
BOUNDARY UNIQUE CONTINUATION FOR THE LAPLACE
EQUATION AND THE BIHARMONIC OPERATOR

S. BERHANU

Abstract. We establish results on unique continuation at the boundary for the
solutions of ∆u = f, f harmonic, and the biharmonic equation ∆2u = 0. The
work is motivated by analogous results proved for harmonic functions by X. Huang
et al in [HK1], [HK2], and [HKMP] and by M. S. Baouendi and L. P. Rothschild
in [BR1] and [BR2].

1. Introduction

The real part of f(z) = e
−1√
−iz (use the main branch of the square root defined

on C \ [0,∞)) is a harmonic function on the upper half plane R
2
+ which is smooth

up to the boundary and vanishes to infinite order at the origin. In the works [BR1]
and [BR2] Baouendi and Rothschild proved results on unique continuation at the
boundary and a local Hopf lemma for harmonic functions. Their papers extended
earlier boundary unique continuation results for holomorphic functions obtained in
the works [A2], [HK2], [HKMP], and [L]. These latter results were applied to estab-
lish unique continuation for CR mappings between embedded CR submanifolds in
the works [A1], [A2], [ABR], [BL], [BH1], [HK1], [HK2], and [HKMP].
This paper establishes analogues of the main results in [BR1] and [BR2] for solu-
tions of the biharmonic equation ∆2u = 0 and the Laplace equation ∆u = f where
f is a harmonic function. We believe that the theorems for the biharmonic operator
proved in this paper are the first boundary unique continuation results for opera-
tors of degree higher than two. The biharmonic equation arises in many areas of
continuum mechanics. In solid mechanics it is used to model elasto-static deforma-
tion in the absence of body forces and the solution u may represent the Airy stress
function for a two-dimensional, isotropic, linear elastic solid or the deflection of a
clamped thin plate. In fluid mechanics, it can be used to describe the motion of an
incompressible viscous fluid at low Reynolds number and its solution represents the
stream function for Stokes flow.
Further extensions of the results of Baouendi and Rothschild in [BR1] were proved by
V. Shklover ([Sh]) and H. S. Shapiro ([S]). In particular, Shklover showed that The-
orem 3 in [BR1] (Theorem A in this paper) fails if the normal direction is replaced
with a transverse direction. Shapiro used convolution transforms as discussed in
[HW] to obtain new proofs and generalizations of the theorems in [BR1] and [BR2].
The Dirichlet problem for the biharmonic operator has been studied in numerous
papers. In particular, in [DKV], the authors proved that if D is a bounded domain
in R

n with Lipschitz boundary, f ∈ L2
1(∂D), g ∈ L2(∂D), there exists a unique

biharmonic function u on D, which takes the boundary value f and whose normal

2010 Mathematics Subject Classification. Primary 35J05, 35B60; Secondary 31B25, 30B40.
Key words and phrases. Unique continuation, Laplace equation.
Work supported in part by NSF DMS 1855737.

1



2 S. BERHANU

derivative ∂u
∂ν

equals g on ∂D, both in the sense of non-tangential convergence, and
such that the non-tangential maximal function of ∇u is in L2(∂D).
In a forthcoming article, we will extend Theorems 2 and 3 in this work to polyhar-
monic functions of any finite order.
Section 2 contains the statements of our main results and examples. After some pre-
liminary integral representations in Section 2, the proofs are presented in Sections
4, 5, and 6.

The author is grateful to the referee for some useful suggestions which have im-
proved the presentation of this paper.

2. Statements of the results and examples

We begin by recalling the results of [BR1] and [BR2]:
We will say that a continuous function u defined on a half ball

B+
r = {x = (x′, xn) ∈ R

n−1 × R : |x| < r, xn > 0}

is flat at 0 if for every positive integer N, there is CN > 0 such that

|u(x)| ≤ cN |x|
N .

Theorem A ([BR1]): Let u be harmonic on the half ball B+
r , continuous on the

closure. Suppose

(1) u(s, 0) ≥ 0 for |s| ≤ r, s ∈ R
n−1;

(2) the function xn 7−→ u(0′, xn) is flat at xn = 0;
(3) for every positive integer N, the function |s|−Nu(s, 0) is integrable on {s ∈

R
n−1 : |s| ≤ r}. Then, u(x′, 0) ≡ 0 on |x′| ≤ ǫ for some ǫ > 0.

The following corollary is an immediate consequence:
Corollary B: Let u be harmonic on the half ball B+

r , continuous on the closure.
Assume that

(1) u(s, 0) ≥ 0 for |s| ≤ r;
(2) u(x) is flat at x = 0.

Then u ≡ 0.

When n = 2, Corollary B was proved in [HK]. Theorem A was generalized in [BR2]
as follows:

Theorem C ([BR2]): Let u be harmonic on the half ball B+
r , continuous on the

closure. Assume that

(1) for some homogeneous polynomial p(s) in n− 1 variables,

p(s)u(s, 0) ≥ 0 for |s| ≤ r;

(2) for every multi-index β in n variables, |β| ≤ d = degree of p,

xn 7−→ ∂β
xu(0; xn) is flat at xn = 0;

(3) for every positive integer N, |s|−Np(s)u(s, 0) is integrable on {s ∈ R
n−1 :

|s| ≤ r}. Then, u(x′, 0) ≡ 0 on |x′| ≤ ǫ for some ǫ > 0.
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Corollary D: Let u be harmonic on the half ball B+
r , continuous on the closure.

Suppose

(1) for some homogeneous polynomial p(s) in n− 1 variables,

p(s)u(s, 0) ≥ 0 for |s| ≤ r;

(2) u(x) is flat at x = 0. Then u ≡ 0.

Inspired by the preceding results, in this paper we will prove:

Theorem 1. Let u be a solution of the biharmonic equation ∆2u = 0 in the half

ball B+
r , C

4 on the closure. Suppose that for some monomial α = (α1, ..., αn−1),

(1) for every multi-index β in n variables with |β| ≤ d, where d = |α| is the

degree of sα, the function xn 7−→ (∂β
x )u(0, xn) is flat at xn = 0;

(2) for every positive integer N, the functions |s|−Nsαu(s, 0) and |s|−Nsαuxn
(s, 0)

are integrable on {s ∈ R
n−1 : |s| ≤ r}. Then there exists ǫ > 0 such that

if sαu(s, 0) ≥ 0, then u(x′, 0) ≡ 0 for |x′| ≤ ǫ and if sαuxn
(s, 0) ≥ 0,

uxn
(x′, 0) ≡ 0 for |x′| ≤ ǫ.

In particular, if sαu(s, 0) ≥ 0 and sαuxn
(s, 0) ≥ 0, then u extends as a solution to a

neighborhood of the origin.

Corollary 1. Let u be a solution of ∆2u = 0 in B+
r , C

4 on the closure. Assume

that for some monomial α = (α1, ..., αn−1),

(1) sαu(s, 0) ≥ 0 and sαuxn
(s, 0) ≥ 0 for |s| ≤ r;

(2) |s|−Nsαuxn
(s, 0) is integrable on {s ∈ R

n−1 : |s| ≤ r} for every N .

(3) u(x) is flat at x = 0.

Then, u(x) ≡ 0.

Observe that if in the preceding corollary, u is assumed to be smooth up to xn = 0,
then condition (2) is implied by (3).

Theorem 2. Let u be a solution of ∆2u = 0 in B+
r , C

4 on the closure. Assume that

(1) for some homogeneous polynomial p(s) in n−1 variables, p(s)u(s, 0) ≥ 0 for

some |s| ≤ r;
(2) for every multi-index β in n variables with |β| ≤ d, where d is the degree of

p(s), the function xn 7−→ (∂β
x )u(0, xn) is flat at xn = 0;

(3) for every positive integer N, |s|−Np(s)u(s, 0) is integrable on {s ∈ R
n−1 :

|s| ≤ r};
(4) uxn

(x′, 0) ≡ 0.

Then, there exists ǫ > 0 such that u(x′, 0) ≡ 0 for |x′| ≤ r.

Corollary 2. Let u be a solution of ∆2u = 0 in B+
r , C

4 on the closure. Assume

that

(1) for some homogeneous polynomial p(s) in n−1 variables, p(s)u(s, 0) ≥ 0 for

|s| ≤ r;
(2) uxn

(x′, 0) ≡ 0 for |s| ≤ r;
(3) for every multi-index β in n variables with |β| ≤ d, where d is the degree of

p(s), the function xn 7−→ (∂β
x )u(0, xn) is flat at xn = 0;

(4) u(x) is flat at x = 0.

Then, u ≡ 0.
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We next state boundary uniqueness results for a different Dirichlet condition where
we no longer assume integrability of |s|−Nu(s, 0) for any N .

Theorem 3. Let u be a solution of the biharmonic equation ∆2u = 0 in the half

ball B+
r , C

4 on the closure. Assume that

(1) u(s, 0) ≥ 0 and ∆u(s, 0) ≤ 0 for |s| ≤ r where ∆ is in n variables;

(2) the function xn 7−→ u(0, xn) is flat at xn = 0.

Then, u(x′, 0) ≡ 0 and ∆u(x′, 0) ≡ 0 on |x′| ≤ ǫ for some ǫ > 0. In particular, u
extends as a solution to a neighborhood of origin.

Corollary 3. Let u be a solution of ∆2u = 0 on B+
r , C

4 on the closure. Suppose

(1) u(s, 0) ≥ 0 and ∆u(s, 0) ≤ 0 for |s| ≤ ǫ;
(2) u(x) is flat at x = 0.

Then u(x) ≡ 0.

Theorem 3 leads to the following generalization of the main result in [BR1] (Theo-
rem A in this paper) on boundary uniqueness continuation for the Laplace operator:

Corollary 4. Let u be C4 on B+
r and a solution of ∆u = f where f is harmonic on

B+
r . Suppose

(1) u(s, 0) ≥ 0 and f(s, 0) ≤ 0 for |s| ≤ r;
(2) the function xn −→ u(0, xn) is flat at xn = 0;

Then u(x′, 0) ≡ 0 and f(x′, 0) ≡ 0 on |x′| ≤ ǫ for some ǫ > 0. In particular, u(x)
extends as a real analytic function past xn = 0.

Corollary 5. Let u be C4 on B+
r and ∆u = f where f is harmonic on B+

r . Suppose

(1) u(s, 0) ≥ 0 and f(s, 0) ≤ 0 for |s| ≤ r;
(2) u(x) is flat at x = 0. Then u ≡ 0.

The following examples show that the theorems above may not hold if we drop
some of the assumptions. In particular, Corollary 5 may not be valid if the har-
monicity of f is replaced by real analyticity.

Example 1: In R
2 let u(x) = x2

1 + x1x
2
2. Then ∆2u = 0, u(x1, 0) ≥ 0 and

ux2
(x1, 0) ≡ 0. The function x2 7−→ u(0, x2) is flat at x2 = 0.

Example 2: Let w(x1) ∈ C∞(R) be flat at x1 = 0, w(x1) > 0 for x1 > 0 and
w(x1) < 0 for x1 < 0. Let v be a harmonic function in the half plane x2 > 0
such that v(x1, 0) = w(x1). If vx2

(0, 0) 6= 0, set u(x) = x1v(x). If vx2
(0, 0) = 0,

choose M > 0 large enough so that x1vx2
(x1, 0) + Mx2

1 ≥ 0 near x1 = 0 and set
u(x) = x1v(x) +Mx2

1x2. Then ∆2u(x) = 0 for x2 > 0, u(x1, 0) is flat at x1 = 0 and
so |x1|

−Nu(x1, 0) is locally integrable for all N . u(x1, 0) ≥ 0 and x2 7−→ u(0, x2) ≡ 0.
Moreover, ux2

(x1, 0) ≥ 0.

Example 3. Let

f(t) =











exp
(

− 1
t2

)

, t > 0

0, t = 0

− exp
(

− 1
t2

)

, t < 0.
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The function f is C∞ on R, flat at t = 0 and f ′(t) ≥ 0. Let v(x) be harmonic on
R

2
+ such that v(x1, 0) = f(x1). Let u(x1, x2) = x1v(x1, x2). Then,

∆2u(x) = 0 on R
2
+, u(x1, 0) = x1f(x1) ≥ 0,

and

∆u(x1, 0) = 2f
′
(x1) ≥ 0, u(0, x2) ≡ 0.

The function u(x1, 0) is not identically zero in any neighborhood of the origin. This

example shows that Theorem 3 may not hold if u(x′, 0) and ∆u(x′, 0) have the same
sign.

Example 4: In R+
2 let u(x, y) = y4e

−1

x2+y2 . Then ∆u = f is real analytic in B+
1 ,

u(x, 0) = ∆u(x, 0) ≡ 0, and u(x, y) is flat at the origin. Thus Corolloary 5 may not
be valid if f is merely real analytic in B+

r .

3. Integral Representations And Preliminaries

In [Bo], Boggio showed that the Green’s function GB
n for ∆2 with Dirichlet bound-

ary conditions for the unit ball B in R
n is given by

GB
n (x, y) = kn|x− y|4−n

∫ [XY ]/[xy]

1

t2 − 1

tn−1
dt

where kn is a dimensional positive constant, [XY ] =
∣

∣

∣
|x|y − x

|x|

∣

∣

∣
and [xy] = |x− y|.

In [BMZ], by replacing [XY ] in Boggio’s formula by |x − y|, the authors gave the
following formula for the the Green’s function

Gn(x, y) = cn|x− y|4−n

∫ |x−ȳ

x−y
|

1

t2 − 1

tn−1
dt

of ∆2 on R
n
+ with the Dirichlet boundary conditions:

Gn(x, y) = 0, ∂xn
Gn(x, y) = 0 at xn = 0.

Here, cn is a constant and for y = (y1, ..., yn), ȳ = (y1, ...,−yn). See also the paper
[Be] for Green’s functions for ∆2 on the unit ball for other Dirichlet conditions.

We have:

Gn(x, y) =















cn

(

1
(4−n)|x−ȳ|n−4 −

|x−y|2

(2−n)|x−ȳ|n−2 +
2

(n−4)(n−2)|x−y|n−4

)

, n /∈ {2, 4}

|x− y|2 log |x−y
x−ȳ

|2 + 4x2y2, n = 2
c4
2

(

log |x−ȳ
x−y

|2 + |x−y|2

|x−ȳ|2
− 1
)

, n = 4.

In Green’s identity
∫

B+
r

u(y)∆w(y) dy −

∫

B+
r

∆u(y)w(y) dy =

∫

∂B+
r

(

u(y)
∂w

∂ν
(y)−

∂u

∂ν
(y)w(y)

)

dσ,

we plug

w(y) = ∆Gn(x, y) = ∆yGn(x, y), x ∈ B+
r
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to get:

u(x)−

∫

B+
r

∆u(y)∆Gn(x, y) dy =

∫

∂B+
r

(

u(y)
∂

∂ν
∆Gn(x, y)

−∆Gn(x, y)
∂u

∂ν
(y)

)

dσ,(1)

where ∂
∂ν

is the outer normal derivative and ∆ acts in the y variable. Applying

Green’s identity again, we have:
∫

B+
r

∆Gn(x, y)∆u(y) dy = −

∫

∂B+
r

(

Gn(x, y)
∂

∂ν
∆u(y)−∆u(y)

∂Gn

∂ν
(x, y)

)

dσ

+

∫

B+
r

Gn(x, y)∆
2u(y) dy.(2)

From (1) and (2), using ∆2u = 0, and G(x, y) = ∂G
∂ν
(x, y) = 0, when yn = 0, we get

the following representation formula for u in B+
r :

u(x) = −

∫

∂B+
r \Σ

(

Gn(x, y)
∂

∂ν
∆u(y)−∆u(y)

∂Gn

∂ν
(x, y)

)

dσ

+

∫

∂B+
r

(

u(y)
∂

∂ν
∆Gn(x, y)−∆Gn(x, y)

∂u

∂ν
(y)

)

dσ,(3)

where Σ = {y ∈ ∂B+
r : yn = 0}.

For x ∈ B+
r , define

v(x) =

∫

Σ

(

u(y)
∂

∂ν
∆Gn(x, y)−∆Gn(x, y)

∂u

∂ν
(y)

)

dσ.

For x ∈ Σ, y ∈ ∂B+
r \ Σ, since Gn(x, y) = ∂xn

G(x, y) = 0 (because Gn(x, y) =
Gn(y, x)) and

∂
∂ν
,∆ in the integrals above act in the y variable, we have:

∂

∂ν
∆Gn(x, y) = ∆Gn(x, y) = 0.

It follows that

(4) v(x′, 0) = u(x′, 0) and
∂v

∂xn

(x′, 0) =
∂u

∂xn

(x′, 0).

4. Proof of Theorem 1

We first assume that the multi-index α = 0.

Case 1. Suppose n /∈ {2, 4}.
Since ∂

∂ν
is the outer normal derivative,

v(x) =

∫

Σ

(

∆Gn(x, y
′)
∂u

∂yn
(y′, 0)− u(y′, 0)

∂

∂yn
∆Gn(x, y

′)

)

dy′

where ∆ = ∆y and ∂
∂yn

∆Gn(x, y
′) = ∂

∂yn
∆yG(x, y)

∣

∣

∣

∣

yn=0

.

We will need certain high order derivative of v(x).We begin by computing ∆Gn(x, y)
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and ∂
∂yn

∆Gn(x, y) at yn = 0.

Recall that when n /∈ {2, 4},

Gn(x, y) = cn

(

1

(4− n)|x− ȳ|4−n
−

|x− y|2

(2− n)|x− ȳ|2−n
+

2

(n− 4)(n− 2)|x− y|4−n

)

.

When 1 ≤ j ≤ n− 1,

∂

∂yj
|x− ȳ|4−n = (n− 4)|x− ȳ|2−n(xj − yj), and so

∂2

∂y2j
|x− ȳ|4−n = (4− n)

(

(2− n)|x− ȳ|−n(xj − yj)
2 + |x− ȳ|2−n

)

,

while
∂

∂yn
|x− ȳ|4−n = (4− n)|x− ȳ|2−n(xn + yn), and

∂2

∂y2n
|x− ȳ|4−n = (4− n)

(

(2− n)|x− ȳ|−n(xn + yn)
2 + |x− ȳ|2−n

)

.

It follows that

(5) ∆y|x− ȳ|4−n = 2(4− n)|x− ȳ|2−n.

For 1 ≤ j ≤ n− 1,

∂

∂yj
|x− ȳ|2−n = (n− 2)|x− ȳ|−n(xj − yj),

∂2

∂y2j
|x− ȳ|2−n = (2− n)

(

|x− ȳ|−n − n|x− ȳ|−n−2(xj − yj)
2
)

,

∂

∂yn
|x− ȳ|2−n = (2− n)|x− ȳ|−n(xn + yn), and

∂2

∂y2n
|x− ȳ|2−n = (n− 2)

(

|x− ȳ|−n − n|x− ȳ|−n−2(xn + yn)
2
)

.

Hence

∆y|x− y|2|x− ȳ|2−n = |x− y|2∇y|x− ȳ|2−n +∆(|x− y|2)|x− ȳ|2−n

+ 2〈∇y|x− y|2,∇y|x− ȳ|2−n〉

=
2n

|x− ȳ|n−2
+ 4(2− n)

|x′ − y′|2

|x− ȳ|n

+ 4(n− 2)

(

x2
n − y2n

|x− ȳ|n

)

.(6)

From (5) and (6),

∆yGn(x, y) =
Dn

|x− ȳ|n−2
− 4cn

(

|x′ − y′|2

|x− ȳ|n

)

+ 4cn

(

x2
n − y2n

|x− ȳ|n

)

−
4cn
n− 2

(

1

|x− y|n−2

)

.(7)

where Dn = 2ncn
n−2

+ 2cn.
It follows that



8 S. BERHANU

(8) ∆yGn(x, y
′) = ∆yGn(x, y)|yn=0 =

8cnx
2
n

(|x′ − y′|2 + x2
n)

n
2

.

We next compute ∂
∂yn

∆yGn(x, y
′) at yn = 0.

∂

∂yn

(

1

|x− ȳ|n−2

) ∣

∣

∣

∣

yn=0

=
(2− n)xn

(|x′ − y′|2 + x2
n)

n
2

,

∂

∂yn

(

1

|x− ȳ|n

) ∣

∣

∣

∣

yn=0

=
−nxn

(|x′ − y′|2 + x2
n)

n+2

2

,

∂

∂yn

(

x2
n − y2n

|x− ȳ|n

) ∣

∣

∣

∣

yn=0

=
−nx3

n

(|x′ − y′|2 + x2
n)

n+2

2

, and

∂

∂yn

(

1

|x− y|n−2

) ∣

∣

∣

∣

yn=0

=
(n− 2)xn

(|x′ − y′|2 + x2
n)

n
2

;

Therefore,

∂

∂yn
∆yGn(x, y)|yn=0 =

(2− n)Dnxn

(|x′ − y′|2 + x2
n)

n
2

+
4cnnxn|x

′ − y′|2 − 4cnnx
3
n

(|x′ − y′|2 + x2
n)

n+2

2

−
4cnxn

(|x′ − y′|2 + x2
n)

n
2

=
(2− n)Dnxn(|x

′ − y′|2 + x2
n) + 4cnnxn|x

′ − y′|2 − 4cnnx
3
n − 4cnxn(|x

′ − y′|2 + x2
n)

(|x′ − y′|2 + x2
n)

n+2

2

=
−8ncnx

3
n

(|x′ − y′|2 + x2
n)

n+2

2

.

(9)

From (8) and (9), for 0 < xn < r,

(10) v(0
′
, xn) =

∫

Σ

[

8cnx
2
n

(|y′|2 + x2
n)

n
2

∂u

∂yn
(y′, 0) +

8ncnx
3
n

(|y′|2 + x2
n)

n+2

2

u(y′, 0)

]

dy′.

Set w(x) = u(x)− v(x), x ∈ B+
r . The function w is a solution of ∆2w = 0 on B+

r ,
and on Σ, from (4),

w(x′, 0) = 0 and
∂w

∂xn

(x′, 0) = 0.

By the reflection principle for ∆2, it follows that w(x) extends past xn = 0 as

a solution of ∆2, and hence as a real analytic function. Indeed, for xn < 0, the
extension which we still denote by w is defined by (see [Hu])

w(x′,−xn) = −w(x) + 2xn
∂w

∂xn

(x)− x2
n∆w(x).

By the local integrability of |y′|−Nu(y′, 0) and |y′|−N ∂u
∂yn

(y′, 0) for all N , formula

(10) implies that the function xn 7−→ v(0
′
, xn) is smooth up to xn = 0. Therefore,

xn 7−→ u(0
′
, xn) = v(0

′
, xn) + w(0

′
, xn)

is also a smooth on [0, r). Because it is flat at xn = 0,

∂k
xn
v(0) = −∂k

xn
w(0) for all k.
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Since w is analytic on a neighbourhood of the origin, there exists c > 0 such that

(11)
∣

∣∂k
xn
v(0)

∣

∣ ≤ ck+1k!

We next estimate the derivatives ∂k
xn
v(0) using formula (10). Let k be a positive

integer, and consider

∂k
xn

{

8ncnx
3
n

(|y′|2 + x2
n)

n+2

2

}

∣

∣

∣

∣

xn=0

= 8ncnk(k − 1)(k − 2)∂k−3
xn

{

1

(|y′|2 + x2
n)

n+2

2

}

∣

∣

∣

∣

xn=0

.

To compute the later derivative, we use Faà di Bruno’s formula

dm

dtm
F (g(t)) =

∑ m!

m1! · · ·mm!
F (m1+···+mm)(g(t))

m
∏

j=1

(

g(j)(t)

j!

)mj

where the sum is taken over all m-tuples of nonnegative integers m1, · · · ,mm that
satisfy the constraint

m1 + 2m2 + · · ·+mmm = m.

Setting g(t) = |y′|2 + t2 and F (s) = 1

s
n+2
2

, the formula leads to

(

d

dt

)m

F (g(t))

∣

∣

∣

∣

t=0

= 0, when m is odd, and

(

d

dt

)2N

F (g(t))

∣

∣

∣

∣

t=0

=
(2N)!

N !
F (N)(|y′|2).

Since

F (N)(s) =
(−1)N(n+ 2)(n+ 4) · · · (n+ 2N)

2Ns
n
2
+N+1

,

∂2N+1
xn

{

8ncnx
3
n

(|y′|2 + x2
n)

n+2

2

}

∣

∣

∣

∣

xn=0

= 8ncn(2N + 1)(2N)(2N − 1)∂2N−2
xn

{

1

(|y′|2 + x2
n)

n+2

2

}

∣

∣

∣

∣

xn=0

=
(−1)N−18ncn(2N + 1)!(n+ 2)(n+ 4) · · · (n+ 2N − 2)

(N − 1)!2N−1|y′|n+2N

=
(−1)N−18ncn(2N + 1)!(n

2
+ 1)(n

2
+ 2) · · · (n

2
+N − 1)

(N − 1)!|y′|n+2N
.

Thus,

(12)

∣

∣

∣

∣

∣

∂2N+1
xn

{

8ncnx
3
n

(|y′|2 + x2
n)

n+2

2

}

∣

∣

∣

∣

xn=0

∣

∣

∣

∣

∣

≥
8ncn(2N + 1)!

|y′|n+2N
.

Consider next

∂k
xn

{

8cnx
2
n

(|y′|2 + x2
n)

n
2

} ∣

∣

∣

∣

xn=0

= 8k(k − 1)cn∂
k−2
xn

{

1

(|y′|2 + x2
n)

n
2

} ∣

∣

∣

∣

xn=0

.
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Faà di Bruno’s formula this time implies that

∂k
xn

{

8cnx
2
n

(|y′|2 + x2
n)

n
2

} ∣

∣

∣

∣

xn=0

= 0 when k is odd, and

∂2N
xn

{

8cnx
2
n

(|y′|2 + x2
n)

n
2

} ∣

∣

∣

∣

xn=0

=
(−1)N−1 8cn(2N)! n(n+ 2) · · · (n+ 2N − 4)

(N − 1)! 2N−1 |y′|n+2N−2

and so

(13)

∣

∣

∣

∣

∂2N
xn

{

8cnx
2
n

(|y′|2 + x2
n)

n
2

} ∣

∣

∣

∣

xn=0

∣

∣

∣

∣

≥
8cn(2N)!

|y′|n+2N−2

If u(x′, 0) ≥ 0, from (10), (12) and the fact that the odd order derivatives

∂k
xn

{

x2
n

(|y′|2 + x2
n)

n
2

}
∣

∣

∣

∣

xn=0

= 0,

we conclude that
∣

∣∂2N+1
xn

v(0)
∣

∣ ≥ 8ncn(2N + 1)!

∫

Σ

u(y′, 0)

|y′|n+2N
dy′

and hence using (11), for any 0 < ǫ < r,

c2N+1 ≥ 8ncn

∫

Σ

u(y′, 0)

|y′|n+2N
dy′ ≥

8ncn
ǫn+2N

∫

|y′|<ǫ

u(y′, 0) dy′.

Choosing ǫ so that ǫ < 1
c
, taking the (2N + 1)th root and letting n −→ ∞, we

conclude that

u(x′, 0) ≡ 0, for |x′| ≤ ǫ.

Likewise, if ∂u
∂xn

(x′, 0) ≥ 0, since the even order derivatives

∂k
xn

{

x3
n

(|y′|2 + x2
n)

n+2

2

}

∣

∣

∣

∣

xn=0

= 0,

using (10), (11) and (13), we get

c2N ≥ 8cn

∫

Σ

∂u
∂yn

(y′, 0)

|y′|n+2N−2
dy′ ≥

8ncn
ǫn+2N−2

∫

|y′|<ǫ

∂u

∂yn
(y′, 0) dy′,

and therefore,
∂u

∂yn
(x′, 0) ≡ 0 for |x′| ≤ ǫ.

Case 2. Assume n = 4. Recall that

G4(x, y) =
c4
2

(

log

∣

∣

∣

∣

x− ȳ

x− y

∣

∣

∣

∣

2

+
|x− y|2

|x− ȳ|2
− 1

)

.

As before, we first compute ∆yG4(x, y) and

∂

∂y4
∆yG4(x, y) at y4 = 0.
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For 1 ≤ j ≤ 3, we have:

∂

∂yj
log

∣

∣

∣

∣

x− ȳ

x− y

∣

∣

∣

∣

2

=

∣

∣

∣

∣

x− y

x− ȳ

∣

∣

∣

∣

2
∂

∂yj

(

∣

∣

∣

∣

x− ȳ

x− y

∣

∣

∣

∣

2
)

=
2(xj − yj)(|x− ȳ|2 − |x− y|2)

|x− ȳ|2|x− y|2
, and

∂2

∂y2j
log

∣

∣

∣

∣

x− ȳ

x− y

∣

∣

∣

∣

2

=
−2(|x− ȳ|2 − |x− y|2)

|x− ȳ|2|x− y|2
+

4(xj − yj)
2(|x− ȳ|2 − |x− y|2)

|x− ȳ|4|x− y|2

+
4(xj − yj)

2(|x− ȳ|2 − |x− y|2)

|x− ȳ|2|x− y|4
.

∂

∂y4
log

∣

∣

∣

∣

x− ȳ

x− y

∣

∣

∣

∣

2

=
|x− y|2

|x− ȳ|2
∂

∂y4

(

∣

∣

∣

∣

x− ȳ

x− y

∣

∣

∣

∣

2
)

=
2(x4 + y4)

|x− ȳ|2
+

2(x4 − y4)

|x− y|2
, and

∂2

∂y24
log

∣

∣

∣

∣

x− ȳ

x− y

∣

∣

∣

∣

2

=
2|x− ȳ|2 − 4(x4 + y4)

2

|x− ȳ|4

+
4(x4 − y4)

2 − 2|x− y|2

|x− y|4
.

For 1 ≤ j ≤ 3,

∂

∂yj

|x− y|2

|x− ȳ|2
=

2(xj − yj) (|x− y|2 − |x− ȳ|2)

|x− ȳ|4
, and

∂2

∂y2j

(

|x− y|2

|x− ȳ|2

)

=
2 (|x− ȳ|2 − |x− y|2)

|x− ȳ|4

+
8(xj − yj)

2 (|x− y|2 − |x− ȳ|2)

|x− ȳ|6
.

∂

∂y4

(

|x− y|2

|x− ȳ|2

)

=
2(x4 − y4)|x− ȳ|2 − 2(x4 + y4)|x− y|2

|x− ȳ|4
, and

∂2

∂y24

(

|x− y|2

|x− ȳ|2

)

=
2

|x− ȳ|2
−

2|x− y|2

|x− ȳ|4
+

8(x4 − y4)(x4 + y4)

|x− ȳ|4

+
8(x4 + y4)

2|x− y|2

|x− ȳ|6
.

It follows that

∆yG4(x, y) =
c4
2

{

12

|x− ȳ|2
−

4

|x− y|2
−

8|x′ − y′|2

|x− ȳ|4
+

8(x2
4 − y24)

|x− ȳ|4

}

, and
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∂

∂y4
∆yG4(x, y) =

c4
2

{

−24(x4 + y4)

|x− ȳ|4
−

8(x4 − y4)

|x− y|4
+

32(x4 + y4)|x
′ − y′|2

|x− ȳ|6

−
16y4

|x− ȳ|4
−

32(x4 − y4)(x4 + y4)
2)

|x− ȳ|6

}

.

Thus,

∆yG4(x, y)

∣

∣

∣

∣

y4=0

=
c4
2

{

8

|x− y′|2
−

8|x′ − y′|2

|x− y′|4
+

8x2
4

|x− y′|4

}

=
c4
2

{

16x2
4

(|x′ − y′|2 + x2
4)

2

}

, and

∂

∂yn
∆yG4(x, y)

∣

∣

∣

∣

y4=0

=
c4
2

{

−64x3
4

(|x′ − y′|2 + x2
4)

3

}

.

It follows that

v(0
′
, x4) =

∫

Σ

[

8c4x
2
4

(|y′|2 + x2
4)

2

∂u

∂y4
(y′, 0) +

32c4x
3
4

(|y′|2 + x2
4)

3
u(y′, 0)

]

dy′.

This formula is the same as (10) when n = 4 and hence we reach the same conclu-
sions, namely, for some ǫ > 0:
if u(x′, 0) ≥ 0, then u(x′, 0) ≡ 0 for |x′| ≤ ǫ, and
if ∂u

∂xn
(x′, 0) ≥ 0, then ∂u

∂xn
(x′, 0) ≡ 0 for |x′| ≤ ǫ.

Case 3. Suppose n = 2.
In this case the Green’s function

G2(x, y) =
c2
2

[

|x− ȳ|2 − |x− y|2 − |x− y|2 log

∣

∣

∣

∣

x− ȳ

x− y

∣

∣

∣

∣

2 ]

.

We have

∆yG2(x, y)

∣

∣

∣

∣

y2=0

=
Ax2

2

(x1 − y1)2 + x2
2

, and

∂

∂y2
∆yG2(x, y)

∣

∣

∣

∣

y2=0

=
Bx3

2

((x1 − y1)2 + x2
2)

2

for some constants A and B. This means that v(0
′
, x2) has the same form as in (10)

which leads to the same conclusion for u(x1, 0) and
∂u
∂y2

(x1, 0).

Suppose now α = (α1, ..., αn−1), |α| > 0, and either

sαu(s, 0) ≥ 0 or sα
∂u

∂yn
(s, 0) ≥ 0 for |s| ≤ r.

Then there is a multi-index which we will still denote by α = (α1, ..., αn−1) such that

sαu(s, 0) ≥ 0 or
∂u

∂yn
(s, 0) ≥ 0 for |s| ≤ r

with each αi ∈ {0, 1}. The proof will show that without loss of generality, we may
assume that α = (1, ..., 1). Recall the formula v(x) from (10) which we saw holds for
all n :

v(x) =

∫

Σ

[

8cnx
2
n

(|x′ − y′|2 + x2
n)

n
2

∂u

∂yn
(y′, 0) +

8ncnx
3
n

(|x′ − y′|2 + x2
n)

n+2

2

u(y′, 0)

]

dy′
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We have

∂x1
...∂xn−1

v(x)

∣

∣

∣

∣

x′=0

=

∫

Σ

[

8cnn(n+ 2)...(n+ 2(n− 2))x2
n

(

|y′|2 + x2
n

)
n
2
+n−1

y1...yn−1
∂u

∂yn
(y′, 0)

+
8ncn(n+ 2)(n+ 4)...(n+ 2(n+ 1))x3

n
(

|y′|2 + x2
n

)
n
2
+n

y1...yn−1 u(y
′, 0)

]

dy′.(14)

We next estimate ∂k
xn

(

∂x1
...∂xn−1

v(x)

∣

∣

∣

∣

x′=0

)∣

∣

∣

∣

xn=0

. From (13) with n replaced by

3n− 2 , we have:

(15) ∂2N
xn

{

x2
n

(|y′|2 + x2
n)

n
2
+n−1

}∣

∣

∣

∣

xn=0

≥
(2N)!

|y′|3n+2N−4

while ∂2N+1
xn

{

x2
n

(|y′|2+x2
n)

n
2
+n−1

}∣

∣

∣

∣

xn=0

= 0.

Likewise, (12) implies that

(16) ∂2N+1
xn

{

x3
n

(|y′|2 + x2
n)

n
2
+n

}
∣

∣

∣

∣

xn=0

≥
(2N + 1)!

|y′|3n−2+2N

and ∂2N
xn

{

x3
n

(|y′|2+x2
n)

n
2
+n

}
∣

∣

∣

∣

xn=0

= 0. It follows that if y1...yn−1u(y
′, 0) ≥ 0,

1

(2N)!
∂2N
xn

(

∂x1
...∂xn−1

v(x)

∣

∣

∣

∣

x′=0

)
∣

∣

∣

∣

xn=0

≥ 8cnn(n+ 2)...(n+ 2(n− 2))

∫

Σ

y1...yn−1u(y
′, 0)

|y′|3n+2N−4
dy′(17)

and if y1...yn−1
∂

∂yn
u(y′, 0) ≥ 0,

1

(2N + 1)!
∂2N+1
xn

(

∂x1
...∂xn−1

v(x)

∣

∣

∣

∣

x′=0

)∣

∣

∣

∣

xn=0

≥ 8ncn(n+ 2)(n+ 4)...(n+ 2(n+ 1))

∫

Σ

y1...yn−1
∂u
∂yn

(y′, 0)

|y′|3n+2N−2
dy′.(18)

Estimates (17),(18), together with the analyticity of u(x) − v(x) at 0, and the
flatness of xn 7−→ ∂x1

· · · ∂xn−1
u(0

′
, xn) imply as in the case α = 0 the following

conclusion:
∃ ǫ > 0 such that if y1...yn−1u(y

′, 0) ≥ 0 for |y′| ≤ r, u(y′, 0) ≡ 0 for |y′| ≤ ǫ and if
y1...yn−1

∂u
∂yn

(y′, 0) ≥ 0 for |y′| ≤ r, then ∂u
∂yn

(y′, 0) ≡ 0.
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5. Proof of Theorem 2

Let Pd(R
n) denote the space of homogeneous polynomials of degree d in R

n.
Consider the linear map

T : Pd(R
n) −→ Pd(R

n)

defined by T (q1) = q2 where for x ∈ R
n,

q2(x) = |x|n+2+2dq1(∂x)

(

1

|x|n+2

)

.

and ∂x = ( ∂
∂x1

, ..., ∂
∂xn

). We will show that T is a bijection. Suppose T (q1) = 0. Since

1
|x|n+2 is homogeneous on R

n \ 0, by Theorem 3.2.4 in [Ho], there is a distribution S

on R
n such that

S =
1

|x|n+2
on R

n \ 0.

We then have q1(∂x)S is supported at the origin and hence has the form

q1(∂x)S =
∑

|α|≤m

aαδ
(α)
0 .

Taking the Fourier transform, we get

q1(−iξ)Ŝ(ξ) =
∑

|α|≤m

aα(−iξ)α.

By the arguments on page 169 in [Ho],

Ŝ(ξ) = U1(ξ) + U2(ξ) log |ξ|,

where U2(ξ) is a homogeneous polynomial of degree 2 and U1(ξ) is a homogeneous
distribution of degree 2 that is C∞ in R

n \ 0. The function U2(ξ) is given by

U2(ξ) = −

∫

|w|=1

(

n
∑

j=1

wjξj

)2

dw

and hence is not identically zero. Therefore, the equation

q1(−iξ)(U1(ξ) + U2(ξ) log |ξ|) =
∑

|α|≤m

aα(−iξ)α

implies that q1 ≡ 0 which shows that the map T is injective and hence a bijection.
The hypothesis and (10) tell us that for x ∈ B+

r ,

v(x) =

∫

Σ

8ncnx
3
n

(|x′ − y′|2 + x2
n)

n+2

2

u(y′, 0) dy′.

Given the homogeneous polynomial p(x′) of degree d as in the statement of Theorem
2, viewing it as an element of Pd(R

n), let q(x) ∈ Pd(R
n) such that T (q)(x) = p(x′).

We have:

q(∂x)v(x)

∣

∣

∣

∣

x′=0

=

∫

Σ

8ncnx
3
n

(|y′|2 + x2
n)

n+2+2d
2

p(y′)u(y′, 0) dy′.
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Replacing n with n+ 2d in (12), we have:

(19)

∣

∣

∣

∣

∣

∂2N+1
xn

{

8ncnx
3
n

(|y′|2 + x2
n)

n+2+2d
2

}

∣

∣

∣

∣

xn=0

∣

∣

∣

∣

∣

≥
8(n+ 2d)cn(2N + 1)!

|y′|n+2d+2N
.

Since |y′|−kp(y′)u(y′, 0) is locally integrable for all k, the function q(∂x)v(0, xn) is
smooth on [0, r). Therefore, by the analyticity of v(x) − u(x) and the flatness of
u(0, xn) at xn = 0, for some C > 0,

C2N+d+2(2N+d+1)! ≥

∣

∣

∣

∣

∂2N+1
xn

(q(∂x)v(x)|x′=0)

∣

∣

∣

∣

xn=0

∣

∣

∣

∣

≥ 8(n+2d)cn(2N+1)!

∫

Σ

p(y′)u(y′, 0)

|y′|n+2d+2N
dy′.

Hence, using the inequality (2N + 1 + d)! ≤ 22N+1+d(2N + 1)!d!, we get:

C(2C)2N+d+1d! ≥ 8(n+ 2d)cn

∫

Σ

p(y′)u(y′, 0)

|y′|n+2d+2N
dy′.

As before, since p(y′)u(y′, 0) ≥ 0, this leads to u(y′, 0) ≡ 0.

6. Proof of Theorem 3

Let η ∈ C∞
0 (Rn−1), η(x) ≡ 1 for |x| ≤ r

2
and η(x) ≡ 0 when |x| ≥ r. Define v(x)

on B+
r by

v(x) =







2
nωn

∫

Σ
xn

(|x′−y′|2+x2
n)

n
2
η(y′) u(y′, 0) dy′ − 1

n(n−1)ωn

∫

Σ
xn

(|x′−y′|2+x2
n)

n−2
2

η(y′)∆u(y′, 0) dy′, n 6= 2

1
ω2

∫

x2

(x1−y1)2+x2
2

η(y1) u(y1, 0) dy1 +
1

4ω2

∫

x2 log[(x1 − y1)
2 + x2

2] η(y1)∆u(y1, 0) dy1, n = 2;

where ωn = the volume of the unit ball in R
n. It is clear that

v(x′, 0) = lim
xn−→0+

v(x) = u(x′, 0) for |x′| ≤
r

2
.

We claim that

∆v(x′, 0) = lim
xn−→0+

∆v(x) = ∆u(x′, 0) for |x′| ≤
r

2
.

To see this note first that 2
nωn

xn

(|x′−y′|2+x2
n)

n
2
is the Poisson kernel in R

n and so it is

harmonic in x. Next, observe that for n 6= 2,

∆x

{

xn

(|x′ − y′|2 + x2
n)

n−2

2

}

=
1

4− n
∆x∂xn

{

1

(|x′ − y′|2 + x2
n)

n−4

2

}

=
1

4− n
∂xn

∆x

{

1

(|x′ − y′|2 + x2
n)

n−4

2

}

= 2
∂

∂xn

{

1

(|x′ − y′|2 + x2
n)

n−2

2

}

= 2(2− n)
xn

(|x′ − y′|2 + x2
n)

n
2

.

Thus,

∆x

{

−1

n(n− 2)ωn

(

xn

(|x′ − y′|2 + x2
n)

n−2

2

)

}

=
2

nωn

(

xn

(|x′ − y′|2 + x2
n)

n
2

)
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for n 6= 2, which is the Poisson kernel.
Likewise, when n = 2,

∆x

{

1

ω2

(

x− 2 log
[

(x1 − y1)
2 + x2

2

])

}

=
1

ω2

(

x2

((x1 − y1)2 + x2
2

)

which is also the Poisson kernel. It now follows that

∆v(x′, 0) = lim
xn−→0+

∆v(x) = ∆u(x′, 0) for |x′| ≤
r

2
.

Define w(x) = u(x)−v(x) for x ∈ B+
r . From the preceding observations, ∆2w(x) = 0

on B+
r , w(x

′, 0) = 0, and ∆w(x′, 0) = 0. We will show that w(x) extends past xn = 0
as a solution of ∆2. Let h(x) = ∆w(x), x ∈ B+

r . Then ∆h = 0 in B+
r and h(x′, 0) = 0

and so h extends to a real anatytic function h̃ on a ball Br. Let w̃ be a solution of
∆w̃ = h̃ in Br and w̃(x′, 0) = 0. w̃ is real analytic on Br. Since ∆(w̃−w) = 0 on B+

r

and w̃(x′, 0) − w(x′, 0) = 0, w̃ − w extends as a real analytic function past xn = 0
and hence w(x) extends also past xn = 0. Using also Lemma 1 below, as before,

∂k
xn
v(0) = −∂k

xn
w(0), ∀k

and so for some c > 0,

(20)

∣

∣

∣

∣

∂k
xn
v(0)

∣

∣

∣

∣

≤ ck+1k!

We next estimate these derivatives using the integral formula for v(x). From the

steps between (16) and (17), when n 6= 2,

∂k
xn

{

xn

(|y′|2 + x2
n)

n
2

}
∣

∣

∣

∣

xn=0

= k∂k−1
xn

{

1

(|y′|2 + x2
n)

n
2

}
∣

∣

∣

∣

xn=0

= 0, when k is even,

and when k = 2N + 1,

∂2N+1
xn

{

xn

(|y′|2 + x2
n)

n
2

}∣

∣

∣

∣

xn=0

= (2N + 1)∂2N
xn

{

1

(|y′|2 + x2
n)

n
2

}∣

∣

∣

∣

xn=0

=
(−1)N(2N + 1)!n(n+ 1) · · · (n+ 2N − 2)

N !2N |y′|n+2N
.(21)

Likewise,

∂k
xn

{

xn

(|y′|2 + x2
n)

n−2

2

}∣

∣

∣

∣

xn=0

= 0, when k is even,

and when k = 2N + 1,

∂2N+1
xn

{

xn

(|y′|2 + x2
n)

n−2

2

}
∣

∣

∣

∣

xn=0

=
(−1)N(2N + 1)!(n− 2)(n− 1) · · · (n+ 2N − 4)

N !2N |y′|n−2+2N
.(22)

We also have
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∂k
x2

{

x2 log(y
2
1 + x2

2)

}∣

∣

∣

∣

x2=0

= k∂k−1
x2

log(y21 + x2
2)

∣

∣

∣

∣

x2=0

= 2k∂k−2
x2

{

x2

y21 + x2
2

}∣

∣

∣

∣

x2=0

= 0 when k is even,

and if k = 2N + 1,

(23) ∂2N+1
x2

{

x2 log(y
2
1 + x2

2)

}∣

∣

∣

∣

x2=0

=
(−1)N−1(2N − 1)!2.3...(2N − 2)

(N − 1)!2N−1|y′|2N
.

Inequality (20) and the estimates (21),(22),(23) imply as before that for some ǫ > 0,

u(x′, 0) ≡ ∆u(x′, 0) ≡ 0 for |x′| ≤ ǫ.

As shown already, this in turn implies that u(x) extends as a real analytic function
to Bǫ(0).
In the preceding proof, we used the following lemma:

Lemma 1. Let u be a solution of ∆2u = 0 in the half ball B+
r , C

4 on the closure.

Assume that

(1) u(s, 0) ≥ 0 and ∆u(s, 0) ≤ 0 for |s| ≤ r where ∆ is in n variables;

(2) the function xn 7−→ u(0, xn) is flat at xn = 0;

Then for every positive integer N, |s|−Nu(s, 0) and |s|−N∆u(s, 0) are integrable on

{s ∈ R
n−1 : |s| ≤ r}.

Proof. Suppose first n ≥ 2. Recall that for xn > 0,

(24)
v(0, xn)

xn

=
2

nωn

∫

Σ

η(y′)u(y′, 0)

(|y′|2 + x2
n)

n
2

dy′ −
1

n(n− 2)ωn

∫

Σ

η(y′)∆u(y′, 0)

(|y′|2 + x2
n)

n−2

2

dy′.

We will use Taylor’s remainder formulas:
(25)

1

(|y′|2 + x2
n)

n
2

=
N
∑

k=0

Ak

|y′|n

(

xn

|y′|

)2k

+(N+1)AN+1

(

∫

Σ

∫ 1

0

(1− t)N

(|y′|2 + tx2
n)

n+2N+2

2

dt dy′

)

x2N+2
n

and
(26)

1

(|y′|2 + x2
n)

n−2

2

=
N
∑

k=0

Bk

|y′|n−2

(

xn

|y′|

)2k

+(N+1)BN+1

(

∫

Σ

∫ 1

0

(1− t)N

(|y′|2 + x2
n)

n+2N
2

dt dy′

)

x2N+2
n

where for each k,

Ak =
(−1)kn(n+ 2) · · · (n+ 2k − 2)

2kk!
,

and

Bk =
(−1)k(n− 2)n · · · (n+ 2k − 4)

2kk!
.

Let w(x) = v(x) − u(x). Then w(x′, 0) = 0, ∆w(x′, 0) = 0, and ∆2w(x) = 0 for
x ∈ B+

r
2

, and so as we saw before, w has a real analytic extension past xn = 0 which

we still denote by w. Observe that ∂2j
xn
w(x′, 0) = 0 for all j.
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Since w(0, 0) = 0, the function w(0,xn)
xn

is real analytic at xn = 0. Write

w(0, xn)

xn

=
∞
∑

k=0

ckx
2k
n

Using the flatness of xn 7−→ u(0, xn), for each N, we have

v(0, xn)

xn

=
N
∑

k=0

ckx
2k
n +O(x2N+2

n ).

We have

lim
xn−→0+

w(0, xn)

xn

= c0

and so since u(y′, 0) ≥ 0, by the Monotone Convergence Theorem, (24) tells us that
|y′|−nu(y′, 0) ∈ L1

loc, |y
′|2−n∆u(y′, 0) ∈ L1

locand

(27) c0 =
2

nωn

∫

Σ

η(y′)u(y′, 0)

|y′|n
dy′ −

1

n(n− 2)ωn

∫

Σ

η(y′)∆u(y′, 0)

|y′|n−2
dy′

Observe next that

(28) lim
xn−→0+

1

x2
n

(

v(0, xn)

xn

− c0

)

= c1

Therefore, from (24), (25), and (26), for xn > 0,

v(0, xn)

xn

=
2

nωn

∫

Σ

η(y′)u(y′, 0)

|y′|n
dy′ −

1

n(n− 2)ωn

∫

Σ

η(y′)∆u(y′, 0)

|y′|n−2
dy′

−
1

ωn

(
∫

Σ

∫ 1

0

η(y′)u(y′, 0)

(|y′|2 + tx2
n)

n+2

2

dt dy′
)

x2
n

+
1

2nωn

(
∫

Σ

∫ 1

0

η(y′)∆u(y′, 0)

(|y′|2 + tx2
n)

n
2

dt dy′
)

x2
n.(29)

From (25), (26), and (27),

c1 = lim
xn−→0+

1

x2
n

(

v(0, xn)

xn

−
2

nωn

∫

Σ

η(y′)u(y′, 0)

|y′|n
dy′ +

1

n(n− 2)ωn

∫

Σ

η(y′)∆u(y′, 0)

|y′|n−2
dy′
)

= lim
xn−→0+

(

−1

ωn

∫

Σ

∫ 1

0

η(y′)u(y′, 0)

(|y′|2 + tx2
n)

n+2

2

dt dy′ +
1

2nωn

∫

Σ

∫ 1

0

η(y′)∆u(y′, 0)

(|y′|2 + tx2
n)

n
2

dt dy′
)

.

Since u(y′, 0) ≥ 0 and ∆u(y′, 0) ≤ 0, by the Monotone Convergence Theorem, we

conclude that

c1 =
−1

ωn

∫

Σ

η(y′)u(y′, 0)

|y′|n+2
dy′ +

1

2nωn

∫

Σ

η(y′)∆u(y′, 0)

|y′|n
dy′,

and thus |y′|−n−2u(y′, 0) ∈ L1
loc and |y′|−n∆u(y′, 0) ∈ L1

loc. Suppose now that for
some N ≥ 2, |y′|−n−2Nu(y′, 0) and |y′|−n−2N+2∆u(y′, 0) ∈ L1

loc and that for j ≥ N,

cj =
2Aj

nωn

∫

Σ

η(y′)u(y′, 0)

|y′|n+2j
dy′ −

Bj

n(n− 2)ωn

∫

Σ

η(y′)∆u(y′, 0)

|y′|n+2j−2
dy′.
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Then

v(0, xn)

xn

=
N+1
∑

k=0

ckx
2k
n +O(x2k+4

n )

=
N
∑

k=0

(

2Ak

nωn

∫

Σ

η(y′)u(y′, 0)

|y′|n+2k
dy′ −

Bk

n(n− 2)ωn

∫

Σ

η(y′)∆u(y′, 0)

|y′|n+2k−2
dy′
)

x2k
n

+
2(N + 1)AN+1

nωn

(
∫

Σ

∫ 1

0

(1− t)Nη(y′)u(y′, 0)

(|y′|2 + tx2
n)

n+2N+2

2

dt dy′
)

x2N+2
n

−
(N + 1)BN+1

n(n− 2)ωn

(
∫

Σ

∫ 1

0

(1− t)Nη(y′)∆u(y′, 0)

(|y′|2 + tx2
n)

n+2N
2

dt dy′
)

x2N+2
n .

Using the induction assumption, it follows that

cN+1 =
2(N + 1)AN+1

nωn

∫

Σ

∫ 1

0

(1− t)Nη(y′)u(y′, 0)

(|y′|2 + tx2
n)

n+2N+2

2

dt dy′

−
(N + 1)BN+1

n(n− 2)ωn

∫

Σ

∫ 1

0

(1− t)Nη(y′)∆u(y′, 0)

(|y′|2 + tx2
n)

n+2N
2

dt dy′ +O(x2
n).

Since u(y′, 0) ≥ 0 and ∆u(y′, 0) ≤ 0, we can let xn −→ 0+ and arrive at

cN+1 =
2AN+1

nωn

∫

Σ

u(y′, 0)

|y′|n+2N+2
dy′ −

BN+1

n(n− 2)ωn

∫

Σ

∆u(y′, 0)

|y′|n+2N
dy′.

Thus |y′|−n−2N−2u(y′, 0) and |y′|−n−2N∆u(y′, 0) ∈ L1
loc and the lemma is proved for

n 6= 2. The case n = 2 is proved the same way using this time the Taylor formula

log(y21+x2
2) = log y21+

N
∑

j=0

(−1)j+1

j

(

x2

y1

)2j

+(−1)N+2

(
∫ 1

0

(1− t)N

(y21 + tx2
2)

N+1
dt

)

x2N+2
2 .

�
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