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a b s t r a c t 

This paper presents a trajectory optimization framework for planning dynamic legged locomotion based on a 

robot’s centroidal momentum (CM), which is the aggregation of all the links’ momenta at the robot’s Center of 

Mass (CoM). This new framework is built around CM dynamic model driven by Ground Reaction Forces (GRFs) 

parameterized with Bézier polynomials. Due to the simple form of CM dynamics, the closed-form solution of 

the robot’s CM can be obtained by directly integrating the Bézier polynomials of GRFs. The CM can be also 

calculated from the robot’s generalized coordinates and velocities using Centroidal Momentum Matrices (CMM). 

For dynamically feasible motions, these CM values should match, thereby providing equality constraints for the 

proposed trajectory optimization framework. Direct collocation methods are utilized to obtain feasible GRFs and 

joint trajectories simultaneously under kinematic and dynamic constraint. With the closed-form solutions of CM 

due to the parameterization of GRFs in the formulation, numerical error induced by collocation methods in the 

solution of trajectory optimization can be reduced, which is crucial for reliable tracking control when applied 

to real robotic systems. Using the proposed framework, jumping trajectories of legged robots are obtained in 

the simulation. Experimental validation of the algorithm is performed on a planar robot testbed, proving the 

effectiveness of the proposed method in generating dynamic motions of the legged robots. 
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. Introduction 

Agile quadrupeds such as cats and squirrels are capable of perform-

ng highly dynamic maneuvers over a variety of terrains. When navi-

ating in challenging environments, they can plan trajectories that fully

tilize their physical capabilities and inherent dynamics. Such abilities,

f successfully implemented on robots, possess profound potential in sce-

arios such as hazardous environment reconnaissance, disaster response

nd rescue. 

Recent advances in quadruped robots has shown promising results

n matching the dynamic capabilities of their natural counterparts: ro-

ust walking gaits have been performed by the BigDog [1] , Spot and

potMini from Boston Dynamics, though details of their control algo-

ithms are yet to be published. ANYmal [2] is able to perform stable

ocomotion such as walking and trotting. Park et al. [3] displayed ro-

ust bounding motion on the MIT Cheetah 2 for a wide range of speeds

n untethered 3D tests. Similar maneuverability has also been achieved

n HyQ2Max [4] in creating trotting and self-righting while using hy-

raulic actuation. As the performance of the quadrupedal robots keeps

dvancing, so is the need for accurate algorithms capable of planning

rajectories that fully utilize a robot’s dynamical capabilities to create
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gile motions, or to navigate challenging environments while respecting

he robot’s physical restrictions. 

The impediment to fast trajectory planning is partly rooted in the

igh degrees of freedom (DoF) present in robots. Methods based on a

obot’s full-body dynamics have proven effectiveness in producing ex-

ressive motions, as shown in [5–8] , but would often suffer from long

omputational time. As a work-around, simplified models including the

oint-mass model [9] and other ones stemming from the linear inverted

endulum (LIP) model introduced by [10] have been used, such as the

eaction Mass Pendulum (RMP) [11] which augment the LIP models

ith a reaction-mass ellipsoid to capture the change in centroidal mo-

enta for tasks such as balancing. A modified Spring Loaded Inverted

endulum (SLIP) model is used by [12] to achieve running long jumps.

hough less restrictive, these models still require task-specific modifi-

ations to its dynamic models to complement the full-body motions, or

art of the dynamics will be left undecided or uncontrolled. 

In recent years, the centroidal momentum (CM) of a robot, which is

he aggregation of all links’ momenta at the robot’s Center of Mass (CoM)

13] , has gained increasing attention as a reduced-order dynamic model

n planning trajectories for robots with complex dynamics [14–17] . A

obot’s CM enjoys simple dynamics driven by the ground reaction forces
onpark@kaist.ac.kr (H.-W. Park). 
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Fig. 1. A robot’s centroidal momentum h G can be calculated from its Centroidal 

Momentum Matrix A(q) and the generalized velocities 𝒒̇ (top), or through direct 

integration of its external wrenches created by GRFs the ground reaction forces 

F i (bottom). For dynamically feasible trajectories, the two calculation results 

should match. 
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Fig. 2. The five-link planar model used in this paper. The inertia coordinate 

system (ICS) is earth fixed at the model’s contacting leg. The model’s CoM frame 

{ G } locates at its CoM, axes parallel to that of { ICS }. 

Table 1 

The physical parameters of the planar model used in trajectory optimization. 

All the link values are expressed in terms of a set of reference values: total mass 

m 0 , torso length l 0 , and the moment of inertia J 0 obtained by lumping all the 

leg mass onto the torso link. 

Ref. values m 0 = 1.9 kg, l 0 = 0.3 m, J 0 = 1/12 m 0 𝑙 2 0 

Link 

Values 

M tor = 2/3 m 0 M 1 = 1/6 m 0 M 2 = 1/60 m 0 

𝐿 𝑡𝑜𝑟 = 𝑙 0 L 1 = 1/2 l 0 L 2 = 1/2 l 0 
J tor = 2/3 J 0 𝐽 1 = 10 −4 𝐽 0 𝐽 2 = 10 −4 𝐽 0 
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GRF) in legged locomotion. By including the GRF as optimization vari-

bles, a robot’s CM can be obtained through numerical integration, from

hich the corresponding joint angles can be recovered from kinematic

quations without solving the complete second-order equation of mo-

ions. However, the use of CM dynamics in trajectory optimization for

obots are often limited to a subsection of the optimization: either to

alidate transition feasibility between consecutive contact states [15] ,

r to generate contact wrenches, which tends to rely on pre-defined con-

act locations and also requires additional process for joint trajectories

14] . Two notable exceptions come from the work of Dai et al. [17] and

ernbach et al. [15] , where the contact states and forces are solved si-

ultaneously as a hard linear complementarity problem. This method is

hown to produce expressive motions and allows automatic gait schedul-

ng, but often at the cost of long computation time when incorporating

he full joint-space rigid body dynamics, or loss of generality 

In this paper, we propose to augment the CM-dynamic-based tra-

ectory optimization scheme by parameterizing the GRF and swing leg

rajectories with Bézier polynomials. The optimizer simultaneously se-

ects the Bézier polynomial coefficients and the contact leg’s joint tra-

ectories, under an equality constraint which unifies the CM directly

ntegrated from GRF through equations of motion, to the CM calculated

rom the robot’s generalized states and velocities using Centroidal Mo-

entum Matrix [13] , as shown in Fig. 1 . This ensures that the obtained

M always respect the robot’s full-body dynamics, even between opti-

ization nodes, unlike other collocation-based methods which approx-

mate the solution of the model using polynomials. A similar approach

an be found in [14] , but is restricted to using a basic power basis poly-

omial for the CoM and GRF only, and relies on additional processing

or the joint trajectories which requires prior knowledge of the exact

ontact locations. 

The remainder of this paper is organized as follows: Section 2.1 de-

cribes the planar robot model used in formulating the proposed tra-

ectory optimization algorithm. Section 2.2 presents two ways of ob-

aining a robot’s centroidal momentum with ground contact. Detailed

ormulation of the proposed multi-phase optimization framework, in-

luding transition map between different motion phases is presented in

ection 3 . Experimental validations are presented in Section 4 with ref-

rence trajectories obtained from the proposed method. 
. Centroidal dynamics 

.1. Simplified planar model 

In this paper, a planar model shown in Fig. 2 is adopted to study a

uadruped’s behavior in its sagittal plane, where the most of dynamic

otions happen. The model consists of five massive links, with the torso

ink in the middle connecting two identical two-link legs through ideal

evolute joints. The physical parameters of the planar model specified

n Table 1 . 

The configuration of this five-link body can be described with its

ody angles : 

 𝒃 = ( 𝑞 𝑇 𝑜𝑟 , 𝑞 𝐹1 , 𝑞 𝐹2 , 𝑞 𝐻1 , 𝑞 𝐻2 ) ⊤. 

here subscripts F and H stands for front and hind, 1 and 2 stand for

he hip and knee joints respectively. 

When unconstrained, the configuration space Q e of the model’s dy-

amics is seven-dimensional. To fully describe the model in the inertia

oordinate system (ICS), the Cartesian position of its floating base is

eeded. Unlike the common practice in floating-body dynamics where

he base is chosen as the torso, here we use the model’s CoM position

enoted as ( 𝑥 𝐶𝑜𝑀 
, 𝑧 𝐶𝑜𝑀 

) . The resulting general coordinate of the model is: 

 = ( 𝑥 𝐶𝑜𝑀 
, 𝑧 𝐶𝑜𝑀 

, 𝒒 𝒃 
⊤) ⊤ ∈ 𝑄 𝑒 

ere Q e can be decomposed as: 

 𝑒 = 𝐺 × 𝑆 
4 (1) 

here G is a Lie group formed by 
(
𝑥 𝐶𝑜𝑀 

, 𝑧 𝐶𝑜𝑀 
, 𝑞 𝑇 𝑜𝑟 

)
, S 4 is the shape space

here the four joint angles evolve [18] . 

This choice of floating-base facilitates the direct use of CoM tra-

ectory information and is more natural to the proposed centroidal-

omentum-based optimization framework, since the linear centroidal

omentum of the model is directly related to its CoM trajectory,

hereas the centroidal angular momentum can also be recovered from

he body angles q b and the joint velocities, more details in Section 2.3 .

his is especially conveniently during the aerial phase where the model
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parameterized ground reaction forces F i . 
s not in contact with the ground, the CoM of which follows a ballis-

ic trajectory with only gravity acting it. However, special treatment is

equired when the aerial phase ends with a ground impact. 

.2. Calculation of centroidal momentum 

With the model and its generalized coordinate systems defined

bove, the full-body dynamics of the planar model can be readily de-

ived through the standard Euler-Lagrange method. However, the re-

ulting dynamics are highly coupled and nonlinear with up to fourteen

tates. As an alternative, we resort to studying the change of the model’s

entroidal momentum (CM), which enjoys a simple dynamics evolving

nder the wrenches created by the ground reaction forces (GRF) and

ts gravity. The CM can be also mapped from the joint velocities of the

odel using its Centroidal Momentum Matrix [19] . 

.2.1. Centroidal momentum dynamics 

The centroidal momentum of the planar model in Fig. 2 evolves un-

er a net external wrench induced by gravity and the contact forces

xerted by its environment: 

̇
 = 

∑
𝑖 

(
𝒄 𝒊 − 𝒓 

)
× 𝑭 𝑖 (2a) 

̇
 = 𝑚 ̈𝒓 = 

∑
𝑖 

𝑭 𝒊 − 𝑚 𝒈 (2b)

here l and k are the centroidal linear and angular momentum, the later

s a scalar in the planar case. m is the total mass. g is the gravitational

cceleration. F i is GRF on the i th legs. r and c i are the Cartesian position

f the CoM and the contact point respectively. Note that 𝒄 𝟏 = 𝟎 as the
CS is defined at the first contact foot. The other contact locations can

e calculated from joint angles. Due to its simple form, k and l can be

asily obtained by integrating Eq. (2) given F i . 

We propose to parameterize F i with M th order Bézier polynomials

efined on interval [0, T ]: 

( 𝑡 ) = 

𝑀 ∑
𝑖 =0 

𝛼𝑖 𝐵 
𝑀 

𝑖 
( 𝑡 ) , 𝑡 ∈ [0 , 𝑇 ] (3) 

here 𝛼i is the coefficients of the i th Bernstein basis 𝐵 
𝑀 

𝑖 
( 𝑡 ) , the derivative

f which can be calculated using: 

d 

d 𝑡 
𝐵 

𝑀 

𝑖 
( 𝑠 ) = 

𝑀 

𝑇 

(
𝐵 

𝑀−1 
𝑖 −1 ( 𝑠 ) − 𝐵 

𝑀−1 
𝑖 

( 𝑠 ) 
)
, 𝑠 ∈ [0 , 𝑇 ] (4) 

20] . This property will be used to solve for centroidal momentum using

aramaterized GRFs. 

The benefits of using Bézier polynomials are two folds: 1) their start

nd end values only depend on the first/last coefficients, 2) the deriva-

ives of Bézier polynomials at the start/end only depend on the first/last

wo coefficients. These properties are ideal for linking different dy-

amic phases as explained in Sections 3 . They also allow easily increas-

ng/decreasing the polynomials’ order without modifying the start/end

alues and derivative values. 

It can be shown that by parameterizing the GRF as Bézier polyno-

ials, the corresponding CM also takes the form of Bézier polynomials,

heir coefficient in linear and bi-linear forms of the GRF coefficients and

he model’s initial conditions [21] . For simplicity, the following deriva-

ion assumes only one contact, but can be extended to multiple contacts

s the effect of external wrenches can be combined linearly. 

Centroidal linear momentum The horizontal and vertical GRF: F x 

nd F z are parameterized using Bézier polynomials with coefficients

𝑭 𝒙 
, 𝜶𝑭 𝒛 

∈ ℝ 
𝑀+1 respectively, the resulting linear momentum 𝒍 

(
𝜶𝒍 𝒙 

, 𝜶𝒍 𝒛 

)
akes the form of two ( 𝑀 + 1) th order Bézier polynomials along the x
nd z direction. Given initial velocities 𝑥̇ 0 , 𝑧̇ 0 , the coefficients 𝜶𝒍 𝒙 

, 𝜶𝒍 𝒛 

an be calculated using Eq. (4) : 

𝑀+2 ,𝑇 𝜶𝒍 𝒙 
= 

[ 
𝜶𝑭 𝒙 

𝑚 ̇𝑥 0 

] 
, 𝚽𝑀+2 ,𝑇 𝜶𝒍 𝒛 

= 

[ 
𝜶𝑭 𝒛 

− 𝑚 𝒈 

𝑚 ̇𝑧 0 

] 
(5)
here 𝚽𝑀+2 ,𝑇 ∈ ℝ 
( 𝑀 +2)×( 𝑀 +2) is a coefficient matrix condensed from

q. (4) , its elements defined as: 

𝑀+2 ,𝑇 ( 𝑖, 𝑗) ∶= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
− 𝑀 ∕ 𝑇 , 𝑖 = 𝑗 = 1 , 2 , … , 𝑀 + 1 
𝑀 ∕ 𝑇 , 𝑖 = 𝑗 − 1 = 1 , 2 , … , 𝑀 + 1 
1 , 𝑖 = 𝑀 + 2 , 𝑗 = 1 
0 , otherwise 

(6) 

he detailed derivation of 𝚽𝑀+2 ,𝑇 can be found in Appendix A . This ma-

rix is always full rank thus invertible. Solving Eq. (5) yields the coeffi-

ients of the centroidal linear momentum as 𝜶𝒍 𝒙 
( 𝜶𝑭 𝒙 

, 𝜶𝑭 𝒛 
) , 𝜶𝒍 𝒛 

( 𝜶𝑭 𝒙 
, 𝜶𝑭 𝒛 

) ,
hich are of ( 𝑀 + 1) th order. This lead to the closed-form expression of

he centroidal linear momentum: 

 ( 𝑡, 𝜶𝑭 𝒙 
, 𝜶𝑭 𝒛 

) , 𝑡 ∈ [0 , 𝑇 ] . (7) 

Following a similar process, one can also obtain the CoM trajectory

hich are ( 𝑀 + 2) th orderBézier polynomials with 𝜶𝒙 , 𝜶𝒛 ∈ ℝ 
𝑀+3 being

heir coefficients along x and z direction respectively. Please refer to

ppendix A for details on the derivation. 

Centroidal Angular Momentum Similarly, the centroidal angular mo-

entum k and its derivative 𝑘̇ also take the form of a Bézier polynomial.

he calculation for k starts from deriving 𝑘̇ using Eq. (2a) , which can be

ritten into Bézier polynomial multiplication as: 

̇
 = 𝐹 𝑧 

(
𝑥 1 − 𝑥 𝐶𝑜𝑀 

)
− 𝐹 𝑥 

(
𝑧 1 − 𝑧 𝐶𝑜𝑀 

)
. (8) 

here ( x 1 , z 1 ) 
⊤ is the contact location and can be calculated from the

odel’s joint angles. 

In Eq. (8) , the first term of 𝐹 𝑧 
(
𝑥 1 − 𝑥 𝐶𝑜𝑀 

)
is also a Bézier polynomial.

ts coefficients, denoted as 𝜶𝟏 ∈ ℝ 
2 𝑀+3 , can be obtained with the Bézier

olynomial multiplication rule: 

𝟏 ( 𝑖 ) = 

min ( 𝑀,𝑖 ) ∑
𝑗= max (0 ,𝑖 − 𝑀−2) 

𝐶 𝑖,𝑗 𝜶𝑭 𝒛 
( 𝑖 ) 
(
𝑥 1 − 𝜶𝒙 ( 𝑖 − 𝑗) 

)
(9) 

he coefficients C i,j are given by: 

 𝑖,𝑗 = 

( 

𝑀 

𝑗 

) ( 

𝑀 + 2 
𝑖 − 𝑗 

) 

( 

2 𝑀 + 2 
𝑖 

) , (10)

here 

( 

𝑀 

𝑗 

) 

= 
𝑀! 

𝑗 !( 𝑀− 𝑗 )! . Please refer to Appendix A for the details on

alculating CoM trajectory. The same calculation applies to the second

erm 𝐹 𝑥 
(
𝑧 1 − 𝑧 𝐶𝑜𝑀 

)
. Summing up the two terms yields the Bézier coeffi-

ients of 𝑘̇ , from which the Bézier polynomial of the centroidal angular

omentum k can then be obtained following a similar procedure as

q. (5) . The centroidal angular momentum k is of order (2 𝑀 + 3) , its
oefficients 𝜶𝒌 ( 𝜶𝑭 𝒙 

, 𝜶𝑭 𝒛 
) ∈ ℝ 

2 𝑀+4 : 

 ( 𝑡, 𝜶𝑭 𝒙 
, 𝜶𝑭 𝒛 

) , 𝑡 ∈ [0 , 𝑇 ] . (11) 

In conclusion, by parameterizing the GRF as Bézier curves, we are

ble to obtain the closed-form solution of a robot’s centroidal linear and

ngular momentum in the form of ( 𝑀 + 1) th-order and (2 𝑀 + 3) th-order
ézier polynomials respectively, whose coefficients are in linear and bi-

inear forms of the GRF coefficients and the model’s initial conditions: 

 𝑮 𝜶
= 

[ 
𝑘 ( 𝑡, 𝜶𝑭 𝒙 

, 𝜶𝑭 𝒛 
) 

𝒍 ( 𝑡, 𝜶𝑭 𝒙 
, 𝜶𝑭 𝒛 

) 

] 
, 𝑡 ∈ [0 , 𝑇 ] . (12) 

he subscript G 𝛼 indicates that its value is calculated from a set of coef-

cients. 

emark 1. Though this formulation is developed for sagittal motions,

ts extension to 3D scenarios does not involve fundamental changes, but

ather replacing Eq. (2a) with a 3 × 1 vector, from which the centroidal

ngular momentum k (now a vector) can still be solved analytically with
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Table 2 

Categories of system states for the four different dynamic configurations for the planar 

model. Hind stance is when the hind leg is in contact with the ground while its front leg 

swinging in the air, as shown in Fig. 2 . The Swing states q sw are chosen as the swing leg 

joints CoM trajectory ( 𝑥 
𝐶𝑜𝑀 

, 𝑧 
𝐶𝑜𝑀 

) is chosen as the constrained states hence left out. Front 
stance is similar except that the swing and stance legs are swapped. Double stance is with 

both feet on the ground. Aerial phase is when non of the legs are in contact with the ground. 

Type Front Stance Hind Stance Double Stance ∗ Aerial ∗ ∗ 

q c Constrained 𝑥 
𝐶𝑜𝑀 

, 𝑧 
𝐶𝑜𝑀 

𝑥 
𝐶𝑜𝑀 

, 𝑧 
𝐶𝑜𝑀 

𝑥 
𝐶𝑜𝑀 

, 𝑧 
𝐶𝑜𝑀 

, 𝑞 
𝐻1 , 𝑞 𝐻2 —

q s Swing states q sw 𝑞 
𝐻1 , 𝑞 𝐻2 𝑞 

𝐹1 , 𝑞 𝐹2 — 𝑞 
𝐹1 , 𝑞 𝐹2 , 𝑞 𝐻1 , 𝑞 𝐻2 

Stance states q st 𝑞 
𝑇 𝑜𝑟 
, 𝑞 

𝐹1 , 𝑞 𝐹2 𝑞 
𝑇 𝑜𝑟 
, 𝑞 

𝐹1 , 𝑞 𝐹2 𝑞 
𝑇 𝑜𝑟 
, 𝑞 

𝐹1 , 𝑞 𝐹2 𝑥 
𝐶𝑜𝑀 

, 𝑧 
𝐶𝑜𝑀 

, 𝑞 
𝑇 𝑜𝑟 

∗ There are no Swing states during double stance phase. The choice of Stance states q st 
can be either 

(
𝑞 
𝑇 𝑜𝑟 
, 𝑞 

𝐹1 , 𝑞 𝐹2 

)
or 

(
𝑞 
𝑇 𝑜𝑟 
, 𝑞 

𝐻1 , 𝑞 𝐻2 

)
, and the Constrained states q c should change 

accordingly. ∗ ∗ During the aerial phase, the two legs all swing freely while the centroidal 

angular momentum remains the same. Note that the term ”Stance states ” is loosely used 

here to describe part of the system states that can not be parameterized, but are instead 

time-discretized using methods like forward Euler. 
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.2.2. Centroidal momentum from joint velocities 

By definition, the centroidal momentum of a robot can be calculated

y summing up all the links’ momenta with respect to the CoM. The re-

ult is a linear mapping from the joint velocities to the CM, as presented

y [19] using Plücker coordinates. Here we briefly present its planar

ariation under the presence of contact constraints, and how the swing

eg trajectories can also be parameterized with Bézier polynomials to

urther simplify the trajectory optimization problem. 

The centroidal momentum of the planar model is a 3 × 1 vector given
y: 

 𝑮 𝒒 
= 

[ 
𝑘 ( 𝒒 , 𝒒̇ ) 
𝒍 ( 𝒒 , 𝒒̇ ) 

] 
= 𝑨 𝑮 ( 𝒒 ) ̇𝒒 (13)

here 𝑨 𝑮 ( 𝒒 ) ∈ ℝ 
3×7 is the centroidal momentum matrix which linearly

aps 𝒒̇ to 𝒉 𝑮 𝒒 . The subscript G q indicates that its value comes from the

eneralized states. 

Contact Constraints When a robot contacts with its environment at

ne or multiple locations, a set of constraints are enforced on the con-

acting feet: 

 𝒒̇ = 𝟎 (14)

here 𝑱 ∈ ℝ 
2 𝑐×7 is the contact feet’s Jacobian, c is the number of in-

ependent contacts. The introduction of contact constraints reduces the

imension of the robot’s configuration space, allowing to compute 𝒉 𝑮 𝒒 
ith a reduced set of the general velocity 𝒒̇ . To see this, one can partition

q. (14) into: 

 𝑱 𝒄 𝑱 𝒔 ] 
[ 
𝒒̇ 𝒄 
𝒒̇ 𝒔 

] 
= 𝑱 𝒄 𝒒̇ 𝒄 + 𝑱 𝒔 𝒒̇ 𝒔 = 𝟎 (15)

here 𝒒̇ 𝒄 ∈ ℝ 
2 𝑐 , denoted as constrained velocities , is a set of velocities

elated to the contact constraint, the corresponding states are referred

o as the constrained states q c often include the CoM position. 𝒒̇ 𝒔 ∈ ℝ 
7−2 𝑐 

onsists of the rest of the velocities, the corresponding states q s includes

he swing leg joints that are fully actuated and move freely in the air.

 𝒄 ∈ ℝ 
2 𝑐×2 𝑐 consists of the rows of J corresponding to 𝒒̇ 𝒄 . Applying the

ame partition to Eq. (13) yields: 

 𝑮 𝒒 
= [ 𝑨 𝑮 𝒄 

𝑨 𝑮 𝒔 
] 
[ 
𝒒̇ 𝒄 
𝒒̇ 𝒔 

] 
= 𝑨 𝑮 𝒄 

𝒒̇ 𝒄 + 𝑨 𝑮 𝒔 
𝒒̇ 𝒔 . (16)

hich can be combined with Eq. (15) to obtain: 

 𝑮 𝒒 
= 𝑨 𝑮 𝒔 

𝒒̇ 𝒔 (17)

here: 

 𝑮 𝒔 
= 

(
𝑨 𝑮 𝒔 

− 𝑨 𝑮 𝒄 
𝑱 𝒄 

−1 𝑱 𝒔 
)

his expression of 𝒉 𝑮 𝒒 only depends on a subset of 𝒒̇ , as a result of

ncoding the contact constraints into the centroidal momentum matrix

 . 
G 
Constrained States As shown in Eq. (15) , the choice of the constrained

elocities 𝒒̇ 𝒄 is dependent on the contact configuration of the planar

odel, for which there are four possible scenarios: 

1. Front/Hind Stance: when the model is contacting the ground

through its front or hind leg, the contact constraint is of size 2. A

common choice of 𝒒̇ 𝒄 is the CoM velocity of the model. 

2. Double Stance: when the two feet of the model are on the ground,

two more constraints are introduced compared to the single stance

case. This corresponds to the addition of two velocities to 𝒒̇ 𝒄 on top

of the CoM velocity. One can choose the two joint velocities of any

leg, such as 𝒒̇ 𝒄 = 

(
𝑥̇ 𝐶𝑜𝑀 

, 𝑧̇ 𝐶𝑜𝑀 
, 𝑞̇ 𝐻1 , 𝑞̇ 𝐻2 

)
. 

3. Aerial: for the aerial phase where the size of contact constraint is

zero, so is the size of 𝒒̇ 𝒄 . 

Following the choice of 𝒒̇ 𝒄 , the constrained states q c can be calculated

sing forward Euler: 

 𝒄 [ 𝑖 + 1] = 𝒒 𝒄 [ 𝑖 ] + ℎ ̇𝒒 𝒄 [ 𝑖 ] (18a)

 𝒒 𝒄 [ 𝑖 ] + ℎ 𝑱 𝒄 
−1 𝑱 𝒔 𝒒̇ 𝒔 [ 𝑖 ] (18b)

here h is the time step between two neighbouring optimization nodes.

he use of this integration scheme fits naturally into the trajectory op-

imization framework later presented in Section 3 . Note that except for

he aerial phase, the constrained states q c of the model can also be cal-

ulated from geometric approaches. 

Using the single-stance configuration in Fig. 2 as an example, the

oint angles 𝑞 𝐹1 and 𝑞 𝐹2 can be parameterized with two Bézier polynomi-

ls, reducing the trajectory optimization into choosing the stance states

 𝒔𝒕 = 

(
𝑞 𝑇 𝑜𝑟 , 𝑞 𝐹1 , 𝑞 𝐹2 

)⊤
, stance velocities 𝒒̇ 𝒔𝒕 , and the swing joints’ Bézier

oefficients 𝜶sw . Table 2 categorizes all the system states under different

ynamic phases, the transition between which will be discussed in the

ollowing section. 

Swing Leg Parameterization In the presence of a swing leg, Eq. (17) can

e further decomposed by parameterizing the joint trajectories using

ézier polynomials. The resulting optimization is thus reduced to choos-

ng the swing leg Bézier coefficients 𝜶sw and the rest of the states and

elocities related to stance leg, denoted as q st and 𝒒̇ 𝒔𝒕 . 

.3. Transition map with CM states 

Typically, the legged locomotion of a robot consists of a series of

hases connected by discrete transitions, some of which would introduce

iscontinuity in system states, such as the transition between flight and

tance phase marked with the robot impacting the ground. 

During legged locomotion, the planar model in Fig. 2 alternates be-

ween four different dynamics based on their contact configurations as

ollows: 
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Fig. 3. The four basic dynamic phases that the planar model alternates between 

in its legged locomotion (the front side is to the left). State transition can only 

happen along the connected edges. Transitions along the dashed edges will in- 

troduce discontinuity in joint velocities caused by impact, whereas those that 

follow the solid edges will not. 
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1. Double support: the model is in contact with the ground with both

its legs, its dynamics is driven by the GRFs applied on both feet, 

2. Hind stance: the front leg of the model lifts off and start to swing,

while the hind leg remains in contact with the ground applying

forces, 

3. Aerial: this happens when both the legs lose contact with the ground

and swing in the air until landing, 

4. Front stance: similar to the hind stance phase, except that the contact

foot is the front leg while the hind leg is swinging 

For example, a simple four-phase jumping would excite all the four

ynamics sequentially: the model first start with a double-support pos-

ure where both its legs exert force to the ground. It transits into the hind

tance configuration as its front leg lifts off while the hind leg still push-

ng the ground. Next the model enters the aerial phase when the hind leg

oses contact, in this phase the CoM of the model follows a ballistic tra-

ectory with only gravity acting it. The end of the aerial phase is marked

ith its front leg impacts the ground, entering the front stance phase.

ere the impact between an swing motion and the following stance mo-

ion are not considered as an individual phase, but a mapping that con-

ects the two phases. Ignoring the rare case that the two legs touches

he ground at exactly the same time, we arrive at a state transition map

hown in Fig. 3 . 

.3.1. Discontinuous transition: swing to stance 

When either of the legs touches the ground marking the end of its

wing motion, an impact takes place. Here we assume the process to be

nelastic, i.e. velocity of the contacting foot is driven to zero instanta-

eously [22] . Such effect introduces discontinuity to velocities of both

nter-segment joints and the fictitious join connecting Inertial Coordi-

ate System (ICS) frame with the floating body, i.e. the CoM, whereas

alues of the model’s generalized coordinates remain intact. 

Assuming the ground reaction force during the process is an impulse

ith intensity 𝛿F ext . The impact model can be written as: 

 ( ̇𝒒 + − 𝒒̇ − ) = 𝑱 ⊤𝑭 𝒆𝒙𝒕 (19) 

here D is the inertia matrix which appears in the system’s equation of

otion. J is the contacting foot’s Jacobian. 

We further assume that the contacting foot serves as an ideal pivot

fter impact, i.e. it has no actuation, no slip, and no bounce, its velocity

hus remains zero, same as the linear constraints in Eq. (14) . Combining

ith Eq. (19) , we obtain the impact map as: 
 

𝑫( 𝒒) − 𝑱 ⊤

𝑱 𝟎 

] [ 
𝒒̇ + 

𝑭 𝒆𝒙𝒕 

] 
= 

[ 
𝒒̇ − 

𝟎 

] 
(20) 
here 𝒒̇ − = 

[
𝑥̇ − 
𝐶𝑜𝑀 

, 𝑧̇ − 
𝐶𝑜𝑀 

, 𝑞̇ − 
𝑇 𝑜𝑟 

, 𝑞̇ − 
𝐹1 , 𝑞̇ 

− 
𝐹2 , 𝑞̇ 

− 
𝐻1 , 𝑞̇ 

− 
𝐻2 

]⊤
. 

Due to the simple centroidal momentum dynamics derived in

ection 2.2.1 , the CoM velocity terms in generalized velocity 𝒒̇ − above

s readily available from the prescribed contact GRF, or follows ballistic

otion if the dynamics phase prior to impact is an aerial phase. How-

ver, the angular velocity of the torso link 𝑞̇ − 
𝑇 𝑜𝑟 

, unlike the centroidal

ngular momentum k which can be integrated from GRF, or simply re-

ains constant during aerial phases, is not directly tied to the GRF thus

equires additional computation. To further simplify the calculation, we

dopt a change of velocity coordinates from 𝒒̇ to: 

̇ 𝑮 = ( 𝑘 − , 𝒍 − , 𝑞̇ − 
𝑇 𝑜𝑟 

, 𝑞̇ − 
𝐹1 , 𝑞̇ 

− 
𝐹2 , 𝑞̇ 

− 
𝐻1 , 𝑞̇ 

− 
𝐻2 ) 

⊤ (21) 

Note that Eq. (13) can be partitioned into: 

 

𝑘 

𝒍 

] 
= 

[ 
𝐴 1 , 1 𝐴 1 , 2 𝐴 1 , 3 
𝐴 2 , 1 𝐴 2 , 1 𝐴 2 , 3 

] ⎡ ⎢ ⎢ ⎣ 
𝒍 ∕ 𝑚 

𝑞̇ 𝑇 𝑜𝑟 

𝒒̇ 𝒃 

⎤ ⎥ ⎥ ⎦ (22) 

here A 1,1 , A 1,2 , A 1,3 , A 1,1 , A 1,2 , A 1,3 are scalars or matrices obtained

rom grouping the corresponding entries of the centroidal momentum

atrix A G . 

 = 

𝐴 1 , 1 

𝑚 

𝑙 + 𝐴 1 , 2 ̇𝑞 𝑇 𝑜𝑟 + 𝐴 1 , 3 ̇𝑞 𝑏 (23) 

The mapping between the generalized velocity 𝑞̇ and 𝑞̇ 𝐺 can thus be

btained from Eq. (23) as: 

̇ = 𝚫𝑮 ⋅ 𝒒̇ 𝑮 (24) 

here: 𝚫𝑮 = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝟎 2×1 

𝟏 2×2 
𝑚 

𝟎 2×4 
1 

𝐴 1 , 2 

− 𝐴 1 , 1 
𝐴 1 , 2 

− 𝐴 1 , 3 
𝐴 1 , 2 

𝟎 2×1 𝟎 2×2 𝟏 4×4 

⎤ ⎥ ⎥ ⎥ ⎦ (25) 

The resulting transition map thus becomes: 

 

𝑫 ( 𝒒 ) − 𝑱 ⊤

𝑱 𝟎 

] [ 
𝚫𝑮 ⋅ 𝒒̇ 𝑮 

+ 

𝑭 𝒆𝒙𝒕 

] 
= 

[ 
𝚫𝑮 ⋅ 𝒒̇ 𝑮 

− 

𝟎 2×2 

] 
(26) 

his particular form of impact map allows the direct use of the cen-

roidal momentum, which evolves under the simple dynamics derived

n Section 2.2.1 and can be directly integrated from the prescribed GRF.

.3.2. Continuous transition: stance to swing 

A continuous transition happens when a contacting foot of the model

ifts off from the ground, its features include: 

• The vertical position of this previously contacting foot is still zero at
the moment of lifting off, 

• The velocity of the previously contacting foot is non-zero, i.e.
Eq. (14) no longer holds. 

• The ground reaction force once applied on the system through this

previously contacting foot becomes zero. 

Upon removing the corresponding contact constraint, the system’s

ynamics changes accordingly causing a change in the generalized co-

rdinates depending on the previous contact configuration (double sup-

ort or front/hind stance). This transition is continuous both in the gen-

ralized coordinates q and in the generalized velocity 𝒒̇ . For consistency

o the case of non-continuous transition, the mapping here is also writ-

en with respected to the generalized velocity defined in Eq. (21) : ‘ 

̇ 𝑮 
+ = 𝒒̇ 𝑮 

− (27) 

ith the application of 𝒒̇ 𝑮 in both continuous and discontinuous tran-

itions, the centroidal momentum of the model is carried across all four

ynamic phases, which further simplifies the use of the model’s cen-

roidal dynamics. With all the dynamic phases defined and the transi-

ion maps between them derived, the trajectory planning for the model

an be formulated as a sequence of dynamic phases connected by their

orresponding transitions. 
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Fig. 4. This trajectory optimization framework 

is based on matching two centroidal momen- 

tum values, one to the left where the ground re- 

action forces, parameterized with Bézier coeffi- 

cients 𝜶
𝑭 
are integrated once to obtain the cen- 

troidal linear momentum coefficient 𝜶l , then 

again to obtain CoM trajectory required to cal- 

culate the centroidal angular momentum co- 

efficient 𝜶k . The path to the right in blue 

maps system states consisting of swing states 

(if any) parameterized with Bézier coefficients 

𝜶sw , stance states and velocities 𝒒 𝒔𝒕 [ 𝑖 ] , 𝒒̇ 𝒔𝒕 [ 𝑖 ] , 
and any constrained states q c [ i ] to centroidal momentum. [ i ] indicates that its value is taken at optimization node i . To get dynamically feasible solutions, the 

two centroidal momentum values should agree at any node [ i ]. The bold variables in the figure are optimization variables, as shown in Eq. (28) . The gray variables 

are dependent on the optimization variables and are used internally. The calculation for CM, CoM values are shown in details in Appendix A. For calculating 𝒒̇ 𝒄 [ 𝑖 ] 
refer to Eq. (15) . Note that inequality constraints such as joint limit, friction cone are not included in this figure. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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. Trajectory optimization 

The values of a robot’s centroidal momentum derived in the section

bove should agree for any dynamically feasible trajectories. An equality

onstraint that unifies the two calculated values forms the basis of the

roposed motion planning framework. This section presents the setup of

his multi-phase trajectory optimization framework, followed by a test

xample to compare it with two methods 

.1. Optimization formulation 

Due to the hybrid nature of legged locomotion, a robot’s motion is

lanned in a series of phases subject to simultaneous kinematic and dy-

amic constraints, including the equality constraint that unifies the cen-

roidal momentum values calculated from the GRF and from joint states.

ig. 4 list out the structure of this proposed optimization framework. The

ecision variables include the GRF’s Bézier coefficients 𝜶𝑭 = ( 𝜶𝑭 𝒙 
, 𝜶𝑭 𝒛 

) ,
he Bézier coefficients of any swing leg 𝜶sw , the stance states q st , the

tance velocities 𝒒̇ 𝒔𝒕 , and any constrained states q c . 

Cost function: 

min 
 𝒄 [ 𝑖 ( 𝑝 ) ] , 𝒒 𝒔𝒕 [ 𝑖 ( 𝑝 ) ] , ̇𝒒 𝒔𝒕 [ 𝑖 ( 𝑝 ) ] , 𝜶𝑭 ( 𝑝 ) , 𝜶𝒔𝒘 ( 𝑝 ) 

𝑃 ∑
𝑝 =1 

 
( 𝑝 ) (28)

 is the phase index, P is the number of phases. The index i ( p ) indicates

he values are taken at optimization node i ( p ) in phase p .  
( 𝑝 ) is the task-

pecific cost function. Constraints for the trajectory optimization: For any

ynamic phase p , a set of optimization constraints should be applied to

hape the desired trajectory (the phase index p is omitted for the rest of

his section): 

1. The optimization is first subject to the following dynamic con-

straints: 

𝒒 𝒄 [ 𝑖 + 1] = 𝒒 𝒄 [ 𝑖 ] + ℎ  (𝒒 𝒄 [ 𝑖 ] , 𝜶𝒔𝒘 , 𝒒 𝒔𝒕 [ 𝑖 ] , 𝒒̇ 𝒔𝒕 [ 𝑖 ] 
)

(29a)

𝒒 𝒔𝒕 [ 𝑖 + 1] = 𝒒 𝒔𝒕 [ 𝑖 ] + ℎ ̇𝒒 𝒔𝒕 [ 𝑖 ] (29b)

𝒉 𝑮 𝜶 ( 𝑖, 𝜶𝑭 ) = 𝒉 𝑮 𝒒 ( 𝑖, 𝜶𝒔𝒘 , 𝒒 𝒄 [ 𝑖 ] , 𝒒 𝒔𝒕 [ 𝑖 ] , 𝒒̇ 𝒔𝒕 [ 𝑖 ]) (29c)

Equation set (29) ensure the obtained states always respect the

system dynamics. Eq. (29a) is a compact form of Eq. (18) where

 = 𝑱 𝒄 
−1 𝑱 𝒔 𝒒̇ 𝒔 . With Eq. (29b) , the two equations describe the change

in non-swing joint states in the form of forward-Euler integration.

Eq. (29c) unifies the CM calculated from the GRF coefficients with

the CM from the generalized coordinates and velocities, its left hand

side is from Eqs. (5) to (12) , and the right hand side from Eq. (17) . 

2. Joint range of motion, joint velocities, and on ground reaction forces

such as friction cone: 

𝒒 ≤ 𝒒 ≤ 𝒒 (30a)
𝒗 ≤ 𝒒̇ ≤ 𝒗 (30b)

𝑭 ≤ 𝑭 ( 𝑖, 𝜶𝑭 ) ≤ 𝑭 (30c)

where q , v , F denote the lower bound of the states, velocities, and

GRF, while 𝒒 , 𝒗 , 𝑭 are the upper bounds. 

Remark 2. This formulation does not include direct constraint on

joint torques, as it would involve the second-order dynamics of the

system hence defying the purpose of using the simply centroidal dy-

namics. However, we are able to indirectly discourage the use of

large joint torques by limiting the magnitude of ground reaction

forces. 

3. Kinematic constraints such as no ground penetration: 

𝒈 ( 𝑖, 𝜶𝒔𝒘 
( 𝑝 ) , 𝒒 𝒔𝒕 [ 𝑖 ( 𝑝 ) ]) ≥ 0 (31) 

where g is the forward kinematics of major body locations such as

knees. 

4. Phase transition. To ensures the continuity between two connected

phases, the following linkage constraint is introduced based on the

Transition Maps described in Section 2.3 : 

Impact Map: Swing to Stance [ 
𝑫 ( 𝒒 ) − 𝑱 ⊤

𝑱 𝟎 

] [ 
𝚫𝑮 ⋅ 𝒒̇ 𝑮 

+ 

𝑭 𝒆𝒙𝒕 

] 
= 

[ 
𝚫𝑮 ⋅ 𝒒̇ 𝑮 

− 

𝟎 2×2 

] 
(32a)

Continuous Map: Stance to Swing 

𝒒̇ 𝑮 
+ = 𝒒̇ 𝑮 

− (32b)

which are taken from Eqs. (26) and (27) . 

Compared to other optimization frameworks that rely on the second-

rder full-body dynamics, this proposed formulation only depends on

he simple CM dynamics described in Eq. (2) and the reduced first-

rder dynamics shown in Eq. (17) . Further more, unlike other direct-

ollocation-based methods which discretize the equation of motion and

olve the dynamic constraints at each optimization grid, thus more sus-

eptible to numerical integration error when the number of grid points

s small, this proposed method utilizes the closed-form solutions of the

RFs and swing trajectories parameterized by Bézier polynomials, as

 result, the integration is done analytically hence its numerical accu-

acy is less sensitive to large mesh size. This permits fast optimization

y using coarse time steps and low-order Bézier polynomials under mild

errain conditions, or the other way around for more refined trajectories

f computation time is not a concern. 

Another implicit benefit of this trajectory optimization lies in the fact

hat its outputs – the GRF profiles and swing leg joint trajectories, are au-

omatically smooth and can be readily applied to the tracking controllers

n real robotic systems in the form of polynomial coefficients, whereas

ther collocation-based methods only provide a dictionary of reference
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Table 3 

The constrains for the one-phase double-support trajectory 

optimization. The model needs to start from a given posture 

specified by q b ( t 0 ) and rise to a given final CoM height. 

𝑡 0 = 0 s , 𝑡 𝑓 ∈ [ 0 . 5 s , +∞) 
𝒒 𝒃 ( 𝑡 0 ) = [0 ◦ , −20 ◦ , −140 ◦ , −20 ◦ , −140 ◦] 
𝒒 𝒃 ( 𝑡 0 ) = 0 , 𝒒 𝒃 ( 𝑡 𝑓 ) = 0 
𝒒 𝒃 ( 𝑡 ) ∈  , |𝒒 𝒃 ( 𝑡 ) | < = 30 rad/s 
F i,x ( t ) < 0.7 F i,z ( t ) i ∈ { F, 

H } 𝐹 𝑖,𝑥 ( 𝑡 ) ∈
[
−30 N , 30 N 

]
F i,x ( t ) ∈ [0 N, 30 N] 

𝑥 
𝐶𝑜𝑀 

( 𝑡 𝑓 ) = 𝑥 𝐶𝑜𝑀 
( 𝑡 0 ) 

𝑧 
𝐶𝑜𝑀 

( 𝑡 𝑓 ) = 0 . 18 m 
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oints which are not necessarily smooth. Though the stance coordinates

 st and velocities 𝒒̇ 𝒔𝒕 are still picked independently at each nodes to

eet various dynamic and kinematic constraints, as Eq. (29) implies,

heir values are not directly used in controller designs since the stance

eg is under force control which does not rely on the joint trajectories

ut rather on the closed-form solution of the GRF. 

.2. Comparison with other formulations 

The discontinuity in joint velocities inherent to the legged locomo-

ion limits the use of numerical integration up to first order [23,24] . As

 result, direct collocation methods that do not utilize closed-form GRFs

re prone to loss of accuracy when force to run with coarse time steps,

hereas this proposed method would not receive less impact. A sim-

le trajectory optimization example is tested below to verify the perfor-

ance of our proposed method. 

Test Example The planar model in Fig. 2 is commanded to rise to a

iven CoM height starting from a double-support contact posture. The

otion is subject to constraints on GRF, joint angle, and joint velocity,

etailed optimization constraints over its states and controls are speci-

ed in Table 3 . 

The cost function is chosen as 0 to find a feasible trajectory: 

min 
 [ 𝑖 ] , ̇𝒒 [ 𝑖 ] , 𝑭 [ 𝑖 ] 

 = 0 (33) 

ere the F [ i ] is the value of the GRF vector taken at optimization node

 i ]. 

Reference Methods Two optimization formulations based on direct

ollocation are chosen as references. Similar to the proposed formula-

ion, they also include GRFs as decision variables, but are chosen inde-

endently at each optimization grids without seeking their closed-form
ig. 5. The outputs from the three trajectory optimization formulations for the sam

column A), full-body-dynamic-based, non-closed-form GRFs (column B), and CM-dyn

ethods generated non-smooth force profiles, as shown in A1 and B1, while the pro

igh-order integration based on the ODE45 solver is performed in A2, B2, and C2 to

ith the CoM height trajectories from optimizations (dotted lines). The proposed opt
olution. The first method uses the same CM dynamics as Section 2.2.2 ,

ubject to the following dynamic constraints other than the ones already

nclude in Table 3 : 

 [ 𝑖 + 1] = 𝒒 [ 𝑖 ] + ℎ ̇𝒒 [ 𝑖 ] (34a)

 𝑮 𝜶
( 𝑖, 𝑭 [ 𝑖 ]) = 𝒉 𝑮 𝒒 ( 𝑖, 𝒒 [ 𝑖 ] , 𝒒̇ [ 𝑖 ]) (34b)

The second formulation uses the model’s full-body dynamics, result-

ng in a different set of dynamic constraints: 

 [ 𝑖 + 1] = 𝒒 [ 𝑖 ] + ℎ ̇𝒒 [ 𝑖 ] (35a)

̇ [ 𝑖 + 1] = 𝐟 ( 𝑖, 𝒒 [ 𝑖 ] , 𝒒̇ [ 𝑖 ] , 𝑭 [ 𝑖 ] ) (35b)

here f is derived from the standard joint-space EoM (equation of mo-

ion) of the model. All optimizations would start from zero initial con-

itions, are formulated using GPOPS package [25] , and solved using

NOPT [26] on a laptop with i7-8550U processor. 

Result Comparison With the cost function defined in Eq. (33) , all

hree optimization formulations were able to find a simple double-stance

tanding-up motions, though the computational time varied: the CM-

ynamics-based reference method took 0.7203 s to converge, and the

ull-body-dynamic-based method spent 0.7904 s on finding a feasible

olution.In comparison, the proposed method was able to converge in

.5005 s. 

To assess the quality of the optimization outputs, all the output tra-

ectories are compared with the solutions from integrating the full-body

ynamics with high-accuracy Runge-Kutta algorithm, starting with the

ontrols and initial conditions taken from the corresponding optimiza-

ion outputs. The comparison results are shown in Fig. 5 . 

When looking at Fig. 5 -A1 and Fig. 5 -B1, it is evident that the GRF

urves provided by the two reference optimization formulations are

ighly non-smooth. Whereas our formulation automatically generates

mooth GRF profiles shown in Fig. 5 -C1. Though the two reference meth-

ds were able to lift the CoM close to the desired height (0.18 m), as

emonstrated in Fig. 5 -A2 and Fig. 5 -B2, the accuracy of the resulting

oM trajectories were noticeably compromised due to the numerical in-

egration of coarse GRF. 

To rule out the possibility that the inaccuracy of the two reference

ethods is purely caused by the non-ideal GRFs, not inherent to the

wo formulations themselves, the following cost function is applied to

ll three methods to regulate the GRFs. 

min 
 [ 𝑖 ] , ̇𝒒 [ 𝑖 ] , 𝑭 [ 𝑖 ] 

 = 

∑
𝑖 

𝒘 𝑭 [ 𝑖 ] 2 , (36) 

he weights w are chosen such that the contribution from the L2 norms

f the horizontal and vertical forces are at the same order of magnitude,
e test example. From left to right: CM-dynamic-based, non-closed-form GRFs 

amic-based, closed-form GRFs (column C, the proposed method). The first two 

posed method naturally generated smooth GRF in C1. Using these GRF curves, 

 calculate the corresponding CoM height trajectories (solid line) and compare 

imization results in noticeably more accurate CoM trajectories. 
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Fig. 6. The regulated GRF outputs and the CoM height trajectories from the CM-dynamic-based optimization with non-closed-form GRF (column A), the full-body- 

dynamic-based optimization (column B), and the proposed method (column C). It is evident that the CoM height trajectory predicted by the optimization is closer to 

that from ODE45 compared to Fig. 5 for column A and B. 
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Fig. 7. The absolute error of the proposed method (black) compare with two 

other reference methods: one based on CM dynamics (red), the other uses the 

full-body dynamics (blue). The proposed method has the least numerical errors 

in both CoM height (top) and torso angle (bottom). 

Table 4 

The CoT (Cost of Transportation) of the motions created 

by the proposed method (CM dynamics, closed-form GRFs) 

and the two reference methods: one based on CM dynamics, 

the other on full-body dynamics, both with non-closed-form 

GRFs. 

Formulation 

CoT 

Coarse GRF Smooth GRF 

Proposed Method 1.101 1.087 

Ref. 1: CM Dynamics 1.287 1.087 

Ref. 2: Full-body Dynamics 1.363 1.087 

4

 

p  

r  
lse the cost term would be dominated by the vertical forces based on

he results in Fig. 5 . In our test case, the weights for the horizontal and

ertical forces are chosen as 1 and 0.6 respectively. This cost function

teers the optimizer away from choosing large GRF values, effectively

moothing out the GRF profiles. 

Note that the added terms in optimization would likely lead to an in-

rease in computation time, in this case the CM-dynamic-based method

nded in 3.3498 s, and the full-body-dynamic-based method converged

fter 21.5129 s. Our proposed method also saw a rise in computation

ime to 5.7028 s. 

It is worth noting that the cost function was added to the proposed

ethod only to make a fair comparison, the method itself does not re-

uire such an addition and was able to generate smooth GRF profiles on

ts own, as suggested by Fig. 5 . 

The updated outputs are shown in Fig. 6 . With the GRF curves

moothed out seen in Fig. 6 -A1 and Fig. 6 -B1, the accuracy of the CoM

rajectories from the two reference methods sees a noticeable improve-

ent shown in Fig. 6 -A2 and Fig. 6 -B2. Unsurprisingly, the outputs from

ur proposed method does not experience a significant change, as its

revious GRF outputs were already smooth. However, taking a closer

ook at the absolute errors of the three outputs in Fig. 7 , our method is

ble to consistently provide more accurate position and torso angle (and

ther joint angles) before and after the addition of the extra cost term. 

The energy properties of the three formulations are also compared to

ee if their outputs are energy efficient in achieving the same motion, by

xamining the cost of transport (CoT) [27] of each solutions calculated

s: 

( 𝑡 ) = ∫
𝑡 

𝑡 0 

∑
𝑖,𝑗 max 

(
𝜏𝑖𝑗 ( 𝑡 ) ̇𝑞 𝑖𝑗 ( 𝑡 ) , 0 

)
𝑚 0 𝑔Δ𝑧 𝐶𝑜𝑀 

𝑑𝑡, 𝑡 ∈
[
𝑡 0 , 𝑡 𝑓 

]
(37)

here the index i ∈ { F, H } denotes the location of the joint: on front

r hind leg, j ∈ {1, 2} stands for hip ( 𝑗 = 1) or knee ( 𝑗 = 2) . Δ𝑧 𝐶𝑜𝑀 
=

 𝐶𝑜𝑀 
( 𝑡 𝑓 ) − 𝑧 𝐶𝑜𝑀 

( 𝑡 0 ) is the total change of CoM height. In this particular

etup, since the model starts and ends with zero joint velocities, its CoM

nds at the same horizontal position, the change of its total mechanical

nergy equals the change in potential energy 𝑚 0 𝑔Δ𝑧 𝐶𝑜𝑀 
. 

The CoT of the three methods are shown in Table 4 . The motions

rom the two reference methods are less energy efficient before smooth-

ng out the GRF curves, as seen with larger CoT values. It is worth noting

hat smoothing out the GRF caused the CoT of the two reference meth-

ds to match that of the proposed method. This is possibly due to the

act that the smooth GRF curves from the proposed method is manu-

lly discretized when solving for the joint mechanical work, resulting in

ess-smooth profiles. 
. Experimental validation 

This section introduces the planar testbed used in validating the pro-

osed trajectory optimization framework, together with the experiment

esult of a 3-phase forward jumping motion. The optimization was based
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Fig. 8. The planar robot testbed used for experimental validation of the pro- 

posed algorithm. Its two quasi-direct-drive legs are capable of high-bandwidth, 

high-fidelity force control. 

Fig. 9. The planar robot testbed executing a 3-phase leaping motion following 

the output from the proposed trajectory optimization framework. The double 

stance phase and flight phase are separated by the hind stance phase (shaded). 

Top: the CoM trajectory from the optimization output (dashed orange) and the 

experiment measurement taken from the boom encoders (blue). Bottom: the 

testbed jumped from right to left. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Comparing the torso and joint trajectories generated by the proposed 

algorithm (dashed orange) with the corresponding angle readings recorded 

when performing the motion on the robot testbed (blue). All figures are sep- 

arated into three stages by two black dashed lines, which are 1) double support, 

2) hind stance, and 3) aerial phase from left to right. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
n the planar floating-base model described in Section 2.1 and formu-

ated with the same structure proposed in Section 3 . 

.1. Test hardware 

A two-legged robot testbed shown in Fig. 8 is used to validate the

rajectories generated by the proposed method. The testbed is driven by

wo customized BLDC motor with high torque density and a low gear

atio of 23:1, allowing high-fidelity control of GRF [28] . The two legs

oth consist of two 15 cm links, one 3D-printed (white) and the other

ut from carbon fiber tube (black). The legs are attached to a 30cm
arbon fiber tube acting as a torso. The robot testbed is supported by

 boom system to constrain its motion in a plane. Most of the robot’s

lectronic components are separated from its body, including four Elmo

-TWI motor drivers and a Intel Core i7 Single-Board-Computer (SBC)

hich runs a control loop at 4kHz in Simulink Real-Time, leaving only

our magnetic encoders mounted to each motor’s rotation axis providing

oint angle readings. The entire experimental setup weighs 1.9 kg. The

xperiment video can be found at https://youtu.be/3rcmn4K3ZeY . 

.2. Experimental results 

In this experiment, the robot is commanded to perform a for-

ard leap following the trajectory produced using the same setup as

ection 3.1 and Table 3 . The cost function is set to maximize the travel

istance. 

The leaping motion consisted of the following three phases: the robot

tarted from a double support phase with both of its legs under force

ontrol. It entered the hind stance phase after 0.2 s, with the feedforward

orce on its front leg set to zero while the hind leg keep pushing against

he ground for another 0.16s. The last phase – flight phase started after

he hind leg stops applying force, ended with the robot landing on its

ront leg. Since there was no direct way of measuring the testbed’s CoM

osition, it was approximated as the center of the torso link, as shown

n Fig. 9 . 

https://youtu.be/3rcmn4K3ZeY
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Table 5 

The controller gains used in each phase. 

Phase 

Kp(N/m) Kd(N/ms −1 ) 

Front Hind Front Hind 

Double Support 100 100 0.5 0.5 

Hind Stance 500 100 4 0.5 

Aerial 500 500 4 4 
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The swing leg was under impedance control to track the desired tra-

ectory given by as a set of Bézier polynomials. Another impedance con-

roller with small stiffness and damping was added on top of the feedfor-

ard force to help regulate the stance leg position, with its max control

ffort capped at 15% of the GRF value to limit its effect on the robot’s

otion. The gains for each phase are listed in Table 5 . Joint trajectories

re shown in Fig. 10 , which closely matched the output trajectories from

he optimization. 

. Conclusion and future work 

In this paper we present a trajectory optimization framework for

lanning legged locomotion based on a robot’s centroidal momentum,

hich enjoys simple dynamics dominated by the GRFs and the gravity.

y parameterizing the GRFs as Bézier polynomials, the centroidal mo-

entum of the robot can be solved analytically instead of through nu-

erical integration. This avoids interpolating or curve-fitting the output

rajectories between collocation points, which may result in sub-optimal

rajectories or violation of constraints. The same parameterization is also

pplied to any swing leg joints. The accuracy of the CoM and swing joints

rajectories provided by this framework hence is independent of mesh

ize. As an added benefit, its outputs are automatically smooth, and can

e readily applied to a tracking controller in real robotic systems as sets

f polynomial coefficients. 

The optimization framework was able to produce a jumping motion

hich was validated by a planar robot platform with reasonable ac-

uracy. Though the proposed method has been derived and validated

n planar cases, thanks to the simplicity of the centroidal momentum

ynamics of a robot, the extension from planar to 3D would not nec-

ssarily induce substantial revision to the existing formulation, where

q. (2b) remains the same while Eq. (2a) is now a 3 × 1 vector. Such a
hange would still allow the use of parameterized ground reaction forces

nd the close-form solution of centroidal momentum, with the rest of the

erivations remain largely unchanged. The authors believe that the re-

ults presented in this paper could encourage further implementation

f this method on more complex locomotion such as multi-step walking

nd running. 
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ppendix A. Bézier calculation for centroidal momentum and 

oM trajectory 

The centroidal momentum of the planar model in Fig. 2 evolves un-

er a net external wrench induced by gravity and the contact forces

xerted by its environment: 

̇
 = 𝑚 ̈𝒓 = 

∑
𝑖 

𝑭 𝒊 − 𝑚 𝒈 (A.1a)

̇
 = 

∑
𝑖 

(
𝒄 𝒊 − 𝒓 

)
× 𝑭 𝑖 (A.1b)

Note that the centroidal linear momentum l in Eq. (A.1a) only lin-

arly depend on the ground reaction forces F , we can first solve l

y integrating F one time, then again for the CoM trajectory, then

q. (A.1b) can be integrated to get the centroidal angular momentum k .

Given the horizontal and vertical GRF profiles parameterized with

 th order Bézier curves with coefficients 

𝑭 𝒙 
= 

[
𝛼𝐹 𝑥 , 0 , 𝛼𝐹 𝑥 , 1 , … , 𝛼𝐹 𝑥 , 𝑀 

]
∈ ℝ 

𝑀+1 

𝜶𝑭 𝒛 
= 

[
𝛼𝐹 𝑧 , 0 , 𝛼𝐹 𝑧 , 1 , … , 𝛼𝐹 𝑧 , 𝑀 

]
∈ ℝ 

𝑀+1 

espectively, the corresponding centroidal linear momentum can be cal-

ulated from Bézier polynomials differentiation: 

d 

d 𝑠 
𝐵 𝑖, 𝑀 

( 𝑠 ) = 

𝑀 

𝑇 

(
𝐵 𝑖 −1 , 𝑀−1 ( 𝑠 ) − 𝐵 𝑖, 𝑀−1 ( 𝑠 ) 

)
(A.2) 

here 𝐵 𝑖, 𝑀 
( 𝑠 ) is the i th coefficient of a M th order Bézier curve, 𝑖 =

 , 1 , ⋯ , 𝑀, s ∈ [0, T ]. 
Given the initial CoM velocities 𝑥̇ 0 , 𝑧̇ 0 , from the GRF coefficients 𝜶𝑭 𝒙 

,

𝑭 𝒛 
, the calculation for the centroidal momentum coefficients 𝜶𝒍 𝒙 

, 𝜶𝒍 𝒛 
∈

 
𝑀+2 based on Eq. (A.2) can be written as: 

 

 

 

 

 

 

 

− 
𝑇 

𝑀 

𝑇 

𝑀 
0 ⋯ 0 0 

0 − 
𝑇 

𝑀 

𝑇 

𝑀 
⋯ 0 0 

⋮ ⋱ ⋮ ⋮ 
0 0 0 ⋯ − 

𝑇 

𝑀 

𝑇 

𝑀 

1 0 ⋯ 0 0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝛼𝑙 𝑥 , 0 
𝛼𝑙 𝑥 , 1 
⋮ 

𝛼𝑙 𝑥 , 𝑀 

𝛼𝑙 𝑥 , 𝑀+1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝛼𝐹 𝑥 , 0 
𝛼𝐹 𝑥 , 1 
⋮ 

𝛼𝐹 𝑥 , 𝑀 

𝑚 ̇𝑥 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
 

 

 

 

 

 

 

− 
𝑇 

𝑀 

𝑇 

𝑀 
0 ⋯ 0 0 

0 − 
𝑇 

𝑀 

𝑇 

𝑀 
⋯ 0 0 

⋮ ⋱ ⋮ ⋮ 
0 0 0 ⋯ − 

𝑇 

𝑀 

𝑇 

𝑀 

1 0 ⋯ 0 0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝛼𝑙 𝑧 , 0 
𝛼𝑙 𝑧 , 1 
⋮ 

𝛼𝑙 𝑧 , 𝑀 

𝛼𝑙 𝑧 , 𝑀+1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝛼𝐹 𝑧 , 0 − 𝑚𝑔 

𝛼𝐹 𝑧 , 1 − 𝑚𝑔 

⋮ 
𝛼𝐹 𝑧 , 𝑀 

− 𝑚𝑔 

𝑚 ̇𝑧 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
here m is the robot’s mass, g is the gravitational acceleration. The two

quations can be condensed into the following form: 

𝑀+2 ,𝑇 𝜶𝒍 𝒙 
= 

[ 
𝜶𝑭 𝒙 

𝑚 ̇𝑥 0 

] 
, 𝚽𝑀+2 ,𝑇 𝜶𝒍 𝒛 

= 

[ 
𝜶𝑭 𝒛 

− 𝑚 𝒈 

𝑚 ̇𝑧 0 

] 
(A.3) 

𝑀+2 ,𝑇 ∈ ℝ 
( 𝑀 +2)×( 𝑀 +2) is the corresponding coefficient matrix, its ele-

ents defined as: 

𝑀+2 ,𝑇 ( 𝑖, 𝑗) ∶= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
− 𝑀 ∕ 𝑇 , 𝑖 = 𝑗 = 1 , 2 , … , 𝑀 + 1 
𝑀 ∕ 𝑇 , 𝑖 = 𝑗 − 1 = 1 , 2 , … , 𝑀 + 1 
1 , 𝑖 = 𝑀 + 2 , 𝑗 = 1 
0 , otherwise 

𝑀+2 ,𝑇 is by its structure full rank hence always invertible. 

Similarly, the Bézier coefficients 𝜶x , 𝜶𝒛 ∈ ℝ 
( 𝑀+3) of the CoM trajec-

ory can be retrieved given the initial CoM position x 0 , z 0 as follows: 

𝑀+3 ,𝑇 𝜶𝒙 = 

[ 
𝜶𝒍 𝒙 

𝑚 

𝑥 0 

] 

, 𝚽𝑀+3 ,𝑇 𝜶𝒛 = 

[ 
𝜶𝒍 𝒛 

𝑚 

𝑧 0 

] 

The calculation for centroidal angular momentum k starts from cal-

ulating 𝑘̇ from Eq. (A.1b) , which can be written into Bézier polynomial

ultiplication as: 

̇
 = 𝐹 𝑧 

(
𝑥 1 − 𝑥 𝐶𝑜𝑀 

)
− 𝐹 𝑥 

(
𝑧 1 − 𝑧 𝐶𝑜𝑀 

)
. 
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Note that the multiplication of two Bézier polynomials yields an-

ther Bézier polynomial, the order of which is the sum of the two mul-

iplicands. Denote the Bézier coefficient of 𝑘̇ as 𝜶
𝒌̇ 
∈ ℝ 

(2 𝑀+3) . Due to

he space limit, we first calculate the two terms 𝐹 𝑧 
(
𝑥 1 − 𝑥 𝐶𝑜𝑀 

)
and

 
𝑥 
(
𝑧 1 − 𝑧 𝐶𝑜𝑀 

)
separately. The two terms also take the form of Bézier

olynomials. Their coefficients, denoted as 𝜶𝟏 , 𝜶𝟐 ∈ ℝ 
2 𝑀+3 , can be ob-

ained with the Bézier polynomial multiplication rule: 

𝟏 ( 𝑖 ) = 

min ( 𝑀,𝑖 ) ∑
𝑗= max (0 ,𝑖 − 𝑀−2) 

𝐶 𝑖,𝑗 𝜶𝑭 𝒛 
( 𝑖 ) 
(
𝑥 1 − 𝜶𝒙 ( 𝑖 − 𝑗) 

)
𝜶𝟐 ( 𝑖 ) = 

min ( 𝑀,𝑖 ) ∑
𝑗= max (0 ,𝑖 − 𝑀−2) 

𝐶 𝑖,𝑗 𝜶𝑭 𝒙 
( 𝑖 ) 
(
𝑧 1 − 𝜶𝒛 ( 𝑖 − 𝑗) 

)
he coefficients C i,j are given by: 

 𝑖,𝑗 = 

( 

𝑀 

𝑗 

) ( 

𝑀 + 2 
𝑖 − 𝑗 

) 

( 

2 𝑀 + 2 
𝑖 

) , where 

( 

𝑀 

𝑗 

) 

= 

𝑀! 
𝑗 !( 𝑀 − 𝑗 )! 

hen from 𝜶
𝒌̇ 
= 𝜶𝟏 + 𝜶𝟐 and given the initial value k 0 , the centroidal

ngular momentum k can be calculated following the same principle as

q. (A.3) : 

2 𝑀+4 ,𝑇 𝜶𝒌 = 

[ 
𝜶
𝒌̇ 

𝑘 0 

] 
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