Progressive Polynomial Approximations for Fast
Correctly Rounded Math Libraries

Mridul Aanjaneya Jay P. Lim Santosh Nagarakatte
Department of Computer Science Department of Computer Science Department of Computer Science
Rutgers University Yale University Rutgers University
United States United States United States

mridul.aanjaneya@rutgers.edu

Abstract

This paper presents a novel method for generating a single
polynomial approximation that produces correctly rounded
results for all inputs of an elementary function for multi-
ple representations. The generated polynomial approxima-
tion has the nice property that the first few lower degree
terms produce correctly rounded results for specific repre-
sentations of smaller bitwidths, which we call progressive
performance. To generate such progressive polynomial ap-
proximations, we approximate the correctly rounded result
and formulate the computation of correctly rounded poly-
nomial approximations as a linear program similar to our
prior work on the RLiBM project. To enable the use of re-
sulting polynomial approximations in mainstream libraries,
we want to avoid piecewise polynomials with large lookup
tables. We observe that the problem of computing polyno-
mial approximations for elementary functions is a linear
programming problem in low dimensions, i.e., with a small
number of unknowns. We design a fast randomized algo-
rithm for computing polynomial approximations with pro-
gressive performance. Our method produces correct and fast
polynomials that require a small amount of storage. A few
polynomial approximations from our prototype have already
been incorporated into LLVM’s math library.

CCS Concepts: « Mathematics of computing — Math-
ematical software; Linear programming; « Theory of
computation — Numeric approximation algorithms.

Keywords: RLIBM, round-to-odd, correctly rounded libraries

ACM Reference Format:
Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte. 2022. Pro-
gressive Polynomial Approximations for Fast Correctly Rounded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI 22, June 13-17, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9265-5/22/06...$15.00
https://doi.org/10.1145/3519939.3523447

jay.lim@yale.edu

552

santosh.nagarakatte@cs.rutgers.edu

Math Libraries. In Proceedings of the 43rd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (PLDI "22), June 13-17, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3519939.3523447

1 Introduction

Correct rounding of primitive arithmetic operations is manda-
tory for floating-point (FP) implementations since the incep-
tion of the IEEE 754 standard. This requirement was not
enforced for elementary functions (algebraic functions such
as 1/4/x and transcendental functions such as sin, cos, log,
exp, etc.) due to the Table Maker’s Dilemma [34]. When the
output of an elementary function matches the result that is
computed with infinite precision and rounded to the target
representation, then it is a correctly rounded result. Cor-
rectly rounded elementary functions can enhance the repro-
ducibility and portability of software systems. The IEEE 754-
2008 standard has recommended (yet not mandated) correct
rounding of elementary functions. Research efforts from sev-
eral groups have shown that correctly rounded elementary
functions can be obtained at a “reasonable” cost [11, 12, 22].
Yet, mainstream math libraries for a 32-bit float still do not
produce correctly rounded results for all inputs. When cor-
rectly rounded libraries for double precision such as CR-
LIBM are re-purposed for 32-bit floats, they can produce
wrong results due to double rounding errors.

We have been building correctly rounded functions as
part of the RL1BM project [23-29, 35]. Our key insight in the
RL1BM project is to separate the task of generating the oracle
of an elementary function from the task of generating effi-
cient implementations. Given an oracle (e.g., a high precision
math library), we make a case for approximating the correctly
rounded result rather than the real value of an elementary
function to generate efficient implementations. Figure 1(a)
shows the real value and the correctly rounded result for an
input. There is an interval of real values around the correctly
rounded result such that all real values round to it, which is
called the rounding interval. This interval provides the con-
straints on the result of the polynomial approximation for
a given input (see Figure 1(b)). Next, we formulate the task
of identifying the coefficients of a polynomial of a specific
degree that produces a value in the rounding interval for all
inputs as a system of linear inequalities.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-5286-8173
https://orcid.org/0000-0002-7572-4017
https://orcid.org/0000-0002-5048-8548
https://doi.org/10.1145/3519939.3523447
https://doi.org/10.1145/3519939.3523447

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

f(x) roundsto v,

P —Y

vy Vy h

'\

(a) rounding interval of the correctly rounded result v,

1<C+Cx+Cox’ +. 4G <h
Vs (b) a linear constraint to generate
polynomial coefficients

Figure 1. lllustration of the RLiBm approach. (a) The values vy, v, and vs are representable in the FP representation T. The real
value of f(x) for a given input x cannot be exactly represented in T and is rounded to v;. The RL1BM approach identifies the
rounding interval of v, and computes polynomial approximations that produce values in this interval. (b) A linear constraint
that the polynomial approximation with k terms must satisfy for each rounding interval (i.e., [/, h]) for each input x.

By approximating the correctly rounded result, RLiBm
provides more freedom, allows for lower degree polynomial
approximations, and can be realized via a carefully-crafted
system of linear inequalities. One challenge with the RLiBm
approach is that modern LP solvers can only handle a few
thousand constraints. Hence, our RL1BM prototypes create
piecewise polynomials for 32-bit types. Such piecewise poly-
nomials are created for each function and for each represen-
tation and rounding mode. We have shown that the resulting
functions are both correctly rounded and faster than main-
stream libraries such as Intel’s libm and glibc’s libm [26].

A recent result from our RLiBM project, RLIBM-ALL [23,
29], generates a single polynomial approximation that pro-
duces correctly rounded results for multiple representations
and rounding modes. The key idea behind RLiBM-ALL is
to generate a polynomial approximation that produces cor-
rectly rounded results for a floating-point (FP) representation
with two additional bits of precision (i.e., n+ 2-bits) using the
round-to-odd mode. The resulting polynomial approxima-
tion produces correctly rounded results for all five rounding
modes in the standard and for multiple representations with
k-bits of precision where |E| + 1 < k < n and |E| is the num-
ber of exponent bits in the representation. The RLiBM-ALL
prototype also generates piecewise polynomials [28, 29]. A
single generic polynomial approximation that produces cor-
rect results for multiple representations and rounding modes
is attractive because it avoids unnecessary code duplication
and can enable adoption by mainstream libraries.

Although polynomial approximations resulting from var-
ious RLIBM prototypes are fast and correct, they had not
been incorporated into mainstream libraries because of the
large lookup tables required for the piecewise polynomials.
Space usage by the mainstream library is an important con-
sideration as these libraries are used in numerous domains
ranging from micro-controllers to high performance systems.
To enable mainstream usage of polynomial approximations
from the RL1BM project, we want to avoid generating large
piecewise polynomials and the accompanying lookup tables.
Further, we want to improve performance for representa-
tions with fewer bits rather than every representation having
the same performance because low bitwidth representations
are increasingly used in various domains [36, 40].

553

Progressive polynomials. Our goal is to generate a sin-
gle polynomial that produces correctly rounded results for
multiple FP representations with progressive performance.
The first few lower degree terms of such a polynomial pro-
duces correctly rounded results for representations with
fewer precision bits and the higher degree terms become
necessary for representations with more precision bits, while
keeping the same lower degree terms. We call such polyno-
mials progressive polynomials. They are inspired by Taylor
polynomials, which provide better polynomial fits as one
uses more terms. These progressive polynomial approxima-
tions offer two major benefits. First, they will provide more
efficient implementations for representations with fewer
precision bits (e.g., bfloat16 [40] or tensorfloat32 [36]) in
comparison to RLiBM-ALL that uses the same high degree
polynomial approximation across all representations (see
Section 4). Second, they will provide a unified approach
to implementing math library functions, as representations
with less precision bits can reuse the implementation for
those with more precision bits, while discarding the higher
order terms from the polynomial.

For example, consider the case when we want to produce
a single approximation for e* that produces correct results
for all inputs in the 32-bit float, 16-bit bfloat16, and 19-bit
tensorfloat32 types. For the sake of argument, suppose we
generate a 6-term, 5/"-degree progressive polynomial (C; +
Cox + C3x? + Cyx® + Csx* + Cex®). We use all 6 terms of
the polynomial to produce correctly rounded results for a
32-bit float input. We use only the first four terms of the
polynomial to produce correct results for a tensorfloat32
input, which is faster than producing the result for a 32-bit
float. Similarly, we use only the first three terms to generate
correctly rounded results for a bfloat16 input, which is faster
than producing results for both tensorfloat32 and float inputs.

Efficient randomized algorithm for solving linear
constraints. To generate progressive polynomial approx-
imations and to avoid storing large tables of coeflicients
for piecewise polynomials, we observe that the problem of
computing a polynomial approximation using the linear pro-
gramming approach of RLIBM is a linear program in low
dimensions, with far fewer unknown variables in compar-
ison to the number of constraints. Inspired by prior work
on linear programs in low dimensions [9], we design a fast

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries

randomized algorithm for producing progressive polynomial
approximations that uses a significantly smaller table of coef-
ficients (by an order of magnitude) compared to RLIBM-ALL.

Given the number of terms for each representation of inter-
est used in the progressive polynomial, our algorithm uses an
LP solver to only solve a small set of 6k? constraints, where
k is the maximum number of terms used in the progressive
polynomial. Given a multi-set of constraints, the algorithm
samples 6k? constraints from the entire set of constraints
and solves the sample optimally using the LP solver. If the
sample solution violates more than 1/3k of the multi-set, it
discards the sample. If the sample solution violates less than
1/3k of the multi-set, it adds the violated constraints once
more to the sample. To efficiently implement this algorithm,
we use weights to encode the multi-set and use weighted
random sampling to create the sample (see Section 3.3).

This process repeats until we find a solution that satisfies
all constraints, which happens when the system of linear
inequalities is full-rank (i.e., there are k-linearly independent
constraints) or when the number of iterations reaches a
threshold. Since we do not know the rank of our system,
we iteratively increase the number of terms used for the
polynomial and have a threshold on the number of iterations.
When the system is full-rank, we prove that our algorithm
finds the progressive polynomial in 6k logn iterations in
expectation (see Section 3.4).

Prototype and results. Our prototype, RLIBM-PRrog, pro-
vides a single progressive polynomial approximation that
produces the correctly rounded results for multiple repre-
sentations and multiple rounding modes for 10 elementary
functions. It has progressive performance with bfloat16 and
tensorfloat32 inputs being 25% and 16% faster than evaluating
the entire polynomial. The randomized algorithm produces
polynomial approximations that require an order of mag-
nitude lower storage than prior RLiBM prototypes [26, 29].
RLIBM-ProG’s polynomials for the 32-bit float type are faster
than all mainstream and/or correctly rounded libraries. Three
polynomial approximations (In(x), logz(x), and logyo(x))
generated by our prototype have already been incorporated
into LLVM’s math library [30-32].

2 Background

We provide background on the FP representation, the process
of computing polynomial approximations for elementary
functions, and the RL1BM approach [23-29].

2.1 The Floating-Point Representation

The IEEE-754 standard specifies the FP representation FF,, |
that is parameterized based on the total number of bits (n)
and the number of bits used for the exponent (|E|). The goal
is to represent a large range of values (i.e., wider dynamic
range) with a reasonable amount of accuracy (i.e., preci-
sion) [16]. The sign of a value is specified by a dedicated sign

554

PLDI °22, June 13-17, 2022, San Diego, CA, USA

bit (S). To represent a large range of values, the FP repre-
sentation has an unsigned exponent field (E). Each value is
represented as precisely as possible with the mantissa bits
(F). Figure 2(c) depicts the bit-string for a 32-bit float.

The values represented by the FP representation are classi-
fied into three classes: (a) normal values when the exponent
field is neither all zeros nor all ones, (b) subnormal or de-
normal values when the exponent field is all zeros, and (c)
special values when the exponent field is all ones. In the
case of normal values, the value represented by the FP bit-
string is (1 + ﬁ) x 2E-bias where bias is 2/F171 — 1. With
subnormal values, the value represented by the bit-string is
(%) x217b14s_Subnormal values are used to represent values
close to zero. In the case of special values, when the mantissa
bits are all zeros, then the bit-string represents positive or
negative infinity depending on the sign bit. Otherwise, the
bit-string represents not-a-number (NaN).

The common formats specified in the IEEE-754 standard
are 16-bit half precision (Fi45), 32-bit single precision float
(F52,), and 64-bit double precision (Feq 11).

The bfloat16 and tensorfloat32 formats. Numerous
recent variants of the IEEE-754 FP representation increase
either the dynamic range or the precision when compared to
the existing half precision format. The bfloat16 format [40] is
a 16-bit representation with 8 bits for the exponent (i.e., Fi¢3).
Nvidia’s tensorfloat32 [36] is a 19-bit representation with
8-bits for the exponent (i.e., F1g5). It provides the dynamic
range of bfloat16 and the precision of the half precision
format. Figure 2(a) and Figure 2(b) show the bfloat16 and the
tensorfloat32 format.

Rounding mode. When a real value is not exactly repre-
sentable in the FP representation, it needs to be rounded to a
value in the FP representation. The IEEE-754 standard speci-
fies five distinct rounding modes that rounds the real value to
one of the two adjacent FP values: round-to-nearest-ties-to-
even (rn), round-to-nearest-ties-to-away (ra), round-towards-
zero (rz), round-towards-positive-infinity (ru), and round-
towards-negative-infinity (rd). Different rounding modes
have different trade-offs in the implementation of various FP
operations. The rn mode is the widely used rounding mode.

2.2 Approximating Elementary Functions

Elementary functions are functions of a single variable that
are typically approximated with polynomial approximations.
It is feasible to design polynomial approximations with low
error for an elementary function when the input domain is
small. Hence, one of the crucial steps in approximating any
elementary function is range reduction.

Range reduction and output compensation. Range re-
duction reduces the domain of an elementary function f(x)
to a small input domain using mathematical identities [10].
The range reduction transforms an input x from the origi-
nal domain of inputs to a reduced input x’. The polynomial

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

———— 16 bits | | 19 bits | | 32 bits —_—
|s|E E B -~ Eg|F, F, Pl [S|E B By~ E[F F o Fol [S|E E, - B[R F, By o Fy
sign exponent mantissa sign exponent mantissa sign exponent mantissa

(a) Bfloat16

(b) TensorFloat32

(c) 32-bit float

Figure 2. The three FP representations used in this paper: (a) Bfloat16, (b) TensorFloat32, and (c) 32-bit float.

approximations are performed with the reduced inputs (i.e.,
y’ = P(x")). After range reduction, the function being ap-
proximated with polynomial approximation may be different
from the original elementary function (e.g., In(x) can be ap-
proximated with log,(x”)). The output (y’) has to be adjusted
appropriately to produce the output for the original input
(x). The output compensation function produces the final
result by compensating the range reduced output y” based
on the range reduction performed for input x.

Polynomial approximations. The next step is to gener-
ate polynomial approximations that take reduced inputs and
produce the result of the elementary function in the reduced
input domain. One common method to generate such poly-
nomial approximations is to minimize the maximum error
of the polynomial approximation with respect to the real
value of the elementary function (also known as minimax
approximations [34]). A commonly used mini-max approxi-
mation is the Remez algorithm [37]. Using real analysis, one
can bound the maximum error of such a minimax approx-
imation. CR-LIBM [11, 12], a correctly rounded library for
the double precision type, uses this near-minimax approach
to generate polynomial approximations.

Range reduction, output compensation, and polynomial
evaluation are all implemented in a finite precision represen-
tation. Hence, they can experience numerical errors, which
when coupled with polynomial approximation errors can
cause wrong results.

2.3 The RLiBM Approach

We provide a brief background on our prior work in the
RL1BM project [23-29], where we decouple the problem of
generating an oracle from the task of the generating effi-
cient implementations. We assume the existence of an or-
acle (which may be slow) that provides correctly rounded
results. This oracle is only used to compute the correctly
rounded result of an elementary function f(x) for each in-
put x in the target representation T. Once there is an oracle
result, the RL1BM project makes a case for approximating
the correctly rounded result rather than the real value of an
elementary function [25, 26]. An FP representation can only
represent finitely many values accurately. Hence, there is an
interval of real values around the correctly rounded result
such that all values in the interval round to it. This is the
maximum amount of freedom available for the polynomial
approximation. The RLiBM project has demonstrated that

555

All values in this
region rounds to vg

All values in this
region rounds to v

9 Q QL

(even)

o (even) v4 (odd) > (even) vg (odd)

Figure 3. We show the rounding of a real value with the
round-to-odd mode. Here, v, v;, 05, v3, and v, are values
representable in a representation T. If the real value is exactly
representable in T, then it rounds to that value. Otherwise,
it rounds to the nearest value in T that is odd.

this amount of freedom for polynomial generation by approx-
imating the correctly rounded result is much larger than the
one with the minimax approach. Hence, RL1BM prototypes
provide significant performance benefits when compared to
highly optimized libraries [26].

Given the correctly rounded result, the next step is to iden-
tify an interval [/,] around the correctly rounded result
such that any value in [I, h] rounds to the correctly rounded
result, which is called the rounding interval. Figure 1(a) illus-
trates the rounding interval around the correctly rounded
result. Next, range reduction specific to the elementary func-
tion is applied to transform an input x to x’. The polynomial
approximation will approximate the result for x’. To per-
form polynomial approximation, one needs the rounding
interval that corresponds to the reduced input x’. The RLiBm
project uses the inverse of the output compensation function
to identify the reduced interval [I”, A'].

Once a set of reduced intervals is available, the next task is
to synthesize the coefficients of the polynomial with k terms
using an arbitrary precision linear programming (LP) solver
such that it satisfies the reduced constraints (i.e., I’ < P(x’) <
h"). Figure 1(b) shows the linear constraint to generate the
coefficients of a polynomial with k terms.

Subsequently, the result for the original input x is com-
puted with output compensation. Range reduction, output
compensation, and the polynomial evaluation happen in
some finite precision representation (e.g., double) and can
experience numerical errors. The rounding intervals are fur-
ther constrained to ensure that the resulting polynomial
always produces the correctly rounded results for all inputs.

RL1BM-ALL. The approach described above produces cor-
rectly rounded results for all inputs for a specific rounding

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries

mode and representation. Our recent work, RLIBM-ALL [29],
generates a single polynomial approximation that produces
correctly rounded results for multiple representations and
multiple rounding modes. When the goal is to create cor-
rectly rounded results for a representation with n-bits, the
key idea behind RL1BM-ALL is to create polynomial approxi-
mations that produce the correctly rounded result of f(x)
with the round-to-odd mode for a representation with n + 2-
bits (i.e., two additional bits of precision with the same ex-
ponent). We have proven that the resulting polynomial pro-
duces correctly rounded results for all rounding modes in
the standard and all representations with k-bits such that
|E| + 1 < k < n, where |E| is the number of exponent bits.
The round-to-odd mode is a non-standard rounding mode
that avoids double rounding errors and can be described as
follows. If the real value is exactly representable in the target
representation, then it is rounded to that value. Otherwise,
it is rounded to an adjacent value whose bit-string is odd
when interpreted as an unsigned integer. Figure 3 pictori-
ally depicts the round-to-odd mode. To correctly round any
real value to a FP representation with the standard rounding
modes, one needs to identify if the real value is less than,
greater than, or equal to the midpoint of two adjacent FP
values. The round-to-odd mode preserves this information
and avoids double rounding errors [29].

One drawback of the single polynomial approximation
with the round-to-odd mode in RLiBM-ALL is that every rep-
resentation must pay the computational cost of the largest
representation. Our RLIBM-ALL prototype generated piece-
wise polynomials with large lookup tables because we were
not aware of an effective method to solve a large number
of constraints at that point in time and LP solvers cannot
automatically solve millions of constraints.

3 Progressive Polynomial Approximations

Our goal is to generate a single polynomial approximation
that not only produces correctly rounded results for multiple
representations and rounding modes but also has progres-
sively better performance for lower bitwidth representations
given a set of representations. We call them progressive poly-
nomials. If we can generate such progressive polynomials,
then we can evaluate the first few terms of the polynomial to
obtain the correct results for lower bitwidth representations
and the entire polynomial for the largest representation.
This paper proposes a novel method to generate progres-
sive polynomial approximations. Building on our prior work
in the RL1BM project [23-29], we approximate the correctly
rounded result and use a linear programming formulation to
generate polynomial approximations. In contrast to the prior
work in the RL1BM project, our setting has a significantly
larger number of constraints (a constraint for each input and
for each type) because we are generating progressive poly-
nomials. In our prior work in the RL1BM project, we were

556

PLDI °22, June 13-17, 2022, San Diego, CA, USA

not aware of an effective way to solve an LP problem with
millions of constraints. Hence, our prior RL1BM prototypes
generated piecewise polynomials with large lookup tables
to store the polynomial coefficients. The presence of these
lookup tables was a barrier for adoption of our polynomial
approximations into mainstream math libraries. Hence, we
do not want to generate large piecewise polynomials.

A key observation that we make in this paper is that the
system of linear inequalities generated by the RLiBm ap-
proach is a linear program in low dimensions (i.e., a polyno-
mial with a small number of terms k that satisfies millions
of constraints). If the set of linear constraints is full-rank,
then there exist k linearly independent constraints that iden-
tify the polynomial coefficients [9]. Our goal is to develop a
fast iterative method for generating progressive polynomials
without large lookup tables. One challenge in this setting is
that we do not know the rank k of the set of constraints.

3.1 Overview of Our Method

Our approach for generating progressive polynomial approx-
imations consists of the following steps. First, we iteratively
explore the number of terms for each individual representa-
tion of interest in our progressive polynomial. Second, we use
an oracle (i.e, an existing high-precision library) to identify
the correctly rounded result for each representation. For the
largest representation T; of interest, we generate correctly
rounded results for a representation with two additional bits
of precision (T;2) with the round-to-odd mode inspired by
our prior work on RL1BM-ALL [29]. The resulting polynomial
approximation produces correctly rounded results for all
representations T, where j < i, and for all rounding modes
as long as T has the same number of exponent bits as T;.

Third, we identify an interval of real values that round
to the correctly rounded result for every input, which is
known as the rounding interval. Fourth, we perform range
reduction to identify the reduced input and infer the reduced
rounding intervals. Subsequently, we attempt to generate
a progressive polynomial from the set of reduced inputs
and reduced rounding intervals for each representation. We
generate constraints for the largest representation that uses
all terms of the polynomial. The polynomial when evaluated
should produce a value in the reduced rounding interval.
For other representations, we systematically hypothesize
a specific number of terms for generating the progressive
polynomial. Fifth, we try to generate a polynomial that has
k terms and is of degree d given n constraints (e.g., n is
512 million with e*). We extend Clarkson’s method [9] to
our context and develop a fast randomized algorithm to
identify k linearly independent constraints that identifies
the polynomial. If the systems of linear inequalities has full
rank, then it has a unique solution.

Our randomized algorithm can be described as follows.
Initially, we maintain a multiset M of all n constraints. We

PLDI °22, June 13-17, 2022, San Diego, CA, USA

sample 6k? constraints from M, where k is the total num-
ber of terms for the largest representation in the progres-
sive polynomial. We solve the sample optimally using an
LP solver to obtain the solution x*. If we are able to solve
the sample, then we use the resulting polynomial to identify
constraints in M that are not satisfied by x*. While check-
ing whether x* satisfies the constraint, we evaluate only the
specified number of terms as dictated by the configuration
of the progressive polynomial. If more than 1/3k of the set
M of constraints is not satisfied by x*, then we discard the
sample and repeat the above process by creating a new sam-
ple. Otherwise, we add each constraint that was not satisfied
one additional time to the multiset M. We repeat the above
process until we find that x* for the sample does not vio-
late any constraint in M or the number of iterations exceeds
the user-specified cut-off. If there exists a solution (i.e., the
system of linear inequalities is full-rank), then the above
algorithm finds it in 6k log(n) iterations in expectation.

Algorithm 1 describes our procedure for generating pro-
gressive polynomials. Our procedure for computing the ora-
cle result, identifying the rounding intervals, and deducing
the reduced rounding intervals is identical to our prior work
in the RL1BM project [25, 26, 29]. The key difference lies
in the manner in which we generate linear constraints for
progressive polynomials, the manner in which we evaluate
polynomials, and our procedure for generating the polyno-
mial approximation given a set of linear constraints.

3.2 Linear Constraints for Progressive Polynomials

A reduced input x can be present in multiple representations.
The rounding interval for each such reduced input will be
different depending on the representation(i.e., (131, hy'] for
representation T; and [lEz, h;]fz] for representation T,). A
representation with lower bitwidths will have larger round-
ing intervals as the spacing between adjacent points is rela-
tively larger when compared to a representation with larger
bitwidth. We want a single polynomial approximation to
satisfy all these bounds of the rounding intervals. Hence,

11 < P(x) < b
12 < p(x) < b2

I3 < P(x) < ho?

Progressive performance. We want the resulting single
polynomial approximation to have better performance while
producing correctly rounded results for lower bitwidths (i.e.,
progressive performance) when compared to evaluating the
entire polynomial for larger bitwidths. Given the number
of terms for a representation with a particular bitwidth and
the total number of terms for the entire polynomial approxi-
mation, we create constraints such that evaluating the first
few terms produces a value that lies in the rounding interval

557

Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

corresponding to that representation. Consider the scenario
where T} is the representation with the largest bitwidth. We
are trying to find a polynomial approximation with k; terms
for it. We also want to find coefficients such that when we
evaluate inputs belonging to representations T, and Ts with
ko and k3 terms (here k; > k, > k3), they lie within their re-
spective rounding intervals. The system of linear constraints
that we generate for a given input x is as follows,

I < Cr+Cox+ ...+ CpxBt < p

P3(x)
72 < Py(x) +...+ Cpxet < hT2

P2 (x)

I < Py(x) +...+ Cpx ™t < BT

P1(x)

When we generate constraints for representation T, we
use the exact same coefficients for the first k, terms as we
did for representation T;. Similarly, we use the same coef-
ficients for the first ks terms for representation Ts. If we
are able to find such polynomials, the resulting polynomial
approximation not only produces correctly rounded results
for all inputs but also has better performance for representa-
tions with lower bitwidth when compared to evaluating all
terms in the polynomial. Note that this formulation for gen-
erating progressive polynomials creates significantly more
constraints (since there is a constraint for each input and
each representation). Hence, an efficient method to generate
polynomial approximations is crucial.

3.3 A Fast Algorithm for Solving Constraints

To create correctly rounded progressive polynomial approx-
imations, our objective is to generate polynomials of low
degree with a few terms. Our prior work on the RLiBM
project [25, 26, 29] generates piecewise polynomials with
approximately 2!° sub-domains. Such large tables can inter-
fere with caches in memory-intensive applications and may
not be ideal for resource constrained environments such as
micro-controllers.

We make a key observation that our system of linear con-
straints is a linear program of small dimensions [9, 33], which
is widely studied. We use ideas from prior work to our set-
ting where we do not know whether the system of linear
constraints is “full-rank” (i.e., if there are at least k linearly
independent constraints).

Algorithm 1 describes our procedure to find a progressive
polynomial. As we do not know the rank of our system
of linear constraints, we iteratively increase the number
of terms for the entire polynomial and for the individual
representations. The procedure to identify a small set of key
constraints is as follows:

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries

1 Function GenProgPolynomial(f, X, RRy, OCy, K, N):

2 Y0
/* Compute the rounding interval */

3 foreach (x,T) € X do

1 y — RNz (f(x))

5 [I,h] < RoundingInterval(y, T, H)
6 Y « (x, [L,h])

7 end

8 L « ReducedIntervals(Y, RRy, OCy)

/* initialize the weights */

9 foreach x € £ do

10 xw 1

11 x.u <« random(0, 1)

12 end

13 i—0

14 while i < N do

15 S « WeightedRandomSample (L, K)
16 (poly, ny) < SolveSample(S, L, K)
17 ie—i+1

18 if n, < Limit then

19 ‘ return (poly, ny)

20 end
21 end
22 return (0,0)

Algorithm 1: Our procedure to generate progressive polyno-
mials for an elementary function f given a set of inputs X with
their respective representations (T). Range reduction (RRy) and
output compensation (OCyy) are performed in representation
H. Here, K is a vector that provides the number of terms in the
progressive polynomial for each representation. The maximum
number of iterations is specified by N. We represent the oracle
result obtained by rounding the real value of f(x) to represen-
tation T by RNT(f(x)). The function RoundingInterval com-
putes the rounding interval. The function ReducedIntervals
computes the reduced inputs and infers the reduced intervals.
The function WeightedRandomSample identifies the sample
with weighted random sampling. The function SolveSample
solves the sample and updates the weights of the constraints
not satisfied by the solution to the sample, which is described
in Algorithm 2.

e Let M be a multi-set of constraints.

e Step 1: Sample S constraints from M uniformly at ran-
dom where |S| = 6k?, where k is the number of terms
for the largest representation with the progressive
polynomial.

e Step 2: Solve the sample S optimally using an LP solver
to compute x*.

o Step 3: Check how many constraints of M are not
satisfied by x*. If more than 1/3k of the constraints in
M are not satisfied by x*, then discard this sample and
go to Step 1. Otherwise, add all such constraints not
satisfied by x* another time to M (i.e., M will now have
repeated constraints and is a multi-set). We call these

558

PLDI °22, June 13-17, 2022, San Diego, CA, USA

1 Function SolveSample(S, M, K):
2 poly « LPSolver(S)
3 (wo, ws, 1) « (0,0,0)

4 k <« max_element(K)
5 foreach (x, [I,h]) € M do
6 if poly(x,K) € [I, h] then
/* sum the weights of the satisfied
constraints */
7 Ws — W + X.W
8 end
9 else
/* sum the weights of the violated
constraints */
10 Wy — Wy + X.W
11 Ny < ny+1
12 end
13 end
/* Check if it is a lucky iteration */
14 if wy < 3kl—_1ws then
/* Double the weights of violated
constraints *x/
15 foreach (x, [, h]) € M and poly(x,K) ¢ [I, h] do
16 ‘ XW— X.W*2
17 end
18 end
19 return (poly, ny)

Algorithm 2: Given a sample S, the total set of reduced in-
puts and constraints M, and the degrees of the progressive
polynomials, this function SolveSample uses the LP solver to
solve the sample, identifies whether the iteration happens to
be a lucky iteration, and doubles the weights of the violated
constraints on a lucky iteration. This function returns the pro-
gressive polynomial that solves the sample and the number of
constraints violated in L. Here, poly(x, K) evaluates the pro-
gressive polynomial using the number of terms specified in K
for various representations with input x.

iterations lucky (i.e., we are making progress towards
our goal of identifying the crucial k constraints). Then
go back to Step 1.

e Repeat the above until we find a solution x* that sat-
isfies all constraints in M or the number of iterations
exceeds the user-specified threshold.

When we create a sample S with 6k? constraints from the
multi-set M and compute the optimum solution x* for S, then
with probability at least 1/2, x* will only violate 1/3k of the
constraints in M. We provide a proof that this algorithm is
effective in finding the key constraints necessary to solve
the system of linear constraints quickly in Section 3.4.

Removing the multi-set requirement. As we have bil-
lions of constraints in M to start with, maintaining a multi-set
in memory is challenging. Hence, we logically implement
such a multi-set by maintaining weights with each constraint,

PLDI °22, June 13-17, 2022, San Diego, CA, USA

which are incremented instead of duplicating constraints.
We next describe our procedure to find a polynomial with k
terms using the weight-based formulation. Initially, each con-
straint is present only once in the multi-set version. Hence,
we set the weight of each constraint to 1. Subsequently, we
sample constraints with probability proportional to their
weights.

Weighted random sampling. We use weighted random
sampling [13] to produce a sample of size 6k* given a set M
with n weighted constraints.

1. For each constraint s; € M with weight w;, set u; =

random(0, 1) and key; = ug/wi.
2. Select 6k? items that have the largest values of keys

(i.e., key;) as the sample.

Here, u; and u, are uniform random variables in (0,1). If
X = u;/wl and X, = u;/wz, then P(X; < X;) = wle . Hence,
selecting the largest 6k? items is equivalent to sampling
according to their weights.

Identifying the lucky iteration. The next task in avoid-
ing the multi-set representation lies in identifying the lucky
iteration. An invariant with our weight-based representation
is that the sum of the weights of all constraints in M is equal
to the cardinality of the multi-set.

The constraints in M can be divided into two categories:
constraints violated by the sample solution (i.e., VIO, (M))
and constraints that are satisfied by the sample solution (i.e.,
SAT,+(M)). To determine if an iteration is a lucky iteration,
we need the number of violated constraints to be less than
1/3k of the cardinality of the multi-set of constraints. We
compute the sum total of the weights of constraints that are
satisfied by x* and the sum total of weights of constraints
not satisfied by x*.

1
ow < — oW+ u.w

2.

0EVIO (M)

2.

0EVIO (M)

2

UESAT,+ (M)

After rearranging the terms, we have

1
Z 0.w$3k_ Z

0EVIOL- (M) UESAT+ (M)

u.w

Hence, if the sum of the weights of the violated constraints
is less than ﬁ of the sum of the weights of the satisfied
constraints, then it is a lucky iteration. Finally, the task of
adding the violated constraint again to the set M is equiv-
alent to doubling the weights of the violated constraints.
Algorithm 2 presents our procedure for solving the sample,
identifying whether the iteration is a lucky iteration, and
updating the weights of the violated constraints.

This entire process repeats until we find a polynomial that
satisfies all constraints (i.e., when the system is full-rank) or
produces a polynomial that violates at most a few points or

559

Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

exceeds the user-specified threshold for the number of itera-
tions. When the algorithm exceeds the number of iterations
without producing a polynomial, we increment the number
of terms used for the smaller bitwidth representations in the
progressive polynomial. We increase the number of terms
used for the largest representation when we are unable to
find a progressive polynomial after increasing the terms used
for the smaller representations.

When the system of linear equations is full-rank, then the
above procedure will find the unique polynomial. In many
cases, the system of equations may not be full-rank for a
given number of terms in the polynomial. Rather than in-
creasing the number of terms, we also accept a polynomial
that satisfies all constraints except a few constraints (e.g., typ-
ically 1-4 inputs in our experiments). For some elementary
functions, we also split the reduced inputs into two to four
sub-domains and generate polynomials for them to reduce
the number of terms.

3.4 A Sketch of the Proof

The proof that our algorithm finds the solution for a system
of “full-rank” linear constraints and terminates in 6k log n
iterations in expectation immediately follows from the proof
of the Clarkson’s method [9]. We provide a sketch of the
proof for completeness. Here, k is the number of terms in
the largest representation for the progressive polynomial.
The proof specifically relies on the following two lemmas.

Lemma 1. There exist a set of k constraints such that if we
find an optimal solution with respect to them, it will also be a
feasible and optimal solution for the entire set of M constraints.

This lemma holds because the optimum value of a linear
program is always located on a vertex, which corresponds
to k-strict constraints.

Lemma 2. Suppose we have a multi-set M with n constraints.
If we sample 6k? constraints S from M and compute the opti-
mum solution x* on S, then with probability at least 1/2, x*
can only violate 1/3k constraints in M.

Proof that the algorithm solves the system in 6k log n
iterations in expectation. Let us consider the basis B for
the optimal solution in M, which follows from Lemma 1.
Here, B C M. Initially, B has k constraints as the rank of
the system of linear constraints is k (i.e., |B| = k). On every
lucky iteration, we double the constraints violated in B (i.e.
B is also a multi-set). After k lucky iterations, the number
of constraints in B is at least 2k. Similarly, the number of
constraints in B is at least 22 - k after 2k lucky iterations.
Generalizing, the number of constraints in B is at least AR
after k - i lucky iterations. Hence, |B| > 2! - k > 2.

From Lemma 2, an iteration is lucky with probability 1/2,
where the solution x* for the sample only violates 1/3k or
fewer constraints in the multi-set M. Hence, M grows slowly.
After k - i lucky iterations, size of the multi-set M is at most

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries

(1 + 1/3k)*" n. From the Taylor’s series for e*, we have (1 +
x) < e* for all x. Hence, (1 +1/3k) < e!/3k,

. ki .
IM| < (1+1/3k)K n < (e1/3k) n <el’n

The above two properties imply that there cannot be many
lucky iterations without finding a solution x* that satisfies
all constraints. In our setting, multi-set B is a subset of multi-
set M. After k - i lucky iterations, the cardinalities of the
sets B and M should satisfy 2! < nel/*. Whenisi > 3 log n,
the above inequality is no longer true. Since we are explor-
ing k - i lucky iterations, the algorithm will terminate after
3k log n lucky iterations. Finally each iteration is lucky with
probability at least 1/2 from Lemma 2. So, the algorithm
terminates by finding a solution that satisfies all constraints
after 6k log n iterations in expectation.

Proof of Lemma 2. To construct the proof for this lemma,
consider an artificial way of sampling as follows: we first
sample r + 1 constraints S’ from M and then throw one
of them out uniformly at random to get S. Here, r is the
size of the sample S. This way of sampling S" has the same
distribution as the original distribution of S. Let X (S) be the
number of violated constraints when we sample S. For any
constraint A € M, let X (h,S) = 1 if and only if constraint h
is violated by the optimum solution x* computed on S. Then,
the expected value of X(S) is:

ZProb(S) ZX(h S) =

h¢S

E[X(9)]

TZZX(’LS)
r S h¢S

because the choice of S is uniform over all r-subsets of
M. But interestingly, from our artificial way of sampling, we
can also write:

ZZX(h,S) = Z ZX(h,S’ —h)

S h¢S S" heS’

Here, S consists of all r-subsets of M and S’ consists of all
r + 1-subsets of M.

To understand when X (h, S’ —h) = 1, fix a basis of S” (as in
Lemma 1). Then, X (h, S’ —h) = 1 only when h belongs to this
basis. But there are only k choices of vectors in this basis!
So most of the time, the second summand is 0. In particular,
we have:

E[X(5)] < ﬁ ; k

Since the number of choices for S’ is (erfll) so in total, we
have:

%), Ml
E[X(9)] < (Mﬁ)k <k

560

PLDI °22, June 13-17, 2022, San Diego, CA, USA

By Markov inequality, the probability that the value of
X (S) is at least twice its expectation is at most 1/2. Hence,
we have:

1

M
Prob (X(S) > 2ku) <
r+1 2

Recall that we would like X (S) to be at least |M|/3k. To
make ZI;LA;” < lé\il we can pick r = 6k?, which is the size of
the sample, so that the probability of a lucky iteration is at

least 1/2.

4 Experimental Evaluation

We describe the RLIBM-Prog prototype, methodology, and
the results of our experiments to check both the correctness
and performance of our elementary functions.

Prototype. Our prototype, RLIBM-Prog [1], is a pro-
gressive polynomial generator and a collection of correctly
rounded elementary functions. RLIBM-PRoG contains multi-
ple implementations for ten elementary functions. A single
progressive polynomial approximation for each function
produces the correctly rounded result for the 34-bit FP rep-
resentation that has 8-bits for the exponent with the round-
to-odd mode. It produces correctly rounded results for all FP
representations starting from 10-bits to 32-bits with all five
rounding modes in the IEEE standard. It also has progres-
sive performance with bfloat16 and tensorfloat32 types and
produces correctly rounded results for all inputs with them.
Correct and fast polynomial approximations generated by
RLIBM-Procg for In(x), logz(x), and logyo(x) are already part
of LLVM’s math library [30-32].

RLIBM-PRroG uses the MPFR library [14] to compute the
oracle value of f(x) for each representation. It uses an exact
rational LP solver, SoPlex [15], to solve constraints. We use
range reduction and output compensation functions from our
prior work in the RL1BM project [25, 26, 29]. While evaluating
the progressive polynomial, the bfloat16 and tensorfloat32
inputs use only the first few terms of the progressive poly-
nomial. We perform polynomial evaluation, range reduction,
and output compensation using double precision. We use
Horner’s method to evaluate polynomials [3].

Methodology. We compare RLIBM-ProG’s functions with
state-of-the-art libraries: Intel’s double libm, glibc’s double
libm, CR-LIBM [11], and RLiBM-ALL. Intel’s and glibc’s libm
are mainstream libraries that are widely used for their per-
formance but do not provide correctly rounded results for
all inputs with any one rounding mode. CR-LIBM provides
separate implementations for each rounding mode for an
elementary function that produce the correctly rounded re-
sults for double precision. It has implementations for four
out of the five rounding modes in the IEEE standard and
does not have an implementation for the round-to-nearest-
ties-to-away mode. RL1BM-ALL produces correctly rounded

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

Table 1. Details of the polynomials generated by RLIBM-PRroG in comparison to RLiBM-ALL. For each function generated,
we show the size of the piecewise polynomial, the maximum degree, and the number of terms (for bfloat16, tensorfloat32,
and float types) in the polynomial. We also report the number of special case inputs to avoid increasing the degree of the
polynomial approximation with RLIBM-Prog, and the size of the lookup tables for the coefficients of the generated polynomial
approximations in bytes. We report the total reduction in memory for the lookup tables computed with RLIBM-ProG in

comparison to RLIBM-ALL.

RLi1BM-ALL RLIBM-ProcG
#of | Deg- | #of Poly. #of | Max. poly. degree # of terms # O.f Poly. R eduction
f(x) I ¢ mem.) special | mem. | in mem vs.
POTy- | ee | TS 1 yse) || POV [FP32 [TF32 | BF16 | FP32 | TF32 | BF16 | inputs | use (B) | RLIBM-ALL
In(x) 210 3 3 24576 4 5 5 0 5 5 0 13 360 68x
logz(x) | 28 3 3 6144 1 5 3 0 5 3 0 0 40 154x
logio(x) | 28 3 3 6144 4 6 3 0 6 3 0 3 216 28x%
e 28 4 5 10240 4 6 4 3 7 5 4 0 160 64x
2% 28 3 4 8192 1 6 3 2 7 4 3 0 56 146X
10% 27 3 4 16384 4 6 4 3 7 5 4 1 176 93%
sinh(x) | 20,2° | 5,4 | 3,3 2304 L1 | 54323233 22] 22 1,1 80 29x%
cosh(x) [26,22 | 5,4 | 3,3 2304 L1 | 54]32]32]33]22] 22 0,0 48 48x
sinpi(x) | 22,27 | 5,4 | 3,3 192 L1 |54] 32]32]33]22] 22 0,0 48 4x
cospi(x) | 22,22 [5,4 | 3,3 192 L1 |54] 32]32]33]22] 22 0,0 48 4x

results for all n-bit FP representations and all five rounding
modes, where 10 < n < 32.

We conducted our experiments on a 2.10GHz Intel Xeon
Gold 6230R server with 192GB of RAM running Ubuntu 20.04
that has both Intel turbo boost and hyper-threading disabled
to minimize perturbation. We use the publicly available CR-
LIBM and RL1BM-ALL versions. We use Intel’s double libm
from the oneAPI Toolkit and glibc’s double libm from glibc-
2.31. The test harness for comparing glibc’s libm, CR-LIBM,
and RL1BM-ALL is built using the gcc-9.3.0 compiler with
-00 -frounding-math -fsignaling-nans flags. The test
harness for comparing against Intel’s libm is built using the
icc compiler with -00 -fp-model strict -no-ftz flags
because Intel’s libm is only available in the Intel’s compiler.
The performance is measured using the number of cycles
taken to compute the result for each input using rdtscp.
Then, we computed the total time taken to compute the
elementary functions for all inputs.

Properties of RLIBM-PRroG’s polynomials. Table 1 pro-
vides details on the various properties of the polynomial
approximations generated by RLIBM-PROG in comparison
to RLiBM-ALL. With RLIBM-Prog, we tried to generate pro-
gressive polynomials with the lowest degree with at most
four sub-domains and with at most four special case inputs
per sub-domain (i.e., when the system is not full-rank). We
chose these thresholds because they can be implemented ef-
ficiently with simple branches. The range reduction strategy
for sinh(x), cosh(x), sinpi(x), and cospi(x) requires approx-
imations of two functions. We generated two polynomial
approximations for each elementary function.

Significant reduction in memory usage. In contrast to
RL1BM-ALL, RLIBM-PRrOG generates a single polynomial or a

561

piecewise polynomial with at most 4 sub-domains. RLIBM-
ProG’s polynomials require only 123 bytes on average per
function. In contrast, RLIBM-ALL’s polynomials need 7667
bytes (7.5KB) on average per function. RLIBM-PRoG’s polyno-
mials reduce total storage needs by 62X on average compared
to RLiBM-ALL.

RLIBM-ProG was able to generate a single progressive
polynomial that produces correctly rounded results with-
out any special case inputs for log, (x), 2%, cosh(x), sinpi(x),
and cospi(x), which implies that the system is full-rank.
When we experimented with RLiBM-ALL’s polynomial gen-
eration, it was not able to generate a single polynomial for
all functions except log,(x). RLIBM-PROG generates these
progressive polynomials very quickly: only 19 minutes on
average per function. This shows the effectiveness of the
RLIBM-ProG’s fast randomized algorithm for solving the set
of constraints.

Terms needed by bfloat16 and tensorfloat32. When
RLIBM-PRoG generates progressive polynomials, it indicates
the number of terms necessary to evaluate to produce cor-
rectly rounded results for the bfloat16 and the tensorfloat32
types. Table 1 also reports the number of terms that we need
to evaluate in the progressive polynomial to produce the
correctly rounded bfloat16 and the tensorfloat32 results. Sur-
prisingly, a single term (first term) is sufficient to produce
correctly rounded results for all bfloat16 inputs with In(x),
log,(x), and logyo(x). In contrast, RLIBM-ALL’s functions
for In(x), logz(x), and log1o(x) have to evaluate a degree-3
polynomial to produce correctly rounded bfloat16 results.
The number of terms needed for bfloat16 and tensorfloat32
are lower than the terms needed for computing correctly

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries PLDI °22, June 13-17, 2022, San Diego, CA, USA

Table 2. This table reports whether a library produces correctly rounded results for all inputs using RLIBM-Prog, glibc’s double libm,
Intel’s double libm, CR-LIBM, and RL1BM-ALL. Each sub-column also reports the ability to generate correctly rounded results for (1) bfloat16
and tensorfloat32 results with the rn mode, (2) 32-bit float results with the rn mode, and (3) 32-bit float results with all five rounding modes.
Vindicates that the library produces correctly rounded results for the given representation for all inputs. Otherwise, we use X.

[fx)] RLIBM-ProG |[glibcdoublelibm][Inteldoublelibm || CR-LIBM I[RLIBM-ALL]
BF16 & | FP32 | FP32 BF16 & | FP32 | FP32 BF16 & | FP32 | FP32 BF16 & | FP32 | FP32 BF16 & | FP32 | FP32
TF32 rn rn allrm || TF32rn rn allrm || TF32rn rn allrm || TF32rn rn allrm || TF32rn rn all rm
In(x) 7 v 7 v X X v X X v X X v v v
log, (x) v v v 4 v v v v v v v v 4 v v
log1o (x) v v v v X X 4 X X v X X v v v
eX v v v v 4 X 4 v X 4 v v v v v
2% v v v 4 X X v X X N/A N/A | N/A v v v
10* v 4 v 4 v X v 4 X N/A N/A | N/A 4 v v
sinh(x) 7 v 7 v X X v 3 X v X F3 v v v
cosh(x) v v v 4 4 X v v X v v v 4 v v
sinpi(x) % 7 v NA | N/A | N/A v v X v v X v v 7
cospi(x) v v v N/A N/A | N/A v v X v v X v v v
rounded results for the 34-bit float with the round-to-odd Figure 4(c) reports the speedup with RLIBM-ProG when
mode except where tensorfloat32 needs all terms for In(x). compared to CR-LIBM. On average, RLIBM-ProG’s bfloat16,
Does RLIBM-Proc produce correct results? Table 2 tensorfloat32, and float functions are 123%, 105%, and 85%
reports the summary of our evaluation to check whether faster over CR-LIBM functions.
RLIBM-ProG and other existing libraries produce correctly Figure 4(d) shows the speedup of RLIBM-Prog’s functions
rounded results for various representations and rounding over RL1BM-ALL. On average, RLIBM-Prog’s bfloat16, tensor-
modes. All libraries produce correctly rounded results for float32, and float functions have 25%, 16%, and 5% speedup
bfloat16 and tensorfloat32 results using the round-to-nearest- over RLiBM-ALL. While RLIBM-ProG and RL1BM-ALL’s func-
ties-to-even (rn) mode. Glibc’s double libm, Intel’s double tions produce correctly rounded results for all inputs, glibc’s
libm, and CR-LIBM do not produce correctly rounded re- double libm, Intel’s double libm, and CR-LIBM are slower
sults for 32-bit float inputs for several elementary functions and do not produce correctly rounded results for all inputs.
and various rounding modes. Even though CR-LIBM is a RLIBM-ProG generates significantly smaller piecewise
correctly rounded library for double precision, it produces polynomial approximations compared to RLiBM-ALL, which
wrong results when it is re-purposed for 32-bit floats due to results in fewer memory accesses, producing speedups even
double rounding errors. Both RLIBM-ProG and RL1BM-ALL with the float functions. RLIBM-ALL’s [n(x) function has a
produce correctly rounded float results for all inputs and all piecewise polynomial of 2!° sub-domains whereas RLIBM-
standard rounding modes. More importantly, RLIBM-PRroG is ProG’s In(x) function has a piecewise polynomial with 4
able to produce correctly rounded bfloat16 and tensorfloat32 sub-domains. Hence, RLIBM-Prog’s float functions for In(x)
results even when evaluating only the first few terms of the are 11% faster over RLIBM-ALL. Similarly, RLIBM-ProOG’s
generated progressive polynomial approximations. sinh(x) function uses two single polynomials compared to
Performance evaluation of RLIBM-PRrog. Figure 4 re- RL1BM-ALL’s piecewise polynomials with sizes of 2¢ +2° (i.e.,
ports the speedup obtained with RLIBM-PRroG’s functions 96) sub-domains. Hence, RLIBM-PROG’s sinh(x) reports 11%
when compared to various state-of-the-art libraries. Fig- speedup over RLIBM-ALL.
ure 4(a) presents the speedup of RLIBM-ProgG’s bfloat16 Even though the degree of the piecewise polynomials are
functions (left bar in each cluster), tensorfloat32 functions smaller with RLiBM-ALL when compared to RLIBM-Prog
(middle bar in each cluster), and float functions (right bar in for e* and 2%, RLIBM-ProgG’s functions are 1% and 2% faster
each cluster) over glibc’s double libm. On average, RLIBM- because the benefit from storing fewer coefficients subsumes
ProG’s bfloat16, tensorfloat32, and float functions are 42%, the overhead of evaluating a higher degree polynomial.
29%, and 20% faster over glibc’s double library, respectively. Progressive performance. Our performance evaluation
Similarly, Figure 4(b) presents the speedup of RLIBM-PROG’s demonstrates that RLIBM-PROG’s progressive polynomial
functions over Intel’s double library. On average, RLIBM- approximations have better performance for bfloat16 and
ProG’s bfloat16, tensorfloat32, and float functions are 74%, tensorfloat32 types when compared to the float type. RLIBM-
64%, and 49% faster over Intel’s double math library. Intel’s ProG’s bfloat16 functions show the highest speedup followed
double library produces more accurate results compared by tensorfloat32, highlighting the progressive nature. RLIBM-
to glibc’s double library and is slightly slower compared to ProG’s In(x), log,(x), and logjo(x) functions for bfloat16
glibc’s double library. Hence, RLIBM-ProG has more speedup are 60%, 61%, and 50% faster over RL1BM-ALL functions, re-
over Intel’s double library compared to glibc’s double library. spectively. Although RL1BM-ALL produces correctly rounded

562

PLDI °22, June 13-17, 2022, San Diego, CA, USA

(a) Speedup over glibc’s double libm

Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

(b) Speedup over Intel’s double libm

I Bfloatl6 B Tensorfloat32 B Float B Bfloatl6 mm Tensorfloat32 B Float
80% 150% T
125%
0,
E} 60% S 100%
8 40% 1 g 75%
Y 2 50%
[%p] of 4 0
20% 25%
0% - 0% 1 1
W 1002 \0gl0 exP oxp2 ypl0 oSt gt avo- N 10020930 eXP expLyplO inPlcosPicosh sinht avg-
(c) Speedup over CR-LIBM (d) Speedup over RLibm-all
Il Bfloatl6 mm Tensorfloat32 I Float Il Bfloatl6 I Tensorfloat32 B Float
300% 80%
o 250% o 60% 4w
5200% 1M E
8 150% 1 8 40% Q-
2 100% 1N B we e B P 3
o @ 20%1-W1--Bw
50% iR TR R R R s R)
0%

0% -

W 1002 1og)0 exP GinP' cosPt oS Gt guo-

\n \09’2\0910 exp e%p%xplg 5\ﬂp‘cosp\c05“ i ovg-

Figure 4. Computational speedup of RLIBM-PROG’s progressive polynomial approximations in comparison to (a) glibc’s double libm, (b)
Intel’s double libm, (c) CR-LIBM, and (d) RLiBM-ALL. The left-most bar, middle bar, and the right-most bar in each cluster measures the
speedup of RLIBM-PRroG’s bfloat16, tensorfloat32, and float elementary functions implemented as a progressive polynomial approximation.

results for all bfloat16 inputs, it requires evaluating the entire
polynomial that results in some performance loss. In sum-
mary, RLIBM-Prog produces a single progressive polynomial
approximation that produces correctly rounded results for
all inputs with multiple representations and multiple round-
ing modes. Its float functions are faster than state-of-the-art
math libraries. Furthermore, smaller representations are sig-
nificantly faster demonstrating progressive performance.

5 Related Work

Approximating and validating elementary functions is a well-
studied problem [4, 5, 11, 14, 17-21, 34, 37, 38, 44, 45], which
has been feasible because of advances in range reduction [2,
10, 39, 41-43]. A number of correctly rounded math libraries
have also been developed [11, 25, 26, 45]. A detailed survey
is available in Muller’s seminal book [34]. We restrict our
discussion to the most closely related work.

CR-LIBM [11, 22] is a correctly rounded double library
that provides implementations for a subset of the rounding
modes. CR-LIBM relies on Sollya [7] to generate near mini-
max polynomial approximations. CR-LIBM computes and
proves the error bound on the polynomial evaluation using
interval arithmetic [6, 8]. Double rounding errors can cause
wrong results when the CR-LIBM’s result is rounded to a
32-bit float.

This paper is closely related to our prior work in the RLiBM
project [23, 25, 26, 29]. Like the prior work in the RLiBm
project, we also approximate the correctly rounded result us-
ing an LP formulation. We also use RL1BM’s range reduction
strategies. We use the idea of creating a single polynomial
approximation that produces correctly rounded results for

563

multiple representations and rounding modes from RLiBMm-
AL [29]. We advance ideas from the RLiBM project by gener-
ating faster polynomial approximations with a novel method
for solving linear constraints that provide progressive per-
formance with smaller bitwidth representations.

6 Conclusion

This paper proposes a novel type of polynomial approxima-
tions, termed progressive polynomials, that produce correctly
rounded results for multiple representations and rounding
modes. An elegant property of the progressive polynomial
is that evaluating the first few terms produces correctly
rounded results for smaller representations. To generate such
progressive polynomials, we propose a fast algorithm for
polynomial generation that generates an order of magni-
tude smaller lookup tables than the state-of-the-art method.
RLIBM-PRrOG’s polynomials are faster than all mainstream
and/or correctly rounded libraries. We have already incor-
porated a few polynomial approximations from this project
in mainstream libraries. We believe this is the next logical
step in mandating correctly rounded elementary functions
at least for representations up to 32-bits.

Acknowledgments

We thank Sepehr Assadi for his assistance with the proof
of Clarkson’s algorithm. We thank our shepherd Fan Long
and the PLDI reviewers for their feedback on the paper. This
material is based upon work supported in part by the Na-
tional Science Foundation under Grant No. 1908798, Grant
No. 2110861, and Grant No. 1917897.

Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries

References
[1] Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte. 2022. RLibm-

[2

[10

[11

[12

[13

(14

[15

[16

]

—

—

[t

-

—

—

]

—

]

]

—

Prog. https://github.com/rutgers-apl/rlibm-prog

Sylvie Boldo, Marc Daumas, and Ren-Cang Li. 2009. Formally Verified
Argument Reduction with a Fused Multiply-Add. In IEEE Transactions
on Computers, Vol. 58. 1139-1145. https://doi.org/10.1109/TC.2008.216
Peter Borwein and Tamas Erdelyi. 1995. Polynomials and Polynomial
Inequalities. Springer New York. https://doi.org/10.1007/978-1-4612-
0793-1

Nicolas Brunie, Florent de Dinechin, Olga Kupriianova, and Christoph
Lauter. 2015. Code Generators for Mathematical Functions. In 2015
IEEE 22nd Symposium on Computer Arithmetic. 66-73. https://doi.org/
10.1109/ARITH.2015.22

Hung Tien Bui and Sofiene Tahar. 1999. Design and synthesis of an
IEEE-754 exponential function. In Engineering Solutions for the Next
Millennium. 1999 IEEE Canadian Conference on Electrical and Computer
Engineering, Vol. 1. 450-455 vol.1. https://doi.org/10.1109/CCECE.
1999.807240

Sylvain Chevillard, John Harrison, Mioara Joldes, and Christoph
Lauter. 2011. Efficient and accurate computation of upper bounds
of approximation errors. In Theoretical Computer Science, Vol. 412.
https://doi.org/10.1016/j.tcs.2010.11.052

Sylvain Chevillard, Mioara Joldes, and Christoph Lauter. 2010. Sollya:
An Environment for the Development of Numerical Codes. In Math-
ematical Software - ICMS 2010 (Lecture Notes in Computer Science),
Vol. 6327. Springer, Heidelberg, Germany, 28-31. https://doi.org/10.
1007/978-3-642-15582-6_5

Sylvain Chevillard and Christopher Lauter. 2007. A Certified Infinite
Norm for the Implementation of Elementary Functions. In Seventh
International Conference on Quality Software (QSIC 2007). 153-160.
https://doi.org/10.1109/QSIC.2007.4385491

Kenneth L. Clarkson. 1995. Las Vegas Algorithms for Linear and
Integer Programming When the Dimension is Small. J. ACM 42, 2
(March 1995), 488-499. https://doi.org/10.1145/201019.201036
William J Cody and William M Waite. 1980. Software manual for
the elementary functions. Prentice-Hall, Englewood Cliffs, NJ. https:
//doi.org/10.1137/1024023

Catherine Daramy, David Defour, Florent Dinechin, and Jean-Michel
Muller. 2003. CR-LIBM: A correctly rounded elementary function
library. In Proceedings of SPIE Vol. 5205: Advanced Signal Processing
Algorithms, Architectures, and Implementations XIII, Vol. 5205. https:
//doi.org/10.1117/12.505591

Catherine Daramy-Loirat, David Defour, Florent de Dinechin,
Matthieu Gallet, Nicolas Gast, Christoph Lauter, and Jean-Michel
Muller. 2006. CR-LIBM A library of correctly rounded elemen-
tary functions in double-precision. Research Report. Laboratoire
de I'Informatique du Parallélisme. https://hal-ens-lyon.archives-
ouvertes.fr/ensl-01529804

Pavlos S. Efraimidis and Paul G. Spirakis. 2006. Weighted random
sampling with a reservoir. Inform. Process. Lett. 97, 5 (2006), 181-185.
https://doi.org/10.1016/j.ipl.2005.11.003

Laurent Fousse, Guillaume Hanrot, Vincent Lefévre, Patrick Pélissier,
and Paul Zimmermann. 2007. MPFR: A Multiple-precision Binary
Floating-point Library with Correct Rounding. ACM Trans. Math.
Software 33, 2, Article 13 (June 2007). https://doi.org/10.1145/1236463.
1236468

Ambros M. Gleixner, Daniel E. Steffy, and Kati Wolter. 2012. Improving
the Accuracy of Linear Programming Solvers with Iterative Refinement.
In Proceedings of the 37th International Symposium on Symbolic and
Algebraic Computation (Grenoble, France) (ISSAC ’12). Association for
Computing Machinery, New York, NY, USA, 187-194. https://doi.org/
10.1145/2442829.2442858

David Goldberg. 1991. What Every Computer Scientist Should Know
About Floating-point Arithmetic. In ACM Computing Surveys, Vol. 23.

564

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

PLDI °22, June 13-17, 2022, San Diego, CA, USA

ACM, New York, NY, USA, 5-48.
103163

John Harrison. 1997. Floating point verification in HOL light: The ex-
ponential function. In Algebraic Methodology and Software Technology,
Michael Johnson (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
246-260. https://doi.org/10.1007/BFb0000475

John Harrison. 1997. Verifying the Accuracy of Polynomial Approx-
imations in HOL. In International Conference on Theorem Proving in
Higher Order Logics. https://doi.org/10.1007/BFb0028391

John Harrison. 2009. HOL Light: An Overview. In Proceedings of
the 22nd International Conference on Theorem Proving in Higher Or-
der Logics, TPHOLs 2009 (Lecture Notes in Computer Science), Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel
(Eds.), Vol. 5674. Springer-Verlag, Munich, Germany, 60-66. https:
//doi.org/10.1007/978-3-642-03359-9_4

Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, and
Guillaume Revy. 2011. Computing Floating-Point Square Roots via
Bivariate Polynomial Evaluation. IEEE Trans. Comput. 60. https:
//doi.org/10.1109/TC.2010.152

Olga Kupriianova and Christoph Lauter. 2014. Metalibm: A Mathemat-
ical Functions Code Generator. In 4th International Congress on Mathe-
matical Software. https://doi.org/10.1007/978-3-662-44199-2_106
Vincent Lefévre, Jean-Michel Muller, and Arnaud Tisserand. 1998.
Toward correctly rounded transcendentals. IEEE Trans. Comput. 47, 11
(1998), 1235-1243. https://doi.org/10.1109/12.736435

Jay Lim. 2021. Novel Polynomial Approximation Methods for Generating
Correctly Rounded Elementary Functions. Ph.D. Dissertation. Rutgers
University.

Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-
garakatte. 2020. A Novel Approach to Generate Correctly
Rounded Math Libraries for New Floating Point Representations.
arXiv:2007.05344 Rutgers Department of Computer Science Technical
Report DCS-TR-753.

Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-
garakatte. 2021. An Approach to Generate Correctly Rounded Math
Libraries for New Floating Point Variants. Proceedings of the ACM
on Programming Languages 6, POPL, Article 29 (Jan. 2021), 30 pages.
https://doi.org/10.1145/3434310

Jay P. Lim and Santosh Nagarakatte. 2021. High Performance Correctly
Rounded Math Libraries for 32-bit Floating Point Representations. In
42nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’21). https://doi.org/10.1145/3453483.3454049
Jay P Lim and Santosh Nagarakatte. 2021. RLIBM-32: High Perfor-
mance Correctly Rounded Math Libraries for 32-bit Floating Point
Representations. arXiv:2104.04043 Rutgers Department of Computer
Science Technical Report DCS-TR-754.

Jay P. Lim and Santosh Nagarakatte. 2021. RLIBM-ALL: A
Novel Polynomial Approximation Method to Produce Correctly
Rounded Results for Multiple Representations and Rounding Modes.
arXiv:2108.06756 [abs] Rutgers Department of Computer Science
Technical Report DCS-TR-757.

Jay P. Lim and Santosh Nagarakatte. 2022. One Polynomial Approxima-
tion to Produce Correctly Rounded Results of an Elementary Function
for Multiple Representations and Rounding Modes. Proceedings of
the ACM on Programming Languages 6, POPL, Article 3 (Jan. 2022),
28 pages. https://doi.org/10.1145/3498664

Tue Ly. 2021. Implement correctly rounded logf based on
RLIBM library. https://github.com/llvm/llvm-project/commit/
d08a801b5f5678af52c89d202e5f22e0d43a38cd

Tue Ly. 2022. Implement correctly rounded log10f based on
RLIBM library. https://github.com/llvm/llvm-project/commit/
e581841e8cf46109acea92elacb661c404fa62b9

Tue Ly. 2022. Implement correctly rounded log2f based on
RLIBM library. https://github.com/llvm/llvm-project/commit/
63d2df003e9c198bfa70d448f8ad7b361cbb1351

https://doi.org/10.1145/103162.

https://github.com/rutgers-apl/rlibm-prog
https://doi.org/10.1109/TC.2008.216
https://doi.org/10.1007/978-1-4612-0793-1
https://doi.org/10.1007/978-1-4612-0793-1
https://doi.org/10.1109/ARITH.2015.22
https://doi.org/10.1109/ARITH.2015.22
https://doi.org/10.1109/CCECE.1999.807240
https://doi.org/10.1109/CCECE.1999.807240
https://doi.org/10.1016/j.tcs.2010.11.052
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1109/QSIC.2007.4385491
https://doi.org/10.1145/201019.201036
https://doi.org/10.1137/1024023
https://doi.org/10.1137/1024023
https://doi.org/10.1117/12.505591
https://doi.org/10.1117/12.505591
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://doi.org/10.1016/j.ipl.2005.11.003
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/2442829.2442858
https://doi.org/10.1145/2442829.2442858
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1007/BFb0000475
https://doi.org/10.1007/BFb0028391
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1109/TC.2010.152
https://doi.org/10.1109/TC.2010.152
https://doi.org/10.1007/978-3-662-44199-2_106
https://doi.org/10.1109/12.736435
https://arxiv.org/abs/2007.05344
https://doi.org/10.1145/3434310
https://doi.org/10.1145/3453483.3454049
https://arxiv.org/abs/2104.04043
https://arxiv.org/abs/2108.06756
https://doi.org/10.1145/3498664
https://github.com/llvm/llvm-project/commit/d08a801b5f5678af52c89d202e5f22e0d43a38cd
https://github.com/llvm/llvm-project/commit/d08a801b5f5678af52c89d202e5f22e0d43a38cd
https://github.com/llvm/llvm-project/commit/e581841e8cf46109acea92e1acb661c404fa62b9
https://github.com/llvm/llvm-project/commit/e581841e8cf46109acea92e1acb661c404fa62b9
https://github.com/llvm/llvm-project/commit/63d2df003e9c198bfa70d448f8ad7b361cbb1351
https://github.com/llvm/llvm-project/commit/63d2df003e9c198bfa70d448f8ad7b361cbb1351

PLDI °22, June 13-17, 2022, San Diego, CA, USA

[33]

Nimrod Megiddo. 1984. Linear Programming in Linear Time When
the Dimension Is Fixed. J. ACM 31, 1 (Jan. 1984), 114-127. https:
//doi.org/10.1145/2422.322418

[34] Jean-Michel Muller. 2005. Elementary Functions: Algorithms and Im-

[35]

[36]

[37]

plementation. Birkhauser. https://doi.org/10.1007/978-1-4899-7983-4
Santosh Nagarakatte, Mridul Aanjaneya, and Jay P. Lim. 2022. The
RLIBM Project. https://www.cs.rutgers.edu/~santosh.nagarakatte/
rlibm/

NVIDIA. 2020. TensorFloat-32 in the A100 GPU Accelerates Al Training,
HPC up to 20x. https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-
32-precision-format/

Eugene Remes. 1934. Sur un procédé convergent d’approximations
successives pour déterminer les polyndomes d’approximation. Comptes
rendus de ’Académie des Sciences 198 (1934), 2063-2065.

[38] Jun Sawada. 2002. Formal verification of divide and square root algo-

[39]

[40]

rithms using series calculation. In 3rd International Workshop on the
ACL2 Theorem Prover and its Applications.

Shane Story and Ping Tak Peter Tang. 1999. New algorithms for
improved transcendental functions on IA-64. In Proceedings 14th IEEE
Symposium on Computer Arithmetic. 4-11. https://doi.org/10.1109/
ARITH.1999.762822

Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu,
and Luca Benin. 2018. A transprecision floating-point platform for

565

[41]

[42]

[43]

[44]

[45]

Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte

ultra-low power computing. In 2018 Design, Automation Test in Europe
Conference Exhibition (DATE). 1051-1056. https://doi.org/10.23919/
DATE.2018.8342167

Ping-Tak Peter Tang. 1989. Table-Driven Implementation of the Ex-
ponential Function in IEEE Floating-Point Arithmetic. ACM Trans.
Math. Software 15, 2 (June 1989), 144-157. https://doi.org/10.1145/
63522.214389

Ping-Tak Peter Tang. 1990. Table-Driven Implementation of the Loga-
rithm Function in IEEE Floating-Point Arithmetic. ACM Trans. Math.
Software 16, 4 (Dec. 1990), 378-400. https://doi.org/10.1145/98267.
98294

P. T. P. Tang. 1991. Table-lookup algorithms for elementary functions
and their error analysis. In [1991] Proceedings 10th IEEE Symposium on
Computer Arithmetic. 232-236. https://doi.org/10.1109/ARITH.1991.
145565

Lloyd N. Trefethen. 2012. Approximation Theory and Approximation
Practice (Other Titles in Applied Mathematics). Society for Industrial
and Applied Mathematics, USA.

Abraham Ziv. 1991. Fast Evaluation of Elementary Mathematical
Functions with Correctly Rounded Last Bit. ACM Trans. Math. Software
17, 3 (Sept. 1991), 410-423. https://doi.org/10.1145/114697.116813

https://doi.org/10.1145/2422.322418
https://doi.org/10.1145/2422.322418
https://doi.org/10.1007/978-1-4899-7983-4
https://www.cs.rutgers.edu/~santosh.nagarakatte/rlibm/
https://www.cs.rutgers.edu/~santosh.nagarakatte/rlibm/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://doi.org/10.1109/ARITH.1999.762822
https://doi.org/10.1109/ARITH.1999.762822
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.1145/63522.214389
https://doi.org/10.1145/63522.214389
https://doi.org/10.1145/98267.98294
https://doi.org/10.1145/98267.98294
https://doi.org/10.1109/ARITH.1991.145565
https://doi.org/10.1109/ARITH.1991.145565
https://doi.org/10.1145/114697.116813

	Abstract
	1 Introduction
	2 Background
	2.1 The Floating-Point Representation
	2.2 Approximating Elementary Functions
	2.3 The RLibm Approach

	3 Progressive Polynomial Approximations
	3.1 Overview of Our Method
	3.2 Linear Constraints for Progressive Polynomials
	3.3 A Fast Algorithm for Solving Constraints
	3.4 A Sketch of the Proof

	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

