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Abstract: Recent atom interferometry (AI) experiments involving Bose–Einstein condensates (BECs)

have been conducted under extreme conditions of volume and interrogation time. Numerical solution

of the rotating-frame Gross–Pitaevskii equation (RFGPE), which is the standard mean-field theory

applied to these experiments, is impractical due to the excessive computation time and memory

required. We present a variational model that provides approximate solutions of the RFGPE for a

power-law potential on a practical time scale. This model is well-suited to the design and analysis of

AI experiments involving BECs that are split and later recombined to form an interference pattern.

We derive the equations of motion of the variational parameters for this model and illustrate how the

model can be applied to the sequence of steps in a recent AI experiment where BECs were used to

implement a dual-Sagnac atom interferometer rotation sensor. We use this model to investigate the

impact of finite-size and interaction effects on the single-Sagnac-interferometer phase shift.

Keywords: atom interferometer; Bose–Einstein condensate; Gross–Pitaevskii equation

1. Introduction

Ultracold atom interferometry (AI) has become a mature technology over the past
25 years [1]. Today, it has many applications, including precision metrology, quantum
sensing, and tests of fundamental physics. Precision metrology applications include mea-
surements of the fine-structure [2–5] and universal gravitation fundamental constants [6,7],
geophysical measurements [8], and measuring the local acceleration of gravity as part of
the new Kibble-balance kilogram standard [9,10]. AI quantum sensors measure rotation
and acceleration for precision navigation [11–16] and serve as gravity gradiometers for
geodesy and civil engineering [17]. Atom interferometers have also been proposed for
gravity-wave detection [18–22]. Probes of fundamental physics include dark-matter and
dark-energy searches [23–29] as well as tests of Einstein’s Equivalence Principle [30–36].

Many AI experiments involve splitting and recombining a Bose–Einstein condensate
(BEC). Early measurements demonstrated that BECs were capable of interference [37–39].
More recently, BEC atom interferometers have been used for measuring the fine-structure
constant [40] and as gravimeters [41]. Condensates have been used in interferometers on
atom chips [42], have been confined in large ring potentials [43–46], and launched through
waveguide painted-potentials [47]. Finally, extraterrestrial AI uses BEC as a source. In
2017, the MAIUS-1 sounding-rocket mission produced BEC and conducted AI experiments
above the Kármán line, between 100 and 243 km above the Earth’s surface [48,49]. In
2020, a BEC of some 50,000 87Rb atoms was produced aboard the Earth-orbiting Interna-
tional Space Station [50]. There is an ongoing effort to implement BEC-enabled AI in that
environment [51].
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Using condensates in AI processes confers the advantages of narrow momentum
distributions and better signals due to their higher density relative to above-Tc gases.
Thus, using condensates in AIs hold high promise for accurate measurements [52]. High
densities have the disadvantage that interactions can cause phase diffusion that tends to
reduce the contrast of the interference pattern generated by overlapping BEC clouds [53].
Furthermore, mean-field repulsion of overlapping clouds can alter their relative velocity,
which can change the frequency of the interference pattern [54]. Indeed, many BEC AI
experiments use small condensates in order to minimize the effects of interactions. While
there has been a good deal of theoretical work done on the effect of interactions in BEC
AIs [52,55–57], few have used accurate solutions of the Gross–Pitaevskii equation (GPE) in
their analysis.

The time-dependent Gross–Pitaevskii equation is the standard mean-field theory that
governs the behavior of confined ultracold gases at near-zero temperatures [58]. There is
every reason to think that it will apply to BEC AI systems even in the most extreme cases
where the condensate is split into multiple high-momentum clouds, which are then allowed
to separate to a distance that is orders of magnitude larger than the original condensate
size and where the system evolution time is long. Precision solutions of the GPE should
thus be able accurately to account for the effects of interactions. The reason that previous
analyses of BEC AIs have not solved the GPE numerically is that the extreme conditions
(large-momentum, large-volume, long interrogation times) of these AIs are beyond the
current state of the art of known algorithms for solving the GPE on a practical timescale [59].

In this paper, we investigate the effects of atom–atom interactions and the presence
of anharmonic potential terms on the operation of a dual-Sagnac atom interferometry
rotation sensor. A version of this sensor was recently implemented in an experiment
conducted at the University of Virginia. In this experiment a BEC, confined in a nominally
harmonic potential, is split into two pairs of counter-orbiting condensates using laser light.
Each pair constitutes a single Sagnac interferometer for sensing the frame rotation speed.
The dual-Sagnac interferometer arrangement enables common-mode rejection of various
noise sources while rotation affects the two interferometers oppositely. This experiment is
described below and in more detail in Ref. [16]. Our goal in this work was to discover the
physical mechanisms behind the effects of condensate size and anharmonic potentials on
rotation sensor operation and to investigate how these effects depend on the interferometer
area and frame rotation speed.

We assume that the behavior of the condensate in this experiment can be described by
the rotating-frame Gross–Pitaevskii equation (RFGPE) [60]. Simulating this experiment by
direct numerical solution of the RFGPE is impractical due to the large interferometer areas
and long system evolution times involved. Future planned implementations of this rotation
sensor design will need to increase these areas and times by 1–2 orders of magnitude to be
competitive with the current state-of-the-art rotation sensors.

We have therefore obtained approximate solutions to the RFGPE using the Lagrangian
Variational Method (LVM) [61,62]. The trial wave function that approximates the RFGPE
solution is a sum of 3D Gaussian functions, one Gaussian for each separate cloud, having
time–dependent widths and phases as variational parameters. Applying the LVM with this
trial wave function to the experiment produces a system of coupled equations for these
parameters. These equations can be used to model each step of the experimental sequence.
The variational approximation enables us to simulate sensor operation even when the
interferometer areas and condensate sizes are much larger than in the experiment.

The physical picture embodied in this approximation pictures the system as a set of
Gaussian shaped condensate clouds. Each cloud moves along its own trajectory determined
by the external potential and the repulsive interaction with other clouds when there is
overlap. Furthermore, each cloud breathes in and out during its flight due to the interplay
between the confining potential and the cloud’s internal repulsion. The model also accounts
for minor width effects due to the interaction of different clouds when they overlap.

Condensate clouds pass through each other during the Virginia dual-Sagnac interfer-
ometer sequence. The effects of condensate collisions have been well-studied in previous
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works [63–66]. These show that when BECs collide, vortex formation and dynamical insta-
bilities can result. Here, however, the condensates are moving at a high relative velocity and
are overlapped for only a short time. No vortex formation was observed in that experiment.

In the Virginia rotation sensor experiment [16], condensate atoms were confined in
a TOP (time-averaged orbiting potential) trap potential. The TOP trap magnetic field is
the superposition of a “gradient field” produced by two co-axial current-carrying coils in
anti-Helmholtz configuration centered on the z axis plus a “bias field” that rotates rapidly
in the xy plane. The bias field is produced by two pairs of co-axial coils with axes along x
and y. This field rotates so rapidly that the potential (proportional to the time average of
the magnitude of the total magnetic field) is nominally harmonic.

In their analysis of their original experiment [16] the experimentalists assumed that
their TOP trap potential was purely harmonic. They later performed a more careful
characterization of their potential and published the result in Ref. [67]. This characterization
was based on a theoretical and experimental analysis of the magnetic fields produced by
their TOP trap in their actual apparatus. The result was that, in addition to the harmonic
terms assumed in analysis of their original experiment, there were anharmonic terms
present in the potential. These anharmonic terms were found by performing a 3D Taylor
expansion of the exact magnetic field produced by the TOP trap coils. The full potential
therefore took the form of a power-law potential. We have used that potential in the work
presented here.

In Section 2, we review the variational model and write down the equations of motion
for the variational parameters. In Section 3, we present the AI sequence carried out in the
dual-Sagnac rotation speed measurement. In Section 4, we write down the equations of
motion for the variational parameters contained in trial wave condensate wave function. In
Section 5, we derive exact expressions for the stopped-atom fraction in terms of the model
variational parameters. This stopped-atom fraction is necessary for experimental extraction
of the speed of the rotating frame from the data. In Section 6, we derive approximate
formulas for this quantity for zero-rotation speed and for a harmonic potential when cloud–
cloud interactions are neglected. In Section 7, we present the results of a set of simulations
designed to study the effects of interactions and anharmonic terms in the potential. Finally,
we summarize in Section 8.

2. Variational GPE Solver Model

We have developed and implemented [60] a variational model that provides rapid
approximate solutions for the rotating-frame Gross–Pitaevskii equation (RFGPE) given
by [58]

ih̄
∂Φ

∂t
= − h̄2

2M
∇2Φ + Vext(r, t)Φ + g3D N|Φ|2Φ + ih̄Ω · (r ×∇)Φ, (1)

where Φ(r, t) is the condensate wave function, M is the mass of a condensate atom, N is
the number of atoms in the condensate, g3D = 4πh̄2as/M measures the strength of the
atom–atom scattering with as being the scattering length, Vext(r, t) is the potential exerted
on a condensate atom by external fields, and Ω is the angular velocity of the rotating frame.

Our variational model is based on the Lagrangian Variational Method (LVM) [61,62],
which provides equations of motion for time-dependent variational parameters appearing
in a trial wave function. The equations of motion for these variational parameters are de-
rived by integrating the Lagrangian density over all space yielding the ordinary Lagrangian
and then using the standard Euler–Lagrange equations, to produce an equation of motion
for each variational parameter.

In our model, the trial wave function represents each of the Nc wave packets as a 3D
Gaussian. The mathematical form is the superposition:

Ψ(r, t) =
1√
Nc

Nc

∑
j=1

Aj(t)e
gj(r,t) (2)
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where

gj(r, t) = ∑
η=x,y,z

(

−
(η − ηj(t))

2

2wjη(t)2
+ iǫjη(t)η + iβ jη(t)η

2

)

. (3)

The variational parameters are the center coordinates ηj, the widths wjη , and linear ǫjη

and quadratic β jη phase parameters for each cloud. These are indicated above as explicit
functions of time.

Here, we make two assumptions about the physical system, which have material
effects on the values of the variational parameters. These are as follows:

1. We assume that each of the Nc clouds are moving at sufficiently different velocities

such that any integral of a quantity containing a factor like exp
{

i
(

k jη − k j′η

)

η
}

where

j 6= j′ can be neglected. If the clouds move with sufficiently different velocities, these
factors will be rapidly oscillating and their integrals can be neglected.

2. The number of atoms in each cloud is fixed. Clouds do not lose or exchange atoms.

We can use these assumptions plus the normalization condition on the trial wave
function to derive conditions that constrain the values of the Aj. Our assumption that
the number of atoms in each cloud is fixed adds the further restriction that each cloud is
individually normalized. The result is

∣

∣Aj(t)
∣

∣

2
π3/2wjx(t)wjy(t)wjz(t) = 1, j = 1, . . . , Nc. (4)

The equations of motion are a pair of second-order ordinary differential equations for
the cloud centers and widths as well as expressions for the β jη and the ǫjη in terms of the
centers, widths and their first derivatives:

ẍj = 2Ωzẏj + Ω2
z xj −

1

M

∂U(3D)

∂xj
, (5a)

ÿj = −2Ωz ẋj + Ω2
zyj −

1

M

∂U(3D)

∂yj
, (5b)

z̈j = − 1

M

∂U(3D)

∂zj
, (5c)

ẅjη =
h̄2

M2
w−3

jη − 2

M

∂U(3D)

∂wjη
, (5d)

β jη =
M

2h̄

ẇjη

wjη
, (5e)

ǫjx = M
h̄ (ẋj − Ωzyj)− 2β jxxj, (5f)

ǫjy = M
h̄ (ẏj + Ωzxj)− 2β jyyj, (5g)

ǫjz =
M
h̄ żj − 2β jxxj, (5h)

η = x, y, z j = 1, . . . , Nc

The equations for the cloud centers and cloud widths (Equation (5a–d)) form a closed set
that contain only the ηj, η̇j, wjη , and ẇjη . Once these quantities are obtained, all of the other
variational parameters can be calculated.

The factor U(3D)(x, w) is the “variational potential”

U(3D)(x, w) ≡ U
(3D)
ext (x, w) + U

(3D)
int (x, w). (6)

The external and interaction variational potentials are the expectation values of the actual
external potential and the condensate density over the trial wave function. The expression

for U
(3D)
ext (x, w) is
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U
(3D)
ext (x, w) ≡ Nc

∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz Ψ∗(r, t)Vext(r, t)Ψ(r, t) (7a)

=
Nc

∑
j=1

(

1

π3/2wjxwjywjz

)

∫

d3r exp

{

− ∑
η=x,y,z

(

η − ηj

)2

w2
jη

}

Vext(r, t). (7b)

We note here that the variational potential definition given here is smaller than that defined
in Ref. [60] by a factor of 2.

The equations of motion for the cloud centers and widths are valid for any external
potential. This variational potential is only a function of the center and width parameters
of all of the Gaussians. This model is capable of simulating extreme AI processes such as
multiple high-momentum clouds, large volumes, and long interrogation times in a few
minutes on a commodity desktop computer.

3. The Virginia Dual-Sagnac Atom-Interferometer Sequence

To illustrate how this variational model can be used to simulate an actual atom-
interferometer sequence, we will apply it to a recent dual-Sagnac atom interferometer
experiment conducted at the University of Virginia. The goal of this experiment was to
implement a high-precision rotation sensor using a confined BEC [16].

The steps of this experiment are described in detail in Figure 1 are summarized here
as follows. A BEC is formed in a nominally harmonic trap and is initially split by a pair of
counter propagating laser pulses into two clouds along the ±y axis at velocities ±vB ĵ (First
Split). The speed vB = 4πh̄/(MλL) transfers the momentum of two laser photons to each
condensate atom.

Figure 1. The Virginia dual Sagnac interferometer sequence as viewed from a non-rotating frame.

A BEC (gray circle) is formed in an ideal harmonic trap (ωx = ωy ≡ ω⊥) at the trap center.

First Split: laser pulses are used to split the BEC into two clouds that move at speed vB along

the +y axis (cloud 1) and the −y axis (cloud 2), respectively. Second Split: At time t = t1 cloud 1 at

the top is split into clouds 11 and 12. Cloud 11 has a +vB î added to its velocity by the split while

cloud 12 has −vB î added. These clouds move around a circular orbit in opposite directions. Cloud 2

at the bottom is split into clouds 21 and 22 that also orbit oppositely. Final Split: both of these cloud

pairs are allowed to execute one orbit and, at time t = t2, when each pair of clouds re-overlaps, they

are split in the same way as the Second Split. Each re-overlapped pair is split into four clouds: two

overlapping clouds that are nearly motionless and two that continue orbiting in opposite directions.

Thus, the (11,12) cloud pair form one Sagnac interferometer, which we will call the “plus” (+) Sagnac

interferometer and the (21,22) cloud pair forms the “minus” (−) Sagnac interferometer.
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The two clouds fly apart until, at time t = t1, they are each split along the x axis to
the new clouds, by another pair of laser pulses (Second Split). The time t1 is one quarter of
the horizontal trap period where the two clouds would be stopped in a purely harmonic
trap. The Second Split creates two pairs of counter-orbiting clouds. Each pair of clouds
implements a Sagnac interferometer. We will call the pair of clouds shown at the top in the
figure (labeled 11 and 12) the plus (+) interferometer and the bottom pair (labeled 21 and
22) the minus (−) interferometer.

These clouds are allowed to orbit until time t = t2 at which time the x-axis splitting
lasers are applied again (Final Split). If the potential were purely harmonic, the time elapsed
since time t1 would be one horizontal trap period. As we shall see below the optimal value
for the time t2 − t1 should be the time of maximum overlap of the orbiting clouds which
will differ from the trap period due to anharmonic terms present in the external potential.
For each Sagnac interferometer this produces a pair of overlapped clouds of stopped atoms
plus two clouds that continue orbiting. An image of the system is taken at this point.

Analysis of this image enables the fraction of stopped atoms, the ratio of stopped
atoms to total number of atoms in each interferometer, to be measured for this instance
of the AI sequence. The result is a stopped-atom fraction for the top interferometer, S+,
and a fraction for the bottom interferometer, S−. Due to mechanical vibrations and other
technical noise sources, the phase measured in each single interferometer is noisy. However,
the phase difference between the two interferometers is stable, and nominally given by the
Sagnac expression. To extract the Sagnac phase, the AI sequence is repeated a number of
times under the same conditions, and the values of S+ are plotted versus S−. These data
points are fitted to an ellipse from which can be extracted the differential phase difference:

∆Φ = ∆Φ+ − ∆Φ−. (8)

where ∆Φ± is the phase difference between the two stopped-atom clouds in the ±Sagnac
interferometers, respectively. In this way, common-mode noise sources are subtracted
out while the Sagnac phase contributions add since they affect the two interferometers
oppositely. Our model accounts for Sagnac effects and for interaction and finite-size effects.
There are no noise sources in the model so we can determine ∆Φ± for each interferometer
separately with no need for ellipse fitting.

Analysis of the TOP (time-averaged orbiting potential) trap used in the experiment
carried out by the Virginia group indicated that there were anharmonic terms present in
the potential that could impact the performance of the interferometer [67]. The potential
experienced by the condensate atoms can be expressed as follows:

V(r) = Mω2
0

[

1

2
ρ2 +

1

2
λ2z2 +

1

3
az3 +

1

2
bρ2z +

1

4
cρ4 +

1

4
f z4 +

1

2
hρ2z2

]

, (9)

where m is the mass of a condensate atom and ω0 is given by

ω0 =

(

7

64

µ

M

(B′
1)

2

B0

)1/2

.

and where µ is the magnetic dipole moment of the trapped state, B0 is the TOP trap bias
field and B′

1 is the gradient of the quadrupole magnetic field. The case of a trap produced
by spatially uniform bias and gradient fields was considered in [67], where the coefficients
appearing in the potential were calculated in terms of κ ≡ B′

1/B0 as follows:

λ2 =
8

7
a =

6

7
κ b =

9

14
κ c = − 237

3584
κ2 f =

17

28
κ2 h =

93

224
κ2. (10)

4. Model Equations of Motion for a Power-Law Potential

In order to simulate the dual-Sagnac interferometer sequence described above and
account for anharmonic terms in the external potential we will derive the variational
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equations of motion for a 3D power-law potential. We will assume that the potential has
the form

Vext(r) ≡
Nterms

∑
k=1

Cpx(k),py(k),pz(k)x
px(k)ypy(k)zpz(k). (11)

We consider the case where the atoms move over a length scale that is small compared
to the distance at which anharmonicities become large, so that the impact of terms in (11)
decreases as the powers increase. If we include all triples, (px, py, pz), of powers such that

px + py + pz ≤ Nmax then Nterms =
1

6
Nmax

(

N2
max + 6Nmax + 11

)

(12)

excluding the term where all powers are zero. The analysis in [16] considered anharmonic
terms up to fourth power, so we take Nmax = 4 and Nterms = 34.

The equations of motion for the general power-law potential are derived in Appendix A.
The result is

ẍj = 2Ωzẏj + Ω2
z xj −

1

M

∂U
(3D)
ext

∂xj
− 1

M
Fjx(x, w), (13a)

ÿj = −2Ωz ẋj + Ω2
zyj −

1

M

∂U
(3D)
ext

∂yj
− 1

M
Fjy(x, w), (13b)

z̈j = − 1

M

∂U
(3D)
ext

∂zj
− 1

M
Fjz(x, w), (13c)

ẅjη =
h̄2

M2
w−3

jη − 2

M

∂U
(3D)
ext

∂wjη
+

gN

(2π)3/2Nc M

(

1

wjxwjywjzwjη

)

− 1

M
Wjη(x, w), (13d)

η = x, y, z j = 1, . . . , Nc

The full expression for U
(3D)
ext (x, w) for the general power-law potential is given by

Equation (A4). Expressions for Fjη(x, w) and Wjη(x, w) were derived in Ref. [60] and
are given in full in Appendix B.

These equations of motion apply to a system of Nc condensate clouds that are subjected
to the power-law potential defined above. The terms Fjη(x, w) in the cloud-center equations
of motion represent interaction forces exerted on cloud j when it overlaps one or more of
the other clouds. The third term on the right-hand-side of Equation (13d) accounts for the
effects of self interaction of cloud j. They cause cloud j to expand or contract during its
evolution. The terms Wjη(x, w) account for the evolution of the widths of cloud j when it
overlaps other clouds.

It is worth noting that the Fjη and Wjη terms are negligible when clouds are not
overlapping. The size of these terms decays as the exponential of the square of the center
separation distance between the two overlapping clouds. This can be seen from their
expressions given in Equations (A7) and (A9) of Appendix B.

Virginia Trap Potential Equations of Motion

We can derive the equations of motion for the particular case of the anharmonic
potential present in the Virginia experiment described earlier and given in Equation (9).
This potential can be written in the form of the general power-law potential defined in
Equation (11)

Vext(r) = C200x2y0z0 + C020x0y2z0 + C002x0y0z2 + C201x2y0z1 + C021x0y2z1 + C003x0y0z3

+ C400x4y0z0 + C220x2y2z0 + C040x0y4z0 + C202x2y0z2 + C022x0y2z2 + C004x0y0z4.
(14)

Comparing with Equation (9) the coefficients are given by

C200 = C020 = C002/λ2 = 1
2 Mω2

0 , C201 = C021 = 1
2 Mω2

0b, C003 = 1
3 Mω2

0a
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C400 = C040 = C220/2 = 1
4 Mω2

0c, C202 = C022 = 1
2 Mω2

0h, C004 = 1
4 Mω2

0 f

We can find the variational potential, U
(3D)
ext , corresponding to the anharmonic potential

given above in Equation (14) by using Equation (A3) for the general power-law potential.

Each term in Vext has a corresponding term in U
(3D)
ext . The term in U

(3D)
ext corresponding to

Cαβγxαyβzγ in Vext is Cαβγ Jα(xj, wjx)Jβ(yj, wjy)Jγ(zj, wjz). Since the maximum power is 4,

we only need the following Jn(η, w): J0 = 1, J1 = η, J2 = η2 + 1
2 w2, J3 = η3 + 3

2 ηw2, and

J4 = η4 + 3η2w2 + 3
4 w4.

This process yields the specific form of U
(3D)
ext for the Virginia potential. The result is

U
(3D)
ext (x, w) = ∑

Nterms
j=1

(

C200(x2
j +

1
2 w2

jx) + C020(y
2
j +

1
2 w2

jy) + C002(z
2
j +

1
2 w2

jz)

+ C201(x2
j +

1
2 w2

jx)zj + C021(y
2
j +

1
2 w2

jy)zj + C003(z
3
j +

3
2 zjw

2
jz)

+ C400(x4
j + 3x2

j w2
jx +

3
4 w4

jx) + C220(x2
j +

1
2 w2

jx)(y
2
j +

1
2 w2

jy)

+ C040(y
4
j + 3y2

j w2
jy +

3
4 w4

jy) + C202(x2
j +

1
2 w2

jx)(z
2
j +

1
2 w2

jz)

+ C022(y
2
j +

1
2 w2

jy)(z
2
j +

1
2 w2

jz) + C004(z
4
j + 3z2

j w2
jz +

3
4 w4

jz)
)

.

(15)

This potential can be used to write down the equations of motion for the specific case of the
Virginia trap potential.

The center-coordinate equations of motion for the potential have the following form:

ẍj + (ω2
0 − Ω2

z)xj = +2Ωzẏj − ω2
0bzjxj − ω2

0c(x2
j +

3
2 w2

jx)xj − ω2
0c(y2

j +
1
2 w2

jy)xj

− ω2
0h(z2

j +
1
2 w2

jz)xj − 1
M Fjx(x, w)

ÿj + (ω2
0 − Ω2

z)yj = −2Ωz ẋj − ω2
0bzjyj − ω2

0c(y2
j +

3
2 w2

jy)yj − ω2
0c(x2

j +
1
2 w2

jx)yj

− ω2
0h(z2

j +
1
2 w2

jz)yj − 1
M Fjy(x, w)

z̈j + λ2ω2
0zj = − 1

2 ω2
0b(x2

j +
1
2 w2

jx)− 1
2 ω2

0b(y2
j +

1
2 w2

jy)− ω2
0a(z2

j +
1
2 w2

jz)

− ω2
0h(x2

j +
1
2 w2

jx)zj − ω2
0h(y2

j +
1
2 w2

jy)zj − ω2
0 f (z2

j +
3
2 w2

jz)zj − 1
M Fjz(x, w)

j = 1, . . . , Nc

(16)

The EOMs for the widths are

ẅjx + ω2
0wjx = h̄2

M2 w−3
jx + gN

(2π)3/2 Nc M

(

1
wjxwjywjzwjx

)

− ω2
0bzjwjx − 3ω2

0c(x2
j +

1
2 w2

jx)wjx

− ω2
0c(y2

j +
1
2 w2

jy)wjx − ω2
0h(z2

j +
1
2 w2

jz)wjx − 1
M Wjx(x, w)

ẅjy + ω2
0wjy = h̄2

M2 w−3
jy + gN

(2π)3/2 Nc M

(

1
wjxwjywjzwjy

)

− ω2
0bzjwjy − 3ω2

0c(y2
j +

1
2 w2

jy)wjy

− ω2
0c(x2

j +
1
2 w2

jx)wjy − ω2
0h(z2

j +
1
2 w2

jz)wjy − 1
M Wjy(x, w)

ẅjz + λ2ω2
0wjz = h̄2

M2 w−3
jz + gN

(2π)3/2 Nc M

(

1
wjxwjywjzwjz

)

− 2ω2
0azjwjz − 3ω2

0 f (z2
j +

1
2 w2

jz)wjz

− ω2
0h(x2

j +
1
2 w2

jx)wjz − ω2
0h(y2

j +
1
2 w2

jy)wjz − 1
M Wjz(x, w)

j = 1, . . . , Nc

(17)

We again note here that the terms Fjη(x, w) and Wjη(x, w) account for interactions between
different clouds and couple the widths and center coordinates of cloud j to the widths
and centers of all the other clouds. These terms are negligible unless cloud j has a spatial
overlap with another cloud.
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5. Computing the Stopped-Atom Fraction within the Variational Model

Our model is applied to the Virginia interferometer sequence by first finding stationary
values of the center coordinates and x,y,z widths in the one-cloud (Nc = 1) version of the
equations given in Equation (5a–e) to model the initial condensate. The two-cloud (Nc = 2)
version of the model is used to simulate the trajectories after the First Split. The one-cloud-
model values for the center coordinates and widths plus their y velocities modified by the
kick imparted by the lasers in the First Split are used as initial conditions for the two-cloud
model. Following the protocol, after one-quarter of the trap period, the Second Split is
applied and the four-cloud version (Nc = 4) of the equations is used to simulate the system
evolution for one full trap period. The final values of the centers and widths and their
derivatives (modified to include the laser kick applied in the Second Split) are used as the
initial conditions for the four-cloud model.

The variational trial wave function given by Equation (2), at time t = t2 (four-cloud
model) just before the Final Split, can be written as

Ψ(r, t2) =
1

2

(

A11(t)e
g11(r,t2) + A12(t)e

g12(r,t2) + A21(t)e
g21(r,t2) + A22(t)e

g22(r,t2)
)

≡ ψ11(r, t2) + ψ12(r, t2) + ψ21(r, t2) + ψ22(r, t2).

where

gij(r, t2) ≡ ∑
η=x,y,z

(

−
(η − ηij(t2))

2

2(wijη(t2))2
+ i
(

ǫijη(t2)η + βij(t2)η
2
)

)

, ij = 11, 12, 21, 22

and

ǫijx(t2) ≡ M

h̄

(

ẋij(t2)− Ωzyij(t2)
)

− 2βijx(t2)xij(t2)

ǫijy(t2) ≡ M

h̄

(

ẏij(t2) + Ωzxij(t2)
)

− 2βijy(t2)yij(t2)

ǫijz(t2) ≡ M

h̄
żij(t2)− 2βijz(t2)zij(t2).

The first two terms, ψ11 and ψ12, represent the plus (top) Sagnac interferometer shown
in Figure 1 while the last two terms, ψ21 and ψ22, represent the minus (bottom) Sagnac
interferometer. We note that clouds belonging to different interferometers at time t = t2

have no spatial overlap, so that any product of a plus interferometer cloud and a minus
cloud will be strictly zero.

The final split has the effect of stopping half of cloud ij and leaving the other half
alone (ij = 11, 12, 21, or 22). Since, at t = t2, the clouds 11 and 21 move nearly along +x and
clouds 12 and 22 move nearly along −x, after the final split we have

ψij(r, t2) →
1√
2

(

ψij(r, t2) + ψij(r, t2)e
−iλij MvBx/h̄

)

where λ11 = λ21 = −λ12 = −λ22 = 1 and where the term with the exponential is the
stopped cloud. Since there is no spatial overlap between any linear combination of the 11
and 12 clouds with any linear combination of the 21 and 22 clouds, we may treat them
separately. Each constitutes a separate Sagnac interferometer.

The quantities that can be determined from the image data generated in the Virginia
experiment are the ratios, S±, of the number of stopped atoms to the total number of atoms
in the two Sagnac interferometers. We can compute this from the variational wave function
just at the moment of the final split as the probability of being in the zero-momentum state.
Since the clouds of the two interferometers have no spatial overlap, the fraction of stopped
atoms in each interferometer can be written as

S+ =
∫

d3r
∣

∣

∣ψ11(r, t2)e
−iMvBx/h̄ + ψ12(r, t2)e

+iMvBx/h̄
∣

∣

∣

2
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and

S− =
∫

d3r
∣

∣

∣ψ21(r, t2)e
−iMvBx/h̄ + ψ22(r, t2)e

+iMvBx/h̄
∣

∣

∣

2

We can express S± in terms of the variational parameters by inserting the expression for the
trial wave function into the above integrals and carrying out the integration. The result is

S+ = 1
2 + 1

2 Re
{

M(x11(t2), w11x(t2), ǫ11x(t2), β11x(t2), x12(t2), w12x(t2), ǫ12x(t2) +
MvB

h̄ , β12x(t2))

× M(y11(t2), w11y(t2), ǫ11y(t2), β11y(t2), y12(t2), w12y(t2), ǫ12y(t2), β12y(t2))

× M(z11(t2), w11z(t2), ǫ11z(t2), β11z(t2), z12(t2), w12z(t2), ǫ12z(t2), β12z(t2))
}

(18)

S− = 1
2 + 1

2 Re
{

M(x21(t2), w21x(t2), ǫ21x(t2), β21x(t2), x22(t2), w22x(t2), ǫ22x(t2) +
MvB

h̄ , β22x(t2))

× M(y21(t2), w21y(t2), ǫ21y(t2), β21y(t2), y22(t2), w22y(t2), ǫ22y(t2), β22y(t2))

× M(z21(t2), w21z(t2), ǫ21z(t2), β21z(t2), z22(t2), w22z(t2), ǫ22z(t2), β22z(t2))
}

(19)

where

M(x1, w1, ǫ1, β1, x2, w2, ǫ2, β2) =

exp

{

(

x1
2w2

1

+
x2

2w2
2

+ 1
2 i(ǫ2−ǫ1)

)2

(

1

2w2
1

+ 1

2w2
2

−i(β2−β1)
) −

(

x2
1

2w2
1

+
x2

2

2w2
2

)

}

(

w2
2w1

+ w1
2w2

− i(β2 − β1)w1w2

)1/2
. (20)

These expressions enable us to compute S± in terms of the values of the variational param-
eters just before the Final Split.

6. Approximate Expressions for the Stopped-Atom Fraction

6.1. Stopped-Atom Fraction for Zero Rotation Speed

We can derive an approximate expression for S+ for the case of the Virginia trap
potential, where cloud–cloud interactions are neglected, and where the rotating-frame
speed is zero (Ωz = 0). We can simplify the formula for S+(Ωz) Equation (18) at Ωz = 0
by taking advantage of certain symmetries in the solution of the model equations for the
zero-rotation case. These are that the x and ẋ of clouds 11 and 12 are negatives of each
other, the y and ẏ of these clouds are the same, and the z and ż of the clouds are the same at
all times. Quantitatively we have

x11(t) ≡ x1(t), x12(t) ≡ x2(t), x1(t) = −x2(t), ẋ1(t) = −ẋ2(t)

y11(t) = y12(t), ẏ11(t) = ẏ12(t), z11(t) = z12(t), ż11(t) = ż12(t),

Furthermore all of the x and y widths and their dots for both clouds are the same at
all times:

w11x(t) = w12x(t) = w11y(t) = w12y(t) ≡ w⊥(t)

ẇ11x(t) = ẇ12x(t) = ẇ11y(t) = ẇ12y(t) ≡ ẇ⊥(t)

Additionally, the z widths and dot widths of the two clouds are equal

w11z(t) = w12z(t) ≡ wz(t), and ẇ11z(t) = ẇ12z(t) ≡ ẇz(t)

These symmetries greatly simplify the expression for S+(0).
The simplified expression is

S+(0) =
1
2 + 1

2 exp

{

−
(

M

h̄

)2[
1
2

(

2vB − (ẋ1 − ẋ2)
)

w⊥ + (x1 − x2)ẇ⊥
]2

−
( x2

1

2w2
⊥
+

x2
2

2w2
⊥

)

}

(21)
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where x1, x2, ẋ1, ẋ2, w⊥, and ẇ⊥ are all evaluated at time t = t2, the moment of the final
split. This result provides insight into the model-predicted physical mechanisms that affect
the fraction of stopped atoms when the counter-orbiting clouds recombine just before the
final split.

The exponential in Equation (21) contains two terms. The first term, shown enclosed
by square brackets, is due to the relative velocity of the two clouds. The second term,
shown in parenthesis, is due to the finite widths of the two clouds compared with the
separation of their center coordinates.

The relative velocity term has two contributions. The first term inside the square
brackets is the difference between the relative velocity of the center coordinates of the two
clouds, (ẋ1 − ẋ2) and their initial relative velocity at the second split (2vB). The second
contribution to the relative velocity is due to the expansion or contraction of the two clouds.
Even though the expansion and contraction of the two clouds is the same, if their centers are
offset, then there will be a relative velocity due to the time rate of change of the width, ẇ⊥.

The finite-width term decreases the fraction of stopped atoms the further apart the
two clouds are and the narrower their widths are relative to their separation. Thus, the
closer together and wider the clouds are, the larger the fraction of stopped atoms. This
is an entirely intuitive result since both decreased separation and larger widths tend to
maximize overlap and thus increase the possibility of interference.

6.2. Exact Stopped-Atom Fraction for Non-Interacting Clouds in a Harmonic Potential

The variational equations of motion applied to the Virginia experiment, found in
Equations (16) and (17), for the case of a harmonic potential and where cloud–cloud
interactions are neglected have the form

ẍj + (ω2
0 − Ω2

z)xj = +2Ωzẏj

ÿj + (ω2
0 − Ω2

z)yj = −2Ωz ẋj

z̈j + λ2ω2
0zj = 0

ẅjx + ω2
0wjx = h̄2

M2 w−3
jx + gN

(2π)3/2 Nc M

(

1
wjxwjywjzwjx

)

ẅjy + ω2
0wjy = h̄2

M2 w−3
jy + gN

(2π)3/2 Nc M

(

1
wjxwjywjzwjy

)

ẅjz + λ2ω2
0wjz = h̄2

M2 w−3
jz + gN

(2π)3/2 Nc M

(

1
wjxwjywjzwjz

)

j = 1, . . . , Nc.

(22)

The equations for the center coordinates of each cloud form a closed set and can be solved
exactly. The width equations must be solved numerically, but exhibit a clear symmetry in
that the equations for wjx(t) and wjy(t) are the same. When the initial conditions for these
widths are the same (as is the case when applying the one, two, and four-cloud models to
the Virginia AI sequence) the solutions wjx(t) and wjy(t) will be identical. Note that the
evolution of the widths do not depend on the speed, Ωz, of the rotating frame, as this does
not appear in the width equations of motion.

Using the analytical solutions of the cloud-center equations of motion and the sym-
metries of the solutions of the width equations of motion, we can follow the steps of the
Virginia AI sequence to obtain an analytical expression for S+(Ωz). The result is

S+(Ωz) =
1

2
+

1

2
exp

{

−
(

2MvBw⊥
h̄

)2

sin2

(

π
Ωz

ω0

)

}

cos

{(

2Mv2
B

h̄ω0

)

(

sin
(

5π
2

Ωz
ω0

)

− sin
(

π
2

Ωz
ω0

))

}

(23)

and the expression for S−(Ωz) is identical. In the above, w⊥ = wjx(t2) = wjy(t2) is the
transverse width of the condensate at the moment of the Final Split.
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In the limit where the rotation speed is much smaller than the trap frequency, Ωz ≪ ω0,
this approximates to

S+(Ωz) =
1

2
+

1

2
exp

{

−
(

2πMvBw⊥
h̄ω0

)2

Ω2
z

}

cos

{(

4Mπ(vB/ω0)
2Ωz

h̄

)}

(24)

For a purely harmonic potential, the radius of the circular orbit followed by the condensate
clouds is given by R = vB/ω0 so that the area of this orbit (and thus the interferometer
area) is A = πR2 = π(vB/ω0)

2. This enables us to recognize the argument of the cosine
above as the Sagnac phase for a single interferometer:

ΦS =
4Mπ(vB/ω0)

2Ωz

h̄
=

4MAΩz

h̄
.

The expression for S+(Ωz) in Equation (24) provides guidance for simulations where inter-
cloud interactions and anharmonic terms in the potential are included.

7. Interaction and Anharmonic Effect Study

We studied the effects of interactions and the presence of anharmonic terms in the
potential by computing the dependence of S+ on the true rotation speed Ωz by simu-
lating the interferometer experiment for various conditions. These conditions included
harmonic or anharmonic potential, cloud–cloud interactions on or off, and number of con-
densate atoms. These numbers were N = 1 × 104, 1 × 105, 2 × 105, 3 × 105, 4 × 105, 5 × 105,
6 × 105, 7 × 105, 8 × 105, 9 × 105, 1 × 106, 2 × 106 atoms. In all there were 48 sets of com-
binations of harmonic or anharmonic potential, cloud–cloud interactions off or on, and
number of condensate atoms. For each of these 48 combinations of potential, interactions,
and condensate number, we simulated the interferometer experiment at 26 different input
rotation speeds at equal intervals ranging from zero up to 125 times the Earth’s rotation
speed. The values of S+ were then plotted versus Ωz for each case. All other parameter
values were taken from the original Virginia experiment.

We fitted the S+ vs. Ωz plots to a function, which has the same dependence on
Ωz as the expression for S+ in Equation (24) for the case of a harmonic potential and no
cloud-cloud interactions. The fit function was

S+(a, b, c, Ωz) =
1

2
+ ae−bΩ2

z cos(2πcΩz). (25)

The fits were performed for data where the rotation speeds were expressed in Hertz.
Thus, the b parameter is measured in seconds squared and the c parameter is measured
in seconds.

We can use Equation (21) to find an approximate expression for the a parameter. Note
that, when Ωz = 0, the above expression becomes S+(0) = 1/2 + a. Comparing this with
Equation (21) gives an approximate formula for a

a ≈ 1
2 exp

{

−
(

M

h̄

)2[
1
2

(

2vB − (ẋ1 − ẋ2)
)

w⊥ + (x1 − x2)ẇ⊥
]2

−
( x2

1

2w2
⊥
+

x2
2

2w2
⊥

)

}

. (26)

Comparing the fit function with Equation (24) gives an approximate expression for the
b parameter

b ≈
(

4π2MvB

h̄ω0

)2

w2
⊥ (27)

where we note that this equation gives the value of b when the Ωz appearing in the
exponential is measured in Hz.

It is clear from these expressions that the width of the clouds, w⊥, and to a lesser extent
the width velocity, ẇ⊥, at the final split have a major effect on the value of S+. The cloud
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Table 1. Comparison of the fitted values of the parameters, a, b, and c with their values predicted

by Equations (26)–(28) when cloud–cloud interactions are turned off. The top half of the table gives

results for a harmonic potential and the bottom half for anharmonic potential.

Natoms a a b (s2) b (s2) c (s) c (s)

(Formula) (Fit) (Formula) (Fit) (Formula) (Fit)

10,000 0.500 0.500 2962.6 2962.8 691.6 691.6
100,000 0.500 0.500 6733.3 6733.6 691.6 691.6
200,000 0.500 0.500 8787.9 8788.3 691.6 691.6
500,000 0.500 0.500 12,577.9 12,578.5 691.6 691.6

1,000,000 0.500 0.500 16,543.9 16,544.6 691.6 691.6
2,000,000 0.500 0.500 21,789.6 21,790.4 691.6 691.6

10,000 0.459 0.459 3027.2 2952.1 702.9 704.5
100,000 0.450 0.450 6984.8 6913.5 702.9 704.5
200,000 0.441 0.441 9137.4 9072.4 702.9 704.6
500,000 0.422 0.422 13,101.1 13,039.0 702.9 704.6

1,000,000 0.402 0.402 17,244.1 17,179.3 702.9 704.7
2,000,000 0.376 0.376 22,720.7 22,648.1 703.0 704.7

Table 2. Comparison of the fitted values of the parameters, a, b, and c with their values predicted

by Equations (26)–(28) when cloud–cloud interactions are turned on. The top half of the table gives

results for a harmonic potential and the bottom half for anharmonic potential.

Natoms a a b (s2) b (s2) c (s) c (s)

(Formula) (Fit) (Formula) (Fit) (Formula) (Fit)

10,000 0.500 0.500 3475.6 3485.2 691.7 691.7
100,000 0.500 0.500 8499.3 8672.5 691.8 691.9
200,000 0.500 0.500 11,161.0 11,439.9 691.9 691.9
500,000 0.500 0.500 16,015.4 16,517.2 692.1 692.1

1,000,000 0.500 0.500 21,051.2 21,821.9 692.2 692.3
2,000,000 0.500 0.500 27,667.0 28,842.8 692.2 692.5

10,000 0.447 0.447 3553.9 3479.9 703.0 703.5
100,000 0.407 0.407 8718.4 8764.5 703.2 702.6
200,000 0.385 0.385 11,454.4 11,584.0 703.3 702.6
500,000 0.347 0.347 16,443.3 16,751.0 703.5 702.7

1,000,000 0.310 0.310 21,618.4 22,145.7 703.6 702.8
2,000,000 0.268 0.268 28,417.3 29,283.9 703.9 702.8

The last parameter to consider is b. We can see from the tables that the value of b is
insensitive to the presence of anharmonic terms in the potential. The striking feature of
the variation of b for increasing condensate number is that its value increases significantly
when cloud–cloud interactions are present over when they are absent. The main driver
of this effect occurs at the second split when two clouds become four clouds. Without
cloud–cloud interactions, the rate of change of the transverse cloud width (w⊥(t1)) begins
to decrease sharply, while this rate of change continues to increase when interactions are
present. This leads to a significantly larger value of w⊥(t2) at the final split.

The b parameter directly measures an effect of the finite-width of the condensate at the
time of the final split as shown in Equation (27). It is worth noting that its effect on the value
of S+ is increased for larger rotation speed and, importantly, also for larger interferometer
areas. It is therefore possible that this effect may need to be accounted for in the data
analysis of the experimental results for larger-area interferometers.
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8. Summary and Conclusions

In this work, we have applied a variational model providing approximate solutions to
the rotating-frame Gross–Pitaevskii equation to a recent dual-Sagnac atom-interferometry
measurement of the lab rotation speed. This measurement involved splitting and recom-
bining a small Bose–Einstein condensate in an ideally harmonic potential. We used the
model to study the effects of interactions due to increasing the number of condensate
atoms and of the presence of anharmonic terms in the external potential on the operation
of the interferometer.

We found that the finite condensate width due to the presence of atom–atom interac-
tions caused a slow decay in the envelope of the variation of the stopped-atom fraction,
S±, with increasing rotating-frame speed, Ωz. The rate of this decay is proportional to the
square of the width of the condensate at the time of the final split. Thus anything that
increases this final width will accelerate the envelope decay rate. This envelope decay rate
is also proportional to the interferometer area. Thus, we expect that this effect may be
important in state-of-the-art interferometer applications.

In our model, we found that the final width was affected by the breathing motion
of the individual clouds caused by self interactions as well as by interactions between
different clouds. When a condensate cloud is split in two, the number of atoms in the
daughter clouds is roughly half of the original so that the repulsion is reduced while the
confinement from the external potential remains the same. Thus, the cloud will begin to
contract, increasing the repulsion. Eventually, the contraction stops and the cloud begins
expanding until the confinement stops the expansion and contraction begins again. Thus,
the self interaction can lead to a bigger or smaller final width. We found that interactions
between different clouds can moderate the change in the expansion/contraction rate that
happens when a cloud is split. It is possible to minimize the final width by engineering the
four-cloud flight time so that the width oscillation is at a minimum.

The amplitude of the envelope of the stopped-atom fraction variation with Ωz is
affected by the presence of anharmonic terms in the potential. This amplitude (parameter a
in the study) is decreased when the two overlapping stopped-atom clouds have a relative
velocity and/or are not completely overlapped at the final split. The relative velocity can be
a combination of the relative velocity of the cloud centers and the expansion or contraction
of the cloud width. These effects also decrease when the final width decreases. It is also
possible to engineer the trap period to minimize this effect.

Finally, our model predicts that the frequency of the variation of S± with Ωz depends
on the Sagnac phase regardless of the presence of interactions and/or anharmonic terms.
We found that S± varied sinusoidally with the Sagnac phase under all conditions. Thus, it
may be possible to use the fit function in Equation (25) to devise a procedure similar to the
ellipse-fitting data analysis used in the experiment for common-mode rejection, but which
can account for interactions and anharmonic effects.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Atom Interferometry

BEC Bose–Einstein condensate

CAL Cold Atom Laboratory

GPE Gross–Pitaevskii Equation

LVM Lagrangian Variational Method

NASA National Aeronautics and Space Administration

RFGPE Rotation–frame Gross–Pitaevskii equation

TOP Time-averaged orbiting potential

Appendix A. Derivation of the Power-Law Equations of Motion

We can derive the variational equations of motion (Equation (5a–d)) for this power-law
external potential by inserting Equation (11) into Equation (7b). Thus, we have

U
(3D)
ext (x, w) =

Nterms

∑
k=1

Cpx(k),py(k),pz(k)

Nc

∑
j=1

(

1

π3/2wjxwjywjz

)

Ipx(k)(xj, wjx)Ipy(k)(yj, wjy)Ipz(k)(zj, wjz)

where we have defined

Ik(η0, w0) ≡
∫ ∞

−∞
ηke−(η−η0)

2/w2
0 dη, k = 0, 1, 2, . . . (A1)

Introducing

Jk(η0, w0) ≡
(

1

w0π1/2

)

∫ ∞

−∞
ηke−(η−η0)

2/w2
0 dη, k = 0, 1, 2, . . . (A2)

we can write the variational potential in a compact form. The result is

U
(3D)
ext (x, w) =

Nc

∑
j=1

Nterms

∑
k=1

Cpx(k),py(k),pz(k) Jpx(k)(xj, wjx)Jpy(k)(yj, wjy)Jpz(k)(zj, wjz) (A3)

The integral, Jk(η, w), is easily evaluated so it can be written as

Jk(η, w) =















∑
k/2
m=0

(

k!
m!(k−2m)!

)

ηk−2m( 1
2 w)2m k = even integer

∑
(k−1)/2
m=0

(

k!
m!(k−2m)!

)

ηk−2m( 1
2 w)2m k = odd integer

(A4)

We can use this expression to write down the equations of motion.
For the equations of motion we need to compute the derivative of Uext(x, w) with

respect to the center coordinates and center widths. These are easily done with results

∂U
(3D)
ext

∂xj
=

Nterms

∑
k=1

Cpx(k),py(k),pz(k)

(

∂Jpx(k)

∂xj

)

Jpy(k)(yj, wjy)Jpz(k)(zj, wjz)

∂U
(3D)
ext

∂yj
=

Nterms

∑
k=1

Cpx(k),py(k),pz(k) Jpx(k)(xj, wjx)

(

∂Jpy(k)

∂yj

)

Jpz(k)(zj, wjz)

∂U
(3D)
ext

∂zj
=

Nterms

∑
k=1

Cpx(k),py(k),pz(k) Jpx(k)(xj, wjx)Jpy(k)(yj, wjy)

(

∂Jpz(k)

∂zj

)
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∂U
(3D)
ext

∂wjx
=

Nterms

∑
k=1

Cpx(k),py(k),pz(k)

(

∂Jpx(k)

∂wjx

)

Jpy(k)(yj, wjy)Jpz(k)(zj, wjz)

∂U
(3D)
ext

∂wjy
=

Nterms

∑
k=1

Cpx(k),py(k),pz(k) Jpx(k)(xj, wjx)

(

∂Jpy(k)

∂wjy

)

Jpz(k)(zj, wjz)

∂U
(3D)
ext

∂wjz
=

Nterms

∑
k=1

Cpx(k),py(k),pz(k) Jpx(k)(xj, wjx)Jpy(k)(yj, wjy)

(

∂Jpz(k)

∂wjz

)

.

where the derivatives can be expressed as follows.

∂Jk

∂η
=















∑
k/2
m=0

(

k!
m!(k−2m−1)!

)

ηk−2m−1( 1
2 w)2m k = even integer

∑
(k−1)/2
m=0

(

k!
m!(k−2m−1)!

)

ηk−2m−1( 1
2 w)2m k = odd integer

(A5)

and where η = x, y, z and

∂Jk

∂w
=















∑
k/2
m=1

(

k!
(m−1)!(k−2m)!

)

ηk−2m( 1
2 w)2m−1 k = even integer

∑
(k−1)/2
m=1

(

k!
(m−1)!(k−2m)!

)

ηk−2m( 1
2 w)2m−1 k = odd integer

(A6)

Appendix B. Interaction Terms in the Variational Equations of Motion

The space and width gradients of U
(3D)
int (x, w) appearing in the variational equations

of motion are derived in Ref. [60]. The result for the space gradients is

Fjη(x, w) ≡ ∂U
(3D)
int

∂ηj
=

(

4gN

(π)3/2Nc

) Nc

∑
j′=1
j′ 6=j

∏
η′=x,y,z















exp

{

−
(

η′
j′−η′j

)2

w2
j′η′+w2

jη′

}

(

w2
j′η′ + w2

jη′

)1/2















(

ηj′ − ηj

w2
j′η + w2

jη

)

, (A7)

where η = x, y, z.
It is worth noting that this quantity describes the “force” exerted on cloud j due to all

of the other clouds j′ 6= j and is only non-zero when there is significant overlap between
two different clouds. It is also notable that the force of cloud j′ acting on cloud j is equal
and opposite to the force of cloud j on j′ as can be seen from the above equation. Thus, all
of the cloud–cloud interactions obey a “Newton’s Third Law” condition.

The equations of motion contain terms are twice the width gradient of U
(3D)
int (x, w).

These can be written in the following form:

2
∂Uint

∂wjη
≡ − gN

(2π)3/2Nc

(

1

wjxwjywjzwjη

)

+ Wjη(x, w), η = x, y, z. (A8)

where the first term accounts for the self-interaction of cloud j. The second term accounts
for the interaction of cloud j with the other clouds and has the form [60]

Wjη(x, w) ≡ 4gN

(π)3/2Nc

Nc

∑
j′=1
j′ 6=j

∏
η′=x,y,z















exp

{

−
(

η′
j′−η′j

)2

w2
j′η′+w2

jη′

}

(

w2
j′η′ + w2

jη′

)1/2























wjη

(

2
(

ηj′ − ηj

)2
−
(

w2
j′η + w2

jη

)

)

(

w2
j′η + w2

jη

)2









. (A9)

Note that this term is negligible unless cloud j overlaps one or more of the other clouds,
j′ 6= j.
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equivalence principle for atoms in coherent superposition of internal energy states. Nat. Commun. 2017, 8, 15529. [CrossRef]

[PubMed]

36. Geiger, R.; Trupke, M. Proposal for a Quantum Test of the Weak Equivalence Principle with Entangled Atomic Species. Phys. Rev.

Lett. 2018, 120, 043602. [CrossRef]

37. Andrews, M.R.; Townsend, C.G.; Miesner, H.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W. Observation of Interference Between Two

Bose Condensates. Science 1997, 275, 637–641. [CrossRef]

38. Simsarian, J.E.; Denschlag, J.; Edwards, M.; Clark, C.W.; Deng, L.; Hagley, E.W.; Helmerson, K.; Rolston, S.L.; Phillips, W.D.

Imaging the Phase of an Evolving Bose–Einstein Condensate Wave Function. Phys. Rev. Lett. 2000, 85, 2040–2043. [CrossRef]

39. Hagley, E.W.; Deng, L.; Kozuma, M.; Trippenbach, M.; Band, Y.B.; Edwards, M.; Doery, M.; Julienne, P.S.; Helmerson, K.; Rolston,

S.L.; et al. Measurement of the Coherence of a Bose–Einstein Condensate. Phys. Rev. Lett. 1999, 83, 3112–3115. [CrossRef]

40. Gupta, S.; Dieckmann, K.; Hadzibabic, Z.; Pritchard, D.E. Contrast Interferometry using Bose–Einstein Condensates to Measure

h/m and α. Phys. Rev. Lett. 2002, 89, 140401. [CrossRef]

41. Debs, J.E.; Altin, P.A.; Barter, T.H.; Döring, D.; Dennis, G.R.; McDonald, G.; Anderson, R.P.; Close, J.D.; Robins, N.P. Cold-atom

gravimetry with a Bose–Einstein condensate. Phys. Rev. A 2011, 84, 033610. [CrossRef]

42. Abend, S.; Gebbe, M.; Gersemann, M.; Ahlers, H.; Müntinga, H.; Giese, E.; Gaaloul, N.; Schubert, C.; Lämmerzahl, C.; Ertmer, W.;

et al. Atom-Chip Fountain Gravimeter. Phys. Rev. Lett. 2016, 117, 203003. [CrossRef]

43. Bell, T.A.; Glidden, J.A.P.; Humbert, L.; Bromley, M.W.J.; Haine, S.A.; Davis, M.J.; Neely, T.W.; Baker, M.A.; Rubinsztein-Dunlop,

H. Bose–Einstein condensation in large time-averaged optical ring potentials. New J. Phys. 2016, 18, 035003. [CrossRef]

44. Pandey, S.; Mas, H.; Drougakis, G.; Thekkeppatt, P.; Bolpasi, V.; Vasilakis, G.; Poulios, K.; von Klitzing, W. Hypersonic

Bose–Einstein condensates in accelerator rings. Nature 2019, 570, 205–209. [CrossRef] [PubMed]

45. Turpin, A.; Polo, J.; Loiko, Y.V.; Küber, J.; Schmaltz, F.; Kalkandjiev, T.K.; Ahufinger, V.; Birkl, G.; Mompart, J. Blue-detuned optical

ring trap for Bose–Einstein condensates based on conical refraction. Opt. Express 2015, 23, 1638–1650. [CrossRef] [PubMed]

46. de Goër de Herve, M.; Guo, Y.; Rossi, C.D.; Kumar, A.; Badr, T.; Dubessy, R.; Longchambon, L.; Perrin, H. A versatile ring trap for

quantum gases. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 125302. [CrossRef]

47. Ryu, C.; Boshier, M.G. Integrated coherent matter wave circuits. New J. Phys. 2016, 17, 092002. [CrossRef]

48. Becker, D.; Lachmann, M.D.; Seidel, S.T.; Ahlers, H.; Dinkelaker, A.N.; Grosse, J.; Hellmig, O.; Müntinga, H.; Schkolnik, V.;

Wendrich, T.; et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 2018, 562, 391–395. [CrossRef]

49. Frye, K.; Abend, S.; Bartosch, W.; Bawamia, A.; Becker, D.; Blume, H.; Braxmaier, C.; Chiow, S.W.; Efremov, M.A.; Ertmer, W.;

et al. The Bose–Einstein Condensate and Cold Atom Laboratory. EPJ Quantum Technol. 2021, 8, 1. [CrossRef]

50. Aveline, D.C.; Williams, J.R.; Elliott, E.R.; Dutenhoffer, C.; Kellogg, J.R.; Kohel, J.M.; Lay, N.E.; Oudrhiri, K.; Shotwell, R.F.; Yu, N.;

et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 2020, 582, 193–197; Erratum in Nature

2020, 584, E1. [CrossRef]

51. Elliott, E.R.; Krutzik, M.C.; Williams, J.R.; Thompson, R.J.; Aveline, D.C. NASA’s Cold Atom Lab (CAL): System development

and ground test status. NPJ Microgravity 2018, 4, 16. [CrossRef] [PubMed]

52. Jamison, A.O.; Kutz, J.N.; Gupta, S. Atomic interactions in precision interferometry using Bose–Einstein condensates. Phys. Rev.

A 2011, 84, 043643. [CrossRef]

53. Grond, J.; Hohenester, U.; Mazets, I.; Schmiedmayer, J. Atom interferometry with trapped Bose–Einstein condensates: Impact of

atom–atom interactions. New J. Phys. 2010, 12, 065036. [CrossRef]

54. Benton, B.; Krygier, M.; Heward, J.; Edwards, M.; Clark, C.W. Prototyping method for Bragg-type atom interferometers. Phys.

Rev. A 2011, 84, 043648. [CrossRef]

55. Olshanii, M.; Dunjko, V. Interferometry in dense nonlinear media and interaction-induced loss of contrast in microfabricated

atom interferometers. arXiv 2005, arXiv:cond-mat/0505358.

56. Stickney, J.A.; Kafle, R.P.; Anderson, D.Z.; Zozulya, A.A. Theoretical analysis of a single- and double-reflection atom interferometer

in a weakly confining magnetic trap. Phys. Rev. A 2008, 77, 043604. [CrossRef]

57. Impens, F. Hidden symmetry and nonlinear paraxial atom optics. Phys. Rev. A 2009, 80, 063617. [CrossRef]

58. Pitaevskii, L.; Stringari, S. Bose–Einstein Condensation; Oxford University Press: Oxford, UK, 2003.

59. Antoine, X.; Bao, W.; Besse, C. Computational methods for the dynamics of the nonlinear Schroedinger/Gross–Pitaevskii

equations. Comput. Phys. Commun. 2013, 184, 2621–2633. [CrossRef]



Atoms 2022, 10, 34 21 of 21

60. Ashwood, E.; Wells, E.W.; Kurkcuoglu, D.M.; Sapp, R.C.; Clark, C.W.; Edwards, M. Tools for designing atom interferometers in a

microgravity environment. Phys. Rev. A 2019, 99, 043615. [CrossRef]

61. Pérez-García, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P. Low Energy Excitations of a Bose–Einstein Condensate: A

Time-Dependent Variational Analysis. Phys. Rev. Lett. 1996, 77, 5320–5323. [CrossRef]

62. Pérez-García, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P. Dynamics of Bose–Einstein condensates: Variational

solutions of the Gross–Pitaevskii equations. Phys. Rev. A 1997, 56, 1424–1432. [CrossRef]

63. Carretero-González, R.; Anderson, B.P.; Kevrekidis, P.G.; Frantzeskakis, D.J.; Weiler, C.N. Dynamics of vortex formation in

merging Bose–Einstein condensate fragments. Phys. Rev. A 2008, 77, 033625. [CrossRef]

64. Yang, T.; Xiong, B.; Benedict, K.A. Dynamical excitations in the collision of two-dimensional Bose–Einstein condensates. Phys.

Rev. A 2013, 87, 023603. [CrossRef]

65. Xiong, B.; Yang, T.; Benedict, K.A. Distortion of interference fringes and the resulting vortex production of merging Bose–Einstein

condensates. Phys. Rev. A 2013, 88, 043602. [CrossRef]

66. Mukherjee, K.; Mukherjee, K.; Mistakidis, S.; Kevrekidis, P.G.; Schmelcher, P. Quench induced vortex-bright-soliton formation in

binary Bose–Einstein condensates. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 055302. [CrossRef]

67. Moan, E.; Berl, S.; Luo, Z.; Sackett, C.A. Controlling the anharmonicity of a time-orbiting potential trap. In Optical, Opto-Atomic,

and Entanglement-Enhanced Precision Metrology II; Shahriar, S.M., Scheuer, J., Eds.; International Society for Optics and Photonics,

SPIE: Stockholm, Sweden, 2020; Volume 11296, pp. 238–245. [CrossRef]


