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This paper presents a trajectory optimization framework for planning dynamic legged locomotion based on a
robot’s centroidal momentum (CM), which is the aggregation of all the links’ momenta at the robot’s Center of
Mass (CoM). This new framework is built around CM dynamic model driven by Ground Reaction Forces (GRFs)
parameterized with Bézier polynomials. Due to the simple form of CM dynamics, the closed-form solution of
the robot’s CM can be obtained by directly integrating the Bézier polynomials of GRFs. The CM can be also
calculated from the robot’s generalized coordinates and velocities using Centroidal Momentum Matrices (CMM).
For dynamically feasible motions, these CM values should match, thereby providing equality constraints for the
proposed trajectory optimization framework. Direct collocation methods are utilized to obtain feasible GRFs and
joint trajectories simultaneously under kinematic and dynamic constraint. With the closed-form solutions of CM
due to the parameterization of GRFs in the formulation, numerical error induced by collocation methods in the
solution of trajectory optimization can be reduced, which is crucial for reliable tracking control when applied
to real robotic systems. Using the proposed framework, jumping trajectories of legged robots are obtained in
the simulation. Experimental validation of the algorithm is performed on a planar robot testbed, proving the

effectiveness of the proposed method in generating dynamic motions of the legged robots.

1. Introduction

Agile quadrupeds such as cats and squirrels are capable of perform-
ing highly dynamic maneuvers over a variety of terrains. When navi-
gating in challenging environments, they can plan trajectories that fully
utilize their physical capabilities and inherent dynamics. Such abilities,
if successfully implemented on robots, possess profound potential in sce-
narios such as hazardous environment reconnaissance, disaster response
and rescue.

Recent advances in quadruped robots has shown promising results
in matching the dynamic capabilities of their natural counterparts: ro-
bust walking gaits have been performed by the BigDog [1], Spot and
SpotMini from Boston Dynamics, though details of their control algo-
rithms are yet to be published. ANYmal [2] is able to perform stable
locomotion such as walking and trotting. Park et al. [3] displayed ro-
bust bounding motion on the MIT Cheetah 2 for a wide range of speeds
in untethered 3D tests. Similar maneuverability has also been achieved
on HyQ2Max [4] in creating trotting and self-righting while using hy-
draulic actuation. As the performance of the quadrupedal robots keeps
advancing, so is the need for accurate algorithms capable of planning
trajectories that fully utilize a robot’s dynamical capabilities to create

* Corresponding author.

agile motions, or to navigate challenging environments while respecting
the robot’s physical restrictions.

The impediment to fast trajectory planning is partly rooted in the
high degrees of freedom (DoF) present in robots. Methods based on a
robot’s full-body dynamics have proven effectiveness in producing ex-
pressive motions, as shown in [5-8], but would often suffer from long
computational time. As a work-around, simplified models including the
point-mass model [9] and other ones stemming from the linear inverted
pendulum (LIP) model introduced by [10] have been used, such as the
Reaction Mass Pendulum (RMP) [11] which augment the LIP models
with a reaction-mass ellipsoid to capture the change in centroidal mo-
menta for tasks such as balancing. A modified Spring Loaded Inverted
Pendulum (SLIP) model is used by [12] to achieve running long jumps.
Though less restrictive, these models still require task-specific modifi-
cations to its dynamic models to complement the full-body motions, or
part of the dynamics will be left undecided or uncontrolled.

In recent years, the centroidal momentum (CM) of a robot, which is
the aggregation of all links’ momenta at the robot’s Center of Mass (CoM)
[13], has gained increasing attention as a reduced-order dynamic model
in planning trajectories for robots with complex dynamics [14-17]. A
robot’s CM enjoys simple dynamics driven by the ground reaction forces
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Generalized Coordinates and Velocities

hg = A(q)q

Centroidal
Momentum

ho(a.d) = | 15 - g

Parameterized Ground Reaction Force

Fig. 1. Arobot’s centroidal momentum hg; can be calculated from its Centroidal
Momentum Matrix A(q) and the generalized velocities g (top), or through direct
integration of its external wrenches created by GRFs the ground reaction forces
F; (bottom). For dynamically feasible trajectories, the two calculation results
should match.

(GRF) in legged locomotion. By including the GRF as optimization vari-
ables, a robot’s CM can be obtained through numerical integration, from
which the corresponding joint angles can be recovered from kinematic
equations without solving the complete second-order equation of mo-
tions. However, the use of CM dynamics in trajectory optimization for
robots are often limited to a subsection of the optimization: either to
validate transition feasibility between consecutive contact states [15],
or to generate contact wrenches, which tends to rely on pre-defined con-
tact locations and also requires additional process for joint trajectories
[14]. Two notable exceptions come from the work of Dai et al. [17] and
Fernbach et al. [15], where the contact states and forces are solved si-
multaneously as a hard linear complementarity problem. This method is
shown to produce expressive motions and allows automatic gait schedul-
ing, but often at the cost of long computation time when incorporating
the full joint-space rigid body dynamics, or loss of generality

In this paper, we propose to augment the CM-dynamic-based tra-
jectory optimization scheme by parameterizing the GRF and swing leg
trajectories with Bézier polynomials. The optimizer simultaneously se-
lects the Bézier polynomial coefficients and the contact leg’s joint tra-
jectories, under an equality constraint which unifies the CM directly
integrated from GRF through equations of motion, to the CM calculated
from the robot’s generalized states and velocities using Centroidal Mo-
mentum Matrix [13], as shown in Fig. 1. This ensures that the obtained
CM always respect the robot’s full-body dynamics, even between opti-
mization nodes, unlike other collocation-based methods which approx-
imate the solution of the model using polynomials. A similar approach
can be found in [14], but is restricted to using a basic power basis poly-
nomial for the CoM and GRF only, and relies on additional processing
for the joint trajectories which requires prior knowledge of the exact
contact locations.

The remainder of this paper is organized as follows: Section 2.1 de-
scribes the planar robot model used in formulating the proposed tra-
jectory optimization algorithm. Section 2.2 presents two ways of ob-
taining a robot’s centroidal momentum with ground contact. Detailed
formulation of the proposed multi-phase optimization framework, in-
cluding transition map between different motion phases is presented in
Section 3. Experimental validations are presented in Section 4 with ref-
erence trajectories obtained from the proposed method.
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Fig. 2. The five-link planar model used in this paper. The inertia coordinate
system (ICS) is earth fixed at the model’s contacting leg. The model’s CoM frame
{G} locates at its CoM, axes parallel to that of {ICS}.

Table 1

The physical parameters of the planar model used in trajectory optimization.
All the link values are expressed in terms of a set of reference values: total mass
my, torso length [, and the moment of inertia J, obtained by lumping all the
leg mass onto the torso link.

Ref. values my =1.9kg, l, = 0.3 m, J, = 1/12my/;

Link M, = 2/3m, M, = 1/6m, M, = 1/60m,

Values L, =1, L, =1/2l, L, =1/2l,
Jror = 213Jo Jp =107, Jy = 1074,

2. Centroidal dynamics
2.1. Simplified planar model

In this paper, a planar model shown in Fig. 2 is adopted to study a
quadruped’s behavior in its sagittal plane, where the most of dynamic
motions happen. The model consists of five massive links, with the torso
link in the middle connecting two identical two-link legs through ideal
revolute joints. The physical parameters of the planar model specified
in Table 1.

The configuration of this five-link body can be described with its
body angles:

-
Ay = (Gror 971> 9r20 Gar> 4ir2) -

where subscripts F and H stands for front and hind, 1 and 2 stand for
the hip and knee joints respectively.

When unconstrained, the configuration space Q, of the model’s dy-
namics is seven-dimensional. To fully describe the model in the inertia
coordinate system (ICS), the Cartesian position of its floating base is
needed. Unlike the common practice in floating-body dynamics where
the base is chosen as the torso, here we use the model’s CoM position
denoted as (X, Zc.ar)- The resulting general coordinate of the model is:

4= Xeons Zeows 4y € Qe
Here Q, can be decomposed as:
0,=Gxs* 1)

where G is a Lie group formed by (¢, Zeons Gror)» S* is the shape space
where the four joint angles evolve [18].

This choice of floating-base facilitates the direct use of CoM tra-
jectory information and is more natural to the proposed centroidal-
momentum-based optimization framework, since the linear centroidal
momentum of the model is directly related to its CoM trajectory,
whereas the centroidal angular momentum can also be recovered from
the body angles q; and the joint velocities, more details in Section 2.3.
This is especially conveniently during the aerial phase where the model
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is not in contact with the ground, the CoM of which follows a ballis-
tic trajectory with only gravity acting it. However, special treatment is
required when the aerial phase ends with a ground impact.

2.2. Calculation of centroidal momentum

With the model and its generalized coordinate systems defined
above, the full-body dynamics of the planar model can be readily de-
rived through the standard Euler-Lagrange method. However, the re-
sulting dynamics are highly coupled and nonlinear with up to fourteen
states. As an alternative, we resort to studying the change of the model’s
centroidal momentum (CM), which enjoys a simple dynamics evolving
under the wrenches created by the ground reaction forces (GRF) and
its gravity. The CM can be also mapped from the joint velocities of the
model using its Centroidal Momentum Matrix [19].

2.2.1. Centroidal momentum dynamics

The centroidal momentum of the planar model in Fig. 2 evolves un-
der a net external wrench induced by gravity and the contact forces
exerted by its environment:

k:Z(ci—r)xFi (2a)
1=m'r"=2F,~—mg (2b)

where [ and k are the centroidal linear and angular momentum, the later
is a scalar in the planar case. m is the total mass. g is the gravitational
acceleration. F; is GRF on the ith legs. r and c; are the Cartesian position
of the CoM and the contact point respectively. Note that ¢; = 0 as the
ICS is defined at the first contact foot. The other contact locations can
be calculated from joint angles. Due to its simple form, k and I can be
easily obtained by integrating Eq. (2) given F;.

We propose to parameterize F; with Mth order Bézier polynomials
defined on interval [0, T]:

M

CcH =) BN, t€[0,T] 3)
i=0

where q; is the coefficients of the ith Bernstein basis B,.M (1), the derivative

of which can be calculated using:

%BiM(s) = %(B?fl_l(s)—B;\’l_l(s)),s €[0,7T] )
[20]. This property will be used to solve for centroidal momentum using
paramaterized GRFs.

The benefits of using Bézier polynomials are two folds: 1) their start
and end values only depend on the first/last coefficients, 2) the deriva-
tives of Bézier polynomials at the start/end only depend on the first/last
two coefficients. These properties are ideal for linking different dy-
namic phases as explained in Sections 3. They also allow easily increas-
ing/decreasing the polynomials’ order without modifying the start/end
values and derivative values.

It can be shown that by parameterizing the GRF as Bézier polyno-
mials, the corresponding CM also takes the form of Bézier polynomials,
their coefficient in linear and bi-linear forms of the GRF coefficients and
the model’s initial conditions [21]. For simplicity, the following deriva-
tion assumes only one contact, but can be extended to multiple contacts
as the effect of external wrenches can be combined linearly.

Centroidal linear momentum The horizontal and vertical GRF: F*
and F* are parameterized using Bézier polynomials with coefficients
@y, a, € RM*! respectively, the resulting linear momentum I(e, , ,_)
takes the form of two (M + 1)th order Bézier polynomials along the x
and z direction. Given initial velocities %, z,, the coefficients a; , a,
can be calculated using Eq. (4):

o a, —mg
D@7y, = [m;’;]s D@yory, = [ F:;nz’o ] 5)
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where ®@,,,,, € RM+2XM+2) s g coefficient matrix condensed from
Eq. (4), its elements defined as:

-MT, i=j=12,...,M+1

o MyT, i=j-1=12,..,M+1
(I)M+2.T(’»/) = 1, i=M+2,j=1 (6)
0, otherwise

The detailed derivation of ®,,, , can be found in Appendix A. This ma-
trix is always full rank thus invertible. Solving Eq. (5) yields the coeffi-
cients of the centroidal linear momentum as &, (ar , @y ), a; (ar . ap),
which are of (M + 1)th order. This lead to the closed-form expression of
the centroidal linear momentum:

Ity . a;), 1 €[0,T]. o)

Following a similar process, one can also obtain the CoM trajectory
which are (M + 2)th orderBézier polynomials with a,, a, € RM*3 being
their coefficients along x and z direction respectively. Please refer to
Appendix A for details on the derivation.

Centroidal Angular Momentum Similarly, the centroidal angular mo-
mentum k and its derivative k also take the form of a Bézier polynomial.
The calculation for k starts from deriving k using Eq. (2a), which can be
written into Bézier polynomial multiplication as:

k=F*(x; = xcop) = F¥(21 = Zeon )- (8)

where (x;, 2;)" is the contact location and can be calculated from the
model’s joint angles.

In Eq. (8), the first term of F*(x; — x,,, ) is also a Bézier polynomial.
Its coefficients, denoted as a; € R*M+3, can be obtained with the Bézier
polynomial multiplication rule:

min(M,i)

o= Y

Jj=max(0,i—-M-2)

Ci.j“Fz(i)(xl —a,i—))) )

the coefficients C;; are given by:

()0

Gy = ——=", (10)
(2M+2>
i

M . .
where < j > = % Please refer to Appendix A for the details on

calculating CoM trajectory. The same calculation applies to the second
term F*(z; — z¢,,, ). Summing up the two terms yields the Bézier coeffi-
cients of k, from which the Bézier polynomial of the centroidal angular
momentum k can then be obtained following a similar procedure as
Eq. (5). The centroidal angular momentum k is of order 2M + 3), its
coefficients ay(ay, , ay,) € RPMH

k(t, e, ap), 1 €[0,T]. (11)

In conclusion, by parameterizing the GRF as Bézier curves, we are
able to obtain the closed-form solution of a robot’s centroidal linear and
angular momentum in the form of (M + 1)th-order and (2M + 3)th-order
Bézier polynomials respectively, whose coefficients are in linear and bi-
linear forms of the GRF coefficients and the model’s initial conditions:

h. = k(t,an,an)
Ca = Ity )

The subscript G, indicates that its value is calculated from a set of coef-
ficients.

,te[0,T]. (12)

Remark 1. Though this formulation is developed for sagittal motions,
its extension to 3D scenarios does not involve fundamental changes, but
rather replacing Eq. (2a) with a 3 x 1 vector, from which the centroidal
angular momentum k (now a vector) can still be solved analytically with
parameterized ground reaction forces F;.
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Table 2
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Categories of system states for the four different dynamic configurations for the planar
model. Hind stance is when the hind leg is in contact with the ground while its front leg
swinging in the air, as shown in Fig. 2. The Swing states g, are chosen as the swing leg

joints CoM trajectory (X.,,.» Zc,,

) is chosen as the constrained states hence left out. Front

stance is similar except that the swing and stance legs are swapped. Double stance is with
both feet on the ground. Aerial phase is when non of the legs are in contact with the ground.

Type Front Stance  Hind Stance  Double Stance* Aerial**

qc Constrained Xeorrr Zeom Xcors Zeom Xeortr Zeors s Gz -

qs  Swing states gy, 4,4, s, — r1s 2> Guns e
Stance states 4y 4,,.9;1, 45, Gror> 1> 92 Q1> 1> 92 Xeons Zeoms dror

*There are no Swing states during double stance phase. The choice of Stance states g,
can be either (q,,.4,,.4,) O (4;,.4,,.4,,), and the Constrained states g, should change
accordingly. **During the aerial phase, the two legs all swing freely while the centroidal
angular momentum remains the same. Note that the term ”Stance states” is loosely used
here to describe part of the system states that can not be parameterized, but are instead
time-discretized using methods like forward Euler.

2.2.2. Centroidal momentum from joint velocities

By definition, the centroidal momentum of a robot can be calculated
by summing up all the links’ momenta with respect to the CoM. The re-
sult is a linear mapping from the joint velocities to the CM, as presented
by [19] using Pliicker coordinates. Here we briefly present its planar
variation under the presence of contact constraints, and how the swing
leg trajectories can also be parameterized with Bézier polynomials to
further simplify the trajectory optimization problem.

The centroidal momentum of the planar model is a 3 x 1 vector given

by:

13)

- [0~ agtara

%~ |l(q,9)

q

where Ag(q) € R¥7 is the centroidal momentum matrix which linearly
maps g to th. The subscript G, indicates that its value comes from the
generalized states.

Contact Constraints When a robot contacts with its environment at
one or multiple locations, a set of constraints are enforced on the con-
tacting feet:

Jg=0 (14)

where J € R2¥7 is the contact feet’s Jacobian, ¢ is the number of in-
dependent contacts. The introduction of contact constraints reduces the
dimension of the robot’s configuration space, allowing to compute th
with a reduced set of the general velocity g. To see this, one can partition
Eq. (14) into:

7, JJM = TG + 1,4, =0 (15)

UR

where ¢, € R2¢, denoted as constrained velocities, is a set of velocities
related to the contact constraint, the corresponding states are referred
to as the constrained states g, often include the CoM position. ¢, € R’
consists of the rest of the velocities, the corresponding states g, includes
the swing leg joints that are fully actuated and move freely in the air.
J. € R2¥%¢ consists of the rows of J corresponding to ¢,. Applying the
same partition to Eq. (13) yields:

hg, =14g, Ag,] [ZC] = Ag 4. + Ag, 45 (16)
s

which can be combined with Eq. (15) to obtain:

he, = Ag,ds (17

where:

Ag, = (Ag, — Ag, .7 T

This expression of hg only depends on a subset of ¢, as a result of
encoding the contact constraints into the centroidal momentum matrix
Ag.

Constrained States As shown in Eq. (15), the choice of the constrained
velocities ¢, is dependent on the contact configuration of the planar
model, for which there are four possible scenarios:

1. Front/Hind Stance: when the model is contacting the ground
through its front or hind leg, the contact constraint is of size 2. A
common choice of ¢, is the CoM velocity of the model.

2. Double Stance: when the two feet of the model are on the ground,
two more constraints are introduced compared to the single stance
case. This corresponds to the addition of two velocities to ¢, on top
of the CoM velocity. One can choose the two joint velocities of any
leg, such as 4. = (Xcons Zeons 41 4 )-

3. Aerial: for the aerial phase where the size of contact constraint is
zero, so is the size of 4.

Following the choice of 4., the constrained states q, can be calculated
using forward Euler:

q.li + 1] = q.[i] + hq.[i] (18a)

= q.li] + hJ. " T g li] (18b)

where h is the time step between two neighbouring optimization nodes.
The use of this integration scheme fits naturally into the trajectory op-
timization framework later presented in Section 3. Note that except for
the aerial phase, the constrained states q, of the model can also be cal-
culated from geometric approaches.

Using the single-stance configuration in Fig. 2 as an example, the
joint angles ¢, and ¢, can be parameterized with two Bézier polynomi-
als, reducing the trajectory optimization into choosing the stance states
A5t = (@ror ar1- sz)T, stance velocities g, and the swing joints’ Bézier
coefficients ag,. Table 2 categorizes all the system states under different
dynamic phases, the transition between which will be discussed in the
following section.

Swing Leg Parameterization In the presence of a swing leg, Eq. (17) can
be further decomposed by parameterizing the joint trajectories using
Bézier polynomials. The resulting optimization is thus reduced to choos-
ing the swing leg Bézier coefficients ag, and the rest of the states and
velocities related to stance leg, denoted as g, and ¢;.

2.3. Transition map with CM states

Typically, the legged locomotion of a robot consists of a series of
phases connected by discrete transitions, some of which would introduce
discontinuity in system states, such as the transition between flight and
stance phase marked with the robot impacting the ground.

During legged locomotion, the planar model in Fig. 2 alternates be-
tween four different dynamics based on their contact configurations as
follows:



C. Li, Y. Ding and H.-W. Park

Front Stance

T
I
I
v

Hind Stance

b =

&m/ B

Fig. 3. The four basic dynamic phases that the planar model alternates between
in its legged locomotion (the front side is to the left). State transition can only
happen along the connected edges. Transitions along the dashed edges will in-
troduce discontinuity in joint velocities caused by impact, whereas those that
follow the solid edges will not.

1. Double support: the model is in contact with the ground with both
its legs, its dynamics is driven by the GRFs applied on both feet,

2. Hind stance: the front leg of the model lifts off and start to swing,
while the hind leg remains in contact with the ground applying
forces,

3. Aerial: this happens when both the legs lose contact with the ground
and swing in the air until landing,

4. Front stance: similar to the hind stance phase, except that the contact
foot is the front leg while the hind leg is swinging

For example, a simple four-phase jumping would excite all the four
dynamics sequentially: the model first start with a double-support pos-
ture where both its legs exert force to the ground. It transits into the hind
stance configuration as its front leg lifts off while the hind leg still push-
ing the ground. Next the model enters the aerial phase when the hind leg
loses contact, in this phase the CoM of the model follows a ballistic tra-
jectory with only gravity acting it. The end of the aerial phase is marked
with its front leg impacts the ground, entering the front stance phase.
Here the impact between an swing motion and the following stance mo-
tion are not considered as an individual phase, but a mapping that con-
nects the two phases. Ignoring the rare case that the two legs touches
the ground at exactly the same time, we arrive at a state transition map
shown in Fig. 3.

2.3.1. Discontinuous transition: swing to stance

When either of the legs touches the ground marking the end of its
swing motion, an impact takes place. Here we assume the process to be
inelastic, i.e. velocity of the contacting foot is driven to zero instanta-
neously [22]. Such effect introduces discontinuity to velocities of both
inter-segment joints and the fictitious join connecting Inertial Coordi-
nate System (ICS) frame with the floating body, i.e. the CoM, whereas
values of the model’s generalized coordinates remain intact.

Assuming the ground reaction force during the process is an impulse
with intensity 6F,,,. The impact model can be written as:

DG -¢)=J"F,, 19)

where D is the inertia matrix which appears in the system’s equation of
motion. J is the contacting foot’s Jacobian.

We further assume that the contacting foot serves as an ideal pivot
after impact, i.e. it has no actuation, no slip, and no bounce, its velocity
thus remains zero, same as the linear constraints in Eq. (14). Combining
with Eq. (19), we obtain the impact map as:

e Tl B

ext
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where 4~ =[5, - 7, 07, 07y Gy ) -

Due to the simple centroidal momentum dynamics derived in
Section 2.2.1, the CoM velocity terms in generalized velocity 4~ above
is readily available from the prescribed contact GRF, or follows ballistic
motion if the dynamics phase prior to impact is an aerial phase. How-
ever, the angular velocity of the torso link ¢ , unlike the centroidal
angular momentum k which can be integrated from GRF, or simply re-
mains constant during aerial phases, is not directly tied to the GRF thus
requires additional computation. To further simplify the calculation, we
adopt a change of velocity coordinates from g to:

GG = (K1 4,7y s G0 Gi) | @n

Note that Eq. (13) can be partitioned into:

I/m
[k] _ [Al,l Ay A p 22)
1 Ay Ay Ags)|

‘)

where A 1, Ay, Ay 3, A1, A1,2, Aq 3 are scalars or matrices obtained
from grouping the corresponding entries of the centroidal momentum
matrix Ag.

Apy
k= TZ + A 2dre + A1 34 (23)

The mapping between the generalized velocity ¢ and ¢; can thus be
obtained from Eq. (23) as:

4=A4¢4¢ (24
0 o
2x1 X’ i><4
hereAq =| -1 L ZA3 25
where:de A Arn A 25

02><1 02><2 14><4

The resulting transition map thus becomes:

D(g) -T"|[A¢ 46| _ [A¢-dG™
i [ B

ext

This particular form of impact map allows the direct use of the cen-
troidal momentum, which evolves under the simple dynamics derived
in Section 2.2.1 and can be directly integrated from the prescribed GRF.

2.3.2. Continuous transition: stance to swing
A continuous transition happens when a contacting foot of the model
lifts off from the ground, its features include:

+ The vertical position of this previously contacting foot is still zero at
the moment of lifting off,

» The velocity of the previously contacting foot is non-zero, i.e.
Eq. (14) no longer holds.

» The ground reaction force once applied on the system through this
previously contacting foot becomes zero.

Upon removing the corresponding contact constraint, the system’s
dynamics changes accordingly causing a change in the generalized co-
ordinates depending on the previous contact configuration (double sup-
port or front/hind stance). This transition is continuous both in the gen-
eralized coordinates q and in the generalized velocity g. For consistency
to the case of non-continuous transition, the mapping here is also writ-
ten with respected to the generalized velocity defined in Eq. (21): ¢

46" =de” @7
With the application of g in both continuous and discontinuous tran-
sitions, the centroidal momentum of the model is carried across all four
dynamic phases, which further simplifies the use of the model’s cen-
troidal dynamics. With all the dynamic phases defined and the transi-
tion maps between them derived, the trajectory planning for the model

can be formulated as a sequence of dynamic phases connected by their
corresponding transitions.
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Centroidal
Momentum

GRF m CM

hg = Aqus
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Fig. 4. This trajectory optimization framework

Stance State is based on matching two centroidal momen-

qs = [qsw; 45l

tum values, one to the left where the ground re-
action forces, parameterized with Bézier coeffi-
cients a, are integrated once to obtain the cen-
troidal linear momentum coefficient «;, then

qseli], g5l
Swing State

CoM
a,, o,

Constrained
qcli]

Ay again to obtain CoM trajectory required to cal-

Constrained culate the centroidal angular momentum co-
“———————  efficient ;. The path to the right in blue
qc[l] maps system states consisting of swing states

(if any) parameterized with Bézier coefficients
ag,, stance states and velocities gg[i], g[i],

and any constrained states q.[i] to centroidal momentum. [i] indicates that its value is taken at optimization node i. To get dynamically feasible solutions, the
two centroidal momentum values should agree at any node [i]. The bold variables in the figure are optimization variables, as shown in Eq. (28). The gray variables
are dependent on the optimization variables and are used internally. The calculation for CM, CoM values are shown in details in Appendix A. For calculating 4,[i]
refer to Eq. (15). Note that inequality constraints such as joint limit, friction cone are not included in this figure. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

3. Trajectory optimization

The values of a robot’s centroidal momentum derived in the section
above should agree for any dynamically feasible trajectories. An equality
constraint that unifies the two calculated values forms the basis of the
proposed motion planning framework. This section presents the setup of
this multi-phase trajectory optimization framework, followed by a test
example to compare it with two methods

3.1. Optimization formulation

Due to the hybrid nature of legged locomotion, a robot’s motion is
planned in a series of phases subject to simultaneous kinematic and dy-
namic constraints, including the equality constraint that unifies the cen-
troidal momentum values calculated from the GRF and from joint states.
Fig. 4 list out the structure of this proposed optimization framework. The
decision variables include the GRF’s Bézier coefficients a = (a,, a5, ),
the Bézier coefficients of any swing leg a,, the stance states g, the
stance velocities ¢,,, and any constrained states q,.

Cost function:

P
i (2]

qr[,'(p)],qst[;(p)],(r;:,l[?(p)],aF(p),asw(p) ; £ (28)
p is the phase index, P is the number of phases. The index i® indicates
the values are taken at optimization node i® in phase p. £%) is the task-
specific cost function. Constraints for the trajectory optimization: For any
dynamic phase p, a set of optimization constraints should be applied to
shape the desired trajectory (the phase index p is omitted for the rest of
this section):

1. The optimization is first subject to the following dynamic con-

straints:

geli + 11 = g i1+ hT (g lil, @y Gyelil, Gigeli1) (292)
dorli + 11 = ggilil + hdgli] (29b)
he, i, ap) = hg, (i, @y, L1, Gyili]. Gsili]) (29¢)

Equation set (29) ensure the obtained states always respect the
system dynamics. Eq. (29a) is a compact form of Eq. (18) where
J = J.71J,4,. With Eq. (29b), the two equations describe the change
in non-swing joint states in the form of forward-Euler integration.
Eq. (29¢) unifies the CM calculated from the GRF coefficients with
the CM from the generalized coordinates and velocities, its left hand
side is from Egs. (5) to (12), and the right hand side from Eq. (17).

2. Joint range of motion, joint velocities, and on ground reaction forces
such as friction cone:

q<q<q (30a)

<g<v (30b)

I

F<F(G,a)<F (30c)

where q, v, F denote the lower bound of the states, velocities, and

GRF, while q, E,f are the upper bounds.

Remark 2. This formulation does not include direct constraint on
joint torques, as it would involve the second-order dynamics of the
system hence defying the purpose of using the simply centroidal dy-
namics. However, we are able to indirectly discourage the use of
large joint torques by limiting the magnitude of ground reaction
forces.

3. Kinematic constraints such as no ground penetration:
8l @, ", qqu[i”]) 2 0 €1V

where g is the forward kinematics of major body locations such as
knees.

4. Phase transition. To ensures the continuity between two connected
phases, the following linkage constraint is introduced based on the
Transition Maps described in Section 2.3:

Impact Map: Swing to Stance

D@ -T"|[A¢-d6T] _ [AG-de™
i [ R

ext

Continuous Map: Stance to Swing
4t =d¢” (32b)
which are taken from Egs. (26) and (27).

Compared to other optimization frameworks that rely on the second-
order full-body dynamics, this proposed formulation only depends on
the simple CM dynamics described in Eq. (2) and the reduced first-
order dynamics shown in Eq. (17). Further more, unlike other direct-
collocation-based methods which discretize the equation of motion and
solve the dynamic constraints at each optimization grid, thus more sus-
ceptible to numerical integration error when the number of grid points
is small, this proposed method utilizes the closed-form solutions of the
GRFs and swing trajectories parameterized by Bézier polynomials, as
a result, the integration is done analytically hence its numerical accu-
racy is less sensitive to large mesh size. This permits fast optimization
by using coarse time steps and low-order Bézier polynomials under mild
terrain conditions, or the other way around for more refined trajectories
if computation time is not a concern.

Another implicit benefit of this trajectory optimization lies in the fact
that its outputs — the GRF profiles and swing leg joint trajectories, are au-
tomatically smooth and can be readily applied to the tracking controllers
on real robotic systems in the form of polynomial coefficients, whereas
other collocation-based methods only provide a dictionary of reference
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Table 3

The constrains for the one-phase double-support trajectory
optimization. The model needs to start from a given posture
specified by g, (t,) and rise to a given final CoM height.

tp=08, t, €[0.55, +0c0)

q,(ty) = [0°,—20°, —140°, —20°, —140°]

Gy(19) =0, G,(t;) =0

q,() € Q, |gy (1| <=30rad/s

Fixlt) < 0.7F,(t) ie(E
F,(t) € [-30N,30 N]| H}
Fi(t) € [ON, 30N]

Xeo (1) = Xy (fo)

Ze (1) =0.18 M

points which are not necessarily smooth. Though the stance coordinates
g, and velocities ¢, are still picked independently at each nodes to
meet various dynamic and kinematic constraints, as Eq. (29) implies,
their values are not directly used in controller designs since the stance
leg is under force control which does not rely on the joint trajectories
but rather on the closed-form solution of the GRF.

3.2. Comparison with other formulations

The discontinuity in joint velocities inherent to the legged locomo-
tion limits the use of numerical integration up to first order[23,24]. As
a result, direct collocation methods that do not utilize closed-form GRFs
are prone to loss of accuracy when force to run with coarse time steps,
whereas this proposed method would not receive less impact. A sim-
ple trajectory optimization example is tested below to verify the perfor-
mance of our proposed method.

Test Example The planar model in Fig. 2 is commanded to rise to a
given CoM height starting from a double-support contact posture. The
motion is subject to constraints on GRF, joint angle, and joint velocity,
detailed optimization constraints over its states and controls are speci-
fied in Table 3.

The cost function is chosen as 0 to find a feasible trajectory:

min L=0 (33)
qli].4li).F[i]
here the F[i] is the value of the GRF vector taken at optimization node
[i].

Reference Methods Two optimization formulations based on direct
collocation are chosen as references. Similar to the proposed formula-
tion, they also include GRFs as decision variables, but are chosen inde-
pendently at each optimization grids without seeking their closed-form
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solution. The first method uses the same CM dynamics as Section 2.2.2,
subject to the following dynamic constraints other than the ones already
include in Table 3:

qli + 1] = qli] + hqli] (34a)

hg, i, Fli]) = hg, (i, qlil, 4[i]) (34b)

The second formulation uses the model’s full-body dynamics, result-
ing in a different set of dynamic constraints:

qli + 11 = qli] + hqli] (352)

qli + 11 =10, qlil, 4[i], F[i]) (35b)

where f is derived from the standard joint-space EoM (equation of mo-
tion) of the model. All optimizations would start from zero initial con-
ditions, are formulated using GPOPS package [25], and solved using
SNOPT [26] on a laptop with i7-8550U processor.

Result Comparison With the cost function defined in Eq. (33), all
three optimization formulations were able to find a simple double-stance
standing-up motions, though the computational time varied: the CM-
dynamics-based reference method took 0.7203 s to converge, and the
full-body-dynamic-based method spent 0.7904 s on finding a feasible
solution.In comparison, the proposed method was able to converge in
0.5005 s.

To assess the quality of the optimization outputs, all the output tra-
jectories are compared with the solutions from integrating the full-body
dynamics with high-accuracy Runge-Kutta algorithm, starting with the
controls and initial conditions taken from the corresponding optimiza-
tion outputs. The comparison results are shown in Fig. 5.

When looking at Fig. 5-A1 and Fig. 5-B1, it is evident that the GRF
curves provided by the two reference optimization formulations are
highly non-smooth. Whereas our formulation automatically generates
smooth GRF profiles shown in Fig. 5-C1. Though the two reference meth-
ods were able to lift the CoM close to the desired height (0.18 m), as
demonstrated in Fig. 5-A2 and Fig. 5-B2, the accuracy of the resulting
CoM trajectories were noticeably compromised due to the numerical in-
tegration of coarse GRF.

To rule out the possibility that the inaccuracy of the two reference
methods is purely caused by the non-ideal GRFs, not inherent to the
two formulations themselves, the following cost function is applied to
all three methods to regulate the GRFs.

: _ 2
angien == Z,: wEl, 0)
the weights w are chosen such that the contribution from the L2 norms
of the horizontal and vertical forces are at the same order of magnitude,

15 - 16 16
12 g 12 13 €Ll
- 9 ol .., F, Front
R H .
&, . ~ 8 F. Front
= 6} 7 i
- 7 | L 7 R B ELLLLULULLY F, Hind
O 3 L S N F. Hind
0 0 1
0.18
0.16
ot ¢ L EEr A T o
0.12 —— zcon ODE45
0.1
[
0.08 - 3
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05

Time (s) Time (s)

Time (s)

Fig. 5. The outputs from the three trajectory optimization formulations for the same test example. From left to right: CM-dynamic-based, non-closed-form GRFs
(column A), full-body-dynamic-based, non-closed-form GRFs (column B), and CM-dynamic-based, closed-form GRFs (column C, the proposed method). The first two
methods generated non-smooth force profiles, as shown in A1 and B1, while the proposed method naturally generated smooth GRF in C1. Using these GRF curves,
high-order integration based on the ODE45 solver is performed in A2, B2, and C2 to calculate the corresponding CoM height trajectories (solid line) and compare
with the CoM height trajectories from optimizations (dotted lines). The proposed optimization results in noticeably more accurate CoM trajectories.
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14 14;

F, Front
F., Front
= F, Hind

........ Zcon OPL.
—— zconr ODE45

0
0 0.1 02 03
Time (s)

04 0.5

Fig. 6. The regulated GRF outputs and the CoM height trajectories from the CM-dynamic-based optimization with non-closed-form GRF (column A), the full-body-
dynamic-based optimization (column B), and the proposed method (column C). It is evident that the CoM height trajectory predicted by the optimization is closer to

that from ODE45 compared to Fig. 5 for column A and B.

else the cost term would be dominated by the vertical forces based on
the results in Fig. 5. In our test case, the weights for the horizontal and
vertical forces are chosen as 1 and 0.6 respectively. This cost function
steers the optimizer away from choosing large GRF values, effectively
smoothing out the GRF profiles.

Note that the added terms in optimization would likely lead to an in-
crease in computation time, in this case the CM-dynamic-based method
ended in 3.3498 s, and the full-body-dynamic-based method converged
after 21.5129 s. Our proposed method also saw a rise in computation
time to 5.7028 s.

It is worth noting that the cost function was added to the proposed
method only to make a fair comparison, the method itself does not re-
quire such an addition and was able to generate smooth GRF profiles on
its own, as suggested by Fig. 5.

The updated outputs are shown in Fig. 6. With the GRF curves
smoothed out seen in Fig. 6-A1 and Fig. 6-B1, the accuracy of the CoM
trajectories from the two reference methods sees a noticeable improve-
ment shown in Fig. 6-A2 and Fig. 6-B2. Unsurprisingly, the outputs from
our proposed method does not experience a significant change, as its
previous GRF outputs were already smooth. However, taking a closer
look at the absolute errors of the three outputs in Fig. 7, our method is
able to consistently provide more accurate position and torso angle (and
other joint angles) before and after the addition of the extra cost term.

The energy properties of the three formulations are also compared to
see if their outputs are energy efficient in achieving the same motion, by
examining the cost of transport (CoT) [27] of each solutions calculated
as:

t
Cc@t) = /
1o

where the index i € {F, H} denotes the location of the joint: on front
or hind leg, j € {1, 2} stands for hip (j = 1) or knee (j =2). Az, =
Zeow (tf) = Zc,m(tg) is the total change of CoM height. In this particular
setup, since the model starts and ends with zero joint velocities, its CoM
ends at the same horizontal position, the change of its total mechanical
energy equals the change in potential energy mygAz,,,-

The CoT of the three methods are shown in Table 4. The motions
from the two reference methods are less energy efficient before smooth-
ing out the GRF curves, as seen with larger CoT values. It is worth noting
that smoothing out the GRF caused the CoT of the two reference meth-
ods to match that of the proposed method. This is possibly due to the
fact that the smooth GRF curves from the proposed method is manu-
ally discretized when solving for the joint mechanical work, resulting in
less-smooth profiles.

;j Mmax (7;;(4;;),0)

mOgAZCOM

dt,t € [tg,1/] (37)

Error without (left) and with (rlght) GRF Smoothing
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Fig. 7. The absolute error of the proposed method (black) compare with two
other reference methods: one based on CM dynamics (red), the other uses the
full-body dynamics (blue). The proposed method has the least numerical errors
in both CoM height (top) and torso angle (bottom).

Table 4

The CoT (Cost of Transportation) of the motions created
by the proposed method (CM dynamics, closed-form GRFs)
and the two reference methods: one based on CM dynamics,
the other on full-body dynamics, both with non-closed-form

GRFs.
CoT
Formulation
Coarse GRF Smooth GRF
Proposed Method 1.101 1.087
Ref. 1: CM Dynamics 1.287 1.087
Ref. 2: Full-body Dynamics  1.363 1.087

4. Experimental validation

This section introduces the planar testbed used in validating the pro-
posed trajectory optimization framework, together with the experiment
result of a 3-phase forward jumping motion. The optimization was based
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Planetary
Gearbox

High-Torque
Motor

Fig. 8. The planar robot testbed used for experimental validation of the pro-
posed algorithm. Its two quasi-direct-drive legs are capable of high-bandwidth,
high-fidelity force control.

CoM trajectories: simulation and experiment

’ .
=03 Double Hind Kama] |
G Stance Stance

e
0 4
0 0.2 0:4 0.6 0.8
0.6 3 5 :
- Double Hind Aeral
= | Stance Stance ]

Fig. 9. The planar robot testbed executing a 3-phase leaping motion following
the output from the proposed trajectory optimization framework. The double
stance phase and flight phase are separated by the hind stance phase (shaded).
Top: the CoM trajectory from the optimization output (dashed orange) and the
experiment measurement taken from the boom encoders (blue). Bottom: the
testbed jumped from right to left. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

on the planar floating-base model described in Section 2.1 and formu-
lated with the same structure proposed in Section 3.

4.1. Test hardware

A two-legged robot testbed shown in Fig. 8 is used to validate the
trajectories generated by the proposed method. The testbed is driven by
two customized BLDC motor with high torque density and a low gear
ratio of 23:1, allowing high-fidelity control of GRF [28]. The two legs
both consist of two 15 cm links, one 3D-printed (white) and the other
cut from carbon fiber tube (black). The legs are attached to a 30cm
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carbon fiber tube acting as a torso. The robot testbed is supported by
a boom system to constrain its motion in a plane. Most of the robot’s
electronic components are separated from its body, including four Elmo
G-TWI motor drivers and a Intel Core i7 Single-Board-Computer (SBC)
which runs a control loop at 4kHz in Simulink Real-Time, leaving only
four magnetic encoders mounted to each motor’s rotation axis providing
joint angle readings. The entire experimental setup weighs 1.9 kg. The
experiment video can be found at https://youtu.be/3rcmn4K3ZeY.

4.2. Experimental results

In this experiment, the robot is commanded to perform a for-
ward leap following the trajectory produced using the same setup as
Section 3.1 and Table 3. The cost function is set to maximize the travel
distance.

The leaping motion consisted of the following three phases: the robot
started from a double support phase with both of its legs under force
control. It entered the hind stance phase after 0.2 s, with the feedforward
force on its front leg set to zero while the hind leg keep pushing against
the ground for another 0.16s. The last phase — flight phase started after
the hind leg stops applying force, ended with the robot landing on its
front leg. Since there was no direct way of measuring the testbed’s CoM
position, it was approximated as the center of the torso link, as shown
in Fig. 9.

Torso Angle

-40 : : :
0 0.2 0.4 0.6 0.8
Front Hip Angle
120 . .p & T
g 90} ]
g‘:o 60t |
A 30t ]
0_____—-—'7\ 7 |
0 0.2 0.4 0.6 0.8
Front Knee Angle
170 . - T

90 I 1 1
0 0.2 0.4 0.6 0.8
Hind Hip Angle
100 . .p 8 T
g 65 ]
& 30 .
A -5 ]
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0 0.2 0.4 0.6 0.8
Hind Knee Angle
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s 80 \ ]
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Fig. 10. Comparing the torso and joint trajectories generated by the proposed
algorithm (dashed orange) with the corresponding angle readings recorded
when performing the motion on the robot testbed (blue). All figures are sep-
arated into three stages by two black dashed lines, which are 1) double support,
2) hind stance, and 3) aerial phase from left to right. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web ver-
sion of this article.)
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Table 5
The controller gains used in each phase.

Kp(N/m) Kd(N/ms™")

Phase N )
Front Hind Front Hind

Double Support 100 100 0.5 0.5
Hind Stance 500 100 4 0.5
Aerial 500 500 4 4

The swing leg was under impedance control to track the desired tra-
jectory given by as a set of Bézier polynomials. Another impedance con-
troller with small stiffness and damping was added on top of the feedfor-
ward force to help regulate the stance leg position, with its max control
effort capped at 15% of the GRF value to limit its effect on the robot’s
motion. The gains for each phase are listed in Table 5. Joint trajectories
are shown in Fig. 10, which closely matched the output trajectories from
the optimization.

5. Conclusion and future work

In this paper we present a trajectory optimization framework for
planning legged locomotion based on a robot’s centroidal momentum,
which enjoys simple dynamics dominated by the GRFs and the gravity.
By parameterizing the GRFs as Bézier polynomials, the centroidal mo-
mentum of the robot can be solved analytically instead of through nu-
merical integration. This avoids interpolating or curve-fitting the output
trajectories between collocation points, which may result in sub-optimal
trajectories or violation of constraints. The same parameterization is also
applied to any swing leg joints. The accuracy of the CoM and swing joints
trajectories provided by this framework hence is independent of mesh
size. As an added benefit, its outputs are automatically smooth, and can
be readily applied to a tracking controller in real robotic systems as sets
of polynomial coefficients.

The optimization framework was able to produce a jumping motion
which was validated by a planar robot platform with reasonable ac-
curacy. Though the proposed method has been derived and validated
in planar cases, thanks to the simplicity of the centroidal momentum
dynamics of a robot, the extension from planar to 3D would not nec-
essarily induce substantial revision to the existing formulation, where
Eq. (2b) remains the same while Eq. (2a) is now a 3 x 1 vector. Such a
change would still allow the use of parameterized ground reaction forces
and the close-form solution of centroidal momentum, with the rest of the
derivations remain largely unchanged. The authors believe that the re-
sults presented in this paper could encourage further implementation
of this method on more complex locomotion such as multi-step walking
and running.
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Appendix A. Bézier calculation for centroidal momentum and
CoM trajectory

The centroidal momentum of the planar model in Fig. 2 evolves un-
der a net external wrench induced by gravity and the contact forces
exerted by its environment:

I=mi=) F—mg (A.la)
i

k:Z(Ci—r)xF[

i

(A.1b)

Note that the centroidal linear momentum I in Eq. (A.1a) only lin-
early depend on the ground reaction forces F, we can first solve [
by integrating F one time, then again for the CoM trajectory, then
Eq. (A.1b) can be integrated to get the centroidal angular momentum k.

Given the horizontal and vertical GRF profiles parameterized with
Mth order Bézier curves with coefficients

— M+1
ar, = [aFXYO’an.l’ ’an,M] ER

— M+1
@1, = [tr.0 0110 ] € R

respectively, the corresponding centroidal linear momentum can be cal-
culated from Bézier polynomials differentiation:

d M
35 B = T (Bt (9) = Biaua(9) (A2)

where B; ,(s) is the ith coefficient of a Mth order Bézier curve, i =
0,1,-,M,s e [0, T].

Given the initial CoM velocities X, zy, from the GRF coefficients «;_,
@, the calculation for the centroidal momentum coefficients a, , @, €
RM+2 based on Eq. (A.2) can be written as:

T T
— M E 2 e 0 0 alx,O an,O
0 _ﬁ ﬁ 0 0 lZ,XJ aFX’l
0 0 [V —% % % M M
L 0o -« 0 0 0l ]l L mXo
7 T o S
w0 0 0 a ap, 0= mg
0 M M 0 a1 Ap, | — Mg
0 0 0 - -G Tlaw | |Fw—ms
| 1 0 0 0 0%, ma] [ M2

where m is the robot’s mass, g is the gravitational acceleration. The two
equations can be condensed into the following form:

a ap —mg
D@y, = [mf;;]s Q7 = [ F:;nzo ] (A.3)

D,,,,, € RIM+2X(M+2) s the corresponding coefficient matrix, its ele-
ments defined as:

-MJT, i=j=12..,M+1
. MJT, i=j—-1=12 .. M+1
D, ., =
werb) =9y i=M+2,j=1
0, otherwise

®,, ., is by its structure full rank hence always invertible.
Similarly, the Bézier coefficients a,., a, € RM*3 of the CoM trajec-
tory can be retrieved given the initial CoM position X, 2, as follows:

Sy iz
Pyrax=|m |, Pyra,=|m
X0 Z0

The calculation for centroidal angular momentum k starts from cal-
culating k from Eq. (A.1b), which can be written into Bézier polynomial
multiplication as:

= F (51 = o) = (21 = 2
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Note that the multiplication of two Bézier polynomials yields an-
other Bézier polynomial, the order of which is the sum of the two mul-
tiplicands. Denote the Bézier coefficient of k as a;, € RZM*+3, Due to
the space limit, we first calculate the two terms F?(x; — x,,,) and
F*(z) = z¢,y ) separately. The two terms also take the form of Bézier
polynomials. Their coefficients, denoted as a;, &, € R2M*+3, can be ob-
tained with the Bézier polynomial multiplication rule:

ni=
niH= )

min(M,i)
Cjar, ()(x) — ayi = )))
Jj=max(0,i-M-2)

min(M,i)
Cjap ()(z) — oz (i — )
Jj=max(0,i-M-2)

the coefficients C;; are given by:

LT

L) .

M!

i) -

)

Then from «; = a; + a, and given the initial value k, the centroidal
angular momentum k can be calculated following the same principle as
Eq. (A.3):

a;
D@y prar @y = [kk}
0
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