
Kinodynamic Motion Planning for Multi-Legged Robot Jumping via
Mixed-Integer Convex Program

Yanran Ding1, Chuanzheng Li1, and Hae-Won Park2

Abstract— This paper proposes a kinodynamic motion plan-
ning framework for multi-legged robot jumping based on the
mixed-integer convex program (MICP), which simultaneously
reasons about centroidal motion, contact points, wrench, and
gait sequences. This method uniquely combines configuration
space discretization and the construction of feasible wrench
polytope (FWP) to encode kinematic constraints, actuator limit,
friction cone constraint, and gait sequencing into a single MICP.
The MICP could be efficiently solved to the global optimum
by off-the-shelf numerical solvers and provide highly dynamic
jumping motions without requiring initial guesses. Simulation
and experimental results demonstrate that the proposed method
could find novel and dexterous maneuvers that are directly
deployable on the two-legged robot platform to traverse through
challenging terrains.

I. INTRODUCTION

The ability to perform dynamic motions such as leaping
over gaps and jumping on high platforms is a unique
advantage of legged systems. Coordinating multiple limbs
to execute dynamic motions is a challenging problem since
it involves both continuous and discrete variables. This
problem requires decision making in a semi-continuous
search space, which involves continuous variables describing
robot state, contact positions, and contact wrenches; It also
involves discrete variables such as the gait sequence.

Many methods have been developed to solve this problem.
For example, the trajectory optimization (TO) approach
locally improves upon an initial motion plan by solving a
general nonlinear optimization problem using a gradient-
based nonlinear solver. There has been tremendous progress
in using TO to solve locomotion problems. MIT Cheetah
2 robot could jump over obstacles by solving nonlinear
constrained optimization online [1]. Optimized jumping tra-
jectories are generated offline [2] and implemented on MIT
Cheetah 3 [3]. Linear complementary problems (LCP) are
formulated in [4] to generate trajectories without a priori
contact scheduling. Dynamic movements without scheduled
contact are also generated in [5] using a hierarchical frame-
work. The combined planning problem is solved in [6] by
incorporating all constraints into the objective function, and
solve unconstrained nonlinear programming (NLP). Legged
locomotions with gait sequences are generated on non-flat

This project is supported in part by NAVER LABS Corp. under grant
087387, Air Force Office of Scientific Research under grant FA2386-17-1-
4665, and National Science Foundation under grant 1752262.

Yanran Ding and Chuanzheng Li are with the 1 Department of Mechan-
ical Science and Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL, 61820 USA. (email:{yding35,cli67}@illinois.edu)

Hae-Won Park is with the 2 Department of Mechanical Engineering,
Korea Advanced Institute of Science and Technology, Daejeon-34141, South
Korea. (email:haewonpark@kaist.ac.kr)

Amp

IMUTorso

Boom

Fig. 1. The two-legged planar robot executing a dynamic jump to mount
an obstacle 80% of its height.

terrain in [7] in a single TO formulation using a phase-
based parameterization method. These methods either rely
on explicit contact schedules or require solving a large NLP.
The size and non-convexity of these problems imply that
the nonlinear solver is only effective searching for a local
minima around the initial guess. Hence, proper initialization
of the optimization is crucial in finding a feasible solution.
Besides, the infeasible status returned by a local NLP solver
is not informative since one is not sure whether the planning
problem itself is infeasible or it is not initialized properly.

Mixed-integer convex optimization does not rely on the
initial seed and warrants global solution [8]. With the recent
advancement in numerical solvers, a medium-sized mixed-
integer convex programming (MICP) can be solved effi-
ciently by off-the-shelf solvers such as gurobi [9], Mosek
[10] and CPLEX [11]. Due to its feature that warrants a
global solution with either global optimality or infeasibility
certificate, MICP has found many applications in robotics.
For example, it has been used in global inverse kinematics
[12], grasping [13], footstep planning [14], quadruped lo-
comotion planning [15], and aggressive legged locomotion
[16], [17].

This paper presents a novel MICP-based kinodynamic
motion planning framework for aggressive jumping motions
while considering joint torque constraints. This method
simultaneously plans centroidal motion, contact location,
contact wrench, and gait sequence for a planner two-legged
robot. To address the non-convex torque constraints due to
the trigonometric terms in the Jacobian matrix, we adopt the
notion of feasible wrench polytope (FWP) [18]. The joint
torque constraint is approximated as a polytope containment
problem over disjoint convex sets from the discretization of
the configuration space (C-space). Similarly, bilinear terms
are approximated using the McCormick Envelope [19] relax-

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6212-6/20/$31.00 ©2020 IEEE 3998

20
20

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

97
8-

1-
72

81
-6

21
2-

6/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IR

O
S4

57
43

.2
02

0.
93

41
57

2

Authorized licensed use limited to: University of Illinois. Downloaded on June 05,2022 at 21:19:10 UTC from IEEE Xplore. Restrictions apply.

ation, hence resulting in a mixed-integer convex formulation.
Our method reduces the number of decision variables by
setting up a preferred ordering on the robot stance modes.
As a result, any robot-state-trajectory in the C-space implies
a unique gait sequence. The proposed method is evaluated on
a hardware platform, as shown in Fig. 1. The trajectory that
guides the robot to jump on a platform is obtained without
providing initial guesses to the MICP, which is not possible
for local optimization based trajectory optimization methods.

The paper is organized as follows: Section II introduces
the single rigid body dynamics model, mixed-integer wrench
constraint, and other constraints including aerial phase con-
tinuity and contact location choice. Section III presents the
simulation and experiment results of the highly dynamic
motion planning. Section IV discusses the results from this
work and Section V provides the concluding remarks.

II. TECHNICAL APPROACH

In this section, we briefly introduce the robot dynamic
model before the construction of configuration space dis-
cretization and feasible wrench polytopes that are used in
our formulation. And we also formalize our mixed-integer
formulation with assumptions and constraints for aerial phase
and foothold position choice.

A. Dynamic Model

A simple model captures the major dynamical effect and
reduce the number of optimization variables. As shown in
Fig. 1, the robot legs are made of light-weight material such
as 3D printed parts and carbon fiber tubes, which results in
the leg mass being less than 10% of the total mass. Hence,
we make the following assumption to simplify the dynamic
model.

Assumption 1 (Light Legs): The leg mass is negligible.
Based on assumption 1, we employ the Centroidal Dynam-

ics (CD) model [20], specifically, the 2D single rigid body
model which only considers the torso dynamics. As shown
in Fig. 2, the configuration of the robot could be represented
by the Special Euclidean Group SE(2) parameterized by
q = [x, z, θ]T , where [x, z]T is the location of the center
of mass (CoM) and θ is the pitch angle. The input to the
system is the spatial wrench Fs, and the dynamic model of
the robot is

q̈ =

ẍz̈
θ̈

 = D−1Fs + ag, (1)

where D = diag(m,m, Iθ) is the inertia tensor; diag(·)
creates diagonal matrices; m is the total mass and Iθ is
the moment of inertia around the CoM along the z-axis;
ag = [0,−g, 0]T is the gravitational acceleration vector.
Assuming there are Nc contact points, each with a ground
reaction force (GRF) fi ∈ R2, the spatial wrench is given
by Fs

Fs =

Nc∑
i

[
fi
τyi

]
, (2)

TABLE I
PHYSICAL PARAMETER OF THE PLANAR ROBOT

Parameter Unit Value
m [kg] 2.56
Iθ [kg·m2] 0.04
L [m] 0.3

lthigh [m] 0.14
lshank [m] 0.14
τmax [Nm] 9.8

{𝑆}
{𝐵}

𝜃

𝑥
𝑧

𝒒 =
𝑥
𝑧
𝜃

𝒇𝑏
𝒇𝑓

𝑦
ෝ𝒏

Mixed-integer Dynamic
Motion Planner

Sagittal Plane Controller

Spatial Wrench

GRF

C-space
FWP

Terrain

Fig. 2. Overview of the kinodynamic motion planning framework, which
computes the motion and contact in a single MICP. The coordinate definition
for {S} (world frame) and {B} (local frame) could be found on the left
panel.

where τyi is the moment generated by fi, τ
y
i = ri∧fi; ri is

the vector from CoM to the ith contact point; ∧ : R2×R2 →
R is the wedge product for two 2-dimensional vectors. The
positive direction of the y-axis is pointing into the paper.

Fig. 2 shows a schematics of the robot with frame defini-
tions. The origin of the body-fixed frame {B} is located
at the middle point of the foot contact points. The axes
of {B} are aligned with that of the world frame {S}.
The configuration of the robot is represented using two
variables. The local configuration q is expressed in frame
{B}; the global variable is defined in frame {S}, named
the touchdown state qTD = [xTD, zTD, θTD]T ∈ R3,
where [xTD, zTD]T is the origin of frame {B} and θTD is
equal to the slope of the current terrain. This dichotomy of
global and local states is convenient for imposing constraints
of stance phase on the local state and choosing contact
location using the global state. It could be observed from
(1) that the translational and rotational dynamics are linear
in terms of the spatial wrench Fs. Let the spatial wrench
trajectory be parametrized by the Bézier polynomial with
coefficient αF = [αfx ,αfz ,ατy]T , then the trajectories
q̇(t), q(t) are also parametrized by Bézier polynomials with
coefficients αq̇ and αq , respectively. Given initial conditions
q̇0, q0, coefficients αq̇ and αq could be obtained by linear
operations.

αq̇ = L(αF , q̇0), αq = L(αq̇, q0) (3)

where the linear operation L(·) is defined in Appendix I.
Although the dynamics in (1) are linear in terms of the spa-

tial wrench, the coupling between forces fi and the moment
created by the force τyi imposes bilinear constraints on the
feasible wrench. Section II-C presents how these constraints
are represented using the feasible wrench polytope (FWP).

3999

Authorized licensed use limited to: University of Illinois. Downloaded on June 05,2022 at 21:19:10 UTC from IEEE Xplore. Restrictions apply.

The state and control trajectories during stance are polyno-
mials parametrized by the Bézier coefficients αF . The state
trajectory during aerial phase could be parametrized by the
second-order polynomial. To make the kinodynamic motion
planning problem finite dimensional, the continuous time
trajectory Fs(t), q̇(t), q(t) are sampled at a time sequence
{tk|k = 1, 2, · · · , Nt}, where Nt is the number of nodes
during stance phase.

B. C-space Discretization

The configuration space (C-space) Ω ⊂ R3 of the robot
is the set of configurations that the robot could reach during
stance phase without violating kinematic constraints. The set
of constraints that define the C-space is

Ω := {q ∈ R3|0 ≤ n̂T · (phi − pci) (4a)

0 ≤ n̂T · (pki − pci) (4b)

rmin ≤ |phi − pci |2 ≤ rmax (4c)
qmin ≤ q ≤ qmax}, (4d)

where n̂ is the normal vector of the terrain; ph,pk are the
hip and knee joint positions of the leg i ∈ {back, front}
and pc is the foot contact position. (4a) and (4b) prohibit
the hip and knee from penetrating the terrain surface; (4c)
sets boundaries rmin, rmax on the leg extension, using two-
norm | · |2; (4d) is the box constraint on q. The C-space is
calculated based on the following assumption.

Assumption 2 (Constant Stance Width): The distance be-
tween two contact feet is equal to the body length L.

This assumption removes the dependency on the stance
width, simplifying the C-space construction. Since all quan-
tities in (4) could be retrieved through kinematic calculation
given the robot configuration q, the C-space could be clearly
defined once the robot parameters are given. Fig. 3 shows
the C-space of the robot with parameters in Table I.

During the stance phase, the robot could be in one of three
stance modes, namely, front, double and back stance. When
the robot could take double stance, it could also take either
front or back stance by lifting one of its legs, complicating
the contact scenario. To simplify the choice of stance mode,
the following assumption is made.

Assumption 3 (Preference on Double Stance): The robot
prefers double stance to single stance, and would be in
double stance whenever possible.

Based on the observation that double stance provides more
control authority compared with single stance, assumption
3 establishes a one-to-one mapping between robot config-
uration q and stance mode. As shown in Fig. 3, the C-
space is divided into three disjoint regions corresponding to
front stance Ωfs (blue), double stance Ωds (black), and back
stance Ωbs (red), or equivalently,

Ω := Ωbs ∪Ωfs ∪Ωds. (5)

An illustration corresponding to each stance mode is visu-
alized on the right panel of Fig. 3. Due to the one-to-one
mapping between robot configuration q and stance mode,
the gait sequence planning is encoded into the C-space

𝒙𝒛

𝜽

(𝑏)

(𝑎)

(𝑐)

𝛀𝑏𝑠

𝛀𝑓𝑠

𝛀𝑑𝑠

Fig. 3. (left) The 3-dimensional (3D) configuration space of the robot;
(right) The illustration of robot configuration in each stance mode (a) back
stance (b) double stance (c) front stance.

construction. Hence, a state trajectory q(t) in Ω also contains
the gait sequence information.

As shown in Fig. 3, the C-space is a non-convex set.
To tackle this problem, the C-space Ω is discretized into
Nd ∈ Z+ convex polytopic cells, denoted by ci ⊂ Ω, i ∈
{1, · · · , Nd}, where Nd is the total number of cells. The
union of the cells is contained within the C-space, namely,
∪Nd
i=1ci ⊂ Ω. For simplicity, tetrahedrons are used to

discretize the C-space, whose distribution is designed such
that each cell resides within the same stance region. The
geometry of each cell is encoded by linear inequalities

Ageo
i · q ≤ bgeoi , i = 1, · · · , Nd, (6)

where the matrices Ageo
i and bgeoi delineate the cell ci using

the half-plane representation (H-Rep).

C. Feasible Wrench Polytope

This section presents a formulation of the feasible wrench
polytope (FWP) that is pertinent to the robot system studied
in this work. For a more comprehensive derivation of the
FWP , please refer to [18].

1) FWP of One Leg: First we define the feasible force
polytope (FFP) for one leg as

FFP := {f ∈ R2 | |JTf |∞ ≤ τmax (7a)

|f − n̂Tf |∞ ≤ µn̂Tf}, (7b)

where J is the Jacobian matrix; τmax is the joint torque limit;
µ is the coefficient of friction. Based on the assumption 1, the
GRF is mapped to joint torque via τ = JTf . Furthermore,
assumption 2 implies that given the robot configuration q,
joint angles could be calculated through inverse kinemat-
ics. The inequality (7a) encodes the joint torque constraint
|τ |∞ < τmax, where |·|∞ is the infinity norm. The inequality
(7b) represents the friction cone constraint.

The FWP of one leg is the set of spatial wrenches that
could be provided by the FFP

FWPi := {F i ∈ R3 | F i =

[
fki

ri ∧ fki

]
,fki ∈ FFPi},

(8)

4000

Authorized licensed use limited to: University of Illinois. Downloaded on June 05,2022 at 21:19:10 UTC from IEEE Xplore. Restrictions apply.

-0.4 -0.2 0 0.2 0.4

x [m]

-0.1

0

0.1

0.2

0.3
z

[m
]

-0.02
0.3

-0.01

0.20.2

fx [N]fz [N]

= y
[N

m
]

0.1 0

0

0 -0.2

0.01

-0.1 -0.4

-60

-40

-20

0

20

40

60

200

= y
[N

m
]

FWP

0

fz [N]

0
-200 200

400

fx [N]

(a)

(b)

(c)

Fig. 4. The FWP of the two-legged robot. (a) The FFP of front (blue)
and back (red) legs. (b) The FWP of both legs plotted in the 3D wrench
space. (c) The FWP of the robot is the Minkowski sum of the FWP of
both legs.

where fki is the kth vertex of FFP for contact point i. Note
that the FWP is defined using the vertex-representation of a
polytope (V-Rep). Fig. 4(b) shows an example of FWP s of
front leg (blue) and back leg (red), which are 2-D polytopes
embedded in the 3-D wrench space.

2) FWP of Two Legs: The FWP when the two-legged
robot is in double stance is defined as the Minkowsi sum
[21] of the FWP created by both contact legs,

FWPq =
2⊕
i=1

FWPi, (9)

where FWPq indicates the FWP of the robot at config-
uration q. The Minkowski sum of two sets X and Y is
X ⊕ Y := {x + y|x ∈ X, y ∈ Y }. Fig. 4(c) shows an
example of FWPq as the Minkowski sum of the FWP of
both legs. Assumption 3 implies that when q ∈ Ωds, the
corresponding FWPq is defined as in (9).

For a cell ci in the C-space discretization, its representative
FWP is defined as

FWPci =

{
∩4k=1FWP kci , double stance
FWP cbsvci , single stance,

(10)

where FWP kci is the FWP of the kth node of the cell
ci. FWP cbsvci is the FWP at the Chebyshev center [8],
which is the center of the largest Euclidean ball that lies in
a polytope. The choice of FWP for double stance in (10) is
a conservative approximation, since the wrench in FWPci
could be achieved at all 4 vertices in the tetrahedron of the
cell ci. This formulation provides robustness when the robot
is in the double stance since it is an inner approximation.
In comparison, for a cell in the single stance, the FWP at
each vertex degenerates to a 2-D polytope due to the coupling
between forces and moment. Since each node corresponds to
a different ri, the FWP s have no intersection except at the

origin. Therefore, the FWP for cells in the single stance is
defined at the Chebyshev center of the cell.

The FWPci could be represented using the half-plane rep-
resentation (H-Rep) consisting of a set of linear constraints

Afwp
i ·Fs ≤ bfwpi , i = 1, · · · , Nd, (11)

where Afwp
i and bfwpi are the matrices that describe half-

planes. The single stance FWP is subject to equality con-
straints Afwp

i,e ·Fs = bfwpi,e , which could also be incorporated
into the form of inequality constraint as in (11).

Note that for a given physical parameter of the robot and
a C-space discretization, FWPci only needs to be computed
once.

D. Mixed-integer Wrench Constraint

The nonlinear and non-convex wrench constraint is im-
posed in a piecewise constant fashion over the discretized
C-space, enabling a mixed-integer convex formulation. A
binary matrix Bcs ∈ {0, 1}Nt×Nd is constructed such that
Bcs
i,j = 1 indicates that q(ti) is within cell cj and the spatial

wrench should be chosen within FWPci

Bcs
i,j =⇒ Ageo

j · q(ti) ≤ bgeoj

=⇒ Afwp
j ·Fs(ti) ≤ bfwpj ,

(12)

where the implies operator (=⇒) in (12) is implemented
using the big-M formulation [22]. Additional constraints are
imposed for physical feasibility

Nd∑
j=1

Bcs
i,j = 1, ∀i = 1, · · · , Nt (13)

which requires that at each time step ti, the robot state q(ti)
can only reside within one cell cj .

E. Aerial Phase Constraints

The objective of the kinodynamic motion planner is to
reach the goal region through a series of jumping motions,
which involves both stance and aerial phases. During the
aerial phase, the robot is airborne and only subject to gravity,
whose trajectory is described by

[
q̄
q̇

]TD
i+1

=

[
q̄
q̇

]TO
i

+

[
q̇TOi
ag

]
Ti,air +

[
1
2ag
0

]
T 2
i,air (14)

where the superscripts (·)TO and (·)TD indicate variables
at take-off and touch-down, respectively; Ti,air is the aerial
time of the ith jump; where i = 1, · · ·Njp and Njp is the
number of jumps. The state q̄TDi is the sum of the global state
qTDi and the local state at the start of the next stance phase
qstarti . Similarly, q̄TOi = qTDi +qendi , where qendi is the end
state of the ith stance phase. This dichotomy of global and
local state is convenient for imposing wrench constraint (12)
on the local state and choosing contact location using the
global state.

Although the stance time Tst of each jump is set to a
constant to simplify the problem, the aerial time Tair is an
optimization variable. Hence, the bilinear terms q̇TOi Ti,air in

4001

Authorized licensed use limited to: University of Illinois. Downloaded on June 05,2022 at 21:19:10 UTC from IEEE Xplore. Restrictions apply.

(14) leads to non-convex constraints. To this end, methods
such as using the McCormick Envelope [19] to approximate
the bilinear terms have been applied on planning aggressive
motions of legged robots [16]. McCormick Envelope is
used in our formulation because it could provide a close
approximation with a relatively small number of binary vari-
ables since the range of each quantity could be empirically
bounded from simulation and experiment. Using a similar
technique, the quadratic term T 2

i,air in (14) is approximated
by a piecewise affine function.

F. Foothold Position

With assumption 2, the foothold position choice is simpli-
fied to finding qTD on the given terrain. To simplify terrain
geometry, the following assumption is made.

Assumption 4 (Terrain): The terrain consists of segments
which are modeled by piecewise affine functions.

A binary matrix Bfp ∈ {0, 1}Ns×Nj is constructed to
assign foothold positions, where Ns is the total number of
terrain segments. Bfp

i,j = 1 implies that at the jth jump, the
qTDj lies on the ith terrain segment segi

Bfp
i,j = 1 =⇒ qTDj ∈ Qi (15a)
Ns∑
i=1

Bfp
i,j = 1, ∀j = 1, · · · , Njp, (15b)

where Qi refers to the ith terrain segment. At the end of the
last jump, the robot should reach the goal region

qTDNjp
∈ Qgoal (16)

where qTDNjp
is the touchdown state after the final jump and

Qgoal is the goal region.

G. The Mixed-integer Convex Program

The kinodynamic motion planning problem of a planar
two-legged robot could be transcribed to a MICP. The
decision variable vector for this particular problem is xopt =
[αF , q0, q̇0, q

TD,Tair,B
cs,Bfp]T . The complete formula-

tion of the MICP is:

min.
xopt

f(xopt) (17a)

s.t. q(ti) ∈ ck ⊂ Ω (17b)

q̈(ti) = D−1Fs(ti) + ag (17c)
Fs(ti) ∈ FWPck (17d)

qTDj ∈ Ql (17e)

q0 ∈ Qinit, q
TD
Njp
∈ Qgoal (17f)

aerial phase constraint: (14) (17g)
i = 1, · · · , Nt; j = 1, · · · , Njp (17h)
k = 1, · · · , Nd; l = 1, · · · , Ns (17i)

where (17b) is the kinematic constraint baked into the C-
space; (17c) is the dynamic constraint and (17d) is the
wrench constraint. (17e) constrains the touchdown state to be
on the terrain; (17f) are the boundary condition constraints,
where Qinit is the feasible set for the initial condition.

f(xopt) is a task-specific convex objective function. For
example, f(·) could be the deviation from the goal |qTDNjp

−
qgoal|2, which makes the problem a mixed-integer quadratic
program (MIQP); or it could be −xTDNjp

to maximize the
horizontal jumping distance, which leads to a mixed-integer
linear program (MILP); f(·) could also be set as a constant
value to solve a feasibility problem.

The MICP problem is formulated in MATLAB using
YALMIP [23]. The computational geometry calculation re-
lated to FWP is done using the Multi-Parametric Toolbox
3 (MPT3) [24]. The MICP is solved by the solver Gurobi
[9]. All of the computation is performed on a desktop with
2.9 GHz Intel i7.

III. RESULTS

To validate the proposed kinodynamic motion planning
algorithm, jumping experiments are conducted on the robot.
Experiment results for both jumping forward and backward,
together with the simulation result of a dynamic Parkour
motion are presented. Note that the trajectories of all three
motions are solved by the proposed MICP without any initial
guesses.

A. Experimental Setup

As shown in Fig. 1, the planner two-legged robot similar
to the one used in [25] is composed of the torso made of
a carbon fiber tube and two legs modules, which enable
dynamic maneuvers that demands high joint torques [26].
Each joint of the robot is equipped with a RLS-RMB20
magnetic encoder, and an inertial measurement unit (IMU)
is mounted for state estimation, which is the same as that
in [27]. The robot is mounted on the end of a passive boom
system with a radius Rboom = 1.25 m. Two encoders are
installed at the base of the boom to measure the global
positioning of the robot, and another encoder is mounted at
the connection between the tip of the boom and the robot to
measure the pitch angle θ. The robot is externally powered
and the Elmo Gold Twitter amplifiers are mounted on the
boom. The control loop runs at 4kHz on an Intel i5 desktop
in Simulink Real-Time. The physical parameters of the robot
could be found in Table I.

B. Sagittal Plane Control

The spatial wrench trajectory obtained from solving the
MICP is distributed to the GRF in the sagittal plane using
the closed-chain-constrained operational-space control [28].
Similar to the frontal plane controller in [1], a linear operator
Π ∈ R4×3 is calculated to map the spatial wrench Fs to
the joint torque usag = Π Fs. Let qsag := [qT , qTl]T ∈
R7×1 be the generalized coordinates of the sagittal dynamics,
where ql is the vector of joint angle. The no-slip ground
contact constraints are

ṗfoot = Jfootq̇sag = 0

p̈foot = Jfootq̈sag + J̇footq̇sag = 0,
(18)

where pfoot is the foot position, and the foot Jacobian
Jfoot ∈ R4×7 is partitioned as Jfoot = [JB ,Jl]. The

4002

Authorized licensed use limited to: University of Illinois. Downloaded on June 05,2022 at 21:19:10 UTC from IEEE Xplore. Restrictions apply.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x [m]

0

0.1

0.2

0.3

0.4
z

[m
]

CoM Exp
CoM Sim
Goal Region
qTD

0 0.1 0.2 0.3 0.4 0.5
Time [s]

-50

0

50

100

Le
g

fo
rc

es
 [N

]

ff,x
ff,z
fb,x
fb,z

(a)

(b)

Fig. 5. The result of the experiment where the robot jumped forward on
a platform. (a) CoM trajectories of simulation (blue) and experiment (red);
the orange area is the goal region; the gray arrow indicates the jumping
direction. (b) The leg forces during the stance phase t ≤ 0.2 s and the
aerial phase.

dynamics of the sagittal plane system areD 0 −JTB
0 0 −JTl
JB Jl 0

 q̈q̈l
λ

 =

 0
usag

−J̇footq̇sag

 (19)

where λ is the Lagrange multiplier associated with the
constraints in (18). By solving the system of equations one
could derive −JTBJ

−T
l usag = Dq̈ = Fs. Thus, as one of

many possible solutions, Π is selected as Π = −(JBJ
−T
l)†,

where (·)† provides the Moore-Penrose pseudoinverse.
Using the saggittal plan control, the feedforward wrench

trajectory Fff from MICP and a proportional-derivative
(PD) feedback controller is used to track the desired state
trajectory. Ffb = Kp(qd − q) + Kd(q̇d − q̇), where
Kp,Kd are diagonal gain matrices; qd and q̇d are the desired
state trajectories. During the swing phase, a workspace PD
controller is applied on the swing foot to track the prescribed
swing trajectory.

C. Jump On Platforms

As shown in Fig. 1, the robot jumps forward on a 0.2
m high platform. Both simulation and experimental results
are shown in Fig. 5, where the CoM trajectory from the
simulation is shown in blue and that from the experiment is
shown in red. The leg forces are shown in Fig. 5 (b) during
the stance phase (t ≤ 0.2 s) and the aerial phase. Another
experiment where the robot jumps back onto the platform is
shown in Fig. 6, where the sequential snapshots show that
the solution involves using large body pitch oscillation to aid
the robot to jump on the platform.

For these less dynamic jumping motions, only double
stance region Ωds is used. The number of variables for
both motions is 216 (27 continuous, 189 integer), and the
computational time to solve the MICP is 0.84 s for the jump-
ing forward problem and 5.94 s for the jumping backward

Experiment Wrench Bézier Coefficients
αfx 0.0, -7.6, 33.8, -33.7, 90.1, 0.0

Jump forward αfz 25.1, -69.0, 152.0, -50.0, 262.7, 0.0
ατy 0.0, 5.5, -25.3, 25.5, -5.8, 0.0
αfx 0.0, 198.4, -404.8, 296.7, -135.5, 0.0

Jump backward αfz 25.1, -171.9, 631.8, -786.8, 623.5, 0.0
ατy 0.0, 44.5, -79.4, 48.2, -14.5, 0.0

TABLE II
BÉZIER COEFFICIENT FOR THE JUMPING ON PLATFORM EXPERIMENTS

problem. The solve time difference may be explained by
that the knee-bending-back configuration provides more for-
ward force authority. Additionally, the knee-bending-forward
configuration imposes stricter collision avoidance constraints
between the knee and terrain. The Bézier coefficients of the
wrench trajectories are summarized in Table II.

D. Parkour Motion

The proposed kinodynamic motion planning framework
could generate plans that traverse terrains that require com-
plex maneuvers. For example, Fig. 7 shows one problem
setup where the goal region is on the high platform, and the
robot cannot reach it with a single jump due to actuation
limitations. As shown in Fig. 7, the MICP provides the
solution where the left platform is used as a stepping stone
towards the goal region. By making two jumps, the proposed
framework solves the problem without initial guess nor
user input about the step planning. With the grid resolution
Nbs = 10, Nfs = 10, Nds = 21, the MICP involves 485
variables (53 continuous, 432 integer), and the computational
time is 27 s. The algorith m utilized double stance and back
stance. The back stance is used towards the end of the second
jump, presumably to take advantage of the extra kinematic
reachability in body pitch.

This simulation result showcases one of the advantages
of mixed-integer program based motion planning algorithms,
which is that it could reason about making discrete decisions.

IV. DISCUSSION

In this section, we discuss some of the findings and lim-
itations of this work. This work has extended the single-leg
model in [17] to the multi-legged model, which poses unique
challenges since different stance modes dictate whether the
system is over-actuated or under-actuated.

Compared with [15], we focus on generating dynamic
jumping motions that are not limited to the vicinity of the
nominal pose. This work is most similar to [16] in spirit,
where dynamic legged motions are generated via MIQP. The
construct of this work allows the joint torque constraint to
be explicitly imposed using the notion of FWP . However,
with the series of assumptions made intending to reduce the
number of decision variables, the proposed method is only
applicable to planner models. The stance time and number
of jumps should also be chosen a priori.

In experiments, the sagittal plane control works well
for the double stance. Nevertheless, for Parkour motion
in Section III-D, the jump on the lower platform often

4003

Authorized licensed use limited to: University of Illinois. Downloaded on June 05,2022 at 21:19:10 UTC from IEEE Xplore. Restrictions apply.

0 ms 200 ms 500 ms 950 ms 1500 ms

Fig. 6. Sequential snapshots of the experiment where the robot jumps backwards onto a 0.2 m high platform to reach the goal region.

-1 -0.5 0 0.5 1 1.5

x [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z
[m

]

CoM Stance
CoM Flight
Goal Region
qTD

Fig. 7. Simulation result of the Parkour motion. The proposed formulation
can find the strategy of utilizing the left platform as a stepping-stone to
reach the goal region on the high platform.

involves undesirable single stance phase which the reactive
sagittal plane control could not stabilize well. In hindsight,
model-predictive control (MPC) may provide more robust
performance since it could reason about the robot dynamics
within the prediction horizon.

V. CONCLUSION AND FUTURE WORK

This paper proposed a novel MICP-based kinodynamic
motion planning framework for aggressive jumping motions
on 2-D multi-legged robots. The proposed method could
produce highly dynamic jumping motions by solving for
the centroidal motion, contact location, contact wrench and
gait sequence simultaneously in a single MICP, with a
global optimality certificate. The MICP approximates the
nonlinear and non-convex constraints into piecewise convex
constraints, and a preferred ordering on the robot stance
modes is introduced to encode the gait sequence into the
robot state trajectory. Both simulation and experiment show
that the proposed planner could generate dynamically fea-
sible motions on complex terrain. In the future, we plan
to combine the MICP planner with MPC for robust jump-
ing motions in experiments. We also envision combining
sampling-based methods to tackle more complex terrains.

VI. ACKNOWLEDGMENT

The authors would like to thank Prof. Kris Hauser, Prof.
João Ramos and Dr. Zherong Pan for the helpful insightful
discussions.

REFERENCES

[1] H.-W. Park, P. M. Wensing, and S. Kim, “High-speed bounding
with the MIT Cheetah 2: Control design and experiments,” The
International Journal of Robotics Research, vol. 36, no. 2, pp. 167–
192, 2017.

[2] Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, and S. Kim, “Optimized
jumping on the MIT Cheetah 3 robot,” in 2019 International Confer-
ence on Robotics and Automation (ICRA), May 2019, pp. 7448–7454.

[3] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and
S. Kim, “MIT Cheetah 3: Design and control of a robust, dynamic
quadruped robot,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct 2018, pp. 2245–2252.

[4] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[5] C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini,
“Hierarchical planning of dynamic movements without scheduled con-
tact sequences,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 4636–4641.

[6] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.

[7] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, July 2018.

[8] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[9] Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.
[10] MOSEK ApS, “The MOSEK optimization software,” 2014.
[11] IBM Corp, “User’s manual for CPLEX,” 2010.
[12] H. Dai, G. Izatt, and R. Tedrake, “Global inverse kinematics via mixed-

integer convex optimization,” The International Journal of Robotics
Research, vol. 38, no. 12-13, pp. 1420–1441, 2019.

[13] M. Liu, Z. Pan, K. Xu, and D. Manocha, “New formulation of mixed-
integer conic programming for globally optimal grasp planning,” IEEE
Robotics and Automation Letters, vol. 5, no. 3, pp. 4663–4670, 2020.

[14] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS International
Conference on Humanoid Robots, Nov 2014, pp. 279–286.

[15] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu,
D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Fernández-López, and
C. Semini, “Simultaneous contact, gait, and motion planning for robust
multilegged locomotion via mixed-integer convex optimization,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 2531–2538, July
2018.

[16] A. K. Valenzuela, “Mixed-integer convex optimization for planning
aggressive motions of legged robots over rough terrain,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2016.

[17] Y. Ding, C. Li, and H.-W. Park, “Single leg dynamic motion planning
with mixed-integer convex optimization,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Oct 2018,
pp. 1–6.

[18] R. Orsolino, M. Focchi, C. Mastalli, H. Dai, D. G. Caldwell, and
C. Semini, “Application of wrench-based feasibility analysis to the
online trajectory optimization of legged robots,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3363–3370, Oct 2018.

[19] G. P. McCormick, “Computability of global solutions to factorable
nonconvex programs: Part I-convex underestimating problems,” Math-
ematical programming, vol. 10, no. 1, pp. 147–175, 1976.

[20] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous robots, vol. 35, no. 2-3, pp. 161–176,
2013.

4004

Authorized licensed use limited to: University of Illinois. Downloaded on June 05,2022 at 21:19:10 UTC from IEEE Xplore. Restrictions apply.

[21] G. Varadhan and D. Manocha, “Accurate Minkowski sum approxima-
tion of polyhedral models,” in 12th Pacific Conference on Computer
Graphics and Applications, 2004. PG 2004. Proceedings. IEEE,
2004, pp. 392–401.

[22] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in Control Conference
(ECC), 2001 European. IEEE, 2001, pp. 2603–2608.

[23] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in
matlab,” in In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[24] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. of the European Control Conference, Zürich,
Switzerland, July 17–19 2013, pp. 502–510.

[25] C. Li, Y. Ding, and H.-W. Park, “Centroidal-momentum-based tra-
jectory generation for legged locomotion,” Mechatronics, vol. 68, p.
102364, 2020.

[26] Y. Ding and H.-W. Park, “Design and experimental implementation
of a quasi-direct-drive leg for optimized jumping,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sept. 2017, pp. 300–305.

[27] Y. Ding, A. Pandala, and H.-W. Park, “Real-time model predictive
control for versatile dynamic motions in quadrupedal robots,” in 2019
International Conference on Robotics and Automation (ICRA), May
2019, pp. 8484–8490.

[28] M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch,
and R. Siegwart, “Quadrupedal locomotion using hierarchical opera-
tional space control,” The International Journal of Robotics Research,
vol. 33, no. 8, pp. 1047–1062, 2014.

[29] Ç. Dişibüyük and H. Oruç, “A generalization of rational bernstein–
bézier curves,” BIT Numerical Mathematics, vol. 47, no. 2, pp. 313–
323, 2007.

[30] E. H. Doha, A. H. Bhrawy, and M. A. Saker, “Integrals of Bernstein
polynomials: An application for the solution of high even-order
differential equations,” Applied Mathematics Letters, vol. 24, no. 4,
pp. 559–565, 2011.

APPENDIX I
INTEGRATION OF BÉZIER POLYNOMIAL

A Bézier polynomial is a linear combination of a Bernstein
polynomial basis [29], so the integration of a Bézier poly-
nomial is a linear operation [30] on the Bézier coefficients.
For example, the linear relationship between wrench Bézier
coefficients and twist Bézier coefficients is

M + 1

Tst
Φ(M,Tst)αq̇ = [D−1αTF + ag, q̇0]T , (20)

where M is the order of Bézier polynomial; Tst is stance
duration; q̇0 ∈ R3 is the initial body twist; αq̇ ∈ R(M+2)×3

is the Bézier coefficients for the spatial twist trajectory; Φ ∈
R(M+2)×(M+2) is a matrix whose elements are defined as

Φi,j :=


−1, j = i = 1, 2, · · · ,M + 1

1, j = i+ 1 = 2, 3, · · · ,M + 2
Tst

M+1 , i = M + 2, j = 1

0, otherwise.

(21)

The linear operation αq̇ = L(αF , q̇0) is obtained by invert-
ing the matrix in front of αq̇ in (20). Similarly, the Bézier
coefficients of the configuration trajectory q(t) could also be
integrated given initial configuration q0 ∈ R3.

4005

Authorized licensed use limited to: University of Illinois. Downloaded on June 05,2022 at 21:19:10 UTC from IEEE Xplore. Restrictions apply.

