
Progressive Polynomial Approximations for Fast
Correctly Rounded Math Libraries

Mridul Aanjaneya
Department of Computer Science

Rutgers University
United States

mridul.aanjaneya@rutgers.edu

Jay P. Lim
Department of Computer Science

Yale University
United States

jay.lim@yale.edu

Santosh Nagarakatte
Department of Computer Science

Rutgers University
United States

santosh.nagarakatte@cs.rutgers.edu

Abstract

This paper presents a novel method for generating a single
polynomial approximation that produces correctly rounded
results for all inputs of an elementary function for multi-
ple representations. The generated polynomial approxima-
tion has the nice property that the first few lower degree
terms produce correctly rounded results for specific repre-
sentations of smaller bitwidths, which we call progressive
performance. To generate such progressive polynomial ap-
proximations, we approximate the correctly rounded result
and formulate the computation of correctly rounded poly-
nomial approximations as a linear program similar to our
prior work on the RLibm project. To enable the use of re-
sulting polynomial approximations in mainstream libraries,
we want to avoid piecewise polynomials with large lookup
tables. We observe that the problem of computing polyno-
mial approximations for elementary functions is a linear
programming problem in low dimensions, i.e., with a small
number of unknowns. We design a fast randomized algo-
rithm for computing polynomial approximations with pro-
gressive performance. Our method produces correct and fast
polynomials that require a small amount of storage. A few
polynomial approximations from our prototype have already
been incorporated into LLVM’s math library.

CCS Concepts: · Mathematics of computing → Math-

ematical software; Linear programming; · Theory of

computation→ Numeric approximation algorithms.

Keywords: RLIBM, round-to-odd, correctly rounded libraries

ACM Reference Format:

Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte. 2022. Pro-

gressive Polynomial Approximations for Fast Correctly Rounded

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00

https://doi.org/10.1145/3519939.3523447

Math Libraries. In Proceedings of the 43rd ACM SIGPLAN Interna-

tional Conference on Programming Language Design and Implemen-

tation (PLDI ’22), June 13ś17, 2022, San Diego, CA, USA. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3519939.3523447

1 Introduction

Correct rounding of primitive arithmetic operations ismanda-
tory for floating-point (FP) implementations since the incep-
tion of the IEEE 754 standard. This requirement was not
enforced for elementary functions (algebraic functions such
as 1/

√
𝑥 and transcendental functions such as sin, cos, log,

exp, etc.) due to the Table Maker’s Dilemma [34]. When the
output of an elementary function matches the result that is
computed with infinite precision and rounded to the target
representation, then it is a correctly rounded result. Cor-
rectly rounded elementary functions can enhance the repro-
ducibility and portability of software systems. The IEEE 754-
2008 standard has recommended (yet not mandated) correct
rounding of elementary functions. Research efforts from sev-
eral groups have shown that correctly rounded elementary
functions can be obtained at a łreasonablež cost [11, 12, 22].
Yet, mainstream math libraries for a 32-bit float still do not
produce correctly rounded results for all inputs. When cor-
rectly rounded libraries for double precision such as CR-
LIBM are re-purposed for 32-bit floats, they can produce
wrong results due to double rounding errors.

We have been building correctly rounded functions as
part of the RLibm project [23ś29, 35]. Our key insight in the
RLibm project is to separate the task of generating the oracle
of an elementary function from the task of generating effi-
cient implementations. Given an oracle (e.g., a high precision
math library), wemake a case for approximating the correctly
rounded result rather than the real value of an elementary
function to generate efficient implementations. Figure 1(a)
shows the real value and the correctly rounded result for an
input. There is an interval of real values around the correctly
rounded result such that all real values round to it, which is
called the rounding interval. This interval provides the con-
straints on the result of the polynomial approximation for
a given input (see Figure 1(b)). Next, we formulate the task
of identifying the coefficients of a polynomial of a specific
degree that produces a value in the rounding interval for all
inputs as a system of linear inequalities.

552

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-5286-8173
https://orcid.org/0000-0002-7572-4017
https://orcid.org/0000-0002-5048-8548
https://doi.org/10.1145/3519939.3523447
https://doi.org/10.1145/3519939.3523447

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

v1 v2 v3l h

f(x)

(a)

(b) a linear constraint to generate
 polynomial coefficients

rounds to

rounding interval of the correctly rounded result v2

344

345

; ≤ �퐶1 +�퐶2G +�퐶3G
2 + .. +�퐶:G

:−1
≤ ℎ

This interval is further constrained to account

v2

Figure 1. Illustration of the RLibm approach. (a) The values 𝑣1, 𝑣2, and 𝑣3 are representable in the FP representation T. The real
value of 𝑓 (𝑥) for a given input 𝑥 cannot be exactly represented in T and is rounded to 𝑣2. The RLibm approach identifies the
rounding interval of 𝑣2 and computes polynomial approximations that produce values in this interval. (b) A linear constraint
that the polynomial approximation with 𝑘 terms must satisfy for each rounding interval (i.e., [𝑙, ℎ]) for each input 𝑥 .

By approximating the correctly rounded result, RLibm
provides more freedom, allows for lower degree polynomial
approximations, and can be realized via a carefully-crafted
system of linear inequalities. One challenge with the RLibm
approach is that modern LP solvers can only handle a few
thousand constraints. Hence, our RLibm prototypes create
piecewise polynomials for 32-bit types. Such piecewise poly-
nomials are created for each function and for each represen-
tation and rounding mode. We have shown that the resulting
functions are both correctly rounded and faster than main-
stream libraries such as Intel’s libm and glibc’s libm [26].
A recent result from our RLibm project, RLibm-All [23,

29], generates a single polynomial approximation that pro-
duces correctly rounded results for multiple representations
and rounding modes. The key idea behind RLibm-All is
to generate a polynomial approximation that produces cor-
rectly rounded results for a floating-point (FP) representation
with two additional bits of precision (i.e., 𝑛+2-bits) using the
round-to-odd mode. The resulting polynomial approxima-
tion produces correctly rounded results for all five rounding
modes in the standard and for multiple representations with
𝑘-bits of precision where |𝐸 | + 1 < 𝑘 ≤ 𝑛 and |𝐸 | is the num-
ber of exponent bits in the representation. The RLibm-All
prototype also generates piecewise polynomials [28, 29]. A
single generic polynomial approximation that produces cor-
rect results for multiple representations and rounding modes
is attractive because it avoids unnecessary code duplication
and can enable adoption by mainstream libraries.

Although polynomial approximations resulting from var-
ious RLibm prototypes are fast and correct, they had not
been incorporated into mainstream libraries because of the
large lookup tables required for the piecewise polynomials.
Space usage by the mainstream library is an important con-
sideration as these libraries are used in numerous domains
ranging frommicro-controllers to high performance systems.
To enable mainstream usage of polynomial approximations
from the RLibm project, we want to avoid generating large
piecewise polynomials and the accompanying lookup tables.
Further, we want to improve performance for representa-
tions with fewer bits rather than every representation having
the same performance because low bitwidth representations
are increasingly used in various domains [36, 40].

Progressive polynomials. Our goal is to generate a sin-
gle polynomial that produces correctly rounded results for
multiple FP representations with progressive performance.
The first few lower degree terms of such a polynomial pro-
duces correctly rounded results for representations with
fewer precision bits and the higher degree terms become
necessary for representations with more precision bits, while
keeping the same lower degree terms. We call such polyno-
mials progressive polynomials. They are inspired by Taylor
polynomials, which provide better polynomial fits as one
uses more terms. These progressive polynomial approxima-
tions offer two major benefits. First, they will provide more
efficient implementations for representations with fewer
precision bits (e.g., bfloat16 [40] or tensorfloat32 [36]) in
comparison to RLibm-All that uses the same high degree
polynomial approximation across all representations (see
Section 4). Second, they will provide a unified approach
to implementing math library functions, as representations
with less precision bits can reuse the implementation for
those with more precision bits, while discarding the higher
order terms from the polynomial.

For example, consider the case when we want to produce
a single approximation for 𝑒𝑥 that produces correct results
for all inputs in the 32-bit float, 16-bit bfloat16, and 19-bit
tensorfloat32 types. For the sake of argument, suppose we
generate a 6-term, 5𝑡ℎ-degree progressive polynomial (𝐶1 +
𝐶2𝑥

1 + 𝐶3𝑥
2 + 𝐶4𝑥

3 + 𝐶5𝑥
4 + 𝐶6𝑥

5). We use all 6 terms of
the polynomial to produce correctly rounded results for a
32-bit float input. We use only the first four terms of the
polynomial to produce correct results for a tensorfloat32
input, which is faster than producing the result for a 32-bit
float. Similarly, we use only the first three terms to generate
correctly rounded results for a bfloat16 input, which is faster
than producing results for both tensorfloat32 and float inputs.

Efficient randomized algorithm for solving linear

constraints. To generate progressive polynomial approx-
imations and to avoid storing large tables of coefficients
for piecewise polynomials, we observe that the problem of
computing a polynomial approximation using the linear pro-
gramming approach of RLibm is a linear program in low

dimensions, with far fewer unknown variables in compar-
ison to the number of constraints. Inspired by prior work
on linear programs in low dimensions [9], we design a fast

553

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

randomized algorithm for producing progressive polynomial
approximations that uses a significantly smaller table of coef-
ficients (by an order of magnitude) compared to RLibm-All.

Given the number of terms for each representation of inter-
est used in the progressive polynomial, our algorithm uses an
LP solver to only solve a small set of 6𝑘2 constraints, where
𝑘 is the maximum number of terms used in the progressive
polynomial. Given a multi-set of constraints, the algorithm
samples 6𝑘2 constraints from the entire set of constraints
and solves the sample optimally using the LP solver. If the
sample solution violates more than 1/3𝑘 of the multi-set, it
discards the sample. If the sample solution violates less than
1/3𝑘 of the multi-set, it adds the violated constraints once
more to the sample. To efficiently implement this algorithm,
we use weights to encode the multi-set and use weighted
random sampling to create the sample (see Section 3.3).

This process repeats until we find a solution that satisfies
all constraints, which happens when the system of linear
inequalities is full-rank (i.e., there are 𝑘-linearly independent
constraints) or when the number of iterations reaches a
threshold. Since we do not know the rank of our system,
we iteratively increase the number of terms used for the
polynomial and have a threshold on the number of iterations.
When the system is full-rank, we prove that our algorithm
finds the progressive polynomial in 6𝑘 log𝑛 iterations in
expectation (see Section 3.4).

Prototype and results.Our prototype,RLIBM-Prog, pro-
vides a single progressive polynomial approximation that
produces the correctly rounded results for multiple repre-
sentations and multiple rounding modes for 10 elementary
functions. It has progressive performance with bfloat16 and
tensorfloat32 inputs being 25% and 16% faster than evaluating
the entire polynomial. The randomized algorithm produces
polynomial approximations that require an order of mag-
nitude lower storage than prior RLibm prototypes [26, 29].
RLIBM-Prog’s polynomials for the 32-bit float type are faster
than all mainstream and/or correctly rounded libraries. Three
polynomial approximations (𝑙𝑛(𝑥), 𝑙𝑜𝑔2 (𝑥), and 𝑙𝑜𝑔10 (𝑥))
generated by our prototype have already been incorporated
into LLVM’s math library [30ś32].

2 Background

We provide background on the FP representation, the process
of computing polynomial approximations for elementary
functions, and the RLibm approach [23ś29].

2.1 The Floating-Point Representation

The IEEE-754 standard specifies the FP representation F𝑛, |𝐸 |
that is parameterized based on the total number of bits (𝑛)
and the number of bits used for the exponent (|𝐸 |). The goal
is to represent a large range of values (i.e., wider dynamic
range) with a reasonable amount of accuracy (i.e., preci-
sion) [16]. The sign of a value is specified by a dedicated sign

bit (𝑆). To represent a large range of values, the FP repre-
sentation has an unsigned exponent field (𝐸). Each value is
represented as precisely as possible with the mantissa bits
(𝐹). Figure 2(c) depicts the bit-string for a 32-bit float.

The values represented by the FP representation are classi-
fied into three classes: (a) normal values when the exponent
field is neither all zeros nor all ones, (b) subnormal or de-
normal values when the exponent field is all zeros, and (c)
special values when the exponent field is all ones. In the
case of normal values, the value represented by the FP bit-
string is (1 + 𝐹

2|𝐹 |
) × 2𝐸−𝑏𝑖𝑎𝑠 , where 𝑏𝑖𝑎𝑠 is 2 |𝐸 |−1 − 1. With

subnormal values, the value represented by the bit-string is
(𝐹
2|𝐹 |

)×21−𝑏𝑖𝑎𝑠 . Subnormal values are used to represent values
close to zero. In the case of special values, when the mantissa
bits are all zeros, then the bit-string represents positive or
negative infinity depending on the sign bit. Otherwise, the
bit-string represents not-a-number (NaN).
The common formats specified in the IEEE-754 standard

are 16-bit half precision (F16,5), 32-bit single precision float
(F32,8), and 64-bit double precision (F64,11).

The bfloat16 and tensorfloat32 formats. Numerous
recent variants of the IEEE-754 FP representation increase
either the dynamic range or the precision when compared to
the existing half precision format. The bfloat16 format [40] is
a 16-bit representation with 8 bits for the exponent (i.e., F16,8).
Nvidia’s tensorfloat32 [36] is a 19-bit representation with
8-bits for the exponent (i.e., F19,8). It provides the dynamic
range of bfloat16 and the precision of the half precision
format. Figure 2(a) and Figure 2(b) show the bfloat16 and the
tensorfloat32 format.

Rounding mode.When a real value is not exactly repre-
sentable in the FP representation, it needs to be rounded to a
value in the FP representation. The IEEE-754 standard speci-
fies five distinct rounding modes that rounds the real value to
one of the two adjacent FP values: round-to-nearest-ties-to-
even (rn), round-to-nearest-ties-to-away (ra), round-towards-
zero (rz), round-towards-positive-infinity (ru), and round-
towards-negative-infinity (rd). Different rounding modes
have different trade-offs in the implementation of various FP
operations. The rn mode is the widely used rounding mode.

2.2 Approximating Elementary Functions

Elementary functions are functions of a single variable that
are typically approximated with polynomial approximations.
It is feasible to design polynomial approximations with low
error for an elementary function when the input domain is
small. Hence, one of the crucial steps in approximating any
elementary function is range reduction.

Range reduction and output compensation. Range re-
duction reduces the domain of an elementary function 𝑓 (𝑥)
to a small input domain using mathematical identities [10].
The range reduction transforms an input 𝑥 from the origi-
nal domain of inputs to a reduced input 𝑥 ′. The polynomial

554

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

S E1 … E8E2 F1 … F10F2

sign exponent mantissa

(b) TensorFloat32

S E1 … E8E2 F1 … F7F2

sign exponent mantissa

(a) Bfloat16

E3

16 bits 19 bits

E3 S E1 … E8E2 F1 … F23F2 F3

sign exponent mantissa

(c) 32-bit float

32 bits

Figure 2. The three FP representations used in this paper: (a) Bfloat16, (b) TensorFloat32, and (c) 32-bit float.

approximations are performed with the reduced inputs (i.e.,
𝑦 ′

= 𝑃 (𝑥 ′)). After range reduction, the function being ap-
proximated with polynomial approximation may be different
from the original elementary function (e.g., 𝑙𝑛(𝑥) can be ap-
proximated with 𝑙𝑜𝑔2 (𝑥 ′)). The output (𝑦 ′) has to be adjusted
appropriately to produce the output for the original input
(𝑥). The output compensation function produces the final
result by compensating the range reduced output 𝑦 ′ based
on the range reduction performed for input 𝑥 .
Polynomial approximations. The next step is to gener-

ate polynomial approximations that take reduced inputs and
produce the result of the elementary function in the reduced
input domain. One common method to generate such poly-
nomial approximations is to minimize the maximum error
of the polynomial approximation with respect to the real
value of the elementary function (also known as minimax
approximations [34]). A commonly used mini-max approxi-
mation is the Remez algorithm [37]. Using real analysis, one
can bound the maximum error of such a minimax approx-
imation. CR-LIBM [11, 12], a correctly rounded library for
the double precision type, uses this near-minimax approach
to generate polynomial approximations.
Range reduction, output compensation, and polynomial

evaluation are all implemented in a finite precision represen-
tation. Hence, they can experience numerical errors, which
when coupled with polynomial approximation errors can
cause wrong results.

2.3 The RLibm Approach

We provide a brief background on our prior work in the
RLibm project [23ś29], where we decouple the problem of
generating an oracle from the task of the generating effi-
cient implementations. We assume the existence of an or-
acle (which may be slow) that provides correctly rounded
results. This oracle is only used to compute the correctly
rounded result of an elementary function 𝑓 (𝑥) for each in-
put 𝑥 in the target representation T. Once there is an oracle
result, the RLibm project makes a case for approximating
the correctly rounded result rather than the real value of an
elementary function [25, 26]. An FP representation can only
represent finitely many values accurately. Hence, there is an
interval of real values around the correctly rounded result
such that all values in the interval round to it. This is the
maximum amount of freedom available for the polynomial
approximation. The RLibm project has demonstrated that

v0 (even) v1 (odd) v2 (even) v3 (odd) v4 (even)

All values in this
region rounds to v1

All values in this
region rounds to v3

Figure 3. We show the rounding of a real value with the
round-to-odd mode. Here, 𝑣0, 𝑣1, 𝑣2, 𝑣3, and 𝑣4 are values
representable in a representationT. If the real value is exactly
representable in T, then it rounds to that value. Otherwise,
it rounds to the nearest value in T that is odd.

this amount of freedom for polynomial generation by approx-
imating the correctly rounded result is much larger than the
one with the minimax approach. Hence, RLibm prototypes
provide significant performance benefits when compared to
highly optimized libraries [26].

Given the correctly rounded result, the next step is to iden-
tify an interval [𝑙, ℎ] around the correctly rounded result
such that any value in [𝑙, ℎ] rounds to the correctly rounded
result, which is called the rounding interval. Figure 1(a) illus-
trates the rounding interval around the correctly rounded
result. Next, range reduction specific to the elementary func-
tion is applied to transform an input 𝑥 to 𝑥 ′. The polynomial
approximation will approximate the result for 𝑥 ′. To per-
form polynomial approximation, one needs the rounding
interval that corresponds to the reduced input 𝑥 ′. The RLibm
project uses the inverse of the output compensation function
to identify the reduced interval [𝑙 ′, ℎ′].

Once a set of reduced intervals is available, the next task is
to synthesize the coefficients of the polynomial with 𝑘 terms
using an arbitrary precision linear programming (LP) solver
such that it satisfies the reduced constraints (i.e., 𝑙 ′ ≤ 𝑃 (𝑥 ′) ≤
ℎ′). Figure 1(b) shows the linear constraint to generate the
coefficients of a polynomial with 𝑘 terms.
Subsequently, the result for the original input 𝑥 is com-

puted with output compensation. Range reduction, output
compensation, and the polynomial evaluation happen in
some finite precision representation (e.g., double) and can
experience numerical errors. The rounding intervals are fur-
ther constrained to ensure that the resulting polynomial
always produces the correctly rounded results for all inputs.

RLibm-All. The approach described above produces cor-
rectly rounded results for all inputs for a specific rounding

555

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

mode and representation. Our recent work, RLibm-All [29],
generates a single polynomial approximation that produces
correctly rounded results for multiple representations and
multiple rounding modes. When the goal is to create cor-
rectly rounded results for a representation with 𝑛-bits, the
key idea behind RLibm-All is to create polynomial approxi-
mations that produce the correctly rounded result of 𝑓 (𝑥)
with the round-to-odd mode for a representation with 𝑛 + 2-
bits (i.e., two additional bits of precision with the same ex-
ponent). We have proven that the resulting polynomial pro-
duces correctly rounded results for all rounding modes in
the standard and all representations with 𝑘-bits such that
|𝐸 | + 1 < 𝑘 ≤ 𝑛, where |𝐸 | is the number of exponent bits.
The round-to-odd mode is a non-standard rounding mode
that avoids double rounding errors and can be described as
follows. If the real value is exactly representable in the target
representation, then it is rounded to that value. Otherwise,
it is rounded to an adjacent value whose bit-string is odd
when interpreted as an unsigned integer. Figure 3 pictori-
ally depicts the round-to-odd mode. To correctly round any
real value to a FP representation with the standard rounding
modes, one needs to identify if the real value is less than,
greater than, or equal to the midpoint of two adjacent FP
values. The round-to-odd mode preserves this information
and avoids double rounding errors [29].
One drawback of the single polynomial approximation

with the round-to-odd mode in RLibm-All is that every rep-
resentation must pay the computational cost of the largest
representation. Our RLibm-All prototype generated piece-
wise polynomials with large lookup tables because we were
not aware of an effective method to solve a large number
of constraints at that point in time and LP solvers cannot
automatically solve millions of constraints.

3 Progressive Polynomial Approximations

Our goal is to generate a single polynomial approximation
that not only produces correctly rounded results for multiple
representations and rounding modes but also has progres-
sively better performance for lower bitwidth representations
given a set of representations. We call them progressive poly-
nomials. If we can generate such progressive polynomials,
then we can evaluate the first few terms of the polynomial to
obtain the correct results for lower bitwidth representations
and the entire polynomial for the largest representation.

This paper proposes a novel method to generate progres-
sive polynomial approximations. Building on our prior work
in the RLibm project [23ś29], we approximate the correctly
rounded result and use a linear programming formulation to
generate polynomial approximations. In contrast to the prior
work in the RLibm project, our setting has a significantly
larger number of constraints (a constraint for each input and
for each type) because we are generating progressive poly-
nomials. In our prior work in the RLibm project, we were

not aware of an effective way to solve an LP problem with
millions of constraints. Hence, our prior RLibm prototypes
generated piecewise polynomials with large lookup tables
to store the polynomial coefficients. The presence of these
lookup tables was a barrier for adoption of our polynomial
approximations into mainstream math libraries. Hence, we
do not want to generate large piecewise polynomials.
A key observation that we make in this paper is that the

system of linear inequalities generated by the RLibm ap-
proach is a linear program in low dimensions (i.e., a polyno-
mial with a small number of terms 𝑘 that satisfies millions
of constraints). If the set of linear constraints is full-rank,
then there exist 𝑘 linearly independent constraints that iden-
tify the polynomial coefficients [9]. Our goal is to develop a
fast iterative method for generating progressive polynomials
without large lookup tables. One challenge in this setting is
that we do not know the rank 𝑘 of the set of constraints.

3.1 Overview of Our Method

Our approach for generating progressive polynomial approx-
imations consists of the following steps. First, we iteratively
explore the number of terms for each individual representa-
tion of interest in our progressive polynomial. Second, we use
an oracle (i.e., an existing high-precision library) to identify
the correctly rounded result for each representation. For the
largest representation T𝑖 of interest, we generate correctly
rounded results for a representation with two additional bits
of precision (T𝑖+2) with the round-to-odd mode inspired by
our prior work on RLibm-All [29]. The resulting polynomial
approximation produces correctly rounded results for all
representations T𝑗 , where 𝑗 ≤ 𝑖 , and for all rounding modes
as long as T𝑗 has the same number of exponent bits as T𝑖 .
Third, we identify an interval of real values that round

to the correctly rounded result for every input, which is
known as the rounding interval. Fourth, we perform range
reduction to identify the reduced input and infer the reduced
rounding intervals. Subsequently, we attempt to generate
a progressive polynomial from the set of reduced inputs
and reduced rounding intervals for each representation. We
generate constraints for the largest representation that uses
all terms of the polynomial. The polynomial when evaluated
should produce a value in the reduced rounding interval.
For other representations, we systematically hypothesize
a specific number of terms for generating the progressive
polynomial. Fifth, we try to generate a polynomial that has
𝑘 terms and is of degree 𝑑 given 𝑛 constraints (e.g., 𝑛 is
512 million with 𝑒𝑥). We extend Clarkson’s method [9] to
our context and develop a fast randomized algorithm to
identify 𝑘 linearly independent constraints that identifies
the polynomial. If the systems of linear inequalities has full
rank, then it has a unique solution.
Our randomized algorithm can be described as follows.

Initially, we maintain a multiset𝑀 of all 𝑛 constraints. We

556

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

sample 6𝑘2 constraints from 𝑀 , where 𝑘 is the total num-
ber of terms for the largest representation in the progres-
sive polynomial. We solve the sample optimally using an
LP solver to obtain the solution 𝑥∗. If we are able to solve
the sample, then we use the resulting polynomial to identify
constraints in 𝑀 that are not satisfied by 𝑥∗. While check-
ing whether 𝑥∗ satisfies the constraint, we evaluate only the
specified number of terms as dictated by the configuration
of the progressive polynomial. If more than 1/3𝑘 of the set
𝑀 of constraints is not satisfied by 𝑥∗, then we discard the
sample and repeat the above process by creating a new sam-
ple. Otherwise, we add each constraint that was not satisfied
one additional time to the multiset𝑀 . We repeat the above
process until we find that 𝑥∗ for the sample does not vio-
late any constraint in𝑀 or the number of iterations exceeds
the user-specified cut-off. If there exists a solution (i.e., the
system of linear inequalities is full-rank), then the above
algorithm finds it in 6𝑘 log(𝑛) iterations in expectation.
Algorithm 1 describes our procedure for generating pro-

gressive polynomials. Our procedure for computing the ora-
cle result, identifying the rounding intervals, and deducing
the reduced rounding intervals is identical to our prior work
in the RLibm project [25, 26, 29]. The key difference lies
in the manner in which we generate linear constraints for
progressive polynomials, the manner in which we evaluate
polynomials, and our procedure for generating the polyno-
mial approximation given a set of linear constraints.

3.2 Linear Constraints for Progressive Polynomials

A reduced input 𝑥 can be present in multiple representations.
The rounding interval for each such reduced input will be

different depending on the representation(i.e., [𝑙T1𝑥 , ℎT1𝑥] for
representation T1 and [𝑙T2𝑥 , ℎT2𝑥] for representation T2). A
representation with lower bitwidths will have larger round-
ing intervals as the spacing between adjacent points is rela-
tively larger when compared to a representation with larger
bitwidth. We want a single polynomial approximation to
satisfy all these bounds of the rounding intervals. Hence,

𝑙
T1
𝑥 ≤ 𝑃 (𝑥) ≤ ℎ

T1
𝑥

𝑙
T2
𝑥 ≤ 𝑃 (𝑥) ≤ ℎ

T2
𝑥

𝑙
T3
𝑥 ≤ 𝑃 (𝑥) ≤ ℎ

T3
𝑥

Progressive performance.We want the resulting single
polynomial approximation to have better performance while
producing correctly rounded results for lower bitwidths (i.e.,
progressive performance) when compared to evaluating the
entire polynomial for larger bitwidths. Given the number
of terms for a representation with a particular bitwidth and
the total number of terms for the entire polynomial approxi-
mation, we create constraints such that evaluating the first
few terms produces a value that lies in the rounding interval

corresponding to that representation. Consider the scenario
where T1 is the representation with the largest bitwidth. We
are trying to find a polynomial approximation with 𝑘1 terms
for it. We also want to find coefficients such that when we
evaluate inputs belonging to representations T2 and T3 with
𝑘2 and 𝑘3 terms (here 𝑘1 > 𝑘2 > 𝑘3), they lie within their re-
spective rounding intervals. The system of linear constraints
that we generate for a given input 𝑥 is as follows,

𝑙T3𝑥 ≤ 𝐶1 +𝐶2𝑥 + . . . +𝐶𝑘3𝑥
𝑘3−1︸ ︷︷ ︸

P3 (𝑥)

≤ ℎT3𝑥

𝑙T2𝑥 ≤ P3 (𝑥) + . . . +𝐶𝑘2𝑥
𝑘2−1︸ ︷︷ ︸

P2 (𝑥)

≤ ℎT2𝑥

𝑙T1𝑥 ≤ P2 (𝑥) + . . . +𝐶𝑘1𝑥
𝑘1−1︸ ︷︷ ︸

P1 (𝑥)

≤ ℎT1𝑥

When we generate constraints for representation T2, we
use the exact same coefficients for the first 𝑘2 terms as we
did for representation T1. Similarly, we use the same coef-
ficients for the first 𝑘3 terms for representation T3. If we
are able to find such polynomials, the resulting polynomial
approximation not only produces correctly rounded results
for all inputs but also has better performance for representa-
tions with lower bitwidth when compared to evaluating all
terms in the polynomial. Note that this formulation for gen-
erating progressive polynomials creates significantly more
constraints (since there is a constraint for each input and
each representation). Hence, an efficient method to generate
polynomial approximations is crucial.

3.3 A Fast Algorithm for Solving Constraints

To create correctly rounded progressive polynomial approx-
imations, our objective is to generate polynomials of low
degree with a few terms. Our prior work on the RLibm

project [25, 26, 29] generates piecewise polynomials with
approximately 210 sub-domains. Such large tables can inter-
fere with caches in memory-intensive applications and may
not be ideal for resource constrained environments such as
micro-controllers.

We make a key observation that our system of linear con-
straints is a linear program of small dimensions [9, 33], which
is widely studied. We use ideas from prior work to our set-
ting where we do not know whether the system of linear
constraints is łfull-rankž (i.e., if there are at least 𝑘 linearly

independent constraints).
Algorithm 1 describes our procedure to find a progressive

polynomial. As we do not know the rank of our system
of linear constraints, we iteratively increase the number
of terms for the entire polynomial and for the individual
representations. The procedure to identify a small set of key
constraints is as follows:

557

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

1 Function GenProgPolynomial(𝑓 , 𝑋 , 𝑅𝑅H, 𝑂𝐶H, 𝐾 , 𝑁):

2 𝑌 ← ∅
/* Compute the rounding interval */

3 foreach (𝑥,T) ∈ 𝑋 do

4 𝑦 ← 𝑅𝑁T (𝑓 (𝑥))
5 [𝑙, ℎ] ← RoundingInterval(𝑦, T, H)

6 𝑌 ← (𝑥, [𝑙, ℎ])
7 end

8 L ← ReducedIntervals(𝑌 , 𝑅𝑅H, 𝑂𝐶H)

/* initialize the weights */

9 foreach 𝑥 ∈ L do

10 𝑥 .𝑤 ← 1

11 𝑥 .𝑢 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1)
12 end

13 𝑖 ← 0

14 while 𝑖 < 𝑁 do

15 𝑆 ← WeightedRandomSample(L, 𝐾)

16 (𝑝𝑜𝑙𝑦, 𝑛𝑣) ← SolveSample(𝑆 , L, 𝐾)

17 𝑖 ← 𝑖 + 1

18 if 𝑛𝑣 < 𝐿𝑖𝑚𝑖𝑡 then

19 return (𝑝𝑜𝑙𝑦, 𝑛𝑣)
20 end

21 end

22 return (∅, 0)
Algorithm 1: Our procedure to generate progressive polyno-

mials for an elementary function 𝑓 given a set of inputs 𝑋 with

their respective representations (T). Range reduction (𝑅𝑅H) and

output compensation (𝑂𝐶H) are performed in representation

H. Here, 𝐾 is a vector that provides the number of terms in the

progressive polynomial for each representation. The maximum

number of iterations is specified by 𝑁 . We represent the oracle

result obtained by rounding the real value of 𝑓 (𝑥) to represen-

tation T by 𝑅𝑁T (𝑓 (𝑥)). The function RoundingInterval com-

putes the rounding interval. The function ReducedIntervals

computes the reduced inputs and infers the reduced intervals.

The function WeightedRandomSample identifies the sample

with weighted random sampling. The function SolveSample

solves the sample and updates the weights of the constraints

not satisfied by the solution to the sample, which is described

in Algorithm 2.

• Let𝑀 be a multi-set of constraints.
• Step 1: Sample 𝑆 constraints from𝑀 uniformly at ran-
dom where |𝑆 | = 6𝑘2, where 𝑘 is the number of terms
for the largest representation with the progressive
polynomial.

• Step 2: Solve the sample 𝑆 optimally using an LP solver
to compute 𝑥∗.

• Step 3: Check how many constraints of 𝑀 are not
satisfied by 𝑥∗. If more than 1/3𝑘 of the constraints in
𝑀 are not satisfied by 𝑥∗, then discard this sample and
go to Step 1. Otherwise, add all such constraints not
satisfied by 𝑥∗ another time to𝑀 (i.e.,𝑀 will now have
repeated constraints and is a multi-set). We call these

1 Function SolveSample(𝑆 ,M, 𝐾):

2 𝑝𝑜𝑙𝑦 ← 𝐿𝑃𝑆𝑜𝑙𝑣𝑒𝑟 (𝑆)
3 (𝑤𝑣,𝑤𝑠 , 𝑛𝑣) ← (0, 0, 0)
4 𝑘 ←𝑚𝑎𝑥_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (𝐾)
5 foreach (𝑥, [𝑙, ℎ]) ∈ M do

6 if 𝑝𝑜𝑙𝑦 (𝑥, 𝐾) ∈ [𝑙, ℎ] then
/* sum the weights of the satisfied

constraints */

7 𝑤𝑠 ← 𝑤𝑠 + 𝑥 .𝑤

8 end

9 else

/* sum the weights of the violated

constraints */

10 𝑤𝑣 ← 𝑤𝑣 + 𝑥 .𝑤

11 𝑛𝑣 ← 𝑛𝑣 + 1

12 end

13 end

/* Check if it is a lucky iteration */

14 if 𝑤𝑣 ≤ 1
3𝑘−1𝑤𝑠 then

/* Double the weights of violated

constraints */

15 foreach (𝑥, [𝑙, ℎ]) ∈ M and 𝑝𝑜𝑙𝑦 (𝑥, 𝐾) ∉ [𝑙, ℎ] do
16 𝑥 .𝑤 ← 𝑥 .𝑤 ∗ 2
17 end

18 end

19 return (𝑝𝑜𝑙𝑦, 𝑛𝑣)
Algorithm 2: Given a sample 𝑆 , the total set of reduced in-

puts and constraints M, and the degrees of the progressive

polynomials, this function SolveSample uses the LP solver to

solve the sample, identifies whether the iteration happens to

be a lucky iteration, and doubles the weights of the violated

constraints on a lucky iteration. This function returns the pro-

gressive polynomial that solves the sample and the number of

constraints violated in L. Here, 𝑝𝑜𝑙𝑦 (𝑥, 𝐾) evaluates the pro-
gressive polynomial using the number of terms specified in 𝐾

for various representations with input 𝑥 .

iterations lucky (i.e., we are making progress towards
our goal of identifying the crucial 𝑘 constraints). Then
go back to Step 1.

• Repeat the above until we find a solution 𝑥∗ that sat-
isfies all constraints in𝑀 or the number of iterations
exceeds the user-specified threshold.

When we create a sample 𝑆 with 6𝑘2 constraints from the
multi-set𝑀 and compute the optimum solution 𝑥∗ for 𝑆 , then
with probability at least 1/2, 𝑥∗ will only violate 1/3𝑘 of the
constraints in𝑀 . We provide a proof that this algorithm is
effective in finding the key constraints necessary to solve
the system of linear constraints quickly in Section 3.4.
Removing the multi-set requirement. As we have bil-

lions of constraints in𝑀 to start with, maintaining amulti-set
in memory is challenging. Hence, we logically implement
such amulti-set bymaintainingweights with each constraint,

558

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

which are incremented instead of duplicating constraints.
We next describe our procedure to find a polynomial with 𝑘
terms using the weight-based formulation. Initially, each con-
straint is present only once in the multi-set version. Hence,
we set the weight of each constraint to 1. Subsequently, we
sample constraints with probability proportional to their
weights.

Weighted random sampling.We use weighted random
sampling [13] to produce a sample of size 6𝑘2 given a set𝑀
with 𝑛 weighted constraints.

1. For each constraint 𝑠𝑖 ∈ 𝑀 with weight 𝑤𝑖 , set 𝑢𝑖 =

𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) and 𝑘𝑒𝑦𝑖 = 𝑢
1/𝑤𝑖

𝑖 .

2. Select 6𝑘2 items that have the largest values of keys
(i.e., 𝑘𝑒𝑦𝑖) as the sample.

Here, 𝑢1 and 𝑢2 are uniform random variables in (0,1). If

𝑋1 = 𝑢
1/𝑤1

1 and 𝑋2 = 𝑢
1/𝑤2

2 , then 𝑃 (𝑋1 ≤ 𝑋2) = 𝑤1

𝑤1+𝑤2
. Hence,

selecting the largest 6𝑘2 items is equivalent to sampling
according to their weights.

Identifying the lucky iteration. The next task in avoid-
ing the multi-set representation lies in identifying the lucky
iteration. An invariant with our weight-based representation
is that the sum of the weights of all constraints in𝑀 is equal
to the cardinality of the multi-set.
The constraints in𝑀 can be divided into two categories:

constraints violated by the sample solution (i.e., 𝑉 𝐼𝑂𝑥∗ (𝑀))
and constraints that are satisfied by the sample solution (i.e.,
𝑆𝐴𝑇𝑥∗ (𝑀)). To determine if an iteration is a lucky iteration,
we need the number of violated constraints to be less than
1/3𝑘 of the cardinality of the multi-set of constraints. We
compute the sum total of the weights of constraints that are
satisfied by 𝑥∗ and the sum total of weights of constraints
not satisfied by 𝑥∗.

∑
𝑣∈𝑉 𝐼𝑂𝑥∗ (𝑀)

𝑣 .𝑤 ≤ 1

3𝑘

©­«
∑

𝑣∈𝑉 𝐼𝑂𝑥∗ (𝑀)
𝑣 .𝑤 +

∑
𝑢∈𝑆𝐴𝑇𝑥∗ (𝑀)

𝑢.𝑤
ª®¬

After rearranging the terms, we have

∑
𝑣∈𝑉 𝐼𝑂𝑥∗ (𝑀)

𝑣 .𝑤 ≤ 1

3𝑘 − 1

∑
𝑢∈𝑆𝐴𝑇𝑥∗ (𝑀)

𝑢.𝑤

Hence, if the sum of the weights of the violated constraints
is less than 1

3𝑘−1 of the sum of the weights of the satisfied
constraints, then it is a lucky iteration. Finally, the task of
adding the violated constraint again to the set 𝑀 is equiv-
alent to doubling the weights of the violated constraints.
Algorithm 2 presents our procedure for solving the sample,
identifying whether the iteration is a lucky iteration, and
updating the weights of the violated constraints.

This entire process repeats until we find a polynomial that
satisfies all constraints (i.e., when the system is full-rank) or
produces a polynomial that violates at most a few points or

exceeds the user-specified threshold for the number of itera-
tions. When the algorithm exceeds the number of iterations
without producing a polynomial, we increment the number
of terms used for the smaller bitwidth representations in the
progressive polynomial. We increase the number of terms
used for the largest representation when we are unable to
find a progressive polynomial after increasing the terms used
for the smaller representations.

When the system of linear equations is full-rank, then the
above procedure will find the unique polynomial. In many
cases, the system of equations may not be full-rank for a
given number of terms in the polynomial. Rather than in-
creasing the number of terms, we also accept a polynomial
that satisfies all constraints except a few constraints (e.g., typ-
ically 1-4 inputs in our experiments). For some elementary
functions, we also split the reduced inputs into two to four
sub-domains and generate polynomials for them to reduce
the number of terms.

3.4 A Sketch of the Proof

The proof that our algorithm finds the solution for a system
of łfull-rankž linear constraints and terminates in 6𝑘 log𝑛

iterations in expectation immediately follows from the proof
of the Clarkson’s method [9]. We provide a sketch of the
proof for completeness. Here, 𝑘 is the number of terms in
the largest representation for the progressive polynomial.
The proof specifically relies on the following two lemmas.

Lemma 1. There exist a set of 𝑘 constraints such that if we

find an optimal solution with respect to them, it will also be a

feasible and optimal solution for the entire set of𝑀 constraints.

This lemma holds because the optimum value of a linear
program is always located on a vertex, which corresponds
to 𝑘-strict constraints.

Lemma 2. Suppose we have a multi-set𝑀 with 𝑛 constraints.

If we sample 6𝑘2 constraints 𝑆 from𝑀 and compute the opti-

mum solution 𝑥∗ on 𝑆 , then with probability at least 1/2, 𝑥∗
can only violate 1/3𝑘 constraints in𝑀 .

Proof that the algorithmsolves the system in 6𝑘 log𝑛

iterations in expectation. Let us consider the basis 𝐵 for
the optimal solution in 𝑀 , which follows from Lemma 1.
Here, 𝐵 ⊆ 𝑀 . Initially, 𝐵 has 𝑘 constraints as the rank of
the system of linear constraints is 𝑘 (i.e., |𝐵 | = 𝑘). On every
lucky iteration, we double the constraints violated in 𝐵 (i.e.
𝐵 is also a multi-set). After 𝑘 lucky iterations, the number
of constraints in 𝐵 is at least 2𝑘 . Similarly, the number of
constraints in 𝐵 is at least 22 · 𝑘 after 2𝑘 lucky iterations.
Generalizing, the number of constraints in 𝐵 is at least 2𝑖 · 𝑘
after 𝑘 · 𝑖 lucky iterations. Hence, |𝐵 | ≥ 2𝑖 · 𝑘 ≥ 2𝑖 .

From Lemma 2, an iteration is lucky with probability 1/2,
where the solution 𝑥∗ for the sample only violates 1/3𝑘 or
fewer constraints in the multi-set𝑀 . Hence,𝑀 grows slowly.
After 𝑘 · 𝑖 lucky iterations, size of the multi-set𝑀 is at most

559

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

(1 + 1/3𝑘)𝑘 ·𝑖 𝑛. From the Taylor’s series for 𝑒𝑥 , we have (1 +
𝑥) ≤ 𝑒𝑥 for all 𝑥 . Hence, (1 + 1/3𝑘) ≤ 𝑒1/3𝑘 .

|𝑀 | ≤ (1 + 1/3𝑘)𝑘 ·𝑖 𝑛 ≤
(
𝑒1/3𝑘

)𝑘 ·𝑖
𝑛 ≤ 𝑒𝑖/3𝑛

The above two properties imply that there cannot be many
lucky iterations without finding a solution 𝑥∗ that satisfies
all constraints. In our setting, multi-set 𝐵 is a subset of multi-
set 𝑀 . After 𝑘 · 𝑖 lucky iterations, the cardinalities of the
sets 𝐵 and 𝑀 should satisfy 2𝑖 ≤ 𝑛𝑒𝑖/3. When is 𝑖 ≥ 3 log𝑛,
the above inequality is no longer true. Since we are explor-
ing 𝑘 · 𝑖 lucky iterations, the algorithm will terminate after
3𝑘 log𝑛 lucky iterations. Finally each iteration is lucky with
probability at least 1/2 from Lemma 2. So, the algorithm
terminates by finding a solution that satisfies all constraints
after 6𝑘 log𝑛 iterations in expectation.
Proof of Lemma 2. To construct the proof for this lemma,

consider an artificial way of sampling as follows: we first
sample 𝑟 + 1 constraints 𝑆 ′ from 𝑀 and then throw one
of them out uniformly at random to get 𝑆 . Here, 𝑟 is the
size of the sample 𝑆 . This way of sampling 𝑆 ′ has the same
distribution as the original distribution of 𝑆 . Let 𝑋 (𝑆) be the
number of violated constraints when we sample 𝑆 . For any
constraint ℎ ∈ 𝑀 , let 𝑋 (ℎ, 𝑆) = 1 if and only if constraint ℎ
is violated by the optimum solution 𝑥∗ computed on 𝑆 . Then,
the expected value of 𝑋 (𝑆) is:

𝐸 [𝑋 (𝑆)] =
∑
𝑆

𝑃𝑟𝑜𝑏 (𝑆)
∑
ℎ∉𝑆

𝑋 (ℎ, 𝑆) = 1(|𝑀 |
𝑟

) ∑
𝑆

∑
ℎ∉𝑆

𝑋 (ℎ, 𝑆)

because the choice of 𝑆 is uniform over all 𝑟 -subsets of
𝑀 . But interestingly, from our artificial way of sampling, we
can also write:

∑
𝑆

∑
ℎ∉𝑆

𝑋 (ℎ, 𝑆) =
∑
𝑆′

∑
ℎ∈𝑆′

𝑋 (ℎ, 𝑆 ′ − ℎ)

Here, 𝑆 consists of all 𝑟 -subsets of𝑀 and 𝑆 ′ consists of all
𝑟 + 1-subsets of𝑀 .

To understand when𝑋 (ℎ, 𝑆 ′−ℎ) = 1, fix a basis of 𝑆 ′ (as in
Lemma 1). Then,𝑋 (ℎ, 𝑆 ′−ℎ) = 1 only when ℎ belongs to this
basis. But there are only 𝑘 choices of vectors in this basis!
So most of the time, the second summand is 0. In particular,
we have:

𝐸 [𝑋 (𝑆)] ≤ 1(|𝑀 |
𝑟

) ∑
𝑆′

𝑘

Since the number of choices for 𝑆 ′ is
(|𝑀 |
𝑟+1

)
, so in total, we

have:

𝐸 [𝑋 (𝑆)] ≤
(|𝑀 |
𝑟+1

)
(|𝑀 |
𝑟

) 𝑘 < 𝑘
|𝑀 |
𝑟 + 1

By Markov inequality, the probability that the value of
𝑋 (𝑆) is at least twice its expectation is at most 1/2. Hence,
we have:

𝑃𝑟𝑜𝑏

(
𝑋 (𝑆) > 2𝑘

|𝑀 |
𝑟 + 1

)
<

1

2

Recall that we would like 𝑋 (𝑆) to be at least |𝑀 |/3𝑘 . To
make 2𝑘 |𝑀 |

𝑟+1 <
|𝑀 |
3𝑘

, we can pick 𝑟 = 6𝑘2, which is the size of
the sample, so that the probability of a lucky iteration is at
least 1/2.

4 Experimental Evaluation

We describe the RLIBM-Prog prototype, methodology, and
the results of our experiments to check both the correctness
and performance of our elementary functions.

Prototype. Our prototype, RLIBM-Prog [1], is a pro-
gressive polynomial generator and a collection of correctly
rounded elementary functions. RLIBM-Prog contains multi-
ple implementations for ten elementary functions. A single
progressive polynomial approximation for each function
produces the correctly rounded result for the 34-bit FP rep-
resentation that has 8-bits for the exponent with the round-
to-odd mode. It produces correctly rounded results for all FP
representations starting from 10-bits to 32-bits with all five
rounding modes in the IEEE standard. It also has progres-
sive performance with bfloat16 and tensorfloat32 types and
produces correctly rounded results for all inputs with them.
Correct and fast polynomial approximations generated by
RLIBM-Prog for 𝑙𝑛(𝑥), 𝑙𝑜𝑔2 (𝑥), and 𝑙𝑜𝑔10 (𝑥) are already part
of LLVM’s math library [30ś32].
RLIBM-Prog uses the MPFR library [14] to compute the

oracle value of 𝑓 (𝑥) for each representation. It uses an exact
rational LP solver, SoPlex [15], to solve constraints. We use
range reduction and output compensation functions from our
prior work in the RLibm project [25, 26, 29]. While evaluating
the progressive polynomial, the bfloat16 and tensorfloat32
inputs use only the first few terms of the progressive poly-
nomial. We perform polynomial evaluation, range reduction,
and output compensation using double precision. We use
Horner’s method to evaluate polynomials [3].

Methodology.We compareRLIBM-Prog’s functionswith
state-of-the-art libraries: Intel’s double libm, glibc’s double
libm, CR-LIBM [11], and RLibm-All. Intel’s and glibc’s libm
are mainstream libraries that are widely used for their per-
formance but do not provide correctly rounded results for
all inputs with any one rounding mode. CR-LIBM provides
separate implementations for each rounding mode for an
elementary function that produce the correctly rounded re-
sults for double precision. It has implementations for four
out of the five rounding modes in the IEEE standard and
does not have an implementation for the round-to-nearest-
ties-to-away mode. RLibm-All produces correctly rounded

560

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

Table 1. Details of the polynomials generated by RLIBM-Prog in comparison to RLibm-All. For each function generated,
we show the size of the piecewise polynomial, the maximum degree, and the number of terms (for bfloat16, tensorfloat32,
and float types) in the polynomial. We also report the number of special case inputs to avoid increasing the degree of the
polynomial approximation with RLIBM-Prog, and the size of the lookup tables for the coefficients of the generated polynomial
approximations in bytes. We report the total reduction in memory for the lookup tables computed with RLIBM-Prog in
comparison to RLibm-All.

RLibm-All

𝑓 (𝑥) # of

poly.

Deg-

ree

of

terms

Poly.

mem.

use (B)

ln(x) 210 3 3 24576

log2 (x) 28 3 3 6144

log10 (x) 28 3 3 6144

ex 28 4 5 10240

2x 28 3 4 8192

10x 29 3 4 16384

sinh(x) 26, 25 5, 4 3, 3 2304

cosh(x) 26, 25 5, 4 3, 3 2304

sinpi(x) 22, 22 5, 4 3, 3 192

cospi(x) 22, 22 5, 4 3, 3 192

RLIBM-Prog

of

poly.

Max. poly. degree # of terms
of

special

inputs

Poly.

mem.

use (B)

Reduction

in mem vs.

RLibm-AllFP32 TF32 BF16 FP32 TF32 BF16

4 5 5 0 5 5 0 13 360 68×
1 5 3 0 5 3 0 0 40 154×
4 6 3 0 6 3 0 3 216 28×
4 6 4 3 7 5 4 0 160 64×
1 6 3 2 7 4 3 0 56 146×
4 6 4 3 7 5 4 1 176 93×
1, 1 5, 4 3, 2 3, 2 3, 3 2, 2 2, 2 1, 1 80 29×
1, 1 5, 4 3, 2 3, 2 3, 3 2, 2 2, 2 0, 0 48 48×
1, 1 5, 4 3, 2 3, 2 3, 3 2, 2 2, 2 0, 0 48 4×
1, 1 5, 4 3, 2 3, 2 3, 3 2, 2 2, 2 0, 0 48 4×

results for all 𝑛-bit FP representations and all five rounding
modes, where 10 ≤ 𝑛 ≤ 32.
We conducted our experiments on a 2.10GHz Intel Xeon

Gold 6230R server with 192GB of RAM running Ubuntu 20.04
that has both Intel turbo boost and hyper-threading disabled
to minimize perturbation. We use the publicly available CR-
LIBM and RLibm-All versions. We use Intel’s double libm
from the oneAPI Toolkit and glibc’s double libm from glibc-
2.31. The test harness for comparing glibc’s libm, CR-LIBM,
and RLibm-All is built using the gcc-9.3.0 compiler with
-O0 -frounding-math -fsignaling-nans flags. The test
harness for comparing against Intel’s libm is built using the
icc compiler with -O0 -fp-model strict -no-ftz flags
because Intel’s libm is only available in the Intel’s compiler.
The performance is measured using the number of cycles
taken to compute the result for each input using rdtscp.
Then, we computed the total time taken to compute the
elementary functions for all inputs.

Properties of RLIBM-Prog’s polynomials.Table 1 pro-
vides details on the various properties of the polynomial
approximations generated by RLIBM-Prog in comparison
to RLibm-All. With RLIBM-Prog, we tried to generate pro-
gressive polynomials with the lowest degree with at most
four sub-domains and with at most four special case inputs
per sub-domain (i.e., when the system is not full-rank). We
chose these thresholds because they can be implemented ef-
ficiently with simple branches. The range reduction strategy
for 𝑠𝑖𝑛ℎ(𝑥), 𝑐𝑜𝑠ℎ(𝑥), 𝑠𝑖𝑛𝑝𝑖 (𝑥), and 𝑐𝑜𝑠𝑝𝑖 (𝑥) requires approx-
imations of two functions. We generated two polynomial
approximations for each elementary function.

Significant reduction inmemory usage. In contrast to
RLibm-All, RLIBM-Prog generates a single polynomial or a

piecewise polynomial with at most 4 sub-domains. RLIBM-

Prog’s polynomials require only 123 bytes on average per
function. In contrast, RLibm-All’s polynomials need 7667
bytes (7.5KB) on average per function.RLIBM-Prog’s polyno-
mials reduce total storage needs by 62× on average compared
to RLibm-All.
RLIBM-Prog was able to generate a single progressive

polynomial that produces correctly rounded results with-
out any special case inputs for 𝑙𝑜𝑔2 (𝑥), 2𝑥 , 𝑐𝑜𝑠ℎ(𝑥), 𝑠𝑖𝑛𝑝𝑖 (𝑥),
and 𝑐𝑜𝑠𝑝𝑖 (𝑥), which implies that the system is full-rank.
When we experimented with RLibm-All’s polynomial gen-
eration, it was not able to generate a single polynomial for
all functions except 𝑙𝑜𝑔2 (𝑥). RLIBM-Prog generates these
progressive polynomials very quickly: only 19 minutes on
average per function. This shows the effectiveness of the
RLIBM-Prog’s fast randomized algorithm for solving the set
of constraints.

Terms needed by bfloat16 and tensorfloat32. When
RLIBM-Prog generates progressive polynomials, it indicates
the number of terms necessary to evaluate to produce cor-
rectly rounded results for the bfloat16 and the tensorfloat32
types. Table 1 also reports the number of terms that we need
to evaluate in the progressive polynomial to produce the
correctly rounded bfloat16 and the tensorfloat32 results. Sur-
prisingly, a single term (first term) is sufficient to produce
correctly rounded results for all bfloat16 inputs with 𝑙𝑛(𝑥),
𝑙𝑜𝑔2 (𝑥), and 𝑙𝑜𝑔10 (𝑥). In contrast, RLibm-All’s functions
for 𝑙𝑛(𝑥), 𝑙𝑜𝑔2 (𝑥), and 𝑙𝑜𝑔10 (𝑥) have to evaluate a degree-3
polynomial to produce correctly rounded bfloat16 results.
The number of terms needed for bfloat16 and tensorfloat32
are lower than the terms needed for computing correctly

561

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Table 2. This table reports whether a library produces correctly rounded results for all inputs using RLIBM-Prog, glibc’s double libm,

Intel’s double libm, CR-LIBM, and RLibm-All. Each sub-column also reports the ability to generate correctly rounded results for (1) bfloat16

and tensorfloat32 results with the rn mode, (2) 32-bit float results with the rn mode, and (3) 32-bit float results with all five rounding modes.

✓indicates that the library produces correctly rounded results for the given representation for all inputs. Otherwise, we use ✗.

𝑓 (𝑥) RLIBM-Prog

BF16 &

TF32 rn

FP32

rn

FP32

all rm

ln(x) ✓ ✓ ✓

log2 (x) ✓ ✓ ✓

log10 (x) ✓ ✓ ✓

ex ✓ ✓ ✓

2x ✓ ✓ ✓

10x ✓ ✓ ✓

sinh(x) ✓ ✓ ✓

cosh(x) ✓ ✓ ✓

sinpi(x) ✓ ✓ ✓

cospi(x) ✓ ✓ ✓

glibc double libm

BF16 &

TF32 rn

FP32

rn

FP32

all rm

✓ ✗ ✗

✓ ✓ ✓

✓ ✗ ✗

✓ ✓ ✗

✓ ✗ ✗

✓ ✓ ✗

✓ ✗ ✗

✓ ✓ ✗

N/A N/A N/A

N/A N/A N/A

Intel double libm

BF16 &

TF32 rn

FP32

rn

FP32

all rm

✓ ✗ ✗

✓ ✓ ✓

✓ ✗ ✗

✓ ✓ ✗

✓ ✗ ✗

✓ ✓ ✗

✓ ✗ ✗

✓ ✓ ✗

✓ ✓ ✗

✓ ✓ ✗

CR-LIBM

BF16 &

TF32 rn

FP32

rn

FP32

all rm

✓ ✗ ✗

✓ ✓ ✓

✓ ✗ ✗

✓ ✓ ✓

N/A N/A N/A

N/A N/A N/A

✓ ✗ ✗

✓ ✓ ✓

✓ ✓ ✗

✓ ✓ ✗

RLibm-All

BF16 &

TF32 rn

FP32

rn

FP32

all rm

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

rounded results for the 34-bit float with the round-to-odd
mode except where tensorfloat32 needs all terms for 𝑙𝑛(𝑥).
Does RLIBM-Prog produce correct results? Table 2

reports the summary of our evaluation to check whether
RLIBM-Prog and other existing libraries produce correctly
rounded results for various representations and rounding
modes. All libraries produce correctly rounded results for
bfloat16 and tensorfloat32 results using the round-to-nearest-
ties-to-even (rn) mode. Glibc’s double libm, Intel’s double
libm, and CR-LIBM do not produce correctly rounded re-
sults for 32-bit float inputs for several elementary functions
and various rounding modes. Even though CR-LIBM is a
correctly rounded library for double precision, it produces
wrong results when it is re-purposed for 32-bit floats due to
double rounding errors. Both RLIBM-Prog and RLibm-All

produce correctly rounded float results for all inputs and all
standard rounding modes. More importantly, RLIBM-Prog is
able to produce correctly rounded bfloat16 and tensorfloat32
results even when evaluating only the first few terms of the
generated progressive polynomial approximations.

Performance evaluation of RLIBM-Prog. Figure 4 re-
ports the speedup obtained with RLIBM-Prog’s functions
when compared to various state-of-the-art libraries. Fig-
ure 4(a) presents the speedup of RLIBM-Prog’s bfloat16
functions (left bar in each cluster), tensorfloat32 functions
(middle bar in each cluster), and float functions (right bar in
each cluster) over glibc’s double libm. On average, RLIBM-

Prog’s bfloat16, tensorfloat32, and float functions are 42%,
29%, and 20% faster over glibc’s double library, respectively.
Similarly, Figure 4(b) presents the speedup of RLIBM-Prog’s
functions over Intel’s double library. On average, RLIBM-

Prog’s bfloat16, tensorfloat32, and float functions are 74%,
64%, and 49% faster over Intel’s double math library. Intel’s
double library produces more accurate results compared
to glibc’s double library and is slightly slower compared to
glibc’s double library. Hence, RLIBM-Prog hasmore speedup
over Intel’s double library compared to glibc’s double library.

Figure 4(c) reports the speedup with RLIBM-Prog when
compared to CR-LIBM. On average, RLIBM-Prog’s bfloat16,
tensorfloat32, and float functions are 123%, 105%, and 85%

faster over CR-LIBM functions.
Figure 4(d) shows the speedup of RLIBM-Prog’s functions

over RLibm-All. On average, RLIBM-Prog’s bfloat16, tensor-
float32, and float functions have 25%, 16%, and 5% speedup
over RLibm-All. While RLIBM-Prog and RLibm-All’s func-
tions produce correctly rounded results for all inputs, glibc’s
double libm, Intel’s double libm, and CR-LIBM are slower
and do not produce correctly rounded results for all inputs.
RLIBM-Prog generates significantly smaller piecewise

polynomial approximations compared to RLibm-All, which
results in fewer memory accesses, producing speedups even
with the float functions. RLibm-All’s 𝑙𝑛(𝑥) function has a
piecewise polynomial of 210 sub-domains whereas RLIBM-

Prog’s 𝑙𝑛(𝑥) function has a piecewise polynomial with 4

sub-domains. Hence, RLIBM-Prog’s float functions for 𝑙𝑛(𝑥)
are 11% faster over RLibm-All. Similarly, RLIBM-Prog’s
𝑠𝑖𝑛ℎ(𝑥) function uses two single polynomials compared to
RLibm-All’s piecewise polynomials with sizes of 26 + 25 (i.e.,
96) sub-domains. Hence, RLIBM-Prog’s 𝑠𝑖𝑛ℎ(𝑥) reports 11%
speedup over RLibm-All.

Even though the degree of the piecewise polynomials are
smaller with RLibm-All when compared to RLIBM-Prog

for 𝑒𝑥 and 2𝑥 , RLIBM-Prog’s functions are 1% and 2% faster
because the benefit from storing fewer coefficients subsumes
the overhead of evaluating a higher degree polynomial.

Progressive performance. Our performance evaluation
demonstrates that RLIBM-Prog’s progressive polynomial
approximations have better performance for bfloat16 and
tensorfloat32 types when compared to the float type. RLIBM-

Prog’s bfloat16 functions show the highest speedup followed
by tensorfloat32, highlighting the progressive nature. RLIBM-

Prog’s 𝑙𝑛(𝑥), 𝑙𝑜𝑔2 (𝑥), and 𝑙𝑜𝑔10 (𝑥) functions for bfloat16
are 60%, 61%, and 50% faster over RLibm-All functions, re-
spectively. Although RLibm-All produces correctly rounded

562

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

(a) Speedup over glibc’s double libm

ln log2 log10 exp exp2 exp10 cosh sinh avg.
 0%
 20%
 40%
 60%
 80%

Sp
ee

du
p

Bfloat16 Tensorfloat32 Float
(b) Speedup over Intel’s double libm

ln log2log10 exp exp2exp10 sinpicospicosh sinh avg.
 0%
 25%
 50%
 75%
100%
125%
150%

Sp
ee

du
p

Bfloat16 Tensorfloat32 Float

(c) Speedup over CR-LIBM

ln log2 log10 exp sinpi cospi cosh sinh avg.
 0%
 50%
100%
150%
200%
250%
300%

Sp
ee

du
p

Bfloat16 Tensorfloat32 Float
(d) Speedup over RLibm-all

ln log2log10 exp exp2exp10 sinpicospicosh sinh avg.
 0%
 20%
 40%
 60%
 80%

Sp
ee

du
p

Bfloat16 Tensorfloat32 Float

Figure 4. Computational speedup of RLIBM-Prog’s progressive polynomial approximations in comparison to (a) glibc’s double libm, (b)

Intel’s double libm, (c) CR-LIBM, and (d) RLibm-All. The left-most bar, middle bar, and the right-most bar in each cluster measures the

speedup of RLIBM-Prog’s bfloat16, tensorfloat32, and float elementary functions implemented as a progressive polynomial approximation.

results for all bfloat16 inputs, it requires evaluating the entire
polynomial that results in some performance loss. In sum-
mary,RLIBM-Prog produces a single progressive polynomial
approximation that produces correctly rounded results for
all inputs with multiple representations and multiple round-
ing modes. Its float functions are faster than state-of-the-art
math libraries. Furthermore, smaller representations are sig-
nificantly faster demonstrating progressive performance.

5 Related Work

Approximating and validating elementary functions is a well-
studied problem [4, 5, 11, 14, 17ś21, 34, 37, 38, 44, 45], which
has been feasible because of advances in range reduction [2,
10, 39, 41ś43]. A number of correctly rounded math libraries
have also been developed [11, 25, 26, 45]. A detailed survey
is available in Muller’s seminal book [34]. We restrict our
discussion to the most closely related work.
CR-LIBM [11, 22] is a correctly rounded double library

that provides implementations for a subset of the rounding
modes. CR-LIBM relies on Sollya [7] to generate near mini-
max polynomial approximations. CR-LIBM computes and
proves the error bound on the polynomial evaluation using
interval arithmetic [6, 8]. Double rounding errors can cause
wrong results when the CR-LIBM’s result is rounded to a
32-bit float.

This paper is closely related to our prior work in the RLibm
project [23, 25, 26, 29]. Like the prior work in the RLibm

project, we also approximate the correctly rounded result us-
ing an LP formulation. We also use RLibm’s range reduction
strategies. We use the idea of creating a single polynomial
approximation that produces correctly rounded results for

multiple representations and rounding modes from RLibm-

All [29]. We advance ideas from the RLibm project by gener-
ating faster polynomial approximations with a novel method
for solving linear constraints that provide progressive per-
formance with smaller bitwidth representations.

6 Conclusion

This paper proposes a novel type of polynomial approxima-
tions, termed progressive polynomials, that produce correctly
rounded results for multiple representations and rounding
modes. An elegant property of the progressive polynomial
is that evaluating the first few terms produces correctly
rounded results for smaller representations. To generate such
progressive polynomials, we propose a fast algorithm for
polynomial generation that generates an order of magni-
tude smaller lookup tables than the state-of-the-art method.
RLIBM-Prog’s polynomials are faster than all mainstream
and/or correctly rounded libraries. We have already incor-
porated a few polynomial approximations from this project
in mainstream libraries. We believe this is the next logical
step in mandating correctly rounded elementary functions
at least for representations up to 32-bits.

Acknowledgments

We thank Sepehr Assadi for his assistance with the proof
of Clarkson’s algorithm. We thank our shepherd Fan Long
and the PLDI reviewers for their feedback on the paper. This
material is based upon work supported in part by the Na-
tional Science Foundation under Grant No. 1908798, Grant
No. 2110861, and Grant No. 1917897.

563

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

References
[1] Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte. 2022. RLibm-

Prog. https://github.com/rutgers-apl/rlibm-prog

[2] Sylvie Boldo, Marc Daumas, and Ren-Cang Li. 2009. Formally Verified

Argument Reduction with a Fused Multiply-Add. In IEEE Transactions

on Computers, Vol. 58. 1139ś1145. https://doi.org/10.1109/TC.2008.216

[3] Peter Borwein and Tamas Erdelyi. 1995. Polynomials and Polynomial

Inequalities. Springer New York. https://doi.org/10.1007/978-1-4612-

0793-1

[4] Nicolas Brunie, Florent de Dinechin, Olga Kupriianova, and Christoph

Lauter. 2015. Code Generators for Mathematical Functions. In 2015

IEEE 22nd Symposium on Computer Arithmetic. 66ś73. https://doi.org/

10.1109/ARITH.2015.22

[5] Hung Tien Bui and Sofiene Tahar. 1999. Design and synthesis of an

IEEE-754 exponential function. In Engineering Solutions for the Next

Millennium. 1999 IEEE Canadian Conference on Electrical and Computer

Engineering, Vol. 1. 450ś455 vol.1. https://doi.org/10.1109/CCECE.

1999.807240

[6] Sylvain Chevillard, John Harrison, Mioara Joldes, and Christoph

Lauter. 2011. Efficient and accurate computation of upper bounds

of approximation errors. In Theoretical Computer Science, Vol. 412.

https://doi.org/10.1016/j.tcs.2010.11.052

[7] Sylvain Chevillard, Mioara Joldes, and Christoph Lauter. 2010. Sollya:

An Environment for the Development of Numerical Codes. In Math-

ematical Software - ICMS 2010 (Lecture Notes in Computer Science),

Vol. 6327. Springer, Heidelberg, Germany, 28ś31. https://doi.org/10.

1007/978-3-642-15582-6_5

[8] Sylvain Chevillard and Christopher Lauter. 2007. A Certified Infinite

Norm for the Implementation of Elementary Functions. In Seventh

International Conference on Quality Software (QSIC 2007). 153ś160.

https://doi.org/10.1109/QSIC.2007.4385491

[9] Kenneth L. Clarkson. 1995. Las Vegas Algorithms for Linear and

Integer Programming When the Dimension is Small. J. ACM 42, 2

(March 1995), 488ś499. https://doi.org/10.1145/201019.201036

[10] William J Cody and William M Waite. 1980. Software manual for

the elementary functions. Prentice-Hall, Englewood Cliffs, NJ. https:

//doi.org/10.1137/1024023

[11] Catherine Daramy, David Defour, Florent Dinechin, and Jean-Michel

Muller. 2003. CR-LIBM: A correctly rounded elementary function

library. In Proceedings of SPIE Vol. 5205: Advanced Signal Processing

Algorithms, Architectures, and Implementations XIII, Vol. 5205. https:

//doi.org/10.1117/12.505591

[12] Catherine Daramy-Loirat, David Defour, Florent de Dinechin,

Matthieu Gallet, Nicolas Gast, Christoph Lauter, and Jean-Michel

Muller. 2006. CR-LIBM A library of correctly rounded elemen-

tary functions in double-precision. Research Report. Laboratoire

de l’Informatique du Parallélisme. https://hal-ens-lyon.archives-

ouvertes.fr/ensl-01529804

[13] Pavlos S. Efraimidis and Paul G. Spirakis. 2006. Weighted random

sampling with a reservoir. Inform. Process. Lett. 97, 5 (2006), 181ś185.

https://doi.org/10.1016/j.ipl.2005.11.003

[14] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier,

and Paul Zimmermann. 2007. MPFR: A Multiple-precision Binary

Floating-point Library with Correct Rounding. ACM Trans. Math.

Software 33, 2, Article 13 (June 2007). https://doi.org/10.1145/1236463.

1236468

[15] Ambros M. Gleixner, Daniel E. Steffy, and Kati Wolter. 2012. Improving

theAccuracy of Linear Programming Solverswith Iterative Refinement.

In Proceedings of the 37th International Symposium on Symbolic and

Algebraic Computation (Grenoble, France) (ISSAC ’12). Association for

Computing Machinery, New York, NY, USA, 187ś194. https://doi.org/

10.1145/2442829.2442858

[16] David Goldberg. 1991. What Every Computer Scientist Should Know

About Floating-point Arithmetic. In ACM Computing Surveys, Vol. 23.

ACM, New York, NY, USA, 5ś48. https://doi.org/10.1145/103162.

103163

[17] John Harrison. 1997. Floating point verification in HOL light: The ex-

ponential function. In Algebraic Methodology and Software Technology,

Michael Johnson (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

246ś260. https://doi.org/10.1007/BFb0000475

[18] John Harrison. 1997. Verifying the Accuracy of Polynomial Approx-

imations in HOL. In International Conference on Theorem Proving in

Higher Order Logics. https://doi.org/10.1007/BFb0028391

[19] John Harrison. 2009. HOL Light: An Overview. In Proceedings of

the 22nd International Conference on Theorem Proving in Higher Or-

der Logics, TPHOLs 2009 (Lecture Notes in Computer Science), Stefan

Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel

(Eds.), Vol. 5674. Springer-Verlag, Munich, Germany, 60ś66. https:

//doi.org/10.1007/978-3-642-03359-9_4

[20] Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, and

Guillaume Revy. 2011. Computing Floating-Point Square Roots via

Bivariate Polynomial Evaluation. IEEE Trans. Comput. 60. https:

//doi.org/10.1109/TC.2010.152

[21] Olga Kupriianova and Christoph Lauter. 2014. Metalibm: A Mathemat-

ical Functions Code Generator. In 4th International Congress on Mathe-

matical Software. https://doi.org/10.1007/978-3-662-44199-2_106

[22] Vincent Lefèvre, Jean-Michel Muller, and Arnaud Tisserand. 1998.

Toward correctly rounded transcendentals. IEEE Trans. Comput. 47, 11

(1998), 1235ś1243. https://doi.org/10.1109/12.736435

[23] Jay Lim. 2021. Novel Polynomial Approximation Methods for Generating

Correctly Rounded Elementary Functions. Ph.D. Dissertation. Rutgers

University.

[24] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-

garakatte. 2020. A Novel Approach to Generate Correctly

Rounded Math Libraries for New Floating Point Representations.

arXiv:2007.05344 Rutgers Department of Computer Science Technical

Report DCS-TR-753.

[25] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-

garakatte. 2021. An Approach to Generate Correctly Rounded Math

Libraries for New Floating Point Variants. Proceedings of the ACM

on Programming Languages 6, POPL, Article 29 (Jan. 2021), 30 pages.

https://doi.org/10.1145/3434310

[26] Jay P. Lim and Santosh Nagarakatte. 2021. High Performance Correctly

Rounded Math Libraries for 32-bit Floating Point Representations. In

42nd ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’21). https://doi.org/10.1145/3453483.3454049

[27] Jay P Lim and Santosh Nagarakatte. 2021. RLIBM-32: High Perfor-

mance Correctly Rounded Math Libraries for 32-bit Floating Point

Representations. arXiv:2104.04043 Rutgers Department of Computer

Science Technical Report DCS-TR-754.

[28] Jay P. Lim and Santosh Nagarakatte. 2021. RLIBM-ALL: A

Novel Polynomial Approximation Method to Produce Correctly

Rounded Results for Multiple Representations and Rounding Modes.

arXiv:2108.06756 [abs] Rutgers Department of Computer Science

Technical Report DCS-TR-757.

[29] Jay P. Lim and Santosh Nagarakatte. 2022. One Polynomial Approxima-

tion to Produce Correctly Rounded Results of an Elementary Function

for Multiple Representations and Rounding Modes. Proceedings of

the ACM on Programming Languages 6, POPL, Article 3 (Jan. 2022),

28 pages. https://doi.org/10.1145/3498664

[30] Tue Ly. 2021. Implement correctly rounded logf based on

RLIBM library. https://github.com/llvm/llvm-project/commit/

d08a801b5f5678af52c89d202e5f22e0d43a38cd

[31] Tue Ly. 2022. Implement correctly rounded log10f based on

RLIBM library. https://github.com/llvm/llvm-project/commit/

e581841e8cf46109acea92e1acb661c404fa62b9

[32] Tue Ly. 2022. Implement correctly rounded log2f based on

RLIBM library. https://github.com/llvm/llvm-project/commit/

63d2df003e9c198bfa70d448f8ad7b361cbb1351

564

https://github.com/rutgers-apl/rlibm-prog
https://doi.org/10.1109/TC.2008.216
https://doi.org/10.1007/978-1-4612-0793-1
https://doi.org/10.1007/978-1-4612-0793-1
https://doi.org/10.1109/ARITH.2015.22
https://doi.org/10.1109/ARITH.2015.22
https://doi.org/10.1109/CCECE.1999.807240
https://doi.org/10.1109/CCECE.1999.807240
https://doi.org/10.1016/j.tcs.2010.11.052
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1109/QSIC.2007.4385491
https://doi.org/10.1145/201019.201036
https://doi.org/10.1137/1024023
https://doi.org/10.1137/1024023
https://doi.org/10.1117/12.505591
https://doi.org/10.1117/12.505591
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://doi.org/10.1016/j.ipl.2005.11.003
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/2442829.2442858
https://doi.org/10.1145/2442829.2442858
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1007/BFb0000475
https://doi.org/10.1007/BFb0028391
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1109/TC.2010.152
https://doi.org/10.1109/TC.2010.152
https://doi.org/10.1007/978-3-662-44199-2_106
https://doi.org/10.1109/12.736435
https://arxiv.org/abs/2007.05344
https://doi.org/10.1145/3434310
https://doi.org/10.1145/3453483.3454049
https://arxiv.org/abs/2104.04043
https://arxiv.org/abs/2108.06756
https://doi.org/10.1145/3498664
https://github.com/llvm/llvm-project/commit/d08a801b5f5678af52c89d202e5f22e0d43a38cd
https://github.com/llvm/llvm-project/commit/d08a801b5f5678af52c89d202e5f22e0d43a38cd
https://github.com/llvm/llvm-project/commit/e581841e8cf46109acea92e1acb661c404fa62b9
https://github.com/llvm/llvm-project/commit/e581841e8cf46109acea92e1acb661c404fa62b9
https://github.com/llvm/llvm-project/commit/63d2df003e9c198bfa70d448f8ad7b361cbb1351
https://github.com/llvm/llvm-project/commit/63d2df003e9c198bfa70d448f8ad7b361cbb1351

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

[33] Nimrod Megiddo. 1984. Linear Programming in Linear Time When

the Dimension Is Fixed. J. ACM 31, 1 (Jan. 1984), 114ś127. https:

//doi.org/10.1145/2422.322418

[34] Jean-Michel Muller. 2005. Elementary Functions: Algorithms and Im-

plementation. Birkhauser. https://doi.org/10.1007/978-1-4899-7983-4

[35] Santosh Nagarakatte, Mridul Aanjaneya, and Jay P. Lim. 2022. The

RLIBM Project. https://www.cs.rutgers.edu/~santosh.nagarakatte/

rlibm/

[36] NVIDIA. 2020. TensorFloat-32 in the A100 GPU Accelerates AI Training,

HPC up to 20x. https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-

32-precision-format/

[37] Eugene Remes. 1934. Sur un procédé convergent d’approximations

successives pour déterminer les polynômes d’approximation. Comptes

rendus de l’Académie des Sciences 198 (1934), 2063ś2065.

[38] Jun Sawada. 2002. Formal verification of divide and square root algo-

rithms using series calculation. In 3rd International Workshop on the

ACL2 Theorem Prover and its Applications.

[39] Shane Story and Ping Tak Peter Tang. 1999. New algorithms for

improved transcendental functions on IA-64. In Proceedings 14th IEEE

Symposium on Computer Arithmetic. 4ś11. https://doi.org/10.1109/

ARITH.1999.762822

[40] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu,

and Luca Benin. 2018. A transprecision floating-point platform for

ultra-low power computing. In 2018 Design, Automation Test in Europe

Conference Exhibition (DATE). 1051ś1056. https://doi.org/10.23919/

DATE.2018.8342167

[41] Ping-Tak Peter Tang. 1989. Table-Driven Implementation of the Ex-

ponential Function in IEEE Floating-Point Arithmetic. ACM Trans.

Math. Software 15, 2 (June 1989), 144ś157. https://doi.org/10.1145/

63522.214389

[42] Ping-Tak Peter Tang. 1990. Table-Driven Implementation of the Loga-

rithm Function in IEEE Floating-Point Arithmetic. ACM Trans. Math.

Software 16, 4 (Dec. 1990), 378ś400. https://doi.org/10.1145/98267.

98294

[43] P. T. P. Tang. 1991. Table-lookup algorithms for elementary functions

and their error analysis. In [1991] Proceedings 10th IEEE Symposium on

Computer Arithmetic. 232ś236. https://doi.org/10.1109/ARITH.1991.

145565

[44] Lloyd N. Trefethen. 2012. Approximation Theory and Approximation

Practice (Other Titles in Applied Mathematics). Society for Industrial

and Applied Mathematics, USA.

[45] Abraham Ziv. 1991. Fast Evaluation of Elementary Mathematical

Functions with Correctly Rounded Last Bit. ACM Trans. Math. Software

17, 3 (Sept. 1991), 410ś423. https://doi.org/10.1145/114697.116813

565

https://doi.org/10.1145/2422.322418
https://doi.org/10.1145/2422.322418
https://doi.org/10.1007/978-1-4899-7983-4
https://www.cs.rutgers.edu/~santosh.nagarakatte/rlibm/
https://www.cs.rutgers.edu/~santosh.nagarakatte/rlibm/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://doi.org/10.1109/ARITH.1999.762822
https://doi.org/10.1109/ARITH.1999.762822
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.1145/63522.214389
https://doi.org/10.1145/63522.214389
https://doi.org/10.1145/98267.98294
https://doi.org/10.1145/98267.98294
https://doi.org/10.1109/ARITH.1991.145565
https://doi.org/10.1109/ARITH.1991.145565
https://doi.org/10.1145/114697.116813

	Abstract
	1 Introduction
	2 Background
	2.1 The Floating-Point Representation
	2.2 Approximating Elementary Functions
	2.3 The RLibm Approach

	3 Progressive Polynomial Approximations
	3.1 Overview of Our Method
	3.2 Linear Constraints for Progressive Polynomials
	3.3 A Fast Algorithm for Solving Constraints
	3.4 A Sketch of the Proof

	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

