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Abstract. We explore some links between the holomorphic extendability of
CR functions on a hypersurface and the validity of the strong maximum prin-
ciple for continuous CR functions.

1. Introduction

Let M be a C∞ hypersurface in C
n. Consider the following two types of

maximum principles for locally defined continuous CR functions on M.

Definition 1.1. We say M satisfies the strong maximum principle if given any
connected open set U in M and any continuous CR function h on U , |h| can not
have a weak local maximum at any point of U unless h is constant on U . That
is, p ∈ U and |h(z)| ≤ |h(p)| for all z ∈ U implies that h is constant on U .

Definition 1.2. We say M satisfies the weak maximum principle if given any
connected open set U in M and any continuous CR function h on U , |h| can not
peak at any point of U . That is, there is no p ∈ U satisfying |h(z)| < |h(p)| for
all z ∈ U, z 6= p.

The strong maximum principle clearly implies the weak maximum principle.
The weak maximum principle is well understood even for CR submanifolds of
arbitrary codimension. From the works [10] and [11], the weak maximum principle
is valid on an embedded CR manifold if and only if there is no direction in which
the Levi form is strictly positive definite. A Levi flat hypersurface satisfies the
weak maximum principle but not the strong maximum principle. The non Levi
flat hypersurfaces given by

M = {(z1, . . . , zn−1, xn +
√
−1(|z1|2 + . . .+ |zq|2)) : zj ∈ C,

xn ∈ R, 1 ≤ q < n− 1}, n ≥ 3

also satisfy the weak maximum principle but not the strong maximum principle.
Indeed, the CR function

h = exp
(√

−1(xn +
√
−1(|z1|2 + . . .+ |zq|2))

)

has the property that |h| attains a weak local maximum at any point of M where
z1 = . . . = zq = 0, and so M violates the strong maximum principle. The
Levi form of M has no strictly definite points and so by the result in [10], M
satisfies the weak maximum principle. Indeed, if a CR functions attains a strict
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local maximum at a point p, then by a result in [10], the point p is the limit
of a sequence {pj} where the Levi form is strictly definite. The weak maximum
principle for CR functions has been studied in several papers including in [5] and
[8].

To our knowledge, necessary and sufficient conditions for the validity of the
strong maximum principle are not known. As we will see in Section 2, if M
satisfies the holomorphic extendability property, then it satisfies the strong maxi-
mum principle. In the converse direction, we will show that the strong maximum
principle implies holomorphic extendability on a dense open set. Moreover, we
will show that if M satisfies the strong maximum principle, then the restriction
of any nonconstant holomorphic function to M is an open map. In Section 3
we will present an example of a real analytic hypersurface M with the property
that the restriction to any neighborhood of a point in M of any locally defined
non constant holomorphic function satisfies the strong maximum principle but
the principle does not hold for some continuous CR function. In Section 4 we
show that for real analytic tube structures, analytic hypoellipticity ( which is
holomorphic extendability of all solutions in the CR case) is equivalent to the
validity of the strong maximum principle. Section 5 we present an improvement
of a result of [9] on the validity of the strong maximum principle for abstract CR
manifolds of hypersurface type.

2. Statements and proofs of the main results

Definition 2.1. We say M satisfies the extendability property if any locally
defined continuous CR function extends as a holomorphic function.

We begin with the following observation.

Proposition 2.2. Suppose M ⊂ C
n is a smooth hypersurface that satisfies the

extendability property. The if h is a nonconstant continuous CR function on a
connected open subset U ⊂ M, the map h : U → C is an open map, that is,
if W ⊂ U is open, so is h(W ). In particular, M satisfies the strong maximum
principle.

Proof. Let h and U be as in the Proposition and p ∈ U . Since extendability
holds, there exist a neighborhood U1 of p in U and a neighborhood U2 of p in
C

n such that every CR function f on U1 extends to a a holomorphic function f̃
on U2. This follows fom Montel’s theorem and the Baire Category Theorem (see

[13]). It follows that for any continuous CR function f on U1, f̃(U2) ⊂ f(U1).

Otherwise, if f̃(w) /∈ f(U1) for some w ∈ U2, the CR function

1

f(z)− f̃(w)
on U1 would not extend to U2.

Let
S = {w ∈ U : there is a neighborhood of w where h ≡ h(p)}.

S is clearly open. Let {wj} be a sequence in S such that wj → w ∈ U . Since
M satisfies the extendability property at each point of U and U is connected, by
Trepreau’s theorem [12], the Sussmann orbit Ωp(U) of p in U coincides with U .
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By a theorem of Treves (see [13]) on propagation of zeros, it follows that w ∈ S.
Hence either S = U or S = ∅. Since h is nonconstant, we conclude that S = ∅.
This implies that the holomorphic extension h̃ of h is nonconstant on U2 and
since h̃(U2) ⊂ h(U1), the set h(U1) contains a neighborhood of h(p) in C. It is
now clear that M satisfies the strong maximum principle. �

Theorem 2.3. Let M be a C∞ hypersurface in C
n that satisfies the strong max-

imum principle. If f is a nonconstant holomorphic function on a neighborhood
of p ∈ M, then the restriction of f to M is an open map into C.

Proof. We may assume p = 0 ∈ M and let

r(z′, xn, yn) = ϕ(z′, xn)− yn, z
′ ∈ C

n−1

be a defining function of M with ϕ(0) = 0 and dϕ(0) = 0. By Corollary 3.2 in
[2], CR functions near 0 extend to a side of M (locally), say to the side r < 0.
By the theorem of Treves in [13], there is a neighborhood Ω of 0 in M and δ > 0
such that every continuous CR function on Ω extends as a holomorphic function
to

Ωδ = Bδ(0) ∩ {z : r(z) < 0}, Bδ(0) = {z ∈ C
n : |z| < δ}.

We may assume f is holomorphic on a neighborhood of Ω in C
n and that f(0) = 0.

By Corollary 3.3 in [2], we may assume that df(0) = 0. Moreover, if the function
of one variable zn 7−→ f(0′, zn) is identically zero, then by Theorem 3.1 in [2], the
zero set of f has to cross both sides of M which in turn would imply that the
restriction of f to Ω is open at 0.
Hence we may assume that zn 7−→ f(0′, zn) is nonconstant. By the Weierstrass
Preparation Theorem, we can therefore factorize f near 0 as

f(z′, zn) = b(z′, zn)

(

zkn + ak−1(z
′)zk−1

n + . . .+ a0(z
′)

)

where b(0) 6= 0, aj(0
′) = 0 ∀j, k ≥ 2, aj(z

′), b(z′, zn) holomorphic.
We may assume that b(0) = 1.
Since ϕ(0) = 0 and dϕ(0) = 0, there is M > 0 such that

|ϕ(0′, xn)| ≤ Mx2
n.

Therefore, for some ǫ > 0,

Dǫ = {(0′, zn) : |zn| < ǫ, yn ≥ Mx2
n} ⊂ {z : r(z) ≤ 0}.

Suppose first k ≥ 3:
If ǫ < δ, then Dǫ ⊂ Ωδ and so since f(Ωδ) ⊂ f(Ω) (for a smaller δ), we only have
to show that f(Dǫ) contains a neighborhood of the origin in C. The set

f(Dǫ) = {b(0′, zn)zkn : |zn| ≤ ǫ, yn ≥ Mx2
n}.

For any 0 < c < Mǫ, if we set

Ac = {(0′, zn) : |zn| ≤
c

M
, yn ≥ c|xn|},
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then Ac ⊂ Dǫ. Moreover, if 0 < c ≤ 1√
3
, since k ≥ 3, the set zkn(Ac) is a

neighborhood of 0. Since b(0) = 1, there is a holomorphic function h such that
b(0′, zn) = h(zn)

k with h(0) = 1, and so

f(0′, zn) = g(zn)
k where g(zn) = znh(zn).

Fix 0 < c < 1√
3
and let ǫ1 > 0 such that c+ ǫ1 <

1√
3
.

Using g(0) = 0 and g′(0) = 1, we can find β > 0 small that satisfies

{zn : |zn| ≤ β, yn ≥ (c+ ǫ1)|xn|} ⊂ g

(

{zn : |zn| ≤ 2β, yn ≥ c|xn|}
)

.

It follows that f(Dǫ) and hence f(Ω) contains a neighborhood of 0.
Suppose now k = 2.

Recall that f(z′, zn) = b(z′, zn)

(

z2n+a1(z
′)zn+a0(z

′)

)

, a1(0
′) = a0(0

′) = 0, b(0) =

1, and |ϕ(0′, xn)| ≤ Mx2
n.

For some c > 0 to be determined, we will use the change of holomorphic coordi-
nates

(w′, wn) 7−→ (w′, wn +
√
−1c2w2

n).

In the w coordinates, the defining function of M becomes

r̃(w′, wn) = r(w′, wn +
√
−1c2w2

n).

We will show that if wn = un +
√
−1vn is sufficiently small,

r̃(0′, wn) ≤ 0 whenever vn ≥ −cu2
n.

To see this, observe that

r̃(0′, wn) = ϕ
(

0′,ℜ(wn +
√
−1c2w2

n)
)

−ℑ(wn +
√
−1c2w2

n)

= ϕ(0′, un − 2c2unvn)− vn − c2u2
n + c2v2n

≤ Mu2
n(1− 2c2vn)

2 − vn − c2u2
n + c2v2n.

Suppose now vn ≥ −cu2
n. Then for wn small enough, if vn ≥ 0, −vn + c2v2n ≤ 0

and so

r̃(0′, wn) ≤ [M(1− 2c2vn)
2 − c2]u2

n ≤ 0

if c is chosen large enough. Suppose vn ≤ 0. Then since vn ≥ −cu2
n , v2n ≤ c2u4

n

and hence

r̃(0′, wn) ≤ Mu2
n((1− 2c2vn)

2 − vn − c2u2
n + c4u4

n

≤ Mu2
n((1− 2c2vn)

2 + cu2
n − c2u2

n + c4u4
n

≤ 0

for c big enough and wn sufficiently small.
Thus for wn small and c large enough,

r̃(0′, wn) ≤ 0 whenever vn ≥ −cu2
n.

In the w coordinates, f becomes

f̃(w′, wn) = f(w′, wn +
√
−1c2w2

n),



5

in particular,

f̃(0′, wn) = b̃(0′, wn)(−c4w4
n + 2

√
−1c2w3

n + w2
n),

where

b̃(0′, wn) = b(0′, wn +
√
−1c2w2

n).

We will show that there is a holomorphic function a(z) defined near z = 0 in C

such that near 0,

f̃(0′, za(z)) = f̃(0′, z), a(0) = −1.

Define the function

G(z, a) = b̃(0′, az)(−c4a4z2 + 2
√
−1c2a3z + a2)− b̃(0′, z)(−c4z2 + 2

√
−1c2z + 1)

which is holomorphic for (z, a) near (0,−1) in C
2, G(0,−1) = 0 and since

∂G

∂a
(z, a) =

∂b̃

∂wn

(0′, az)z

(

−c4a4z2+2
√
−1c2a3z+a2

)

+b̃(0′, az)

(

−4c4a3z2+6
√
−1c2a2z+2a

)

,

∂G
∂a
(0,−1) = −2. Therefore, by the implicit function theorem, there is a holomor-

phic function a(z) defined near z = 0 that satisfies

G(z, a(z)) = 0, and a(0) = −1.

It follows that

f̃(0′, za(z))− f̃(0′, z) = z2G(z, a(z)) = 0.

From the equation G(z, a(z)) = 0, we get

a′(0) = − ∂b̃

∂wn

(0) =
∂b

∂zn
(0).

For ǫ > 0, let

Wǫ = {(0′, wn) : vn ≥ −c x2
n, |wn| < ǫ}.

We choose ǫ small enough so that

r̃ ≤ 0 on Wǫ.

We know that f̃(Wǫ) ⊂ f̃(Ω). Therefore, f̃ will be open at 0 if for |z| < ǫ, the
point (0′, za(z)) ∈ Wǫ whenever (0

′, z) /∈ Wǫ.
Suppose then |z| < ǫ and (0′, z) /∈ Wǫ. Then y < −c x2. Notice that

a(z)z = −z − ∂b

∂zn
(0)z2 +O(z3),

and so setting ∂b
∂zn

(0) = s+
√
−1 t,

ℑ(za(z)) = −y − 2sxy − t(x2 − y2) +O(|x|3 + |v|3)
≥ −y

2
+

c

2
x2 − 2sxy − t(x2 − y2) +O(|x|3 + |v|3)

and hence for c large enough and ǫ small enough, ℑ(za(z)) > 0 showing that
(0′, za(z)) ∈ Wǫ. This proves the theorem. �
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We recall from [2] that if M satisfies the strong maximum principle, then any
locally defined CR function extends holomorphically to a side of M. We now
use Theorem 2.3 to show that in addition, holomorphic extendability holds on a
dense open subset of M.

Theorem 2.4. Let M be a smooth hypersurface in C
n with the strong maximum

principle property. Then there is a dense open subset Σ ⊂ M such that any CR
function defined on an open subset U ⊂ M extends as a holomorphic function to
a neighborhood of U ∩ Σ in C

n.

In the proof of Theorem 2.4 we will use the following result of Catlin ([4]).

Lemma 2.5. (Lemma 3.3.2 in [4]) Let z0 be a boundary point of an n−dimensional
complex manifold with smooth pseudoconvex boundary. Suppose that there is an
l−dimensional complex manifold γ ⊂ b Ω, with z0 ∈ γ, and that the rank of the
Levi form at z0 is n− l− 1. Then there exists a coordinate neighborhood V of z0,
with holomorphic coordinates z1, . . . , zn satisfying the following properties:
(1) γ = {z ∈ V : zl+k = 0, k = 1, 2, . . . , n− l}
(2) Writing z′ = (z1, . . . , zl) and z′′ = (zl+1, . . . , zn) the Taylor expansion of the
boundary defining function r(z) in the variables z′′ has the form

r(z) = r(z′, z′′) =
∂r

∂zn
(z′, 0)zn +

∂r

∂z̄n
(z′, 0)z̄n +O(|z′′|2).

(3) For z ∈ V ∩ Ω,

2ℜzn − |ℑzn|+
1

2

n−1
∑

k=l+1

|zk|2 ≤ r(z) ≤ 1

2
ℜzn + |ℑzn|+ 2

n−1
∑

k=l+1

|zk|2.

Proof of Theorem 2.4. Let V denote the CR bundle of M. For each p ∈ M,
consider the Levi form

Lp : (Vp ⊕ Vp)× (Vp ⊕ Vp) →
CTpM
Vp ⊕ Vp

which is defined by

Lp(Xp, Yp) =
1

2
√
−1

πp([X, Y ]p)

where πp is the projection map

πp : CTpM → CTpM
Vp ⊕ Vp

,

X and Y are smooth sections of Vp ⊕Vp that extend Xp and Yp respectively. For
p ∈ M, let Np denote the null space of Lp given by

Np = {Xp ∈ Vp ⊕ Vp : Lp(Xp, Yp) = 0 for all Yp ∈ Vp ⊕ Vp}.
Np is a complex vector space and if k = k(p) is the number of nonzero eigenvalues
of Lp, then

k + dimC Np = n− 1.
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Fix p ∈ M and let p ∈ U ⊂ M be a neighborhood. Since M satisfies the strong
maximum principle, (U,V) cannot be Levi flat and so there are points q ∈ U
where k(q) > 0. Let

α = max{k(q) : q ∈ U}.
Then there is an open subset W ⊂ U satisfying

k(q) = α ∀q ∈ W.

If there is a point q ∈ W where the Levi form has a positive and a negative
eigenvalue, then by Lewy’s extension theorem, any CR function defined on a
neighborhood of q extends to a holomorphic function in a full neighborhood of
q in C

n. We may therefore assume that all the eigenvalues in W have the same
sign. The set

N =
⋃

q∈W
Nq

forms a smooth subbundle of V⊕V overW . In this case, by a theorem of Freeman
([6]), W is foliated by complex submanifolds such that for each q ∈ W , Nq is the
complex tangent space of the leaf passing through q.
We use the arguments given in [3] for the Levi flat case. We first show that N is
involutive. Let X and Y be smooth sections of N over W , and let Z be a smooth
section of V ⊕ V . Using the Jacobi identity

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

we see that [[X, Y ], Z] is a section of V ⊕ V and hence [X, Y ] is a section of N .
Let

ℜN = {A : A is the real part of a smooth section of N over W}.
Then ℜN is involutive and so by the Frobenius theorem, W is foliated by sub-
manifolds S of W such that the real tangent space TqS = ℜNq for each q ∈ S.
Observe next that N is J− invariant. To see this, let X be a smooth section of
N , X = L1 + L2 where L1, L2 are sections of V . For any Y1 ∈ V , [L1 + L2, Y1] is
a section of V ⊕V and so [L2, Y1] is a section of V ⊕V . Likewise, for any smooth
section Y2 of V , [L1, Y2] is a section of V ⊕ V . Therefore, for such Y1, Y2,

[J(X), Y1] = [−iL1, Y1] + [iL2, Y1]

is a section of V ⊕ V and

[J(X), Y2] = [−iL1, Y2] + [iL2, Y2]

is a section of V ⊕ V and hence the N is J−invariant.
Let S now be a leaf of the foliation induced by ℜN and pick a point q ∈ S which
we may assume is the origin in C

n. Since the real tangent space T0S = ℜN0 is
invariant under J , after a complex linear change of coordinates, we may assume
that T0S is spanned by

∂

∂xj

∣

∣

∣

∣

0

,
∂

∂yj

∣

∣

∣

∣

0

, 1 ≤ j ≤ n− 1− α = s.
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Thus near 0, S is the graph of a smooth map

g : Cs → C
n−s,

that is,

S = {(z1, . . . , zs, g(z′, z̄′)) : z′ = (z1, . . . , zs) ∈ C
s}.

We will show that g is holomorphic by showing that the push forward map

g∗ : R
2s → R

2n−2s

commutes with J . Let G : Cs → C
n−s × C

s be given by

G(z′) = (z′, g(z′, z̄′)).

Let v be in the tangent space T0(R
2s). Then for a ∈ R

2s ≃ C
s near 0,

J
(

G∗(a), (v)
)

= J
(

v, g∗(a)(v)
)

=
(

J(v), J(g∗(a)(v))
)

.

Clearly, G∗(a)(v) ∈ TG(a)S and by the J−invariance of N and hence of ℜN ,

J
(

G∗(a)(v)
)

∈ TG(a)S. Since any tangent vector in TG(a)S has the form (v, g∗(a)(v))
for some v ∈ Ta(R

2s), it follows that

g∗(a)(J(v)) = J(g∗(a)(v))

and hence S is a complex manifold.
The proof of Lemma 2.5 requires that M be pseudoconvex only near the central
point 0 and hence there are holomorphic coordinates z1, . . . , zn such that for
z ∈ M near 0,

ℜzn ≤ 1

2
|ℑzn| −

1

4

n−1
∑

k=s+1

|zk|2.

That is, for z ∈ M near 0,

ℜzn ≤ 1

2
|ℑzn|

which means that the restriction of the holomorphic function f(z) = zn to M is
not open at 0, thus contradicting Theorem 2.3. Thus U contains a point where
the Levi form has a positive and a negative eigenvalue. �

3. An example

We next show an example of a hypersurface M in C
6 satisfying the strong

maximum principle for the restrictions of nonconstant holomorphic functions but
not for continuous CR functions.
We first recall the following definition from [5]:

Definition 3.1. Let M ⊂ C
n be a smooth hypersurface. A point p ∈ M

is called an extreme point of M if there exists a local holomorphic coordinate
system z = (z1, . . . , zn) in a neighborhood U of p such that z(p) = 0 and M∩U ⊂
{z : ℑzn ≥ 0}.
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Clearly, the absence of extreme points on M is a necessary condition for the va-
lidity of the strong maximum principle. In [5] the authors conjectured a converse
statement: if M has no extreme points, then the strong maximum principle is
valid for differentiable CR functions. Later in [8] the author proved the following:

Theorem 3.2. If M is a CR submanifold of Cn without extremem points, then
for any CR function f on M, |f | cannot attain a strict local maximum at any
point of M.

Although the proof in [8] assumes that f ∈ C2, one can use the Baouendi-Treves
approximation theorem to see that the theorem is valid for f continuous. We also
remark that this theorem follows from the results in [10] and [11]. The theorem
may be viewed as a partial answer to the conjecture stated above. Indeed, it tells
us that if M has no extreme points, then it satisfies the weak maximum principle.
In [2] we gave an example of a hypersurface M with no extreme points but where
the strong maximum principle does not hold for continuous CR functions. In this
section we present a simpler example with the same properties.

Observe that a point p ∈ M is an extreme point if and only if there is a holo-
morphic function f defined near p such that df(p) 6= 0 and |f | on M has a weak
local maximum at p, that is, |f(q)| ≤ |f(p)| for q near p on M. Therefore, the
conjecture of [5] may be rephrased as follows: if the strong maximum principle is
valid for the restrictions to M of holomorphic functions with nonzero differential,
then it is also valid for differentiable CR functions. This seems plausible in light
of the Baouendi-Treves approximation theorem according to which any contin-
uous CR function is locally the uniform limit of the restrictions of holomorphic
functions. Our example M below has the following properties:

1. M has no extreme points. In fact, more is true - if f is holomorphic near any
point of M (no condition on the differential of f), the strong maximum principle
is valid for the restriction of |f | to M: that is, if p ∈ M, U a neighborhood of
p in M, f a holomorphic near U and |f(q)| ≤ |f(p)| for all q ∈ U , then f is
constant.

2. There is a continuous non constant continuous CR function h on M for
which the strong maximum principle is not valid, that is, |h| attains a weak local
maximum.

Let M be the real analytic hypersurface in C
6 defined by

M = {z : y6 = x6(|z1|2 − |z2|2) + |z5|2(1 + |z3|2 − |z4|2)}.
A basis of the tangential Cauchy-Riemann vector fields on M is given by

L1 =
∂

∂z̄1
−

(

2
√
−1x6z1

1 +
√
−1(|z1|2 − |z2|2)

)

∂

∂z̄6
,

L2 =
∂

∂z̄2
+

(

2
√
−1x6z2

1 +
√
−1(|z1|2 − |z2|2)

)

∂

∂z̄6
,
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L3 =
∂

∂z̄3
−

(

2
√
−1|z5|2z3

1 +
√
−1(|z1|2 − |z2|2)

)

∂

∂z̄6
,

L4 =
∂

∂z̄4
+

(

2
√
−1|z5|2z4

1 +
√
−1(|z1|2 − |z2|2)

)

∂

∂z̄6
,

and

L5 =
∂

∂z̄5
−

(

2
√
−1z5(1 + |z3|2 − |z4|2)

1 +
√
−1(|z1|2 − |z2|2)

)

∂

∂z̄6
.

We next consider the Levi form:

[L1, L1] =

(

2
√
−1x6

1−
√
−1(|z1|2 − |z2|2)

+ x6O(|z|2)
)

∂

∂z6
+

(

2
√
−1x6

1 +
√
−1(|z1|2 − |z2|2)

+ x6O(|z|2)
)

∂

∂z̄6

= 2
√
−1x6

∂

∂z6
+ 2

√
−1x6

∂

∂z̄6
+ x6 O(|z|2)

( ∂

∂z6
+

∂

∂z̄6

)

,

[L2, L2] =

( −2
√
−1x6

1−
√
−1(|z1|2 − |z2|2)

+x6O(|z|2)
)

∂

∂z6
+

( −2
√
−1x6

1 +
√
−1(|z1|2 − |z2|2)

+x6O(|z|2)
)

∂

∂z̄6
,

[L3, L3] =

(

2
√
−1|z5|2

1−
√
−1(|z1|2 − |z2|2)

)

∂

∂z6
+

(

2
√
−1|z5|2

1 +
√
−1(|z1|2 − |z2|2)

)

∂

∂z̄6
,

[L4, L4] =

( −2
√
−1|z5|2

1−
√
−1(|z1|2 − |z2|2)

)

∂

∂z6
+

( −2
√
−1|z5|2

1 +
√
−1(|z1|2 − |z2|2)

)

∂

∂z̄6
,

[L5, L5] = (2
√
−1 +O(|z|2)

)

∂

∂z6
+

(

2
√
−1 +O(|z|2)

)

∂

∂z̄6
.

Let

r(z, z) = y6 − x6(|z1|2 − |z2|2)− |z5|2(1 + |z3|2 − |z4|2
and define

θ = ∂̄r =
5

∑

j=1

∂ρ

∂z̄j
dz̄j +

√
−1

2

(

1 +
√
−1(|z1|2 − |z2|2)

)

dz̄6.

We have:

〈θ, [L1, L1]〉 = −x6 + x6O(|z|2),
〈θ, [L2, L2]〉 = x6 + x6O(|z|2),

〈θ, [L3, L3]〉 = |z5|2 +O(|z5|2|z|4),
〈θ, [L4, L4]〉 = −|z5|2 +O(|z5|2|z|4),

〈θ, [L5, L5]〉 = −1 +O(|z|2).
Observe that on M, when x6 = 0, |z5|2 is comparable to y6.
Therefore, after shrinking M near 0, we conclude that at every point in the set

S = {z ∈ M : z6 6= 0},
the Levi form has at least one positive and one negative eigenvalue. This implies
that no nonconstant locally defined continuous CR function can attain a weak
local maximum at a point in S. Next note that if z ∈ M and z6 = 0, then z5 = 0.
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Hence we only have to show that the restriction of a nonconstant holomorphic
function can not attain a weak local maximum at a point in the set

Σ = {(z1, z2, z3, z4, 0, 0)} ⊂ M.

Suppose h is a nonconstant holomorphic function on a neighborhood of p =
(z01 , z

0
2 , z

0
3 , z

0
4 , 0, 0) ∈ Σ and assume that |h(z)| ≤ |h(p)| for z in M near p. We

may assume that ℑh(z) ≤ ℑh(p) for z near p in M. We will first show that the
differential dh(p) 6= 0. Indeed, since 〈θ, [L5, L5]〉 6= 0, CR functions near 0 extend
holomorphically to the side

r(z, z̄) = y6 − x6(|z1|2 − |z2|2)− |z5|2(1 + |z3|2 − |z4|2) < 0.

Suppose Ωp ⊂ M is a neighborhood of p where

ℑh(z) ≤ ℑh(p) for every z ∈ Ωp.

There is δ > 0 such that any CR function on Ωp extends as a holomorphic function
to the open set

Bδ = {z ∈ C
6 : |z − p| < δ} ∩ {z : r(z) < 0}.

Since h(Bδ) ⊂ h(Ωp), and h is nonconstant, it follows that

ℑh(z) < ℑh(p) for every z ∈ Bδ.

By Hopf’s lemma, the latter inequality implies that

∂

∂y6
ℑh(p) 6= 0.

Next observe that since Σ is a complex manifold contained in M,

ℑh|Σ ≡ ℑh(p)
and so h is constant on Σ. Without loss of generality we may assume that

h|Σ ≡ 0.

We next consider the Taylor expansion of the function h(z1, z2, z3, z4, 0, z6) in the
variable z6 near the point p = (z01 , z

0
2 , z

0
3 , z

0
4 , 0, 0). Write z′ = (z1, z2, z3, z4) for the

variables in C
4. We have:

h(z′, 0, z6) =
∂h

∂z6
(z′, 0, 0)z6 +O(|z6|2) (since h(z′, 0, 0) = 0)

=
∂h

∂z6
(p)z6 + a(z′)z6 +O(|z6|2),

where a(z′) is a holomorphic function near p′ = (z01 , z
0
2 , z

0
3 , z

0
4) and a(p′) = 0.

Hence after using the Cauchy-Riemann equations we get:

ℑh(z′, 0, z6) =
(

∂ℑh
∂y6

(p) + ℜa(z′)
)

y6 +

(

∂ℑh
∂x6

(p) + ℑa(z′)
)

x6 +O(x2
6 + y26).

Next, restrict ℑh to the set M∩ {z : z5 = 0}. Note that on M∩ {z : z5 = 0},
y6 = k(z1, z1, z2, z2)x6 where k(z1, z1, z2, z2) = |z1|2 − |z2|2.
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Therefore,

ℑh|M∩{z5=0} =

(

∂ℑh
∂y6

(p) + ℜa(z′)
)

k(z1, z2)x6 +

(

∂ℑh
∂x6

(p) + ℑa(z′)
)

x6 +O(x2
6)

≤ ℑh(p) = 0.

It follows that
(

∂ℑh
∂y6

(p) + ℜa(z′)
)

k(z′) = −∂ℑh
∂x6

(p)−ℑa(z′).

Since

ℜa(p′) = 0 and
∂ℑh
∂y6

(p) 6= 0,

the latter equation implies that there is a nonzero pluriharmonic function v(z′)
defined near p′ such that v(z′)k(z1, z2) is pluriharmonic. We will reach a contra-
diction by showing that v is constant.
The pluriharmonicity of v and vk lead to

0 =
∂2

∂z1∂z̄2
(vk)

=
∂v

∂z1

∂k

∂z̄2
+

∂v

∂z̄2

∂k

∂z1

= −z2
∂v

∂z1
+ z̄1

∂v

∂z̄2
.

Hence

z̄1
∂v

∂z̄2
= z2

∂v

∂z1
.

But both z1
∂v
∂z2

and z2
∂v
∂z1

are holomorphic. Therefore, for some constants c1, c2,

z2
∂v

∂z1
= c1, z1

∂v

∂z2
= c2 = c̄1.

This in turn implies that

∂2v

∂z2∂z1
=

−c1
z22

, and
∂2v

∂z1∂z2
=

−c2
z21

which is impossible unless c1 = c2 = 0.
Thus

∂v

∂z1
=

∂v

∂z2
≡ 0.

Recall that

v(z′) =
∂ℑh
∂y6

(p) + ℜa(z′)

and

v(z′)(|z1|2 − |z2|2) =
−∂ℑh
∂x6

(p)−ℑa(z′).

Since v(z′) is independent of z1 and z2, so are ℜa(z′) and hence ℑa(z′). This
leads to the contradiction that |z1|2 − |z2|2 is independent of z1 and z2.
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Thus we have shown that no nonconstant holomorphic function can attain a
weak local maximum at any point of M. That is, the strong maximum principle
is valid for the restrictions of holomorphic functions.

Next consider the holomorphic function f(z) = z6.

f(z)|M = x6 +
√
−1

(

|z5|2g(z) + x6(|z1|2 − |z2|2)
)

where g(0) = 1. Therefore, the image ofM under f does not intersect the negative
y−axis. Hence, the continuous CR function

exp
(

−
√
iz6

)

(with the principal branch) attains a local maximum at 0.

4. Tube Structures

In this section we will show that for real analytic tube structures, the strong
maximum principle is equivalent to analytic hypoellipticity, in the CR case, equiv-
alently, to the holomorphic extendability of every solution.

Let m and n be positive integers. We will denote by x = (x1, . . . , xm) and
t = (t1, . . . , tn) variable points in R

m and R
n respectively. Let V be a domain in

R
n and

ϕ(t) = (ϕ1(t), . . . , ϕm(t))

a real analytic mapping, ϕ : V → R
m.

Let

Zi(x, t) = xi +
√
−1ϕi(t), 1 ≤ i ≤ m

and consider the associated n complex vector fields on R
m × V given by

Lj =
∂

∂tj
−

√
−1

m
∑

k=1

∂ϕk

∂tj
(t)

∂

∂xk

, 1 ≤ j ≤ n.

Clearly,

LjZi = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Let Ω = R
m×V . We will consider continuous solutions h = h(x, t) of the system

of equations

Ljh = 0, 1 ≤ j ≤ n (4.1)

on open subsets of Ω.
We denote by L the system of vector fields L1, . . . , Ln. Observe that when the

mapping ϕ : V → R
m is an immersion, the Lj define a system of CR vector fields

which are not necessarily of hypersurface type.

Definition 4.1. We say that L is analytic hypoelliptic at (x0, t0) ∈ R
m×V if for

any distribution u, whenever Lju (j = 1, . . . , n) is real analytic in a neighborhood
of (x0, t0), u itself is real analytic in a possibly smaller neighborhood of (x0, t0).
We say that L is analytic hypoelliptic on a subset of Rm × V if L is analytic
hypoelliptic at each point of the subset.
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Since the coefficients of the Lj are independent of x, it is clear that L is
analytic hypoelliptic at (x0, t0) ∈ R

m × V if and only if L is analytic hypoelliptic
on R

m × {t0}.
We will use the following result from [1]:

Proposition 4.2. The system L is analytic hypoelliptic at (x0, t0) ∈ R
m × V if

and only if for every distribution h defined in some neighborhood of (x0, t0) which
is a solution, the distribution x 7−→ h(x, t0) is real analytic in some neighborhood
of x0.

Definition 4.3. We say L satisfies the strong maximum principle if given any
connected open set D in R

m×V and any continuous solution h on D, |h| can not
have a weak local maximum at any point of D unless h is constant on D. That
is, p ∈ D and |h(z)| ≤ |h(p)| for all z ∈ D implies that h is constant on U .

We recall the characterization of analytic hypoellipticity proved by Baouendi
and Treves (Theorem 2.1 in [1]):

Theorem 4.4. The system L is analytic hypoelliptic at (x0, t0) ∈ R
m × V if

and only if for every ξ ∈ R
m \ {0}, t0 is not a local extremum of the function

t 7−→ ϕ(t) · ξ.
We have:

Theorem 4.5. The system L satisfies the strong maximum principle on Ω =
R

m × V if and only if L is analytic hypoelliptic on Ω.

Proof. Suppose L satisfies the strong maximum principle on Ω. Let (x0, t0) ∈ Ω
and ξ ∈ R

m\{0}. The function u(x, t) = exp
(

−
√
−1ξ · ϕ(t)

)

is a solution of L on
Ω and |u(x, t)| = exp(ξ ·ϕ(t)). It follows that the function t 7−→ ϕ(t) cannot have
a local extremum at t0. Hence by Theorem 2.1 of [1], L is analytic hypoelliptic
at (x0, t0).

Conversely, assume that L is analytic hypoelliptic on Ω. Let h(x, t) be a
solution on some open connected subset Ω1 ⊂ Ω which for some (x0, t0) ∈ Ω1

satisfies |h(x, t)| ≤ |h(x0, t0)| for all (x, t) ∈ Ω1. We may assume that h(x0, t0) =
1. Then for every positive integer N = 1, 2, . . . , the principal branches (h(x0, t0)−
h(x, t))

1

N are solutions on Ω1 and hence are analytic. This cannot hold unless h
is constant on Ω1. �

5. The Strong Maximum Principle for abstract CR manifolds

Let M be a C∞ abstract CR manifold of hypersurface type with CR bundle
V . The Strong Maximum Principle for M is defined as in Definition 1.1. In
the abstract case, it was shown in [7] that the strong maximum principle is valid
when the CR manifold satisfies certain conditions. To describe their result, we
will first recall some of their definitions, notations and concepts:

An abstract smooth almost CR manifold of type (n, k) consists of a connected
smooth paracompact manifold M of dimension 2n+ k, a smooth real subbundle
HM of the real tangent bundle TM of rank 2n, and a smooth complex structure
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J on the fibers of HM. Let V be the complex subbundle of the complexification
CHM of HM, which corresponds to the −

√
−1 eigenspace of J :

V = {X +
√
−1JX : X ∈ HM}.

The bundle V satisfies the formal integrability condition: [V ,V ] ⊂ V .
The characteristic bundle H0M is defined to be the annihilator of HM in the

real cotangent bundle T ∗M. The Levi form at x ∈ M is defined for ξ ∈ H0
xM

and X ∈ HxM by

L(ξ;X) = dξ̃(X, JX) = 〈ξ, [JX̃, X̃]〉,
where ξ̃ ∈ C∞(M, H0M) and X̃ ∈ C∞(M, HM) are smooth extensions of ξ and
X.

Denote by H1,1M the smooth subbundle of the tensor bundle HM⊗M HM
whose fiber H1,1

x M at x ∈ M is the real vector subspace of HxM ⊗ HxM
generated by the tensors of the form v ⊗ v + (Jv)⊗ (Jv) for v ∈ HxM. H1,1M
is the bundle of Hermitian symmetric tensors in HM⊗MHM. For each x ∈ M
and ξ ∈ H0M, the Levi form L(ξ, ·) defines a linear form Lξ : H

1,1M → R such
that

Lξ(v ⊗ v + (Jv)⊗ (Jv)) = L(ξ, v) ∀v ∈ HxM.

For x ∈ M denote by ΓH1,1
x M the convex hull of

{v ⊗ v + (Jv)⊗ (Jv); v ∈ HxM}
and by ΓH1,1M its interior (H1,1

x M ≃ R
n2

). They are the closed cone of
nonnegative Hermitian symmetric tensors and the open cone of positive Her-
mitian symmetric tensors of HxM ⊗ HxM, respectively. The disjoint union
ΓH1,1M =

⋃

x∈M γH1,1
x M is an open subset of H1,1M.

Definition 5.1. We say that the abstract almost CR manifold is essentially
pseudoconcave if:

(i) M is minimal at each of its points;
(ii) for every x ∈ M there is an open neighborhood U of x in M and a

smooth section Ω ∈ C∞(U,ΓH1,1M) such that

Lξ(Ω) = 0 ∀x ∈ U, ξ ∈ H0
xM.

It is shown in [7] that if M is essentially pseudoconcave, then for each ξ ∈
H0M, the Levi form L(ξ, ·) is either 0 or has at least one positive and one nega-
tive eigenvalue. It is also shown in [7] (see Theorem 4.1) that if M is essentially
pseudoconcave, then every L2

loc CR distribution is C∞. In fact, essential pseu-
doconcavity implies a stronger result, namely, a subelliptic estimate for the CR
complex (Theorem 4.2 in [7]).

The authors also proved that M satisfies the strong maximum principle if it is
essentially pseudoconcave and of finite type.

Theorem 5.2. (Theorem 6.4 in [7]). Assume that M is a connected essentially
pseudoconcave abstract almost CR manifold of type (n, k) of finite type. Let u be
a CR function on M. If |u| has a weak local maximum at some point of M, then
u is constant on M.
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In the following result, we show that for M of hypersurface type, the strong
maximum principle holds under weaker assumptions. In particular, we don’t
assume essential pseudoconcavity, the finite type condition, and the existence of
a complex structure J .

By the main result in [9], in the embedded case, the C∞− hypoellipticity of
the tangential Cauchy-Riemann vector fields is equivalent to the holomorphic
extendability of all CR distributions. Therefore, the result below may be viewed
as an analogue of Proposition 2.2 for abstract CR manifolds.

Theorem 5.3. If every locally integrable CR distribution defined on an open
subset is continuous, then M satisfies the strong maximum principle.

Proof. Suppose every locally defined and locally integrable CR distribution is
smooth. Let UM be a connected open subset and h a continuous CR function
on U . Assume that for some p ∈ U , |h(x)| ≤ |h(p)| for all x ∈ U . Without
loss of generality, we may assume that |h(p)| = h(p) = 1. For k = 1, 2, . . . , let
hk(x) = h(x)k. Then {hk} is a bounded sequence and so by Alaoglu’s theorem,
there is a subsequence {hkj} that converges to h weakly in L2

loc(U). Hence h is a
locally integrable CR function and so by assumption, it is smooth on U . By the
Banach-Saks theorem, there is a further subsequence, which by abuse of notation
we still denote by {hkj} such that for some g ∈ L2

loc(U), the Cesaro means

fN =
1

N

N
∑

j=1

hkj → g in L2
loc(U).

This in turn implies that there is a subsequence {fNj
} such that

fNj
(x) → g(x) pointwise on a dense subset of U.

Since g is continuous, it follows that |g(x)| ≤ 1 for all x ∈ U . Suppose q ∈ U
such that |h(q)| < 1. Let |h(q) < δ < 1. For any positive integer m, we have

|fN(q)| ≤
1

N

m
∑

j=1

|hkj(q)|+
1

N

N
∑

j=m+1

|hkj(q)| ≤
m

N
+

δm

N

(

1

1− δ

)

.

Letting N tend to ∞, we see that g(q) = 0. Thus at any point x ∈ U , |g(x)| = 0
or |g(x)| = 1. Since g(p) = 1, by continuity and the connectedness of U we
conclude that |g(x)| ≡ 1 on U . We next observe that each point of U (and hence
of M) is minimal. To see this, suppose q is a point in U and the Sussmann orbit
Σ of q in U is is of dimension 2n. Let Σ′ ⊂ Σ be an embedded neighborhood
of q. Then the locally integrable function which is defined to be 1 on one side
of Σ′ and 0 on the other side is a CR function which contradicts the hypothesis.
Thus each point is minimal. Write g(x) = u(x) +

√
−1v(x) where u and v are

the real and imaginary parts. If L = X +
√
−1Y is a smooth section of U , since

u(x)2 + v(x)2 ≡ 1, we have u(Lu) + v(Lv) ≡ 0 which together with the equation
L(u+

√
−1v) = 0 leads to

Lv ≡ 0, and hence Xv ≡ 0 ≡ Y v.
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Likewise,
Lu ≡ 0, and hence Xu ≡ 0 ≡ Y u.

Define
S = {x ∈ U : u is constant in a neighborhood of x.

Clearly, the set S is open. Let Op be the orbit of p in U , and let q ∈ Op. Then
there is a path γ in U from p to q that consists of integral curves of real parts
of smooth sections of V . Without loss of generality, assume that γ is an integral
curve of X = ℜL where L is a smooth section of V . Then since Xu ≡ 0 on U ,
the function u has to be constant on γ, and hence, on all of Op. Therefore, by
minimality, p ∈ S. This argument also shows that S is closed and hence S = U ,
proving that u, and hence v are constant on U .

�
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