Collision of a hard ball with singular points of
the boundary

Cite as: Chaos 31, 013123 (2021); https://doi.org/10.1063/5.0024502
Submitted: 07 August 2020 . Accepted: 27 December 2020 . Published Online: 11 January 2021

") H. Attarchi, and L. A. Bunimovich

218N
L A |
D &
v Onlin Export Citation

Sign up for topic alerts

New articles delivered to your inbox

Publishing

Chaos 31, 013123 (2021); https://doi.org/10.1063/5.0024502 31, 013123

© 2021 Author(s).



https://images.scitation.org/redirect.spark?MID=176720&plid=1167511&setID=405123&channelID=0&CID=390544&banID=519902572&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a9441bd671bc98189ea3c063ec4e9d14a9b86aef&location=
https://doi.org/10.1063/5.0024502
https://doi.org/10.1063/5.0024502
http://orcid.org/0000-0001-5564-3503
https://aip.scitation.org/author/Attarchi%2C+H
https://aip.scitation.org/author/Bunimovich%2C+L+A
https://doi.org/10.1063/5.0024502
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0024502
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0024502&domain=aip.scitation.org&date_stamp=2021-01-11

Chaos ARTICLE

scitation.org/journal/cha

Collision of a hard ball with singular points of the

boundary

Cite as: Chaos 31, 013123 (2021); doi: 10.1063/5.0024502
Submitted: 7 August 2020 - Accepted: 27 December 2020 -

Published Online: 11 January 2021

® th @

View Online Export Citation CrossMark

H. Attarchi® 2 and L. A. Bunimovich”

AFFILIATIONS

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

2 Author to whom correspondence should be addressed: hattarc|

PIElectronic mail: lconid.bunimovich@math.gatech.edu

li@gatech.edu

ABSTRACT

Recently, physical billiards were introduced where a moving particle is a hard sphere rather than a point as in standard mathematical billiards.
It has been shown that in the same billiard tables, the physical billiards may have totally different dynamics than mathematical billiards. This
difference appears if the boundary of a billiard table has visible singularities (internal corners if the billiard table is two-dimensional); i.e., the
particle may collide with these singular points. Here, we consider the collision of a hard ball with a visible singular point and demonstrate that
the motion of the smooth ball after collision with a visible singular point is indeed the one that was used in the studies of physical billiards.
Therefore, such collision is equivalent to the elastic reflection of hard ball’s center off a sphere with the center at the singular point and the
same radius as the radius of the moving particle. However, a ball could be rough, not smooth. In difference with a smooth ball, a rough ball
also acquires rotation after reflection off a point of the boundary, which leads to more complicated dynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0024502

A standard (mathematical) billiard is a dynamical system gener-
ated by a motion by inertia of a point particle within a closed
region (billiard table) and its elastic collisions off the boundary.
If one considers instead a motion of a hard ball (physical particle)
in the same billiard table, then dynamics may drastically change.
Specifically, any type of transition from regular to chaotic dynam-
ics may occur and vice versa. Moreover, these transitions may
occur as soft (i.e., for any positive radius of the moving ball) as
well as hard ones (i.e., for sufficiently large balls). All these tran-
sitions occur only in the presence of singularities in the boundary
of a billiard table. Here, we describe which types of singularities
may result in a change of dynamics in transition from a point
particle to a hard ball. We also discuss possible types of collisions
of a hard ball with a point, which are consistent with the laws of
mechanics. It is shown that the collision law for a smooth hard
ball, used so far in the studies of physical billiards, is indeed con-
sistent (satisfies) to mechanical conservation laws respected by
collisions. It is also shown that a rough ball collision law, when
a ball acquires rotation after a collision, is also consistent with the
laws of mechanics.

. INTRODUCTION

Mathematical billiards serve as relevant models of various phe-
nomena in mechanics, geometric optics and acoustics, statistical
physics, and quantum physics. Such billiards also constitute one of
the most popular and arguably the most visual class of dynamical
systems in the mathematical studies. In mathematical billiards, a
point particle moves by inertia in a domain with a boundary. When
the point particle reaches the boundary, it gets elastically reflected.

Recently, physical billiards were introduced where the mov-
ing particle is a hard ball.' It was shown in this paper that in the
transition from a mathematical to a physical billiard in the same
billiard table, any type of transition from chaotic to regular dynam-
ics and vice versa may occur. Moreover, such transition from the
point to a finite size particle can completely change the dynamics of
some classical and well-studied models such as, e.g., the Ehrenfests’
Wind-Tree model.” In quantum systems, a “particle” naturally has a
finite size due to the uncertainty principle, which leads to some new
findings in the quantum chaos theory.>"

It is worthwhile to mention that the most celebrated billiard
system is a gas of hard balls (Boltzmann gas) where moving particles
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are indeed hard balls. However, this system can be reduced to a
mathematical billiard within a billiard table with a specific bound-
ary. In fact, studies of dynamics of the Boltzmann gas inspired Ya.
G. Sinai to introduce famous Sinai billiards, which made the foun-
dation for the theory of chaotic billiards. However, the dynamics of
Sinai billiards and other most famous mathematical billiards does
not change after the transition to physical billiards in the same
billiards tables. In fact, changes in dynamics occur only when the
boundary of a billiard table has a visible singularity, i.e., a point in
the intersection of two or more smooth components of the bound-
ary such that a small enough physical particle can hit that point of
the boundary. If a billiard table is two-dimensional, then such sin-
gularities are internal corners where two smooth components of
the boundary intersect and make an angle greater than m inside
the billiard table. In all the papers cited above, it was assumed that
reflection of the ball off such visible singularity occurs in a natu-
ral manner corresponding to the simplest elastic collision. In the
present note, we justify this assumption for a smooth hard ball. It
is worthwhile to mention that there are other types of reflection of a
ball off a visible singular point that correspond to a rough ball, which
may acquire rotation after such collision’ even under the assump-
tion that it is a no-slip collision.”” We demonstrate that both types
of reflection, for a smooth ball and a hard ball, satisfy the (conserva-
tion) laws of mechanics. Therefore, physical billiards generated by
the motion of a smooth or a rough ball can be considered natural
realistic dynamical systems.

Il. DIFFERENT TYPES OF BOUNDARY SINGULARITIES
IN BILLIARD TABLES

Let Q be a domain in d-dimensional Euclidean space R such
that its boundary 8Q is the union of a finite number of C'-smooth
(d — 1)-dimensional manifolds. A point g of the boundary 9Q is
called singular if the boundary is not differentiable at that point.
This means that a singular point belongs to the intersection of some
(at least two) differentiable (aka regular) components of the bound-
ary. Note that we also call a singular point in dimension two (i.e.,
dim Q = 2) a corner. All non-singular points of the boundary 9Q
are called regular points.

Consider a free motion of a hard ball (a disk in dim 2) of radius
r > 0 in the domain Q with elastic reflections off the boundary 9Q.
The resulting dynamical system is called a physical billiard' and the
domain Q a billiard table. To describe the dynamics of such a ball,
it is enough to follow the motion of its center. It is easy to see that
the center of the ball moves in the smaller billiard table, which one
gets by moving any point g of the boundary by r to the interior of
the billiard table along the internal unit normal vector n(g).’

We will call a singular point g of the boundary 9Q an invisi-
ble singular point if for any r > 0, the hard ball of radius r cannot
hit that point. Otherwise, a singular point is called a visible singu-
lar point. Therefore, g is a visible singular point of a billiard table
if a ball with a sufficiently small radius can hit q. A formal mathe-
matical definition of a visible singular point (in any dimension) is
the following one. A singular point A is a visible singular point if
for any neighborhood N of A, the convex hull of QN N contains a
neighborhood of A.

scitation.org/journal/cha
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FIG. 1. Corners (singular points) B, C, and E are invisible to any disk. The point D
is not singular since the boundary is differentiable at D. The corner A is an internal
corner (a visible singular point).

We also call a visible singular point in dimension two an inter-
nal corner. For example, Fig. | shows visible and invisible singular
points in dimension two.Note that being a visible singular point (an
internal corner) does not mean that a hard ball of any radius r > 0
can reach (hit) that point. Specifically, if the radius of the particle
is larger than some constant (which depends on the shape of a bil-
liard table), then some visible singular points become invisible (see
Fig. 2). Observe that at the moment of collision with a visible sin-
gular point, the center of the hard ball can be at different positions,
and these possible positions depend on the shape of the boundary
9Q (see Fig. 3). This should be contrasted with the collision of the
ball off the boundary at a regular point, when the center of the ball
always has one position, namely, at the distance r on the internal
normal line to the boundary of a billiard table. In Fig. 3, two situa-
tions are depicted, which may happen in three dimensional billiard
tables.

Since the particle is a hard ball, it will keep its shape at the
moment of collision. Hence, the center of the hard ball is at the dis-
tance r from a collision point (regardless of whether this point is a
regular or singular point of the boundary). Therefore, the boundary
of the reduced billiard table of the mathematical billiard, which has
the same dynamics as the considered physical billiard," acquires a
piece of a sphere (or an arc of a circle if the dimension of the billiard
table is two) of radius r with the center at the visible singular point.
Hence, the reduced billiard table of the equivalent mathematical bil-
liard has a dispersing component in the boundary, which generates
a chaotic (hyperbolic) dynamics in case if a moving particle is a hard
ball.

In Fig. 4, it is easy to see that the boundary of the reduced
billiard table of the mathematical billiard acquires a dispersing

FIG. 2. An internal corner becomes invisible when the radius of the disk is larger
than some constant.
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FIG. 3. (a) There are two lines of visible singular points. When a hard ball hits a
point on those lines, its center is on an arc of a circle centered at that point and
orthogonal to the corresponding line. However, at the moment of collision with
the intersection point of those two lines, the center of the hard ball can be only
in one position. (b) Here is one isolated visible singular point. At the moment of
collision with such singularity, the center of a hard ball is on a piece of a two-sphere
centered at that singular point.

component because of the case of dimension two depicted. Here,
the center of a disk can be located at any point of an arc of the circle
with the center at the singular point and with the radius being equal
to the radius of the disk.

The fact that a reduced billiard table of the equivalent mathe-
matical billiard acquires a dispersing (or semi-dispersing) compo-
nent holds true for any types of collisions of the physical (r > 0)
particle with the boundary at a visible singular point. However, such
collisions can generally be elastic or inelastic (i.e., the angle of inci-
dent is equal to the angle of reflection or not) and with or without
slip (i.e., the particle slips on the boundary at reflection moment or
only touches the boundary at a single point).”” Dynamics of a rough
ball even in the case of no-slip collisions is much more complicated
than the dynamics of a smooth ball.

It is also worthwhile to mention that if a billiard table has
an internal visible corner, in the transition from a mathemat-
ical to a physical billiard, the boundary of a reduced billiard
table becomes smoother than the boundary of the initial billiard

FIG. 4. A collision between a disk and a visible singular point (here, an internal
corner) is shown in the left picture. On the right, one can see its equivalent for
a (virtual) collision between disk’s center and an arc of a circle centered at the
internal corner with the same radius as the disk’s radius.
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table. Indeed, instead of a corner, there appears an arc of a cir-
cle that has common tangents with neighboring components of
the boundary. However, this smoothening does not influence the
dynamics. Dynamics gets changed because of the appearance of a
(new) dispersing component of the boundary, which makes it more
chaotic.

11l. NO-SLIP COLLISIONS OF A HARD BALL WITH A
VISIBLE SINGULAR POINT

In the case of no-slip collisions, each reflection of the mov-
ing particle (hard ball) off the boundary occurs at a single point.
Hence, a collision at any point of the boundary does not depend
on the shape of the boundary elsewhere. Therefore, the collision
problem can be actually considered a reflection of a hard ball off
a point.

At the moment of the collision, the impulse AP decomposes
into two components, which are the normal impulse APy act-
ing toward the center of the hard ball and the tangent impulse
APy based on friction, which is tangent to the hard ball at the
collision point. The tangent impulse can result in either loss of
kinetic energy or exchange between linear and angular momentum
while the total kinetic energy is preserved. We will consider the
friction-free (elastic) collision and the case when the impulse APy
results in an exchange between linear and angular momentum with-
out loss of energy. In other words, we consider only conservative
(Hamiltonian) dynamics.

Let a hard ball of radius r > 0 with the center at a point O
hit a visible singular point A of the boundary of a billiard table
Q. Without any loss of generality, we assume that the mass of the
hard ball is m = 1. Denote the linear velocity of hard ball’s cen-
ter just before (after) the collision by V¥ (V*). Consider now a
decomposition of V* to two components V¥ and V%, where V%
= Projz; V" and V% = V* — V¥ Note that we will use the super-
script a instead of b to denote velocity components at a moment of
time right after the reflection. Denote also the vector form of angu-
lar velocity just before (after) the collision about the point O by w”
(@)

The collision map S at point A will map linear components
and the angular component of the velocity just before collision
(V, Vb, @) to those right after collision (V4, V2, "). The map S
has the following properties:

1. The map S is an orthogonal map because of the assumption that
the system in question is Hamiltonian.

2. Because of time reversibility of dynamics, $* is the identity map.

3. The normal component of the linear velocity with respect to the
boundary of the hard ball at the contact point A (i.e., V%) always
reverses under the map S.

Conditions 1 and 2 imply that the eigenvalues of the map
S are 1 or —1. In view of condition 3, one gets S(V%, V%, w®)
= (—V?V, Vi, ), or equivalently, V = (Vf(,, 6, 6) is an eigenvec-
tor of S corresponding to the eigenvalue —1. It also implies that
APy = —2V%.
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The Hamiltonian system under consideration satisfies three
conservation laws of the kinetic energy K, the linear momentum P,
and the angular momentum L about the point O. These conservation
laws in dimension 3 are given by the relations

1

K=o (VP + Vi + 1)

=5 (v

PP+ AP =Vl 4 Vb + APy + AP = V& + VA =P, (1)

— N

PP+ Vi[> + I|o"*) = K°

L' + APy x AO = I’ + APy x AO = Io® = L7,

where I is the moment of inertia of the hard ball.
Using that V&, = —V% and APy = —2V%, one can simplify
(1)as
VAP + 16" = V3P + Do,
Vi + APr = Vi, @)
10 + APy x A0 = I".

In the following, we consider two cases about the impulse APy
friction- free collision (i.e., APy = 0) or collisions with friction (i.e.,
APr # 0). By solving (2) for APr, we get

P2+
<APT, AP+ 2V 4 20 x w”> =0, 3)
where (., .) is the inner product in R* and r is the radius of the hard
ball.
Observe that the conservation laws in dimension 2 are the same
asin (1) under the assumption that the billiard table Q is a subset of
the xy-plane in R®.

A. Friction-free collision (a smooth ball)

In this section, we study a friction-free (i.e., APy = 6) Hamil-
tonian system. In this case, (2) implies

V”}:Vl}, 0" = o’

Here, the solution (V%, V2, w®) = (— V¥, V&, @") of (1) corresponds
to the case of a smooth hard ball” when the ball does not acquire
rotation upon collision. Thus, in this case, we have an elastic
reflection where the angle of incidence is equal to the angle of
reflection.

Also, this friction-free collision is equivalent to the elastic
reflection of the hard ball’s center O off a piece of a two-sphere (it
can be an arc of a circle) centered at the visible singular point A with
the same radius as the radius of the hard ball."*

In case of dimension 3, the collision map S is a linear map from
a six-dimensional subspace of R’ to itself with eigenvalues 1 and —1.
When APy = 0, the elgenvectors that correspond to these eigenval-

ues have the forms (0, Vl}, ) and (CAO, 0, 0), respectively, where ¢
is a constant. Also, the eigenspaces corresponding to the eigenvalues
1 and —1 have dimensions five and one, respectively.
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B. Collisions with friction (a rough ball)

For the Hamiltonian system under consideration, the presence
of the frictional force means that |APr| # 0. The corresponding
solution of (1) when |APr| # 0 describes the dynamics of a rough
ball,” which has no-slip ultra-elastic reflections off the boundary.
(After an ultra-elastic reflection, the ball will acquire rotation; there-
fore, the incident angle is not equal to the reflection angle.”) In
this case, the tangential component of the linear velocity partially
transfers to the angular velocity and vice versa.

A nontrivial solution for APy in (3) is given by

APy = — (V‘;Jmﬁ)xw”). (4)

P41
Let S be the collision map in dimension 3 when the tangent impulse
APy is given by (4). Then, (0, Vb, ") is an eigenvector of the col-

lision map S corresponding to the eigenvalue 1 if V¥ + A0 x o

= 0. The solution set of the vector equation V¥ 4 A0 x w® =0 is

a three dimensional space. Hence, the eigenspace corresponding to

eigenvalue 1 of the collision map S is a three-dimensional space.
Moreover, (0 Vi},a) ) is an eigenvector of the collision map S,

which corresponds to the eigenvalue —1 if V& x A0 — Iw® = 0. In

— -
this case, the solution set of the vector equation V& x AO — Iw® =0
is a two-dimensional space. This implies that the eigenspace cor-
responding to the eigenvalue —1 of the collision map S is a three-

dimensional space [we know that (A_()), 0,0) is another eigenvector
for eigenvalue —1].
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