{

t dB0

dt
+ (θ − 1)B0 = −P Am−1

4

B0(x′, 0, y) = V0(x′, 0, y)
(3.15)

and for k ≥ 1

{

t dBk

dt
+ (θ + k − 1)Bk = −1

4k
PBk−1

Bk(x′, 0, y) = Vk(x′, 0, y).
(3.16)

Define B0 by
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tm B0(x(t), y)

A0(x(t), y)
= −

1

4

t
∫

0

PAm−1(x(r), y)

A0(x(r), y)
rm−1dr

+
1

4

1
∫

0

PAm−1(x̃(r), y)

A0(x̃(r), y)
rm−1dr +

V0(x′, 0, y)

A0(x′, 0, y)
(3.17)

and for k ≥ 1, Bk is defined by

tk+m Bk(x(t), y)

A0(x(t), y)
= −

1

4k

t
∫

0

PBk−1(x(r), y)

A0(x(r), y)
rk+m−1dr

+
1

4k

t
∫

0

PBk−1(x̃(r), y)

A0(x̃(r), y)
dr +

Vk(x′, 0, y)

A0(x′, 0, y)
(3.18)

To see that B0 defined by (3.17) solves (3.15) observe that since

d

dt

(

tmB0

A0

)

= −
1

4

PAm−1

A0
tm−1,

t
d

dt

(

B0

A0

)

+
mB0

A0
=

−PAm−1

4A0

which implies that

t
dB0

dt
−

t dA0

dt
B0

A0
+ mB0 =

−PAm−1

A0
.

Using

t
dA0

dt
+ (θ − m − 1)A0 = 0

in the latter equation we conclude that

t
dB0

dt
+ (θ − 1)B0 =

−PAm−1

4
.

From the formula for B0(x, y) = B0(x(1), y), we see that

B0(x′, 0, y) = V0(x′, 0, y).

When k ≥ 1, the equation

d

dt

(

tk+mBk

A0

)

=
−1

4k

PBk−1

A0
tk+m−1
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leads to

t
dBk

dt
−

t dA0

dt
Bk

A0
+ (k + m)Bk =

−PBk−1

4k

which together with

t
dA0

dt
+ (θ − m − 1)A0 = 0

imply that

t
dBk

dt
+ (θ + k − 1)Bk =

−PBk−1

4k
.

The formula for Bk(x, y) shows that

Bk(x′, 0, y) = Vk(x′, 0, y).

The convergence of the series

∞
∑

k=0

Bk(x, y)d̄(x, y)2k

is proved using the majorant method as in case 1.

The functions Aj(x, y) (0 ≤ j ≤ m − 1) and B(x, y) were constructed so that

Q(x, y) = P (Dx)

( m−1
∑

j=0

Aj d̄2j−n+2 + B(x, y) log d̄2

)

is real analytic. We choose C(x, y) that satisfies

{

P (Dx)C(x, y) = −Q(x, y)

C(x′, 0, y) = W (x′, 0, y).

It follows that H = H(x, y) satisfies all the requirements.

By taking E(x, y) − F (x, y) when n is odd and S(x, y) − H(x, y) when n is even, we 

have found a function G(x, y) defined for (x, y) ∈ B+
r × B+

r (after decreasing r), x 
= y, 

such that

{

P (Dx)G(x, y) = δ(x − y) on B+
r × B+

r

G(x′, 0, y) = 0 when yn > 0.
(3.19)

The transpose of P denoted by tP has the same form as P and so we also have Gt that 

solves
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{

tP (x, Dx)Gt(x, y) = δ(x − y) on B+
r × B+

r

Gt(x′, 0, y) = 0 when yn > 0.
(3.20)

We will next show that the function Gt(x, y) −G(y, x) extends as a real analytic function 

in a neighborhood of (0, 0) in Rn × R
n.

Given a C1 domain D ⊆ B+
r , for w1, w2 ∈ C2(D), by Green’s identity,

∫

D

(

w1(x)Pw2(x) − w2(x) tPw1(x)

)

dx =

∫

∂D

(

w1(x)∇w2(x) − w2(x)∇w1(x)

)

· n(x)dσ

+

∫

∂D

w1(x)w2(x)b(x) · n(x)dσ (3.21)

where b(x) = (b1(x), . . . , bn(x)) and n(x) is unit outer normal vector.

Fix p, q ∈ B+
r , p 
= q. Let w1(x) = Gt(x, q) and w2(x) = G(x, p). For ǫ > 0 small, let 

Dǫ = B+
r \ (Bǫ(p) ∪ Bǫ(q)).

Since tPw1 = 0 and Pw2 = 0 in Dǫ, (3.21) becomes

∫

∂Dǫ

(

w1(x)∇w2(x) − w2(x)∇w1(x)

)

· n(x)dσ = −

∫

∂Dǫ

w1(x)w2(x)b(x) · n(x)dσ (3.22)

Write ∂B+
r = Σ ∪ Σ′ where Σ = {x ∈ ∂B+

r : xn = 0}.

Since w1(x′, 0) = 0 = w2(x′, 0),

∫

∂Dǫ

(

w1(x)∇w2(x) − w2(x)∇w1(x)

)

· n(x)dσ

=

∫

Σ′

(

w1(x)∇w2(x) − w2(x)∇w1(x)

)

· n(x)dσ

−

∫

∂Bǫ(p)

(

w1(x)∇w2(x) − w2(x)∇w1(x)

)

· n(x)dσ

−

∫

∂Bǫ(q)

(

w1(x)∇w2(x) − w2(x)∇w1(x)

)

· n(x)dσ (3.23)

Consider the integral

∫

∂Bǫ(p)

w2(x)∇w1(x) · n(x)dσ.
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The function ∇w1(x) · n(x) is continuous on Bǫ(p). When n is odd, w2(x) = e(x)
|x−p|n−2

with e(x) continuous on Bǫ(p). When n is even, the principal singularity is of the same 

form except when n = 2 in which case it is a logarithmic term. In both cases,

lim
ǫ→0+

∫

∂Bǫ(p)

w2(x)∇w1(x) · n(x)dσ = 0.

Likewise,

lim
ǫ→0+

∫

∂Bǫ(q)

w1(x)∇w2(x) · n(x)dσ = 0.

Therefore,

lim
ǫ→0+

∫

∂Bǫ(p)

(

w1(x)∇w2(x) − w2(x)∇w1(x)

)

· n(x)dσ

= lim
ǫ→0+

∫

∂Bǫ(p)

w1(x)∇w2(x) · n(x)dσ

= w1(p) = Gt(p, q) (3.24)

and

lim
ǫ→0+

∫

∂Bǫ(q)

(

w1(x)∇w2(x) − w2(x)∇w1(x)

)

· n(x)dσ

= − lim
ǫ→0+

∫

∂Bǫ(q)

w2(x)∇w1(x) · n(x)dσ

= −w2(q) = −G(q, p) (3.25)
∫

∂Dǫ

w1(x)w2(x)b(x) · n(x)dσ =

∫

Σ′

w1(x)w2(x)b(x) · n(x)dσ

−

∫

∂Bǫ(p)∪∂Bǫ(q)

w1(x)w2(x)b(x) · n(x)dσ

and

lim
ǫ→0+

∫

∂Bǫ(p)∪∂Bǫ(q)

w1(x)w2(x)b(x) · n(x)dσ = 0. (3.26)

From (3.23)-(3.26) we conclude that
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Gt(p, q) − G(q, p) = −

∫

Σ′

(

Gt(x, q)∇G(x, p) − G(x, p)∇Gt(x, q)

)

· n(x)dσ

−

∫

Σ′

Gt(x, q)G(x, p)b(x) · n(x)dσ

.
= ϕ(q, p) (3.27)

which is real analytic on a neighborhood of (0, 0) in Rn × R
n, say Br(0) × Br(0) (after 

decreasing r).

Let g(x, y) be a real analytic function on Br(0) × Br(0) (r may have to be decreased) 

that is a solution of

{

P (Dx)g(x, y) = P (Dx)(ϕyn
(x, y))

g(x′, 0, y) = 0

Define

K(x, y′) =
∂Gt

∂yn

(y′, 0, x) − g(x, y′, 0).

We will show that K(x, y′) behaves like a local Poisson Kernel for P for the upper half 

space.

Indeed, first note that for x, y ∈ B+
r , x 
= y,

P (Dx)

(

∂

∂yn

Gt(y, x) − g(x, y)

)

= P (Dx)

(

∂

∂yn

Gt(y, x) − ϕyn
(x, y)

)

=
∂

∂yn

P (Dx)G(x, y) ≡ 0. (3.28)

Second, in Section 4 we will show that if we define the function v on B+
r by

v(x) = −

∫

Rn−1

K(x, y′)ψ(y′)u(y′, 0) dy′,

where ψ is a smooth cutoff function identically equal to 1 near the origin, and supported 

in {x′ : |x′| < r}, then v differs from u by a function that actually is real analytic in 

a neighborhood of the origin in R
n. In particular, the trace u(x′, 0) − v(x′, 0) is real 

analytic in a neighborhood of the origin in Rn−1.

4. Proofs of Theorem 2.3 and its corollaries

We begin by estimating the derivatives

∂k
xn

[

∂Gt

∂yn

(y′, 0, x)

]

at x = 0, y′ 
= 0.



S. Berhanu / Advances in Mathematics 389 (2021) 107912 19

Assume first that n is odd. Recall that in that case

Gt(x, y) = E(x, y) − F (x, y)

with

E(x, y) =
∞

∑

k=0

Ek(x, y)d(x, y)2k−2m

and

F (x, y) =

∞
∑

k=0

Fk(x, y)d̄(x, y)2k−2m.

Using the identity

Ek(y′, 0, x) = Fk(y′, 0, x) ∀k,

we get

∂Gt

∂yn

(y′, 0, x) =

∞
∑

k=0

(

∂Ek

∂yn

(y′, 0, x) −
∂Fk

∂yn

(y′, 0, x)

)

d(y′, 0, x)2k−2m

− 4

[ ∞
∑

k=0

(k − m)Ek(y′, 0, x)d(y′, 0, x)2k−2m−2

]

xn

=
p(x, y′)

d(y′, 0, x)2m
−

q(x, y′)xn

d(y′, 0, x)2m+2

with p(x, y′) and q(x, y′) real analytic.

For an odd integer M , we will estimate first

∂M
xn

(

p

d2m

)

=
M

∑

N=0

(

M

N

)

∂N
xn

d−2m∂M−N
xn

p

at x = 0, y′ 
= 0. To compute higher order derivatives, we use the formula of Faá di 

Bruno according to which

dN

dtN
Q(f(t)) =

∑ N !

N1! . . . NN !
Q(N1+...+NN )(f(t))

N
∏

j=1

(

f (j)(t)

j!

)Nj

where the sum is over all N -tuples of nonnegative integers (N1, . . . , NN ) that satisfy the 

constraint
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N1 + 2N2 + . . . + NNN = N.

Let

f(t) = |y′|2 + t2 and Q(s) = s−m.

At t = 0 all the terms in the sum above equal zero except when 2N2 = N in which case 

we get

N !

N2!
Q(N2)(f(0)).

Hence, at x = 0, y′ 
= 0, if N = 2N2,

∂N
xn

d−2m = (−1)N2
N !

N2!

m(m + 1) . . . (m + N2 − 1)

|y′|N+2m
.

Since p and q are real analytic, for some C > 0, and for all k ≥ 1,

|∂k
xn

p| + |∂k
xn

q| ≤ Ck+1k!.

It follows that at x = 0, y′ 
= 0,

∣

∣

∣

∣

∂2k+1
xn

(

p

d2m

)∣

∣

∣

∣

≤
2k

∑

N=0, N even

(2k + 1)!

N2!
C2k−N+2 m(m + 1) . . . (m + N2 − 1)

|y′|N+2m

=
(2k + 1)!C2k+2

|y′|2m

2k
∑

N=0,N even

m(m + 1) . . . (m + N2 − 1)

N2!(C|y′|)N
.

Using

m(m + 1) · · · (m + N2 − 1)

N2!
≤

(m + 1) · · · (m + k)

k!
,

the sum above

≤
C2(2k + 1)!(m + 1) · · · (m + k)

k!|y′|2m+2k

2k
∑

N=0

(C|y′|)2k−N

and hence choosing r < 1
C

so that |y′| < 1
C

, for some C1 > 0,

∣

∣

∣

∣

∂2k+1
xn

(

p

d2m

)
∣

∣

∣

∣

≤ C1
(2k + 1)!(m + 1) · · · (m + k)

k!|y′|2m+2k
. (4.1)

For x = 0, y′ 
= 0,
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∂2k+1
xn

(

qxn

d2m+2

)

= (2k + 1)∂2k
xn

(

q

d2m+2

)

= (2k + 1)

2k−1
∑

N=0

∂N
xn

(d−2m−2)∂2k−N
xn

q + (2k + 1)∂2k
xn

(d−2m−2)q

≥ −
(2k + 1)!C2k+1

|y′|2m+2

2k−1
∑

N=0, N even

(m + 1) · · · (m + N2)

N2!

1

(C|y′|)N

+ (2k + 1)∂2k
xn

(d−2m−2)q

≥ −
(2k + 1)!(m + 1) · · · (m + k)

k!|y′|2m+2

2k−1
∑

N=0

C2k+1

(C|y′|)N
+ (2k + 1)∂2k

xn
(d−2m−2)q

= −
C(2k + 1)!(m + 1) · · · (m + k)

k!|y′|2k+2m+2

2k−1
∑

N=0

(C|y′|)2k+2−N

+
(−1)k(2k + 1)!(m + 1) · · · (m + k)q

k!|y′|2k+2m+2

≥ −
A(2k + 1)!(m + 1) · · · (m + k)

k!|y′|2m+2k
+

(−1)k(2k + 1)!(m + 1) · · · (m + k)q

k!|y′|2k+2m+2
(4.2)

for some A > 0. In the second inequality above, we have used the fact that for any 

N2 ≤ k,

(m + 1) · · · (m + N2)

N2!
≤

(m + 1) · · · (m + k)

k!
.

From (4.1) and (4.2), for k even, since q(0, 0′) = E0(0, 0) 
= 0, we get at x = 0, y′ 
= 0

∣

∣

∣

∣

∂2k+1
xn

∂Gt

∂yn

(y′, 0, x)

∣

∣

∣

∣

≥
C(2k + 1)!

|y′|2k+2m+2
. (4.3)

Suppose now n is even. In that case recall that Gt = S − H Where

S(x, y) =

m−1
∑

j=0

Uj(x, y)d(x, y)2j−n+2 + V (x, y) log d(x, y)2 + W (x, y)

and

H(x, y) =
m−1
∑

j=0

Aj(x, y)d̄(x, y)2j−n+2 + B(x, y) log d̄(x, y)2 + C(x, y),

Aj(x′, 0, y) = Uj(x′, 0, y), B(x′, 0, y) = V (x′, 0, y) and C(x′, 0, y) = W (x′, 0, y).
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Since

Uj(x′, 0, y) = Aj(x′, 0, y) (0 ≤ j ≤ m − 1),

the arguments for the odd case show that for some C3 > 0, at x = 0, y′ 
= 0,

∂2k+1
xn

∂yn

( m−1
∑

j=0

Ujd2j−n+2 −

m−1
∑

j=0

Aj d̄2j−n+2

)

≥ C3
(2k + 1)!

|y′|2k+2m+2
. (4.4)

We have:

∂2k+1
xn

∂yn
(V log d2) = ∂2k+1

xn
(Vyn

log d2) + 2 ∂2k+1
xn

(

V xn

d2

)

.

The term

∂2k+1
xn

(Vyn
log d2) =

2k+1
∑

N=0

(

2k + 1

N

)

∂N
xn

log d2 ∂2k+1−N
xn

Vyn
.

Faá di Bruno’s formula shows that

∂N
xn

log d2 = 0 if N is odd

and when N = 2N2,

∂N
xn

log d2 =
(−1)N2+1N !

N2|y′|N
.

Choose C > 0 such that

∣

∣

∣

∣

∂2k+1−N
xn

Vyn

∣

∣

∣

∣

≤ C2k+2−N (2k + 1 − N)!.

It then follows that

|∂2k+1
xn

(Vyn
log d2)| ≤

2k
∑

N=0

(2k + 1)!C2k+2−N

N2|y′|N

≤
(2k + 1)!

|y′|2k
C2

2k
∑

N=0

(C|y′|)2k−N

≤
C4(2k + 1)!

|y′|2k
(4.5)

where we have assumed that C|y′| < 1.
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We also have

∣

∣

∣

∣

∂2k+1
xn

(

Vxn

d2

)∣

∣

∣

∣

= (2k + 1)

∣

∣

∣

∣

∂2k
xn

(

V

d2

)∣

∣

∣

∣

≤ C
(2k + 1)!

|y′|2k+2
(4.6)

for some C > 0. Thus for some C > 0,

∣

∣

∣

∣

∂2k+1
xn

∂yn
(V log d2)

∣

∣

∣

∣

≤ C
(2k + 1)!

|y′|2k+2
. (4.7)

Likewise,

∣

∣

∣

∣

∂2k+1
xn

∂yn
(V log d̄2)

∣

∣

∣

∣

≤ C
(2k + 1)!

|y′|2k+2
. (4.8)

Since W (x, y) and C(x, y) are real analytic, from (4.4), (4.7) and (4.8), we conclude that 

for some C > 0, at x = 0, y′ 
= 0,

∂2k+1
xn

∂yn
Gt(y′, 0, x) ≥ C

(2k + 1)!

|y′|2k+2m+2
. (4.9)

It can easily be checked that (4.9) also holds when n = 2. Thus from (4.3) and (4.9), we 

see that for any n, at x = 0, y′ 
= 0, when k is even,

∂2k+1
xn

∂yn
Gt(y′, 0, x) ≥ C

(2k + 1)!

|y′|2k+2m+2
. (4.10)

Recall that

K(x, y′) =
∂Gt

∂yn

(y′, 0, x) − g(x, y′, 0).

Let ψ = ψ(x′) ∈ C∞
0 (Rn−1) supported in |x′| < r, ψ(x′) ≡ 1 on |x′| ≤ r

2 and 0 ≤ ψ ≤ 1.

Define

v(x) = −

∫

Rn−1

K(x, y′)ψ(y′)u(y′, 0)dy′, x ∈ B+
r .

Let w(x) = u(x) − v(x) for x ∈ B+
r . The function w extends as a real analytic function 

to a neighborhood of the origin. To see this, recall from (3.21) that since u is a solution 

on B+
r and Gt(y′, 0, x) ≡ 0, for x ∈ B+

r , Σ = {(x′, 0) ∈ ∂B+
r }, we have the following 

representation formula:
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u(x) =

∫

∂B
+
r

u(y)
∂Gt

∂η
(y, x)dσ −

∫

∂B
+
r

∂u

∂η
(y)Gt(y, x)dσ

−

∫

∂B
+
r

u(y)Gt(y, x)b(y) · n(y)dσ

= −

∫

Σ

u(y′, 0)
∂Gt

∂yn

(y′, 0, x)dy′ −

∫

∂B
+
r \Σ

u(y)
∂Gt

∂η
(y, x)dσ

−

∫

∂B
+
r \Σ

∂u

∂η
(y)Gt(y, x)dσ −

∫

∂B
+
r \Σ

u(y)Gt(y, x)b(y) · n(y)dσ

= −

∫

Σ

u(y′, 0)K(x, y′)dy′ + f(x)

= v(x) + w(x)

where clearly w(x) is real analytic on some ball Bδ(0). Note also that by (3.28) Pw = 0

in B+
r and so because of analyticity, Pw = 0 in Bδ(0).

The integrability of |x′|−N u(x′, 0) for all N and the nature of the singularity of K(x, y′)

imply that the function

v(0′, xn) = −

∫

K(0′, xn, y′)ψ(y′)u(y′, 0)dy

and hence

u(0′, xn) = v(0′, xn) + w(0′, xn)

are C∞ up to xn = 0. Since u(0, xn) is flat at xn = 0, and u − v = w is real analytic on 

Bδ(0), we can find a constant D > 0 such that ∀k

|∂2k+1
xn

v(0)| = |∂2k+1
xn

(u − v)(0)| ≤ D2k+2(2k + 1)! (4.11)

On the other hand, since u(y′, 0) ≥ 0, for k even, by (4.10), we have, for ǫ small,

|∂2k+1
xn

v(0)| =

∫

Σ

∂2k+1
xn

K(0′, xn, y′)|xn=0ψ(y′)u(y′, 0)dy′

≥ C(2k + 1)!

∫

Σ

ψ(y′)u(y′, 0)

|y′|2k+2m+2
dy′

≥ C(2k + 1)!

∫

|y′|<ǫ

u(y′, 0)

|y′|2k+2m+2
dy′
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≥
C(2k + 1)!

ǫ2k+2m+2

∫

|y′|<ǫ

u(y′, 0)dy′ (4.12)

Since (4.11) and (4.12) hold for any even integer k, by choosing ǫ small enough (depending 

only on D), taking the (2k + 2m + 2)th root and letting k → ∞, we conclude that 

u(x′, 0) ≡ 0 for x′ in a neighborhood of the origin in Rn−1.

Proof of Corollary 2.4. The hypotheses of Theorem 2.3 are satisfied and so u(x′, 0) ≡ 0

for x′ small. By the boundary analyticity result of [20], u extends as a real analytic 

function to some neighborhood of the origin. Since it is flat at an interior point, u ≡ 0

in that neighborhood. But since u is real analytic on B+
r , u vanishes everywhere.

Proofs of Corollaries 2.5 and 2.6. Observe that a conformal map preserves the form of 

the operator P . Therefore, the proofs of both corollaries follow from Theorem 2.3 and 

the following lemma known in connection with Poincare’s local problem of conformal 

geometry (see [22] for the proof).

Lemma 4.1. Given an arc V (or S), we can find a conformal map sending V into the 

x-axis (S into the y-axis), z = 0 to z = 0 and the y-axis (x-axis) into itself if and only 

if V is locally symmetric about the y− axis (S is locally symmetric about the x-axis).

Proof of Corollary 2.7. The proof follows from an application of Corollary 2.2 and the 

boundary regularity of the Riemann mapping.
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