

First evidence of an extant freshwater sponge fauna in Jackson Lake, Grand Teton National Park, Wyoming (USA)

Giliane G. Rasbold , ^a Ulisses Pinheiro , ^b Leandro Domingos-Luz , ^c John Dilworth , ^c J. Ryan Thigpen , ^c Luiz C. R. Pessenda , ^a and Michael M. McGlue , ^c

^aCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil; ^bDepartment of Zoology, Federal University of Pernambuco, Recife, Brazil; ^cDepartment of Earth and Environmental Sciences, University of Kentucky, Lexington, Kentucky, USA

ABSTRACT

Skeletal remains of freshwater sponges are important microfossils that may be preserved in the sediments of inland waters, but much is still unknown about the sponge fauna of the Nearctic, which limits their use in paleoenvironmental reconstructions. Here, we report the first evidence of an extant freshwater sponge fauna in Jackson Lake, Grand Teton National Park, Wyoming (USA). Two sponge species were identified living in shallow littoral and shoreline environments: Eunapius fragilis (Leidy 1851) and Ephydatia muelleri (Lieberkühn 1856). The spicules of Eunapius fragilis present high morphological variability, in contrast to gemmuloscleres reported in specimens from lakes and rivers in southern South America and eastern North America. Ephydatia muelleri also exhibits morphological differences in comparison to published examples, chiefly related to the spines on megascleres. The megascleres of Ephydatia muelleri are straight or slightly curved, sharpening gradually toward the apices, with completely smooth surfaces (13%), surfaces with minimal spines (65%), or highly spined surfaces in the central area (22%). These morphological differences in the Ephydatia muelleri megascleres suggest the potential for ecophenotypic effects in Jackson Lake. Furthermore, the morphological and ecological variability of Eunapius fragilis and Ephydatia muelleri observed in Jackson Lake suggest the need for further studies of the Nearctic to understand if a species complex exists or if morphological dissimilarities are indicative of true taxonomic differences and therefore multiple new species. This study expands the biogeography of freshwater sponges and provides the first documentation of benthic sessile filter feeders in Jackson Lake, a key source of ecosystem services.

ARTICLE HISTORY

Received 22 November 2021 Accepted 24 January 2022

KEYWORDS

biogenic silica; freshwater lake; Grand Teton National Park; Nearctic; porifera

Introduction

Sponges are sessile benthic filter feeders whose fossils have been recorded in the geological record since the Precambrian (Li et al. 1998, Sperling et al. 2007). Freshwater sponges are metazoans often overlooked by aquatic scientists, yet they play a key role in ecosystem structure and function within inland aquatic settings (Skelton and Strand 2013, Pinheiro and Calheira 2020). Freshwater sponges (Porifera: Order Spongillida) are found in various aquatic and semi-aquatic habitats worldwide, from cold deserts in the high latitudes to tropical and equatorial rainforests (Manconi and Pronzato 2008). Sponges colonize virtually all inland aquatic environments, including groundwater springs, wetlands, freshwater lakes, thermal vents, saline-alkaline lakes, peat lands, and rivers. They have been documented in all zoogeographic regions except for Antarctica (e.g., De Santo and Fell 1996, Økland and Økland 1996, Barton and Addis 1997, Manconi and Pronzato 2008, Volkmer-Ribeiro and Machado 2009, Manconi et al. 2013, Rasbold et al. 2019). Moreover, sponges also colonize constructed reservoirs and artificial ponds in zoological-botanical gardens (Manconi and Pronzato 2008, Volkmer-Ribeiro et al. 2010, Jakhalekar and Ghate 2016).

Currently the world's freshwater sponge fauna consists of ~268 species, (De Voogd et al. 2022). In the Nearctic biogeographic region, 32 species have been described thus far, of which 17 are endemic, belonging to 14 genera in 2 families (Manconi and Pronzato 2008, 2016). Because of their siliceous spicules, sponge remains are often well preserved in sediments. Yet, despite their abundance in sediments, sponge spicules are often underutilized as biological indicators in paleoenvironmental studies. In this context, some of the widest application has been in tropical floodplain settings because of the existence of well-documented taxonomic guides for low latitude riverine ecosystems (e.g., Harrison 1988, Frost 2002, McGlue et al. 2012, Tripathi et al. 2017, Guerreiro et al. 2018, Rasbold et al. 2019, Łukowiak 2020, Rasbold et al. 2021). By comparison, the application of sponge fossils for interpretations of

ancient marine ecosystems is more widespread (e.g., Molina-Cruz 1991, Murchey and Jones 1992, Pratt 2002, Barron et al. 2009, Snelling et al. 2014).

Despite the high percentage of endemism in the Nearctic zoogeographic region (Molina-Cruz 1991, Murchey and Jones 1992, Pratt 2002, Barron et al. 2009, Snelling et al. 2014), laws or international conventions have yet to protect freshwater sponge species. This lack can perhaps be attributed to the scarcity of studies, even though the Porifera of North American inland waters have been reported since the late 1800s (e.g., Manconi and Pronzato 2016). The extant fauna in the Nearctic is composed of 3 families of the order Spongillida (Metaniidae, Spongillidae, and Potamolepidae; Copeland et al. 2015). In the geological record, the Potamolepidae family has also been documented in middle Eocene strata from northern Canada, which has provided insights on ancient biogeography and paleoclimate (Pisera et al. 2013). Apart from Pisera et al. (2013), other reports of sponge fossils as environmental or hydrological indicators in Nearctic continental settings are rather limited (e.g., Paduano and Fell 1997, Dunagan 1999).

Few records of living sponges are available from high elevation mountain lakes in the Nearctic, and as a result, the distribution in this region is not well understood. Smith (1921) recorded 4 freshwater sponge species from Colorado-Ephydatia fluviatilis (Linnaeus, 1759), Eunapius fragilis (Leidy 1851), Ephydatia muelleri (Lieberkühn 1856), and Spongilla lacustris (Linnaeus, 1759)—in habitats at altitudes ranging from 2470 to 3225 m a.s.l. More recently, a study by Barton and Addis (1997) documented 3 sponge species—Ephydatia muelleri, Eunapius fragilis, and S. lacustris—in lakes in western Montana between 884 and 2911 m a.s.l. High elevation mountain lakes are aquatic ecosystems that often exhibit considerable habitat isolation, affording the potential for speciation and the development of endemism. This isolation is particularly true for long-lived montane lakes formed through tectonic processes. For example, Racekiela andina Hernández and Barreat 2017 is the first freshwater sponge species reported for the Venezuelan Andes, and current research suggests it is endemic, but the genus Racekiela ranges from eastern North America to the British Isles, Faroe Islands, and Norway (Hernández and Barreat 2017, Manconi and Pronzato 2002). Another example is the endemic species Balliviaspongia wirrmanni Boury-Esnault and Volkmer-Ribeiro 1991 described from Lake Titicaca in Bolivia (Boury-Esnault and Volkmer-Ribeiro 1991). High elevation, long-lived lakes influenced by tectonism are less common in the Nearctic because many, if not most, lakes from this region formed during the last glaciation.

Studying sponges broadens our knowledge of biotic interactions in continental aquatic ecosystems and provides insights into water quality. In this study, we describe the first evidence of a sponge fauna in Jackson Lake, western Wyoming, USA (Fig. 1). Our discovery of these sponges is important for understanding the Jackson Lake benthic ecosystem as well as for expanding the biogeography of freshwater sponges in the Nearctic. Moreover, Jackson Lake sediments hold great promise for reconstructing the Quaternary climate and ecology of western Wyoming, an area sensitive to drought and prone to wildfires (Whitlock 1993, Hostetler et al. 2021). Therefore, knowledge of the environmental conditions associated with the extant fauna may improve paleoenvironmental reconstructions made using fossils.

Material and methods

Study site

Jackson Lake (2072 m a.s.l.) is the largest piedmont lake in Grand Teton National Park (GTNP) and one of the largest mountain lakes in the western United States, with a surface area of $\sim 103.3 \text{ km}^2$ (White et al. 2009). Jackson Lake was partially excavated in the late Pleistocene (~15.5-14.4 ka) by glaciers, but its location adjacent to the seismically active Teton fault likely played a role in its evolution (Licciardi and Pierce 2018, Thigpen et al. 2021). The region is recognized as one of the highest seismic hazard areas in the continental United States (White et al. 2009, DuRoss et al. 2019, Larsen et al. 2019). A dam was placed over the lake outlet in the early 20th century to improve irrigation and court homesteaders to the Upper Snake River Valley (Stene 1993, Marston et al. 2005). Conversion to a reservoir led to a ~12 m rise in lake level elevation, and today at full pool Jackson Lake is ~140 m deep. This rise in lake level elevation led to flooding of the Snake River delta along the now-expanded northern axis of the lake (Fig. 1). Areas of deep water are localized along the western margin of the lake, whereas the eastern margins are considerably shallower with numerous islands dotting the nearshore area.

The Snake River and its tributaries drain the Teton Range, the Absaroka Mountains, and the Yellowstone Plateau. The regional bedrock consists chiefly of Precambrian metasediments and Cretaceous volcanoclastic rocks (Love et al. 1978). Nutrient loads of the Snake River north of Jackson Lake have low concentrations of nitrogen, phosphorus, and iron and a dominance of sodium and bicarbonate ions (Clark et al. 2004). Concentrations of calcium ranged from 14.2 to 25.1 mg/L

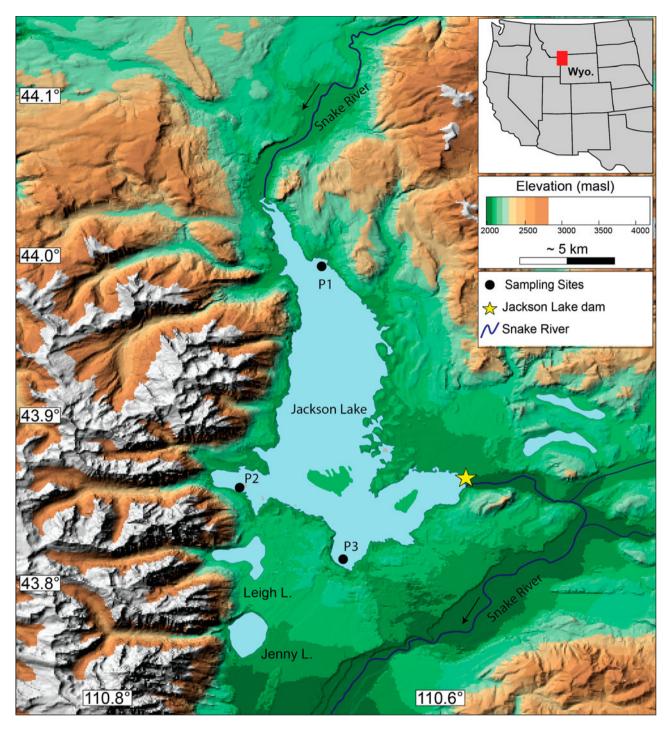


Figure 1. Jackson Lake, Grant Teton National Park, Wyoming, USA, and sampling sites of freshwater sponges in the lake shoreline.

in the Snake River just north (<10 km) of its delta in Jackson Lake (Clark et al. 2004).

The climate of the region is *Dsc* (dry-summer subarctic) according to the Köppen classification, with cold and snowy winters and warm and dry summers (Whitlock 1993). Regionally, annual precipitation ranges up to ~1500 mm in the Teton range adjacent to the lake, with lower amounts in the Jackson Hole valley (Despain

1987). The Snake River watershed is heavily vegetated, covered mostly with subarctic pines and grasses, and wildfires are common.

Extensive research into the limnology of Jackson Lake is lacking. The limited available data indicate that Jackson Lake is oligotrophic to mesotrophic, with Secchi depths ranging from 4.0 to 5.9 m and an effective photic zone down to ~14 m (Kilham et al. 1996, Wurtsbaugh 2014).

Taxonomic identification

Sponges were discovered in Jackson Lake in summer 2019 during shoreline surveys and nearshore sediment sampling using a Ponar grab sampler. Specimens were collected at each site (Fig. 1), and sampling stations were registered using hand-held GPS (Table 1). After collection, specimens were dried and sampled for taxonomic analysis of spicules. Samples from each specimen were archived in the Porifera collection of the Federal University of Pernambuco (Brazil), preserved in 70% ethanol. To disarticulate the sponge skeleton and prepare the spicules for observation under the optical microscope (OM) and scanning electron microscope (SEM), a fragment of the sponge was placed in a centrifuge tube, immersed in nitric acid (5 mL), and heated over a lamp flame. Following digestion, the samples were centrifuged and the supernatant was siphoned off. The spicules were then washed with distilled water and ethanol. Repeated rinses and centrifugation continued until a neutral pH was achieved, after which the spicules were mounted on a microscope slide (Hajdu et al. 2011).

Taxonomic identification was performed through visual analysis of spicules and gemmules (n = 500)using light microscopy (LM) and photographed using SEM, according to the methods described by Hajdu et al. (2011). We measured the length and width (n =60, minimum-mean-maximum: mean underlined) of the spicules and the diameter of gemmules where possible. These morphometrics were compared with other Eunapius and Ephydatia species using publicly available data mined from the World Porifera Database (De Voogd et al. 2022).

Results

We identified 2 sponge species in Jackson Lake, Eunapius fragilis (Leidy 1851) and Ephydatia muelleri (Lieberkühn 1856). For Ephydatia muelleri we observed considerable morphological variability in the megascleres relative to published examples. Three types of megasclere were identified for Ephydatia muelleri: (1)

Table 1. Sample sites for freshwater sponges in Jackson Lake, Grant Teton National Park, Wyoming, USA.

Site	Species	Latitude (DD)	Longitude (DD)	Substrate	Depth (m)
P1	Eunapius fragilis	44.002	-110.686	Trunk	0.5
P2	Eunapius fragilis	43.857	-110.748	Trunk	0.3
P3	Ephydatia muelleri	43.808	-110.673	Trunk	0.5

spicules with completely smooth surfaces, (2) spicules with a few spines, and (3) spicules with densely spined surfaces in the central axis (e.g., Ezcurra de Drago 1976).

Phylum Porifera Grant, 1836 Class Demospongiae Sollas, 1885 Order Spongillida Manconi and Pronzato 2002 Family Spongillidae Gray 1867 Genus Eunapius Gray 1867 Eunapius fragilis (Leidy 1851) Synonymy: Spongilla fragilis Leidy 1851

Eunapius fragilis: Penney and Racek (1968), Ricciardi and Reiswig (1993), Pronzato and Manconi (2001), Manconi and Pronzato (2002, 2007), Frost et al. (2010)

Diagnosis. Species of Eunapius fragilis characterized by the presence of oxea megascleres with one category of gemmuloscleres strongyles with abundant spines.

Description. Growth form encrusting tree trunks and pebbles, 5-10 mm in thickness, consistency soft, gelatinous in vivo, fragile in the dry condition. Color bright brown in vivo and creamy white when dry (Fig. 2a, c). Megascleres oxeas (145.2-252.9-337.7 / 6.6-11-15.7 µm for length/width [Table 2]) straight or slightly curved, sharpening gradually toward the apices (Fig. 3a). Gemmuloscleres strongyles usually curved and straight (59.3-84.9-133.1/5.6-8.0-11 µm) covered with abundant spines (Fig. 3d). Gemmules (diameter: 194.6-313.7-505.5 μm) are enclosed in a common brown coat, forming a pavement layer cemented to the substrate (Fig. 2b).

Ecology. Specimen found encrusted on submerged pebbles from littoral zone (6.1 m depth) and shoreline-proximal submerged tree trunks (0.5 m depth).

Type locality. Jackson Lake, Grant Teton National Park, Wyoming, USA.

Phylum Porifera Grant, 1836 Class Demospongiae Sollas, 1885 Order Spongillida Manconi and Pronzato 2002 Family Spongillidae Gray 1867 Genus Ephydatia Lamouroux, 1816 Ephydatia muelleri (Lieberkühn 1856) Synonymy. Spongilla mülleri Lieberkühn 1856

Ephydatia muelleri: Smith (1921), Penney and Racek (1968), Ezcurra de Drago (1975, 1976), Manconi and Pronzato (2002, 2007), Pronzato and Manconi (2001), Frost et al. (2010).

Diagnosis. Species of Ephydatia muelleri characterized by the presence of categories of megascleres, and



Figure 2. Eunapius fragilis (Leidy 1851). (a) Specimen in vivo; (b) dry specimen and detail of the gemmules; (c) dry specimen.

one category of gemmuloscleres birotules, with a short, thick, smooth shaft, and rotules with indented margins.

Description. Growth from thinly encrusting tree trunks to slightly massive, 5-10 mm in thickness. Consistency soft and gelatinous in vivo, fragile in the dry condition. Color bright brown in vivo and creamy white when dry (Fig. 4a, c). Megascleres oxeas straight or slightly curved, sharpening gradually toward the apices, with completely smooth surface (13%), with a few spines (65%), and highly spined surface in the central area (22%). In total, 87% of megascleres presented spines (Fig. 5a, 6, and Table 3).

Gemmuloscleres birotules, with a short, thick, smooth shaft, and rotules with indented margins (Fig. 5d-e and Table 3). Gemmules (285.0-353.5-407.5 μm) subspherical, relatively abundant, and scattered singly in the choanosomal skeleton or clusters at the sponge base (Fig. 4c and 5b)

Ecology. Specimen found encrusted on submerged tree trunks (0.5 m depth).

Type locality. Jackson Lake, Grant Teton Nation Park, Wyoming, USA.

Table 2. Spicule micrometrics of Eunapius fragilis. Measurements are shown as minimum-mean-maximum. Values before and after the dash (/) are length and width, respectively.

Reference	Locality	Megasclere oxea (μm)	Gemmulosclere strongyles (μm)	Gemmule (μm)
UFPEPOR2726	Site 1, Jackson Lake, Wyoming, USA	200-253.1-283/8-10.8-12	59-81.3-126/6-8.2-10	194-322.4-442
UFPEPOR2727	Site 1, Jackson Lake, Wyoming, USA	145-226.5-298/6-10.2-16	63-83.2-111/5-8.1-11	
UFPEPOR2728	Site 2, Jackson Lake, Wyoming, USA	200-264.9-338/8-11.1-14	64- 84.4 -133/6- 7.8 -11	231-305.1-505
Potts (1887)*	Delaware and Schuylkill Rivers, USA	205.7	68.6	
Barton and Addis (1997)	Western Montana, USA	90-275-392/2-9.5-14	30-79-148/3.5-6.0-8.0	250-500
Ricciardi and Reiswing (1993)	Eastern Canada	165-189-261/4-10-14	32-57-121/3-5-8	_
Manconi et al. (2008)	Mudzi River, South-Eastern Africa	319-426/9-13	84-132/3-6	_
Oscoz et al. (2009)	Zadorra River, Spain	174-204-224	62-87-150	_
Oscoz et al. (2009)	Ebro River, Spain	195- 218 -232	70-83-132	_
Ezcurra de Drago (1974)	Panguipulli Lake, Chile	200-325/8-17	110-140/6-8	_
Ezcurra de Drago (1974)	Calle-Calle River, Chile	200-325/8-17	70-120/6-9	_
Bonetto and Ezcurra de Drago (1964)	Setúbal and Don Pancho lakes, Argentina	260-375/12-21	140-210/5–7	_
Penney and Racek (1968)	Europe, North America, Africa, Australia	180-270/5-12	75-140/2-7	_
Tavares et al. (2003)	Rio Grande do Sul State, Brazil	170- <u>237</u> -290/7.5- <u>11.95</u> - 17.5	90- <u>130.2</u> -175/5- <u>9</u> -12.5	_

^{*}Measurements performed in type during species redescription.

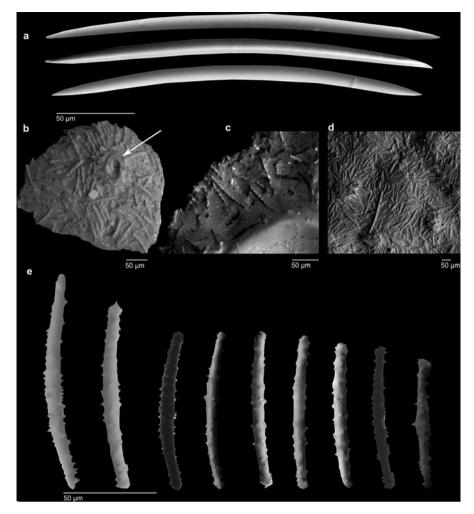


Figure 3. Scanning electron microscope (SEM) images of spicules of Eunapius fragilis (Leidy 1851). (a) Megascleres: oxeas; (b-d) detail of gemmule surface with gemmuloscleres embedded; (e) Gemmuloscleres: strongyles with abundant spines.

Discussion

Ricciardi and Reiswig (1993) reported the occurrence of Eunapius fragilis widely distributed in calciumrich soda lake habitats across eastern Canada. In waters with high calcium, Eunapius fragilis forms thin and uniform encrustations, for example in nearshore areas of Lake Michigan (Jewell 1939, Lauer et al. 2001). In the lakes of Louisiana (USA), Eunapius fragilis has been found living in lentic environments with pH ranging from 6.5-8.7 and temperatures from 23 to 34 °C (Poirrier 1969). In Norway, Økland and Økland (1996) found Eunapius fragilis in calm, low-altitude (3-341 m a.s.l.) lakes with alkaline waters with pH values up to 9.6. In Montana, Eunapius fragilis and Ephydatia mullieri occurred in lakes with calcium and magnesium concentrations of 2.0-39.4 and 0.0-12.8 mg/L, respectively (Barton and Addis 1997). These ranges are broadly in-line with our findings,

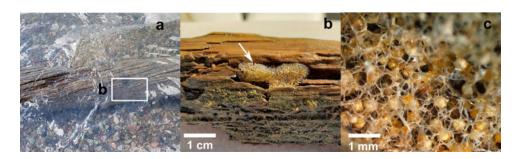


Figure 4. Ephydatia muelleri (Lieberkühn 1856); (a-b) specimen in vivo; (c) dry specimen and detail of the gemmules.

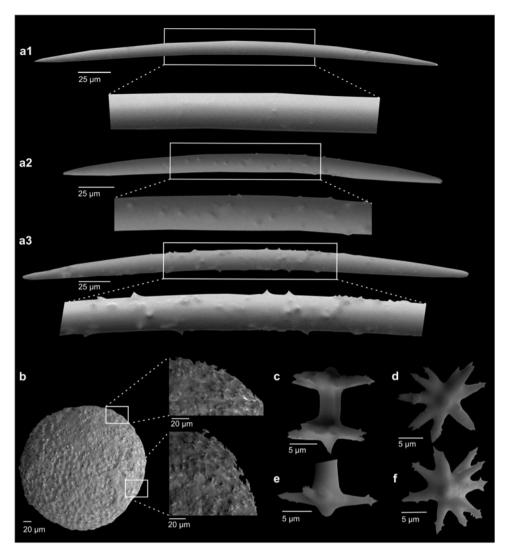


Figure 5. Scanning electron microscope (SEM) images of spicules of Ephydatia muelleri (Lieberkühn 1856) from Jackson Lake. (a) Three types of megascleres: (a1) megasclere with smooth surface; (a2) megasclere with a few spines; (a3) megasclere with densely spined surfaces in the central axis. (b) Detail of gemmule surface with gemmuloscleres embedded. (c-f) Gemmuloscleres: birotules, with short, thick, smooth shaft, and rotules with indented margins.

given the concentrations of 9.00-25.1 mg/L calcium and 1.56-4.66 mg/L magnesium in the Snake River waters north of its delta in Jackson Lake (Clark et al. 2004). Yet other studies suggest the species may be more cosmopolitan. In the lowlands of Argentina, Bonetto and Ezcurra de Drago (1964) found Eunapius fragilis living in the Paraná River, with morphological and skeletal ornamentation adapted to flowing water and channel substrates. In Brazil, Eunapius fragilis has been found in rivers and lakes in Rio Grande do Sul, typically with a preference for rocky substrates (Tavares et al. 2003).

Eunapius fragilis presents a wide geographic distribution, including the Nearctic, Palearctic, Afrotropical, Neotropical, Oriental, and Australian regions. In this sense, Eunapius fragilis can be described as a cosmopolitan species or a species complex because of its high morphological variability (Harrison 1974, Manconi and Pronzato 2016). In our study, this variability is evident in spicule morphology (Table 2). In Jackson Lake, Eunapius fragilis was collected from submerged tree trunks and pebbles (up to ~6 m water depth); all specimens had relatively small dimensions and exhibited a high production of gemmules. When compared with other studies, the specimens in Jackson Lake have similar dimensions to those found in rivers from Spain (Manconi et al. 2008, Oscoz et al. 2009), Chile (Ezcurra de Drago 1974), and in parts of North America, Africa, and Australia (Penney and Racek 1968, Barton and Addis 1997). Conversely, this species has been identified with much smaller gemmuloscleres in the lakes of eastern Canada (Ricciardi and Reiswig 1993) and in rivers of the eastern United States (Potts 1887). Specimens with larger gemmuloscleres have been identified in lakes of

Table 3. Spicule morphometrics of Ephydatia muelleri Lieberkühn 1856. Measurements are shown as minimum-mean-maximum (mean underlined) or minimum-maximum. First set of values is length and (where measured) a slash (/) separates following values of width and a double slash (//) separates following values of diameter.

Reference	Locality	Megasclere oxea (μm)	Gemmulosclere birotule (µm)	Gemmule (µm)
UFPEPOR2725	Site 3, Jackson Lake, Wyoming, USA	241.6- <u>304.6</u> -350.4/10.5- <u>14.1</u> - 18.1	12.0- <u>15.0</u> -17.2/3.0- <u>4.4</u> -5.5//14.3- <u>16.0</u> - 19.3	285.0- <u>353.5</u> - 407.5
Penney and Racek (1968)	Europe, North America, Asia	200-350/9-20	12-20/4-6//20-25	350-450
Ezcurra de Drago (1976)	Salisbury, Rhodesia, Africa	170-320/12-15	11-23/4//17-22	_
Ricciardi and Reiswig (1993)	Eastern Canada	171- <u>245</u> -311/5- <u>11</u> -23	8- <u>17</u> -28/1- <u>4</u> -9//8- <u>15</u> -27	_
Barton and Addis (1997)	Western Montana, USA	150- <u>269</u> -391/3.0- <u>10.5</u> -18.0	9.5- <u>14.5</u> -25.0/1.5- <u>4.0</u> -7.5//9.5- <u>17.5</u> - 27.5	350-450

southern Brazil (Tavares et al. 2003), Chile (Ezcurra de Drago 1974), and Argentina (Bonetto and Ezcurra de Drago 1964; however, the megascleres of the specimens from Jackson Lake are larger than other records from localities in North and South America (Table 2).

The morphological and ecological variability of Eunapius fragilis suggests that more study, including molecular analyses, are needed to ascertain if a species complex exists or if those dissimilarities are indicative of true taxonomic differences. Molecular analyses conducted by Pinheiro and Calheira (2020) noted that South America has >90% of the endemism within the freshwater sponges, with Eunapius fragilis ranking among the exceptions given its widespread distribution. Pinheiro (2007) observed that the 3 cosmopolitan sponge species found in South American have a paucity of distinguishing taxonomic characteristics; Eunapius fragilis is one such example, because it possesses only megascleres and gemmuloscleres, and microscleres are absent. Ephydatia muelleri also has a wide geographic distribution and has been described for the Nearctic and Palearctic regions (Manconi and Pronzato 2016). This species presents broad morphological variations, suggesting the potential for a species complex (Manconi and Pronzato 2016). According to Ezcurra de Drago (1976), the megascleres of Ephydatia muelleri have extensive morphological variability. The biggest differences usually concern the presence of spines: (1) specimens collected in the Ticino River (Italy) present spinose megascleres (83% and 84% in 2 individuals); (2) specimens collected in Lake Maggiore (Italy) present a higher number of smooth spicules (no spines; 10-30%), similar to those found in the Mwenje River (Zimbabwe; 6-24%); (3) specimens observed in Magadino Pond (Switzerland) present smooth spicules and spines in the same proportion. Barton and Addis (1997) also reported that smooth and spined megascleres were frequently present in the same specimens from their study of Wyoming.

Ephydatia muelleri has an apparently high environmental resilience because of its presence in waters with diverse physical and chemical characteristics, but the available data do not allow correlations among variability in skeletal morphology to environmental characteristics (Ezcurra de Drago 1976). The Ephydatia muelleri megascleres found in Jackson Lake present high variability in the proportion of spines (Fig. 5). Approximately 87% of the megascleres counted have spines; this number is similar for the specimens collected in the Ticino River (Ezcurra de Drago 1976). In Jackson Lake, however, Ephydatia muelleri megascleres more commonly exhibit a low number of spines (65%), whereas in the Ticino River, spicules with a very spiny surface around the central axis (58-69%) are most common.

Conclusions

In this study, we identify 2 sponge species extant in Jackson Lake, Grand Teton National Park (Wyoming), Eunapis fragilis and Ephydatia muelleri. These species were found during an initial limnogeological survey, and our findings do not preclude the possibility of more species living in the lake. Additional research in Jackson Lake should intensify the search for other sponge species.

Eunapis fragilis and Ephydatia muelleri could be considered part of a species complex with preferences for lowlands worldwide, but our study shows these sponges can likewise colonize in a high-altitude, oligotrophicmesotrophic lake environment. Both species present morphological differences compared with other populations. Eunapius fragilis presents differences in the length of gemmuloscleres in contrast with specimens reported for southern Brazil, Argentina, Chile, and eastern North America, and Ephydatia muelleri presents differences related to the spines on megascleres relative to other specimens reported in the literature. A morphological revision of type material and molecular studies of samples is necessary to understand the real status of these widespread populations and to determine if morphologies are intraspecific (ecophenotypic) or interspecific variations.

Acknowledgements

G. Rasbold thanks the grant 2020/07726-0, São Paulo Research Foundation (FAPESP). We are grateful for field and lab assistance of H. Johnson, A. Helfrich, S. Johnson, C. Cearley, B. Hodelka, and D. Moecher.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Portions of this research were funded by the US-National Science Foundation (award # 1932808). GGR thanks the grant CNPq 204880/2018-1, National Council for Scientific and Technological Development (Brazil), which supported research travel to the University of Kentucky.

ORCID

Giliane G. Rasbold http://orcid.org/0000-0001-7375-6261 Ulisses Pinheiro http://orcid.org/0000-0003-3658-1372 Leandro Domingos-Luz http://orcid.org/0000-0001-8477-

John Dilworth http://orcid.org/0000-0001-6589-5990 *J. Ryan Thigpen* http://orcid.org/0000-0002-3075-5178 Luiz C. R. Pessenda http://orcid.org/0000-0001-9119-8195 Michael M. McGlue http://orcid.org/0000-0002-0725-7250

References

- Barron JA, Bukry D, Dean WE, Addison JA, Finney B. 2009. Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry. Mar Micropaleontol. 72(3-4):176-195.
- Barton SH, Addis JS. 1997. Freshwater sponges (Porifera: Spongillidae) of western Montana. Great Basin Nat. 57(2):93-103.
- Bonetto AA, Ezcurra de Drago ID. 1964. Esponjas del Paraná medio e inferior [Sponges from the middle and lower Paraná]. Anais do II Congresso Latinoamericano de Zoologia. I:245-260.
- Boury-Esnault N, Volkmer-Ribeiro C. 1991. Las esponjas [The sponges]. In: Dejoux C, Iltis A, editors. Lake Titicaca: a synthesis of limnological knowledge. Vol. 68. London (UK): Kluwer Academic; p. 297-301.
- Clark LM, Sadler JW, O'Ney ES. 2004. Water-quality characteristics of the Snake River and five tributaries in the paper Snake River Basin, Grand Teton National Park, Wyoming, 1998-2002. Scientific Investigations Report, 2004-5017.
- Copeland J, Pronzato R, Manconi R. 2015. Discovery of living Potamolepidae (Porifera: Spongillina) from Nearctic freshwater with description of a new genus. Zootaxa. 3957(1):37-48.
- De Santo EM, Fell PE. 1996. Distribution and ecology of freshwater sponges in Connecticut. Hydrobiologia. 341(1):81-89.
- Despain DG. 1987. The two climates of Yellowstone National Park. Proc Montana Acad Sci. 47:11-20.

- De Voogd NJ, Alvarez B, Boury-Esnault N, Carballo JL, Cárdenas P, Díaz M-C, Dohrmann M, Downey R, Hajdu E, Hooper JNA, et al. 2022. World Porifera Database [accessed 12 Jan 2022]. https://www.marinespecies.org/porifera
- Dunagan SP. 1999. A North American freshwater sponge (Eospongilla morrisonensis new genus and species) from the Morrison Formation (Upper Jurassic), Colorado. J Paleontol. 73(3):389-393.
- DuRoss C, Gold R, Briggs R, Delano J, Ostenaa D, Zellman M, Cholewinski N, Wittke S, Mahan S. 2019. Holocene earthquake history and slip rate of the southern Teton fault, Wyoming, USA. Geol Soc Am Bull. 132:1566-1586. doi:10.1130/B35363.1
- Ezcurra de Drago I. 1974. La presencia de Spongilla (Eunapius) fragilis Leidy em Chile (Porifera, Spongillidae) [The presence of Spongilla (Eunapius) fragilis Leidy in Chile (Porifera, Spongillidae). Physis. 33(87):249-252.
- Ezcurra de Drago I. 1975. El gênero Ephydatia lamouroux (Porifera, Spongillidae) sistemática y distribucion [The genus Ephydatia lamouroux (Porifera, Spongillidae) systematics and distribution]. Physis. 34(89):157-174.
- Ezcurra de Drago I. 1976. Ephydatia mülleri (Leiberkühn) in Africa, and the systematic position of Ephydatia japonica (Hilgendorf) (Porifera, Spongillidae). Arnoldia Rhodesia. 7(35):1-7.
- Frost TM. 2002. Freshwater sponges. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K, editors. Tracking environmental change using lake sediments. Developments in paleoenvironmental research, vol. 3. (Netherlands): Springer; p. 97-133.
- Frost TM, Reiswig HM, Ricciardi A. 2010. Porifera. In: Thorp JH, Covich AP, editors. Ecology and classification of North American freshwater invertebrates. 2nd ed. Academic Press; p. 97-133.
- Gray JE. 1867. Notes on the arrangement of sponges, with the descriptions of some new genera. Proc Zool Soc Lond. 1867(2):492-558, pls XXVII - XXVIII.
- Guerreiro RL, McGlue MM, Stone JR, Bergier I, Parolin M, Da Silva Caminha SAF, Warren LV, Assine ML. 2018. Paleoecology explains Holocene chemical changes in of the Nhecolândia (Pantanal-Brazil). Hydrobiologia. 815:1-19.
- Hajdu E, Peixinho S, Fernandez J. 2011. Esponjas marinhas da Bahia: Guia de campo e laboratório [Marine Sponges of Bahia: field and laboratory guide]. Rio de Janeiro: Museu nacional. Série livros 45.
- Harrison FW. 1974. Sponges (Porifera: Spongillidae). In: Hart CW Jr, Fuller SLH, editors. Pollution ecology of freshwater invertebrates. New York (NY): Academic Press; p. 29-66.
- Harrison FW. 1988. Utilization of freshwater sponges in paleolimnological studies. Palaeogeogr Palaeoclimatol Palaeoecol. 62(1-4):387-397.
- Hernández VM, Barreat JG. 2017. Racekiela andina sp. nov. (Spongillida: Spongillidae): first report of a freshwater sponge from the Venezuelan Andes. 4341(2):275-278.
- Hostetler S, Whitlock C, Shuman B, Liefert D, Drimal C, Bischke S. 2021. Greater Yellowstone climate assessment: past, present, and future climate change in greater Yellowstone watersheds. Bozeman (MT): Montana State University, Institute on Ecosystems. doi:10.15788/ GYCA2021

- Jakhalekar SS, Ghate HV. 2016. Taxonomy of freshwater sponges of Maharashtra, India, with illustrated descriptions and notes on ecology and habitats (Porifera: Spongillida: Spongillidae). Zootaxa. 4173(6):501-529.
- Jewell ME. 1939. An ecological study of the fresh-water sponges of Wisconsin, II. The influence of calcium. Ecology. 20(1):11-28.
- Kilham SS, Theriot EC, Fritz SC. 1996. Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnol Oceanogr. 41(5):1052-1062.
- Larsen DJ, Crump SE, Abbott MB, Harbert W, Blumm A, Wattrus NJ, Hebberger JJ. 2019. Paleoseismic evidence for climatic and magmatic controls on the Teton Fault, WY. Geophys Res Lett. 46:13036-13043.
- Lauer TE, Spacie A, Barnes DK. 2001. The distribution and habitat preferences of freshwater sponges (Porifera) in four southern lake Michigan. Am Midl Nat. 146:243-253.
- Leidy J. 1851. On Spongilla. Proc Acad Nat Sci Phila. 5:278.
- Li C, Chen J, Hua T. 1998. Precambrian sponges with cellular structures. Science. 279(5352):879-882.
- Licciardi JM, Pierce KL. 2018. History and dynamics of the Greater Yellowstone glacial system during the last two glaciations. Quat Sci Rev. 200:1-33.
- Lieberkühn N. 1856. Zusätze zur Entwicklungsgeschichte der Spongillen [Additions to the evolutionary history of the spongilla]. Müller Archiv; p. 496-514.
- Love JD, Leopold EB, Love DW. 1978. Eocene rocks, fossils, and geologic history, Teton Range, northwestern Wyoming. Washington (DC): Department of the Interior, Geological Survey.
- Łukowiak M. 2020. Utilizing sponge spicules in taxonomic, ecological and environmental reconstructions: a review. PeerJ. 8:e10601.
- Manconi R, Murgia S, Pronzato R. 2008. Sponges from African inland waters: the genus Eunapius (Haplosclerida, Spongillina, Spongillidae). Fund Appl Limnol. 170(4):333-350.
- Manconi R, Pronzato R. 2002. Suborder Spongillina subord. nov.: freshwater sponges. In: Hooper JNA, Van Soest RWM, Willenz P, editors. Systema Porifera. Boston (MA): Springer; p. 921-1019.
- Manconi R, Pronzato R. 2007. Gemmules as a key structure for the adaptive radiation of freshwater sponges: a morphofunctional and biogeographical study. In: Custódio MR, editor. Porifera. Research: biodiversity, innovation and sustainability. Rio de Janeiro (Brazil): Museu Nacional. p. 61-77.
- Manconi R, Pronzato R. 2008. Global diversity of sponges (Porifera: Spongillina) in freshwater. Hydrobiologia. 595(1):27-33.
- Manconi R, Pronzato R. 2016. Phylum porifera. In: Thorp JH, Rogers DC, editors. Thorp and Covich's freshwater invertebrates. 4th ed. Boston (MA): Academic Press; p. 39-83.
- Manconi R, Ruengsawang N, Vannachak V, Hanjavanit C, Sangpradub N, Pronzato R. 2013. Biodiversity in South East Asia: an overview of freshwater sponges (Porifera: Demospongiae: Spongillina). J Limnol. 72(s2):313-326.
- Marston RA, Mills JD, Wrazien DR, Bassett B, Splinter DK. 2005. Effects of Jackson Lake dam on the Snake River and its floodplain, Grand Teton National Wyoming, USA. Geomorphology. 71(1-2):79-98.

- McGlue MM, Silva A, Zani H, Corradini FA, Parolin M, Abel EJ, Cohen AS, Assine ML, Ellis GS, Trees MA, et al. 2012. Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil). Quat Res. 78(2):285-294.
- Molina-Cruz A. 1991. Holocene palaeo-oceanography of the northern Iceland Sea, indicated by radiolaria and sponge spicules. J Quater Sci. 6(4):303-312.
- Murchey BL, Jones DL. 1992. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins. Palaeogeogr Palaeoclimatol Palaeoecol. 96(1-2):161-174.
- Økland KA, Økland J. 1996. Freshwater sponges (Porifera: Spongillidae) of Norway: distribution and ecology. Hydrobiologia. 330(1):1-30.
- Oscoz J, Tomás P, Durán C. 2009. New records of Eunapius fragilis (Leidy, 1851) and Ephydatia fluviatilis (Linnaeus, 1759) (Porifera, Spongillidae) in Ebro River Basin (N Spain). Limnetica. 28(2):185-188.
- Paduano GM, Fell PE. 1997. Spatial and temporal distribution of freshwater sponges in Connecticut lakes based upon analysis of siliceous spicules in dated sediment cores. Hydrobiologia. 350(1):105-121.
- Penney JT, Racek AA. 1968. Comprehensive revision of worldwide collection of freshwater sponges (Porifera: Spongillidae). Bulletin of the United States National Museum. 272:1-184.
- Pinheiro U, Calheira L. 2020. Porifera. In: Damborenea C, Thorp JH, Rogers DC, editors. Thorp and Covich's freshwater invertebrates. 4th ed. Vol. 5. Keys to Neotropical and Antarctic fauna. New York (NY): Academic Press; p. 115-130.
- Pinheiro US. 2007. Contribuições à taxonomia e biogeografia Esponjas de águas continentais Brasileiras [Contributions to the taxonomy and biogeography of Brazilian continental water sponges [dissertation]. Rio de Janeiro (RJ): Federal University of Rio de Janeiro
- Pisera A, Siver PA, Wolfe AP. 2013. A first account of freshwater potamolepid sponges (Demospongiae, Spongillina, Potamolepidae) from the Middle Eocene: biogeographic and paleoclimatic implications. J Paleontol. 87(3):373-378.
- Poirrier MA. 1969. Louisiana fresh-water sponges: taxonomy, ecology, and distribution [dissertation]. Baton Rouge (LA): Louisiana State University.
- Potts E. 1887. Freshwater sponges. A monograph. Philadelphia (PA): P Acad Nat Sci Phila.
- Pratt BR. 2002. Occurrence of the siliceous sponge spicule Konyrium (Hexactinellida) in the Upper Cambrian of the Mackenzie Mountains, northwestern Canada. J Paleontol. 76(3):565-569.
- Pronzato R, Manconi R. 2001. Atlas of European fresh-water sponges. Ann Mus Civ Stor Nat Ferrara. 4:3-64.
- Rasbold GG, McGlue MM, Stevaux JC, Parolin M, Silva A, Bergier I. 2019. Sponge spicule and phytolith evidence for Late Quaternary environmental changes in the tropical Pantanal wetlands of western Brazil. Palaeogeogr Palaeoclimatol Palaeoecol. 518:119-133.
- Rasbold GG, McGlue MM, Stevaux JC, Parolin M, Silva A, Bergier I. 2021. Enhanced middle Holocene organic carbon burial in tropical floodplain lakes of the Pantanal (South America). J Paleolimnol. 65:181-199.

- Ricciardi A, Reiswig HM. 1993. Freshwater sponges (Porifera, Spongillidae) of eastern Canada: taxonomy, distribution, and ecology. Can J Zool. 71(4):665-682.
- Skelton J, Strand M. 2013. Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis. Hydrobiologia. 709:227-235.
- Smith F. 1921. Distribution of the freshwater sponges of North America. Illinois Nat Hist Survey. 14:10-22.
- Snelling AM, Swann GE, Pike J, Leng MJ. 2014. Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions. Clim Past. 10(5):1837-1842.
- Sperling EA, Pisani D, Peterson KJ. 2007. Poriferan paraphyly and its implications for Precambrian palaeobiology. Geological Society, London, Special Publications. 286:355–368.
- Stene EA. 1993. The Minidoka Project. Denver (CO): Bureau of Reclamation History Program, Colorado.
- Tavares MCM, Volkmer-Ribeiro C, De Rosa-Barbosa R. 2003. Primeiro registro de Corvoheteromeyenia australis (Bonetto & Ezcurra de Drago) para o Brasil com chave taxonômica para os poríferos do Parque Estadual Delta do Jacuí, Rio Grande do Sul, Brasil [First record of Corvoheteromeyenia australis (Bonetto & Ezcurra de Drago) for Brazil with a taxonomic key for porifera from Delta do Jacuí State Park, Rio Grande do Sul, Brazil. Rev Bras Zool. 20(2):169-182.
- Thigpen R, Brown SJ, Helfrich AL, Hoar R, McGlue M, Woolery E, Guenthner WR, Swallom ML, Dixon S,

- Gallen S. 2021. Removal of the Northern Paleo-Teton range along the Yellowstone hotspot track. Lithosphere. 2021(1):1052819.
- Tripathi D, Chauhan DK, Farooqui A, Kotlia BS, Thakur B, Morthekai P, Long T, Chauhan MS, Pokharia AK. 2017. Late quaternary climatic variability in the central ganga plain: a multi-proxy record from Karela Jheel (lake). Quat Int. 443:70-85.
- Volkmer-Ribeiro C, Machado VDS. 2009. Freshwater sponges (Porifera, Demospongiae) in a benthic filter feeding community at the Guanacaste Dry Forest, Costa Rica. Iheringia. Série Zoologia. 99:335-344.
- Volkmer-Ribeiro C, Parolin M, Fürstenau-Oliveira K, Menezes ER. 2010. Colonization of hydroelectric reservoirs in Brazil by freshwater sponges, with special attention on Itaipu. Interciência. 35(5):340-347.
- White BJP, Smith RB, Husen S, Farrell JM, Wong I. 2009. Seismicity and earthquake hazard analysis of the Teton-Yellowstone region, Wyoming. J Volcanol Geotherm Res. 188(1):277-296.
- Whitlock C. 1993. Postglacial vegetation and climate of Grand Teton and Southern Yellowstone National parks. Ecol Monogr. 63:173-198.
- Wurtsbaugh W. 2014. Jackson Lake limnology. Watershed Sciences Faculty Publications, Paper 559 [accessed 2021 October 10]. https://digitalcommons.usu.edu/wats_facpub/ 559