BOUNDARY UNIQUE CONTINUATION FOR THE LAPLACE
EQUATION AND THE BIHARMONIC OPERATOR

S. BERHANU

ABSTRACT. We establish results on unique continuation at the boundary for the
solutions of Au = f, f harmonic, and the biharmonic equation A?u = 0. The
work is motivated by analogous results proved for harmonic functions by X. Huang
et al in [HK1], [HK2], and [HKMP] and by M. S. Baouendi and L. P. Rothschild
in [BR1] and [BR2].

1. INTRODUCTION

The real part of f(z) = evr (use the main branch of the square root defined
on C )\ [0,00)) is a harmonic function on the upper half plane R? which is smooth
up to the boundary and vanishes to infinite order at the origin. In the works [BR1]
and [BR2] Baouendi and Rothschild proved results on unique continuation at the
boundary and a local Hopf lemma for harmonic functions. Their papers extended
earlier boundary unique continuation results for holomorphic functions obtained in
the works [A2], [HK2], [HKMP], and [L]. These latter results were applied to estab-
lish unique continuation for CR mappings between embedded CR submanifolds in
the works [A1], [A2], [ABR], [BL], [BH1], [HK1], [HK2], and [HKMP].

This paper establishes analogues of the main results in [BR1] and [BR2] for solu-
tions of the biharmonic equation A%y = 0 and the Laplace equation Au = f where
f is a harmonic function. We believe that the theorems for the biharmonic operator
proved in this paper are the first boundary unique continuation results for opera-
tors of degree higher than two. The biharmonic equation arises in many areas of
continuum mechanics. In solid mechanics it is used to model elasto-static deforma-
tion in the absence of body forces and the solution v may represent the Airy stress
function for a two-dimensional, isotropic, linear elastic solid or the deflection of a
clamped thin plate. In fluid mechanics, it can be used to describe the motion of an
incompressible viscous fluid at low Reynolds number and its solution represents the
stream function for Stokes flow.

Further extensions of the results of Baouendi and Rothschild in [BR1] were proved by
V. Shklover ([Sh]) and H. S. Shapiro ([S]). In particular, Shklover showed that The-
orem 3 in [BR1] (Theorem A in this paper) fails if the normal direction is replaced
with a transverse direction. Shapiro used convolution transforms as discussed in
[HW] to obtain new proofs and generalizations of the theorems in [BR1] and [BR2].
The Dirichlet problem for the biharmonic operator has been studied in numerous
papers. In particular, in [DKV], the authors proved that if D is a bounded domain
in R” with Lipschitz boundary, f € L?(0D), g € L*(0D), there exists a unique
biharmonic function u on D, which takes the boundary value f and whose normal
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derivative g—z equals g on 0D, both in the sense of non-tangential convergence, and
such that the non-tangential maximal function of Vu is in L*(9D).

In a forthcoming article, we will extend Theorems 2 and 3 in this work to polyhar-
monic functions of any finite order.

Section 2 contains the statements of our main results and examples. After some pre-

liminary integral representations in Section 2, the proofs are presented in Sections
4,5, and 6.

The author is grateful to the referee for some useful suggestions which have im-
proved the presentation of this paper.

2. STATEMENTS OF THE RESULTS AND EXAMPLES

We begin by recalling the results of [BR1] and [BR2]:
We will say that a continuous function u defined on a half ball

Bf ={r=(2,2,) €ER" xR : |z| <r z, >0}
is flat at 0 if for every positive integer N, there is Cy > 0 such that

u(z)| < exla] ™.

Theorem A ([BR1]): Let u be harmonic on the half ball B, continuous on the
closure. Suppose
(1) u(s,0) >0 for |s| <r, s € R*1;
(2) the function z, — u(0/, x,,) is flat at z,, = 0;
(3) for every positive integer N, the function |s|~Nu(s,0) is integrable on {s €
R™: [s| < r}. Then, u(z’,0) = 0 on |2’| < € for some € > 0.

The following corollary is an immediate consequence:
Corollary B: Let u be harmonic on the half ball B
Assume that

(1) u(s,0) >0 for |s| < r;

(2) u(x) is flat at = = 0.
Then u = 0.

+, continuous on the closure.

When n = 2, Corollary B was proved in [HK]. Theorem A was generalized in [BR2]
as follows:

Theorem C ([BR2]): Let u be harmonic on the half ball B;f, continuous on the
closure. Assume that

(1) for some homogeneous polynomial p(s) in n — 1 variables,
p(s)u(s,0) > 0 for |s| <7y
(2) for every multi-index [ in n variables, | 3| < d = degree of p,
z, — 0%u(0; z,) is flat at z, = 0;

(3) for every positive integer N, |s|™¥p(s)u(s,0) is integrable on {s € R"! :
|s| < r}. Then, u(z’,0) = 0 on |2/| < € for some € > 0.
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Corollary D: Let u be harmonic on the half ball B, continuous on the closure.
Suppose

(1) for some homogeneous polynomial p(s) in n — 1 variables,
p(s)u(s,0) >0 for |s| <r;
(2) u(x) is flat at = 0. Then u = 0.
Inspired by the preceding results, in this paper we will prove:

Theorem 1. Let u be a solution of the biharmonic equation A*u = 0 in the half
ball B, C* on the closure. Suppose that for some monomial o = (g, ..., p_1),

(1) for every multi-index B in n variables with |5| < d, where d = |a| is the
degree of s*, the function x,, — (0°)u(0,z,) is flat at x, = 0;
(2) for every positive integer N, the functions |s|=™ s%u(s, 0) and |s| =V s%u,, (s,0)
are integrable on {s € R"™' : |s| < r}. Then there exists ¢ > 0 such that
if s*u(s,0) > 0, then u(z’,0) = 0 for |2'| < € and if s*u,, (s,0) > 0,
Uy, (2',0) = 0 for |2/| <e.
In particular, if s*u(s,0) > 0 and s%u,, (s,0) > 0, then u extends as a solution to a
neighborhood of the origin.

Corollary 1. Let u be a solution of A’*u = 0 in B, C* on the closure. Assume
that for some monomial a = (..., 1),

(1) s®u(s,0) > 0 and s“u,,(s,0) >0 for |s| <r;

(2) |s|Ns®uy, (s,0) is integrable on {s € R*71 : [s| < r} for every N.

(3) u(x) is flat at x = 0.
Then, u(z) = 0.

Observe that if in the preceding corollary, u is assumed to be smooth up to z,, = 0,
then condition (2) is implied by (3).

Theorem 2. Let u be a solution of A*u =0 in B}, C* on the closure. Assume that

(1) for some homogeneous polynomial p(s) in n—1 variables, p(s)u(s,0) > 0 for
some |s| < r;

(2) for every multi-index § in n variables with |5| < d, where d is the degree of
p(s), the function x, — (0°)u(0,x,) is flat at x,, = 0;

(3) for every positive integer N, |s|~Vp(s)u(s,0) is integrable on {s € R*7! :
[s| <7}

(4) ug, (z',0) = 0.

Then, there ezists € > 0 such that u(x’,0) =0 for |2'| < r.

Corollary 2. Let u be a solution of A’u = 0 in Bf, C* on the closure. Assume
that

(1) for some homogeneous polynomial p(s) in n— 1 variables, p(s)u(s,0) > 0 for
|s| <

(2) uy, (2/,0) =0 for |s| <r;

(3) for every multi-index 5 in n variables with |B| < d, where d is the degree of

p(s), the function x, — (0°)u(0,x,) is flat at x,, = 0;

(4) u(x) is flat at x =0,

Then, u = 0.



4 S. BERHANU

We next state boundary uniqueness results for a different Dirichlet condition where
we no longer assume integrability of |s|™"u(s,0) for any N.

Theorem 3. Let u be a solution of the biharmonic equation A%u = 0 in the half
ball B, C* on the closure. Assume that

(1) u(s,0) >0 and Au(s,0) <0 for |s| < r where A is in n variables;

(2) the function x, — u(0,x,) is flat at x, = 0.
Then, u(z’,0) = 0 and Au(z’,0) = 0 on |2'| < € for some € > 0. In particular, u
extends as a solution to a neighborhood of origin.

Corollary 3. Let u be a solution of A*u =0 on B, C* on the closure. Suppose
(1) u(s,0) >0 and Au(s,0) <0 for |s| < e
(2) u(x) is flat at x = 0.

Then u(z) = 0.

Theorem 3 leads to the following generalization of the main result in [BR1] (Theo-
rem A in this paper) on boundary uniqueness continuation for the Laplace operator:

Corollary 4. Let u be C* on B and a solution of Au = f where f is harmonic on
B}, Suppose

(1) u(s,0) = 0 and f(s,0) <0 for |s] < 7:

(2) the function x, — u(0,xy,) is flat at x, = 0;

Then u(x’',0) =0 and f(2',0) =0 on |2'| < € for some € > 0. In particular, u(z)
extends as a real analytic function past x, = 0.

Corollary 5. Let u be C* on B and Au = f where f is harmonic on B. Suppose

(1) u(s,0) >0 and f(s,0) <0 for|s| < r;
(2) u(x) is flat at x = 0. Then u = 0.

The following examples show that the theorems above may not hold if we drop
some of the assumptions. In particular, Corollary 5 may not be valid if the har-
monicity of f is replaced by real analyticity.

Example 1: In R? let u(z) = 2% + zy23. Then A*u = 0,u(z;,0) > 0 and
Uz, (21,0) = 0. The function x5 — u(0, z5) is flat at x5 = 0.

Example 2: Let w(z;) € C®(R) be flat at z; = 0,w(x;) > 0 for ; > 0 and
w(zy) < 0 for x; < 0. Let v be a harmonic function in the half plane x5 > 0
such that v(z1,0) = w(zy). If v,,(0,0) # 0, set u(x) = zv(x). If v,,(0,0) = 0,
choose M > 0 large enough so that z;v,,(71,0) + Mz3 > 0 near x; = 0 and set
u(x) = xyv(x) + Maizy. Then Au(z) = 0 for x9 > 0, u(xy,0) is flat at x; = 0 and
so |z1|~NMu(xy,0) is locally integrable for all N. u(z,0) > 0 and x5 — u(0, 25) = 0.
Moreover, u,,(z1,0) > 0.

Example 3. Let
exp (—t%) , t>0
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The function f is C* on R, flat at t = 0 and f’(¢) > 0. Let v(x) be harmonic on
R? such that v(z1,0) = f(z1). Let u(zy,x2) = xqv(21, 22). Then,
A’u(z) =0 on R, u(x1,0) = 1 f(21) > 0,
and
Au(ry,0) = 2f (21) > 0, u(0, ) =0.
The function u(x1,0) is not identically zero in any neighborhood of the origin. This
example shows that Theorem 3 may not hold if u(z’,0) and Au(z’,0) have the same

sign.

Example 4: In R,? let u(z,y) = y4ez211y2. Then Au = f is real analytic in By,
u(z,0) = Au(z,0) = 0, and u(x,y) is flat at the origin. Thus Corolloary 5 may not
be valid if f is merely real analytic in B;'.

3. INTEGRAL REPRESENTATIONS AND PRELIMINARIES

In [Bo], Boggio showed that the Green’s function GZ for A% with Dirichlet bound-
ary conditions for the unit ball B in R" is given by

||

N L OV g2y
where k,, is a dimensional positive constant, [XY] = ‘|x\y - i‘ and [zy| = |z — y|.

In [BMZ], by replacing [XY] in Boggio’s formula by |z — g|, the authors gave the
following formula for the the Green’s function

of A% on R’} with the Dirichlet boundary conditions:
Gn(z,y) =0,0,,Gp(x,y) =0 at z, = 0.

Here, ¢, is a constant and for y = (y1, ..., Yn), ¥ = (Y1, ..., —Yn). See also the paper
[Be] for Green’s functions for A% on the unit ball for other Dirichlet conditions.

We have:

1 S 2
n ((4—n)|x—mnf4 @72 T <n—4)<n—2)\x—y|nf4> o nE{2y

Go(,y) = 4 o — y[?log |22 + daays, n=2
c r—y z—y|?
o <10g|d|2+ o —1), n—4.

In Green’s identity

/B LuBw(y)dy — | Au(y)wly)dy = /

8B;t

<U(y)%(y) - %(y)w(y)) do,

B
we plug
w(y) = AG,(z,y) = AGn(z,y), © € Bf
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to get:
0
u(@) — | Auly)AGn(x,y) dy = u(y) 5, AGa(2,y)
B oB;} v
ou

1 - A — d
) ol o)) o
where a% is the outer normal derivative and A acts in the y variable. Applying

Green’s identity again, we have:

- AG,(z,y)Auly) dy = — /6 - (Gn(m‘, y)%ﬁu(y) — Au(y) aaci" (z, y)> do
) [ Gule)atuty)dy.

From (1) and (2), using A%u = 0, and G(z,y) = % (z,y) = 0, when y, = 0, we get
the following representation formula for v in B; :

wr) == [ (Guten g dutn - du) Gt ) ) do

®) # [ (3pAG ) - G )5 0)) do

where ¥ = {y € 0B, : y, =0}.
For z € B}, define

0 ou
o) = [ (400135 5Gu(e.0) — AG (0 0) 3o 0)) do
For x € ¥,y € OB} \ 3, since G, (z,y) = 0,,G(z,y) = 0 (because G, (z,y) =
Gy(y,z)) and £, A in the integrals above act in the y variable, we have:

0
5AGH(£€, y) = AG,(z,y) = 0.

It follows that
ou

/ o / v / o
(4) v(2’,0) = u(2',0) and —(2',0) = o

ox,,

(«,0).

4. PROOF OF THEOREM 1

We first assume that the multi-index o = 0.

Case 1. Suppose n ¢ {2,4}.

Since a% is the outer normal derivative,

ou

/ / / a / /
o0) = [ (AGue ) m6.0) = w05 - AGu(a,1) )

where A = A, and %AGn(x,y’) = %AyG(JJ,y)

yn=0
We will need certain high order derivative of v(z). We begin by computing AG,,(z, y)
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and %AGTZ(L y) at y, = 0.
Recall that when n ¢ {2,4},
1 |z — y|? 2 >
Gn T,Y) = Cn < — - — + .
) A—n)lz =g  @2=n)lz -y  (n=4)(n—-2)z—y[*"
When 1 <5 <n—1,

0 den 2o
@]x — g = (n — 4|z — yI* "(x; — y;),and so
j
0 4 2 2
a—yg\x —gl'" " =A-n)(2-n)z—g| (= —y)* + e —y*"),
j
while 5
@L’B — g " = (4 —n)lz — > (@0 + ya), and
0? 4 2 2
a—ygll‘ — gl = =n) (C—n)lz =y (@0 +yn) + e —g").
It follows that
(5) Aylz —g["™" =2(4 —n)|z —y|* .
For1<j<n-—1,
a —12—n —|—n
a—y|x — g7 = (n = 2)|z — g[ " (x5 — yy),
J
0? _19-n _—n _|—n—2 2
W!x—y! =(2—-n)(Jz— g™ —nlz - 7| (z; —y;)?)
Yj
9 —12—n —|—n
@|x—y| =(2—n)|lx —g| " (xy, + yn), and
82 —|2—n —|—n —|—n—2 2
a—y2|x—y| =(n—=2) (Je =gl —nle — g7 (2. +ya)?) -
Hence
Aylz —yPle —g)* " = o —yPVylz — gl + Alz — y*) |z — g
+2(Vylz =y, Vylz — gP™")
2 /2
|z — gl |z — gl
22— g2
6 +4(n — 2 ( " _”) .
) -2 (Pl
From (5) and (6),
Dn |.ZU/ _y/|2>
AGy(z,y) = ————— — 4, (—_
Vom0 ) = g T
z2 — y2> 4c,, < 1 >
7 + 4e¢,, n_7no) )
) () s (e
where D,, = % + 2¢,,.

It follows that
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2
8cnxs,

(8) AGo(2,y) = AyGo(2,y)]yu—0 = 7 gt

We next compute %AyGn(x,y’) at y, = 0.
0 ( 1 ) B (2—n)x,
Y \ |z — g["2

o (17 =y P +a2)2

Y

—nx,

o (7 — y/[? + 22)

—nx
= n and

0 1

Y (|:c—z7|")

o (3 —yn

N <|$ - y|") oo (7 =2 4+ 22)"

0 ( 1 ) B (n—2)x,
Oyn \ |z —y|*2

o (7 =92 +a2)2

n+2 9
2

Therefore,

a 2 — Dnn 4n n/_ /2_471 s 4nn
_AyGn<Iay)|yn=0 = ( nl xQ T Rl |$ y| nc+2n$n - sz o\
n (lo/ —y'|* +27)2 (| — y'|> + 22)"% (l" = y'[? +23)2

(2 —n)Dyz, (|2 —y'|* + 22) + deyna, |2’ — ' |* — deanad — de,z, (|2 — /|2 + 22)
n+2

(lz" =y + %) 2

(9)

3

—8nec, T,

(g a2)
From (8) and (9), for 0 < z,, <,

n+2 °
2

3

/ 8¢, 12 ou ne,x
10 U(],(L‘n _/ nen _ y170 + nnn2uy/70 dy/
10) ol a)= [<|y'|2+w%;>z a0 (v a2y Y

Set w(z) = u(x) — v(x), * € BF. The function w is a solution of A?w = 0 on B} |
and on X, from (4),

ow
oz,
By the reflection principle for A2, it follows that w(z) extends past z, = 0 as

w(z’,0) =0 and (2',0) = 0.

a solution of A2 and hence as a real analytic function. Indeed, for z,, < 0, the
extension which we still denote by w is defined by (see [Hu)

w(r', —x,) = —w(z) + 2xnaa—w(x) — 22 Aw(z).
T,

By the local integrability of |y/|~™u(y’,0) and \y’\_N(%i(y’,O) for all N, formula

(10) implies that the function z,, — v(0', z,,) is smooth up to x,, = 0. Therefore,
Tn — (0, 2,) = (0, 2,) + w(0', z,)
is also a smooth on [0, 7). Because it is flat at z,, = 0,

% v(0) = —9F w(0) for all k.
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Since w is analytic on a neighbourhood of the origin, there exists ¢ > 0 such that
(11) |05 v(0)] < MR
We next estimate the derivatives 9% v(0) using formula (10). Let k be a positive

integer, and consider

ok 8ne,zd
Ly +a2) s

To compute the later derivative, we use Faa di Bruno’s formula

zn=0 |y/|2 + x?’L) 2 zn=0

= 8ne,k(k — 1)(k — 2)98 3 {( ! pEs }

" m! m () mj
G lal) = o T (52

el

where the sum is taken over all m-tuples of nonnegative integers my,--- ,m,, that
satisfy the constraint

mi + 2me + - - + mm,, = m.

Setting g(t) = |y/|> + t? and F(s) = —&, the formula leads to
s 2
= 0, when m is odd, and

(&) o

(4)" P

(=D)¥(n+2)(n+4) - (n+2N)
ON g5 +N+1 )

(2N)! )
= WF(N)(’ZJ ).

t=0
Since

FWN(s) =

N1 8nc,
o (Jy|2 +a2)"F

1
= 8nc, (2N 4 1)(2N)(2N — 1)9?V 2 ==
( )(2N)( )9z, (WPt 2)

(_1)N_18n0n(2N + D) (n+2)(n+4)---(n+2N —2)
(N — 1)12N=1]y/|n+2N
(=DN18nc, 2N + DI(2 4+ 1)(2+2)--- (2 + N —1)
(N = 1)lly =2

=0

x,=0

Thus,

S 8nc, (2N + 1)!

(12) |y/|n+2N

xn,=0

2N+ 8nc,ad
o (ly'2 +22)"%
Consider next

ot { 8cpa? }
A TTETaE

= sk~ Vet { o}

(ly'? +23)%

=0 n,=0
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Faa di Bruno’s formula this time implies that

ot { 8¢, a2 }
Uy +a2)?
92N { 8cny }

Ty P +az)e ),

(N —1)! 2N-1 Jg/|nt+2N -2

92N { 8cazy, }
Ay +a2)2 S 20

If u(2’,0) > 0, from (10), (12) and the fact that the odd order derivatives

= 0 when £ is odd, and

xn=0

and so

8¢, (2N)!
= Jy/|rren-2

(13)

2
35 {Lﬂ} =0,
LY +ad) )L o
we conclude that
2N+1 u(y’,O)
|8$n+ v(0)| > 8ne, (2N + 1)!/2 [ !

and hence using (11), for any 0 < e <,

2N+1 u(yla O) / 871(3” / /
s 1Y ly'|<e

Choosing € so that ¢ < %, taking the (2N + 1) root and letting n — oo, we

conclude that

u(2’,0) =0, for [2'| <e.

Likewise, if 2% (2/,0) > 0, since the even order derivatives
n

ak x?z
Ty P+ a2

using (10), (11) and (13), we get

ou (,/
Dyn (y',0) 8nc ou
e W 2 s 5, W, 0)dy,
= |y | € ly'|<e OYn

:O,

zn=0

AN > 8c,,

and therefore,

0
—u(x',O) =0 for 2| <e.

Y
Case 2. Assume n = 4. Recall that
=g Jz—yP
+ 5 —1].
r—yl |z—9
As before, we first compute A,G4(z,y) and
0

8—y4AyG4(:r,y) at y4 = 0.

Cq

G4@ay)=-§-<bg
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z—yl* 0 :L'—gjr
r—y| Oy; \|z—y
2y — )z — g — 2 — P
|z — gPPle —y[?

For 1 < j <3, we have:

9 g
8yj

2
r—y
x—y’

, and

o? x—7

log

_ 22r =gl e =) | A —y) (e =gl — v —yP)

- + -
|z — |z — y|? |z — gtz — y|?

A(zj —y)* (e — 9P — |z —yl*)

7 — g[*|z — y|*
12 12
gw—y‘ _lz—yP o x—y’
T —y |t — g2 0ys \ |z —y

_ 2(wa+ys) | 2(T4 — ya)
T =12 + 2
|z — 7| [z —y

Oy?

J r=y

+

and

r—g|" 2z — g — 4z +ya)?
|z —g[*
A(rg — ya)® = 2]z — y/?

+
|z —y|*

For1 <5 <3,
0 |z —yP _ 2w —yy) |z —yP — |z — %)
Oy; |z — y[? |z —y|*

A (Ix—yP) _2(z =g = |z —yl?)

Oy; \|z —gP? |z —g|*

, and

8(z; —y;)* (lz —yP* — |z — g°)
|z —gl°

0 (!m - ylz) ~ 2(za —ya)lr — g1* = 2(2a + ya) [z — yP?
Oya

_|_

— = - , and
I ERT
0? <|x—y|2> _ 2 2|z — y|? +8(x4—y4)(x4+y4)
Oyi \le—gl*) |e—gP |z—yl* | — gl*
8(z4 + ya)*|z — yl
|z —9[°

It follows that

12 4 8 I 2 8 2 _ .2
AyG4($,y)=CQ—4{ _ _ |:13 y| ($4 yz;)}7 and

je—gP  le—yP eyt eyt

11
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iA Gu(z,y) = C_4{ —24(x4 + ya) B 8(z4 — ya) N 32(zy +ya)|2’ — /2
oys 7 ’ 2 |z — g|* z — g P
B 16y, B 32(xy — yg) (x4 + y4)2) }
|z —g[* |z — g6
Thus,
Cq 8 8‘37/ _ y/’2 81’[21
A,G _ 4 _
Yy 4(%9) iz 9 {|x_y/’2 |x_y,’4 + ‘x—y’|4
Cq 1622
Y d
Aw—yrrae) ™
0 Cq —6423 }
— A, Gy(z, -2 ‘
W " () m=0 2 {(|£L"’ — Y|+ 23)3

It follows that
/ 8cyzi  Ou , 32¢413 , ,
o000 = [ 0 s 0|
This formula is the same as (10) when n = 4 and hence we reach the same conclu-
sions, namely, for some € > 0:
if u(2’,0) > 0, then u(2’,0) =0 for |2/| <€, and
if %(m’,()) > 0, then %(m',O) =0 for |2/] <e.

Case 3. Suppose n = 2.
In this case the Green’s function

2
c x —
Galo) = |l = = o =y = Jo = g | =] .
We have A2
x
A,Go(x, = 2 , and
yGa2(7,y) - (21 — y1)? + 22
0 Bz
—A,Gs(z, = 2
Tl N (P

for some constants A and B. This means that v(0', 25) has the same form as in (10)
which leads to the same conclusion for u(z;,0) and g—;z(xl, 0).

Suppose now « = (qy, ..., 1), |a| > 0, and either

0
s%u(s,0) > 0 or sag—u(s, 0) >0 for |s| <.
Y

n

Then there is a multi-index which we will still denote by oo = (v, ..., @y, 1) such that

0
s%u(s,0) > 0 or a—u(s,()) >0 for |s| <r
Yn
with each «; € {0,1}. The proof will show that without loss of generality, we may
assume that o = (1, ..., 1). Recall the formula v(x) from (10) which we saw holds for
alln :

3

8¢, 2 ou ., 8ne,x / /
vlxr) = n o Yy ,O + n —u(y 70 dy
@ /2{(|$’—y’|2+1’%)2 3%( ) (Ja' — y'[2 + 22)"3" (v,0)
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We have

Opy Oy, 0() =

z'=0
8con(n +2)...(n + 2(n — 2))z? ou ,
/ |: ( ) ( ﬂs_n_l )) Yi---Yn—1 a_<y 0)
b) 2 Yn
(1 +42)
8nc,(n+2)(n+4)...(n +2(n+1))z3 , ,

(14) g ealnt D). kAt D), u(y’,0) | dy'.

T
(w +xz)

We next estimate 9% <8x1...8xnlv(x) . From (13) with n replaced by

3n — 2, we have:

2 2N)!
V(P +a2)st |, = [y PN
e H2N+1 3y, _
while 07 {(|y'|2+zg)3+”—1} . 0.
Likewise, (12) implies that
Tn (‘y/|2 + x%)ngn _— = |y/|3n—2+2N

= 0. It follows that if y;...y,—1u(y’,0) > 0,

xn=0

2N 3y
1
and G, {<|y’|2+m%>’5+”}

I oy
<2N)!8xn (8901...8%11)(:1:)

=0

(17) > 8c,n(n+2)...(n+2(n — 2)) / Yr-bnruly, 0) dy'

|y/|3n+2N—4

and if ...y, 1 50-u(y’,0) > 0,

1
PN+ <011 .0y, v()

(2N+ 1)| o zn=0
ou !
yl--'yn—lﬂ(y 70)
(18) > 8nca(n+2)(n+4)...(n+2(n+1)) /E oy

Estimates (17),(18), together with the analyticity of u(z) — v(z) at 0, and the
flatness of @, — Oy, -0y, ,u(0',2,) imply as in the case a = 0 the following
conclusion:

Je > 0 such that if yy...y,—1u(y’,0) > 0 for || <7, u(y’,0) =0 for || < € and if
yl...yn,l%i(y’,()) >0 for |y'| <, then %ﬁl(y’,O) = 0.



14 S. BERHANU

5. PROOF OF THEOREM 2

Let P;(R™) denote the space of homogeneous polynomials of degree d in R™.
Consider the linear map

T Pd<Rn) — Pd<Rn)
defined by T'(q1) = ¢2 where for x € R",

1
_ n+2+2d
Bo(@) = |2 %@0<EF§)-

and 0, = (-2 9_). We will show that T is a bijection. Suppose T'(q;) = 0. Since

Bay’ " Dan
|x|++2 is homogeneous on R™ \ 0, by Theorem 3.2.4 in [Ho|, there is a distribution S
on R" such that

—‘ = on R™\ 0.

We then have ¢;(0,)S is supported at the origin and hence has the form
0(0:)S =" a.d).
lo|<m
Taking the Fourier transform, we get
0 (—i€)S(©) = > aa(—i&)™.
loe|<m

By the arguments on page 169 in [Ho],
S(€) = Un(€) + Ua(€) logle],

where Us(&) is a homogeneous polynomial of degree 2 and U;(&) is a homogeneous
distribution of degree 2 that is C*° in R™ \ 0. The function Uy(§) is given by

Us(§) = —/ o (Z wjfj) dw

and hence is not identically zero. Therefore, the equation
(=€) (UL(E) + Us(&) log [€]) = Y aa(—i€)"
la|<m

implies that ¢g; = 0 which shows that the map T is injective and hence a bijection.
The hypothesis and (10) tell us that for z € B},

8ne,x 3
v(z) = nt —u(y',0)dy’.
() = /( a0y

!rfr’—y|2+x2

Given the homogeneous polynomial p(z’) of degree d as in the statement of Theorem
2, viewing it as an element of Py(R"), let ¢(x) € Py(R™) such that T'(¢q)(z) = p(2').
We have:

8nc,z3 , ,
<—/(wp+xﬂwuwmy>@4»@.
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Replacing n with n + 2d in (12), we have:

AN+ 8nca;,
8:cn nt+2+2d
(ly']>+a3)

Since || 7*p(y")u(y’,0) is locally integrable for all k, the function ¢(9,)v(0,x,) is
smooth on [0,r). Therefore, by the analyticity of v(z) — u(x) and the flatness of
u(0, z,) at x,, = 0, for some C' > 0,

8(n + 2d)c, (2N + 1)!
|y/|n+2d+2N

(19) >

n,=0

u(y',0)
02N+d+2(2N+d+1)! Z agnN+1(q(ax>U($)|$/:0) i > 8(n—|—2d)cn(2N—f-1 / W dy .
Hence, using the inequality (2N + 1 + d)! < 22N TN + 1)ld!, we get:
2N+d+1 p(y)u(y’,0)
As before, since p(y')u(y’,0) > 0, this leads to u(y’,0) = 0.
6. PROOF OF THEOREM 3
Let n € C°(R™™1), n(x) = 1 for || < £ and n(z) = 0 when |z| > r. Define v(z)

on B} by
rv(x) o nwn fE |(El y |2+(l}2)% T](y) (y O) dy TL n— 1 wn fz o — ,|2+ ) —5 ’[’]( /) AU/(y/7 0) Ciy/7 n # 2

;2 / mﬁ(%) u(y1,0) dyr + 5 4w2 J z2log[( «’131 y1)* + 23] n(y1) Au(y, 0) dyr, n = 2.

where w,, = the volume of the unit ball in R"™. It is clear that

-
'0)= 1 = u(a for |2/] < =.
v(z',0) m v(z) =u(2’,0) for |z'| < 5

Tn

We claim that
Av(2',0) = lim Av(z) = Au(2’,0) for |2| < g

Tp—0t

To see this note first that %x—"ﬂ is the Poisson kernel in R™ and so it is
n (o' —y' |2 4+22) 2
harmonic in x. Next, observe that for n # 2,

Am{ (Jo" =y 2 +22)"2 } 4 nAwaM{ (Jo' —y/ |2 +a2)"7 }
1 1
- —&CnAI{ n_4}
Lo (o g+ a)s

“ G )
O (|a! —y/[2 +22)"5"

T,
= 2(2 —
= e v aE

A{ - 5 }_2( P )
nln=2en \(l0 =2 +a2)™= ) ] meon \ (2" —y/[P 4+ 27)3
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for n # 2, which is the Poisson kernel.
Likewise, when n = 2,

1

Ax{i(m—ﬂog [<x1_y1>2+x3})}:_((( 2 >

2
wo \ (1 —91)2 + 23

which is also the Poisson kernel. It now follows that

Av(z',0) = lim Av(z) = Au(z’,0) for |2| < L
Tp,—0t 2

Define w(z) = u(z)—v(z) for z € B,". From the preceding observations, A?w(z) =0
on B, w(2',0) = 0, and Aw(a’,0) = 0. We will show that w(x) extends past z, =0
as a solution of A% Let h(z) = Aw(z), z € B}. Then Ah = 0in B, and h(z’,0) = 0
and so h extends to a real anatytic function h on a ball B,. Let @ be a solution of
Aw = h in B, and w(z’,0) = 0. @ is real analytic on B,. Since A(w —w) = 0 on B;"
and w(z’,0) —w(z’,0) = 0, W — w extends as a real analytic function past z,, = 0
and hence w(z) extends also past x, = 0. Using also Lemma 1 below, as before,

It v(0) = -9 w(0),Vk

and so for some ¢ > 0,

(20)

ﬁfnv(O)‘ < g

We next estimate these derivatives using the integral formula for v(z). From the

steps between (16) and (17), when n # 2,

1
Uy P+ ) T WY P72

n,=0
=0, when £k is even,
and when £ = 2N + 1,
1
a2N+1{—x“ } — 2N +1 aZN{—n}
T (‘y/‘2 + l’%)5 _— ( ) T (|y/‘2 + x%)g =0

(DY EN+Dn(n4+1)--- (n+2N —2)
(21) - N!2N|y/|n+2N ’

Likewise,

=0, when £k is even,

9]@ { Tn }
Tn <‘y/‘2 w%)n;Q
and when £ = 2N + 1,

(:)2N+1{ Tn }
Tn n—2
(Jy'*+22)=2 Jls.=o

C(EDVYEN+D)I(n—=2)(n—1)---(n+ 2N —4)
(22> - N!2N|y/|n—2+2N ’

xn=0

We also have
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= ko, log(yi + x3)

x2=0

=2k
" { yi + a3

= 0 when £k is even,

o, {xg log(yt + 563)}

x2=0

x2=0

and if £ =2N + 1,

N1 s (~1)N1(2N — 1)12.3...(2N — 2)
@) o nostt + o)} NG

Inequality (20) and the estimates (21),(22),(23) imply as before that for some € > 0,
w(z’,0) = Au(z’,0) =0 for |2| <.
As shown already, this in turn implies that u(x) extends as a real analytic function

to B.(0).
In the preceding proof, we used the following lemma:

Lemma 1. Let u be a solution of A?u = 0 in the half ball BF, C* on the closure.
Assume that

(1) u(s,0) >0 and Au(s,0) <0 for |s| < r where A is in n variables;

(2) the function x, — u(0,x,) is flat at x,, = 0;
Then for every positive integer N, |s| ™Nu(s,0) and |s|™ Au(s,0) are integrable on
{seR":|s| <r}.
Proof. Suppose first n > 2. Recall that for =, > 0,

v(0,2,) 2 ny)u(y',0) ., 1 n(y)Au(y',0) .,
(24) = - / d / : d

Zy - s (y2 +22)"F

x2=0

s (yE+a2)E Y nn—2)w,
We will use Taylor’s remainder formulas:
(25)

1 N
(ly'? + 27) Z

V|3

and
(26)

where for each k,
a (=D*n(n+2)--(n+2k—2)
" 2k ;! ’

and
(=Dfn—2n---(n+ 2k — 4)
B 2k ;!
Let w(z) = v(z) — u(z). Then w(a’,0) = 0, Aw(z’,0) = 0, and A%w(z) = 0 for
x € B?;, and so as we saw before, w has a real analytic extension past x,, = 0 which
we still denote by w. Observe that 927 w(a’,0) = 0 for all j.

( ")% +(N+1)A //1 A= gy | 22
n+2 2 y 'Tn
| /| N+1 s Jo (ly/|2—|—t$%) +2N+

N
== o +N+1BN1 T dtdy | x
(IyE+a2)7 Sy \Iy ' ( Iy |2+x2

2N+-2
n
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Since w(0,0) = 0, the function @ is real analytic at z,, = 0. Write

w(0, z,) Z ckx%

Using the flatness of =, — u(0, z,,), for each N, we have

TL

N
Z kI2k+O 2N+2)
k=

We have
o w(0,z,)
lim ————= =¢
Tn—0tF Tn

and so since u(y’,0) > 0, by the Monotone Convergence Theorem, (24) tells us that
[y [7"u(y',0) € Lige, |y/[*""Au(y’,0) € Lj,cand

(27) o = 2 /En(y’)U(y’,O) 4 — 1 /En(y’)Au(y’,O) 0

nWr, |y n(n — 2)wy, |y |2

Observe next that

(25) i (M0 ) =

2n—s0F T2 T,

Therefore, from (24), (25), and (26), for z,, > 0,

L [ [,
(/ / (ly' \2 + ta2) n)—;z dy’) o
(29) ann </ / ly |2A+utg;2 0) dt dy’) z2

From (25), (26), and (27
qzlm-icwmw_Qt/MW(y®@+_ L / wmmym@>

Tn—0t T2 nwy, Y| |y |2

- (G et i [ A
xn—>0+ Wn |y|2+ta:2 ”+2 ann |y |2+th :

Since u(y’,0) > 0 and Au(y’,0) < 0, by the Monotone Convergence Theorem, we

conclude that

C1 = )

—1 ! 0 1 NAu(y', 0
_/n(y)U(y, )dy,+ /n(y) u(y',0) o
T ’y/’n+2 ann 5 ’y/’n

and thus |y| " (y 0) € Lloc and |y| nAu(y 0) S Lloc
some N > 2, |y/|™" 2N u(y’,0) and |y'|7" 2N+2Au(y 0)e L]

Suppose now that for
and that for j > N,

loc

_ 24 / n(y)uly’,0) , B; /n(y,)Au(y/’())dy’.

J = nw, ’y/’n+2j - n(n _ 2)wn |y/|n+2j—2
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Then
N4+1
U(O,In) Z 2k 2k—+4
— =) ax, +0(@,)
Ln k=0

24 [ n(@)uly’,0) By / n@)Auy',0) |\ o
_ v ]
Z (nwn /2 ly’ |"+2k 4 n(n — 2w, Jy |y v ),
(N +1) AN“ (¥ )u(y',0) dt dy' | x>V *2
Iy |2 + tgﬂ)"*”” "

[ o)

Using the induction assumptlon it follows that

2(N+1 ANt OV n(y)uy',0) .,
CN+1 = o / / |y |2 . 2)n+2N+2 dtdy

N +1)B A 0
( NH / / |y |2 N t;)i(;{v ) dy' + O(}).
Since u(y’,0) > 0 and Au(y ,0) <0, we can let z,, — 0" and arrive at

2AN+41 u(y,0) ., Bnyi Au(y’,0)

CN41 = nw, s [y n(n — 2)w, /z |y 2N

Thus /|7 2N "2u(y’,0) and |y'|7" "2 Au(y’,0) € L. and the lemma is proved for
n # 2. The case n = 2 is proved the same way using this time the Taylor formula

dy’

2 j+1 4 N+2 ' (1 — t)N 2N+2

0
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