
IEEE TRANSACTIONS ON ROBOTICS 1

Representation-Free Model Predictive Control for
Dynamic Motions in Quadrupeds

Yanran Ding1, Student Member, IEEE, Abhishek Pandala2, Student Member, IEEE, Chuanzheng Li1, Student
Member, IEEE, Young-Ha Shin3, Student Member, IEEE, and Hae-Won Park3, Member, IEEE

Abstract—This paper presents a novel Representation-Free
Model Predictive Control (RF-MPC) framework for controlling
various dynamic motions of a quadrupedal robot in three
dimensional (3D) space. Our formulation directly represents the
rotational dynamics using the rotation matrix, which liberates
us from the issues associated with the use of Euler angles and
quaternion as the orientation representations. With a variation-
based linearization scheme and a carefully constructed cost
function, the MPC control law is transcribed to the standard
Quadratic Program (QP) form. The MPC controller can operate
at real-time rates of 250 Hz on a quadruped robot. Experimental
results including periodic quadrupedal gaits and a controlled
backflip validate that our control strategy could stabilize dynamic
motions that involve singularity in 3D maneuvers.

Index Terms—Model Predictive Control, Legged Robots, Dy-
namics, Under-actuated Robots

I. INTRODUCTION

THE quadrupedal animals possess extraordinary compe-
tence of navigating harsh terrains by executing agile yet

well-coordinated movements. For example, mountain goats
demonstrate their extraordinary mobility on traversing steep
cliffs [2]. Domesticated canine animals could be trained to
execute a variety of acrobatic Parkour maneuvers [3]. These

Manuscript received November 11, 2019; re-submitted July 16, 2020;
revised November 23, 2020; accepted December 14, 2020. This paper was
recommended for publication by Editor Eiichi Yoshida upon evaluation of
the reviewers’ comments. This work is supported in part by NAVER LABS
Corp. under grant 087387, Air Force Office of Scientific Research under grant
FA2386-17-1-4665, National Science Foundation under grant 1752262, the
Mechanical Engineering Department of Korea Advanced Institute of Science
and Technology (KAIST). (Corresponding author: Hae-Won Park), email:
haewonpark@kaist.ac.kr

The preliminary version of this paper [1] was presented in ICRA 2019.
Yanran Ding and Chuanzheng Li are with 1the Department of Mechan-

ical Science and Engineering, University of Illinois at Urbana-Champaign,
Urbana,IL, 61820 USA (e-mail: {yding35, cli67}@illinois.edu)

Abhishek Pandala is with 2the Department of Mechanical Engineering,
Virginia Polytechnic Institute and State University, VA, 24061, USA (e-mail:
agp19@vt.edu).

Young-Ha Shin and Hae-Won Park are with 3the Department of Mechanical
Engineering, Korea Advanced Institute of Science and Technology, Daejeon-
34141, South Korea (e-mail: {shsin000,haewonpark}@kaist.ac.kr)

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org, provided by the authors. This material includes
a video that presents the simulation and experiment results of the proposed
MPC controller on a quadruped robot. Color versions of one or more of the
figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier:
©2020 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Fig. 1: Quadruped robot Panther performing a controlled backflip
that involves passing through the upright pose, which corresponds
to the singularity in the Euler angle representation. Throughout the
controlled backflip, the feet pair indicated by the white triangle is
kept in contact with the ground. The red arrow indicates the direction
of the backflip and the shadowed images are snapshots during the
backflip.

remarkable abilities of quadrupedal animals motivated the de-
velopment of many quadrupedal robots. Minitaur [4] realized
various dynamic running gaits; ANYmal [5] and HyQ [6]
could navigate challenging terrains autonomously; MIT Chee-
tah robots achieved galloping [7], high speed bounding [8]
and dynamic yet robust locomotion [9]. As the capabilities of
quadrupedal robot rapidly grow, related researches have geared
towards motions beyond locomotion on flat terrains. For
example, ANYmal demonstrated the stair climbing capability
[10]; MIT Cheetah 2 overcame obstacles by planning jumping
trajectories online [11]; MIT Cheetah 3 achieved leaping onto
high platforms [12]; MIT Mini Cheetah could execute 360◦

backflips [13]. In general, the ability of quadrupedal robots
is being developed towards applications that involve more
dynamic maneuvers in increasingly complex scenarios.

Controlling a robot to achieve similar mobility that rivals
their animal counterparts encompasses many challenges. For
instance, the control design should be capable of embracing
the inherent dynamics when robots are under-actuated. In
addition, the controller must take into consideration the con-
straints imposed by hardware capacity and the environment.
Available solutions for dynamic locomotion include heuristic
controller [14], inverse dynamics control [15] and hierarchical
operational space control [16]. Simulation result of backflip
in Cassie is presented in [17]. Recent hardware results on
ANYmal [18] demonstrated the potential of reinforcement

ar
X

iv
:2

01
2.

10
00

2v
1

 [c
s.R

O
]

18
 D

ec
 2

02
0

http://ieeexplore.ieee.org

IEEE TRANSACTIONS ON ROBOTICS 2

learning in dynamic legged locomotion. Recent times have
seen a surge in the use of optimization-based approaches,
especially Model Predictive Control (MPC) for legged robots.
Successful applications of MPC on humanoid [19] [20] and
quadrupeds [21] [22] have shown the efficacy of MPC in
planning and controlling a wide variety of dynamic motions.

Most of the MPC control frameworks in the quadrupedal
robot community use Euler angles as the orientation repre-
sentation [23]–[26] since many of locomotion tasks do not
involve large deviation from the nominal orientation. However,
Euler angles representation has the singularity issue [27]
(also known as Gimbal lock), which requires the motions to
avoid singular orientations of the Euler angle representation.
This disadvantage of Euler angles representation restricts the
quadrupedal robot from executing motions such as climbing
up near-vertical cliff as the mountain goat, or the acrobatic
Parkour as the trained dogs. That is because these motions
are highly likely to involve passing through the vicinity of
singularity. Quaternion [28] is a singularity-free representation,
but as mentioned in [29], quaternions have two local charts
that covers the special orthogonal group SO(3) twice. This
ambiguity could cause unwinding phenomenon [29], where the
body may start arbitrarily close to the desired attitude and yet
rotate through large angles before reaching the desired orienta-
tion. Widely adopted by the Unmanned Aerial Vehicle (UAV)
community, quaternions are often used in reactive controllers
which instantaneously respond to the state of the vehicle.
Sign function has been used in the reactive controller [30]
to eliminate the ambiguity of the quaternion representation.
In [31], hybrid dynamic algorithm has been introduced to
solve the ambiguity of the quaternion representation. However,
for predictive controllers such as MPC, switching of local
charts is undesirable. The orientation of a rigid body is
originally parameterized by the rotation matrix, which evolves
on SO(3) [32]. Although other orientation representations
could be re-aligned to avoid their corresponding issues in a
specific motion, the rotation matrix possesses advantages as a
global parametrization that is compact and singularity-free.

In this manuscript we present the development and ex-
periment results of a representation-free model predictive
control (RF-MPC) framework that can be used to stabilize the
robot in arbitrary orientation while leveraging the predictive
capabilities of MPC.

A. Contribution

In this work, we venture to address the aforementioned
problems in the following ways:

1) We introduce a novel MPC formulation for controlling
legged robots in dynamic 3D motions using rotation ma-
trices. Specifically, a variation-based linearization tech-
nique [33] [34] is used to generate linear dynamics
of the single rigid body (SRB) model, which leads to
a representation-free MPC (RF-MPC) formulation with
consistent performance even when executing motions that
involve complex 3D rotations such as acrobatic motions
in gymnastics that go through 90◦ pitch angle.

2) The original orientation error involves the matrix loga-
rithm map, which is a nonlinear function of the opti-
mization variables. We propose an orientation error term
in affine form of the state variables as an approximation
to the original orientation error. This approximate orien-
tation error term enables the MPC to be transcribed into
a Quadratic Program (QP), which in term facilitates real-
time MPC control.

3) We implement the proposed RF-MPC on a quadruped
robot Panther to realize real-time control of various
gaits and a controlled backflip that passes through the
singularity.

We have substantially built on the results of our previous
work [1] with the following novel strategies. (1) An improved
formulation of the angular dynamics of the rotation matrix,
which uses 3-dimensional variation vector instead of the 9-
dimensional variation matrix. (2) A better choice of the ob-
jective function on the orientation which guarantees positive-
definiteness. Previously, we used a special configuration error
function [32] to approximate the orientation cost function,
which only guarantees positive-definiteness when the predicted
rotation matrix is on the SO(3) manifold. (3) A section that
provides a simulation case study on the effect of linearization
schemes. (4) More experimental results, including trot running
and the controlled backflip.

B. Outline

The paper is organized as follows: Section II presents
the mathematical derivation of the RF-MPC framework. This
section first introduces the single rigid body model, which is
used for the derivation of the variation-based linearization of
the dynamics. A novel vectorization technique along with a
deliberately chosen cost function enables the transcription of
RF-MPC into a Quadratic Program (QP). Section III presents
the numerical results, which includes various dynamic motions
and a simulation case study that justifies the choice of the lin-
earization scheme; Section IV summarizes the implementation
details necessary for the application on the robot hardware
platform; Section V demonstrates the experimental results,
followed by a discussion in Section VI. Section VII provides
the concluding remark with an outlook for the future work.

II. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC), also known as Receding
Horizon Control (RHC), considers a model of the system to be
controlled and repeatedly solves for the optimal control input
subject to the state and control constraints. At each sampling
time, a finite horizon optimal control problem is solved and the
control signal for the first time-step is applied to the system
during the following sampling interval. After that, the same
process is repeated with the updated measurements. MPC-
based controllers have the capability to incorporate various
constraints that are essential to legged locomotion, including
unilateral ground reaction force (GRF) and friction cone
constraints. Besides, MPC could provide control laws that are
discontinuous [35], which could not be easily achieved by
conventional control techniques.

IEEE TRANSACTIONS ON ROBOTICS 3

The MPC control law could be obtained by solving the
following constrained optimization problem

minimize `T (xt+N |t) +
N−1∑
k=0

`(xt+k|t,ut+k|t) (1a)

subject to xt+k+1|t = f(xt+k|t) + g(xt+k|t)ut+k|t
(1b)

k = 0, · · · , N − 1 (1c)
xt+k|t ∈ X, k = 0, · · · , N − 1 (1d)
ut+k|t ∈ U, k = 0, · · · , N − 1 (1e)
xt|t = x(t) = xop (1f)
xt+N |t ∈ Xf (1g)

where x ∈ Rn,u ∈ Rm are the state and input vectors,
respectively; `T : Rn → R is the terminal cost function;
` : Rn×Rm → R is the stage cost function; N is the prediction
horizon; f(x) + g(x)u is the control affine dynamic update
equation; X ⊆ Rn,U ⊆ Rm are the feasible polyhedral sets for
the state and control; Xf is the final state set; xt+k|t denotes
the state vector at time t + k predicted at time t, using the
current state measurement xt|t = xop, where the subscript
(·)op denotes the variables at the current operating point. The
operating point in this manuscript is defined as the current
state xop and control uop.

In the case that the dynamic update equation f(x)+g(x)u
is a nonlinear function, a nonlinear MPC (NMPC) could be
formulated and solved as a general nonlinear program (NLP)
by utilizing trajectory optimization (TO) techniques such as
multiple shooting [36] or direct collocation [37].

Our main objective is to formulate a real-time executable
MPC scheme for controlling quadruped robotics to perform a
variety of dynamic motions. To meet the real-time require-
ment, the optimization problem posed by the MPC has to
be solved robustly at a high rate on the mobile embedded
computer, which has limited computational resources. Hence,
a simplified model is adopted to reduce the dimensionality of
the optimization problem. Since the mass of all legs combined
is less than 10% of the total body mass, a single rigid body
model serves as a reasonable approximation.

A. 3D Single Rigid Body Model

To mitigate the issue of demanding computational require-
ment of MPC for high Degrees of Freedom (DoF) system
models, simple models or templates [38] that capture the
dominant system dynamics are used instead. Templates such
as the Linear Inverted Pendulum [39] (LIP) is widely used in
humanoid robots [40] [41]. Centroidal dynamics [42] model
is used in [43] [44] [45] to capture the major dynamic effect
of the complex full-body dynamics model. The quadrupedal
robot community has seen an increasing number of work that
utilizes the SRB model in three-dimensional (3D) space, which
assumes that the entire mass of the robot is lumped into a
single rigid body (SRB). The simplicity of the SRB model
is enabled by the light leg design, whose inertial effect is

𝑥𝑆
𝑦𝑆

𝑧𝑆

{𝑆}
𝒖2

𝒖3

𝑥𝐵

𝑧𝐵

𝑦𝐵

{𝐵}𝒑𝐶𝑜𝑀

𝒓2 𝒓3

𝒑1
𝑓𝒑2

𝑓

𝒑3
𝑓

𝒑4
𝑓

1-FL
2-FR
3-HL
4-HR

Fig. 2: Illustration of coordinate systems and the 3D single rigid-body
model. {S} is the inertia frame and {B} is the body attached frame.
ri is the position vector from center of mass to each foot in {S} and
ui is the GRF of ith contact foot expressed in {S}. The convention
for the numbering of feet is such that FL stands for front-left leg,
and HR stands for hind-right leg.

negligible compared with the body. Let the state of the single
rigid body model be

x := [p ṗ R Bω] ∈ R18, (2)

where p ∈ R3 is the position of the body Center of Mass
(CoM); ṗ ∈ R3 is the CoM velocity; R ∈ SO(3) = {R ∈
R3×3|RTR = I, det(R) = +1} is the rotation matrix of
the body frame {B} expressed in the inertial frame {S};
det(·) calculates the determinant of a matrix and I is the 3-
by-3 identity matrix. Here, the rotation matrix R is reshaped
into vector form. Bω ∈ R3 indicates the angular velocity
vector expressed in the body frame {B}. Variables without
superscript on the upper-left corner could be assumed to
be expressed in the inertial frame. The illustration of the
coordinate system could be found in Fig. 2.

The input to the dynamical system is the GRF ui ∈ R3 at
contact foot locations pfi ∈ R3. The GRFs create the external
wrench to the rigid body, where i ∈ {1, 2, 3, 4} is the index
for the front left (FL), front right (FR), hind left (HL) and hind
right (HR), respectively, as shown in Fig. 2. The foot positions
pfi relative to CoM are denoted as ri = pfi − p. Therefore,
the net external wrench F ∈ R6 exerted on the body is:

F =

[
F
τ

]
=

4∑
i=1

[
I
r̂i

]
ui, (3)

where F and τ are the total force and torque applied at
the CoM; the hat map (̂·) : R3 → so(3) maps an element
from R3 to the space of skew-symmetric matrices so(3),
which represents the cross-product under multiplication as
α̂β = α × β, for all α,β ∈ R3. The inverse of the hat map
is the vee map (·)∨ : so(3) → R3. The full dynamics of the
rigid body can be written as

ẋ =


ṗ
p̈

Ṙ
Bω̇

 =


ṗ

1
MF + ag
R · Bω̂

BI−1(RT τ − Bω̂BIBω)

 , (4)

where u = [uT1 ,u
T
2 ,u

T
3 ,u

T
4]T ∈ R12 is the control vector;

M is the mass of the rigid body; ag = [0, 0,−g]T is the
gravitational acceleration vector; BI ∈ R3×3 is the fixed
moment of inertia tensor in the body frame {B}. The inertia
properties of the robot could be found in Table I.

IEEE TRANSACTIONS ON ROBOTICS 4

TABLE I: System Parameters of the Robot

Parameter Value Unit
M 5.5 kg
Ixx 0.026 kg·m2

Iyy 0.112 kg·m2

Izz 0.075 kg·m2

Body length 0.3 m
Body width 0.2 m
Link length 0.14 m

To develop a representation-free control approach, we de-
cided to directly parameterize orientation using the rotation
matrix. This completely avoids the singularities and complex-
ities when using local coordinates such as Euler angles. It also
avoids the ambiguities when using quaternions to represent
attitude dynamics. As the quaternion double covers the special
orthogonal group SO(3), the control design needs to switch
between the local charts.

The rotational dynamics of (4) is nonlinear for it involves
the rotation matrix R, which evolves on the SO(3) manifold.
In Section II-B we present a variation-based linearization
scheme for linearizing the rotational dynamics.

B. Variation-based Linearization

Although the nonlinear MPC (1) could be solved to obtain
the control input, the presence of local optimum resulting
from the nonlinear dynamics complicates the solution process.
Furthermore, convoluted nonlinear optimization does not lend
itself well to embedded implementations. To meet the real-
time constraint, we strive to formulate the MPC as a Quadratic
Program (QP) that can be efficiently solved on embedded
systems. A variation-based linearization scheme for the ro-
tation matrix is proposed to linearize the nonlinear rotational
dynamics. The error on the non-Euclidean SO(3) manifold
is approximated by the corresponding variation [46] with
respect to the operating point. Then the variation dynamics is
derived based on the system model (4) in the manner of [33].
Recent work [47] achieved underactuated two-leg balancing
on MIT Mini Cheetah using variational-based linearization on
the SO(3) manifold.

Assuming that the predicted variables are close to the
operating point, the variation of the rotation matrix on so(3)
could be approximated by δR using the derivative of the error
function on SO(3) as in [48]. The variation δR ∈ so(3)
is a local approximation of the displacement between two
points on the SO(3) manifold. The rotation matrix at the kth

prediction step is approximated using the first-order Taylor
expansion of matrix exponential map,

Rk ≈ Ropexp(δRk) ≈ Rop(I + δRk), (5)

where we use the commutativity of small rotations based on
the assumption of δR being small.

The nonlinear dynamics of the rotation matrix is given as

Ṙ = RBω̂, (6)

where the first-order approximation of rotation matrix Rk is
presented in (5). To get a linear approximation for Ṙ, we
define the variation of angular velocity δωk as

δωk = ωk −RT
kRopωop, (7)

where the transport map ωop → RT
kRopωop enables compari-

son between tangent vectors at different points. This procedure
is required because the tangent vectors Ṙk ∈ TRk

SO(3) and
Ṙop ∈ TRop

SO(3) lie in different tangent spaces and cannot
be compared directly, where TRop

SO(3) refers to the tangent
space of SO(3) at Rop. Hence, the angular velocity ω could
be deducted from (7) as

ωk =RT
kRopωop + δωk

=(I + δRk)Tωop + δωk

=ωop + δωk − δRkωop,

(8)

where Rk is replaced by the expression in (5). The last step in
(8) is due to the fact that δRk is a skew-symmetric matrix by
construction. Applying the hat map (̂·) to ωk and substituting
(8) into (6) yields

Ṙk = Rkω̂k = Rop(I + δRk)(ω̂op + δ̂ωk − ̂δRkωop)

= Ropω̂op +Ropδ̂ωk −Rop
̂δRkωop +RopδRkω̂op,

(9)

where the higher order variation terms are neglected. Using
the properties of cross product in [49] Table 2.1, the following
equality

̂δRkωop = δRkω̂op − ω̂opδRk, (10)

is used to derive the expression of Ṙk

Ṙk = Ropω̂op +Ropω̂opδRk +Ropδ̂ωk. (11)

The dynamics of angular velocity ω̇k is linearized as
BIω̇k =RT

opτop + δRT
k τop +RT

opδτk+

− ω̂opBIωop − ˆδωk
BIωop − ω̂opBIδωk,

(12)

in which δτk is the variation of the net torque,

δτk = (

4∑
i=1

ûi,op)δpk + (

4∑
i=1

r̂i,op · δui,k), (13)

where uop is GRF applied at the current step, δu is the
variation of GRF from uop. Note that the GRF applied at
the next time step is uop + δu1.

The linearized dynamics will be used as affine dynamics as
well as in the construction of objective function in the MPC
formulation.

C. Vectorization

After the dynamics of rotation matrix R and angular ve-
locity ω are linearized, the matrix variables in (11) and (12)
are still difficult to be formulated into the standard QP form.
This section proposes a vectorization technique which uses
Kronecker product [50] to transform matrix-matrix products
into matrix-vector products.

Let us define a vector ξ ∈ R3 be such that the skew-
symmetric matrix ξ̂ = δR ∈ so(3) is an element in the tangent

IEEE TRANSACTIONS ON ROBOTICS 5

space at the operating point. Let N ∈ R9×3 be a constant
matrix such that vec(v̂) = Nv, ∀v ∈ R3, where vec(·) is the
vectorization function. Then vec(δR) = N · ξ. The second
and third terms of (11) could be vectorized as:

vec(Ropω̂opδRk) = (I⊗Ropω̂op)Nξk

vec(Ropδ̂ωk) = (I⊗Rop)vec(δ̂ωk),
(14)

where ⊗ is the Kronecker tensor operator. To derive the
expression for vec(δ̂ωk), one plugs (5) into (7)

vec(δ̂ωk) = N(ωk − ωop + ω̂opξk). (15)

The vectorized version of (11) is

vec(Ṙk) = Cc
ξ +Cξ

ξξk +Cω
ξ ωk, (16)

where the constants are defined as
Cc
ξ = vec(Ropω̂op)− (I⊗Rop)Nωop

Cξ
ξ = (I⊗Ropω̂op)N − (I⊗Rop)Nω̂op

Cω
ξ = (I⊗Rop)N .

(17)

The discrete orientation dynamics in terms of ξ is derived
by propagating the rotation matrix using the forward Euler
integration scheme,

Rk+1 = Rk + Ṙkdt, (18)

where dt is the MPC sampling time. When the rotation matrix
is approximated by the first-order expansion in (5), the above
expression could be simplified to the following form,

δRk+1 = δRk +RT
opṘkdt. (19)

Vectorizing (19) gives

Nξk+1 = Nξk + dt(I⊗RT
op)vec(Ṙk). (20)

The discrete dynamics in ξ is obtained by putting in (16) and
pre-multiply with N∗, the left pseudo-inverse of N

ξk+1 = ξk + dtN∗(I⊗RT
op)(C

c
ξ +Cξ

ξξk +Cω
ξ ωk). (21)

The angular velocity dynamics in (12) is also vectorized.
The second term in (12) is δRT

k τop = (I⊗ τTop)Nξk and δτk
is defined in (13). The last two terms could be further derived,

− ˆδωk
BIωop − ω̂opBIδωk

= (B̂Iωop − ω̂opBI)δω

= (B̂Iωop − ω̂opBI)(ωk − ωop − ω̂opξk).

(22)

Assembling these expressions into (12) and rearranging the
corresponding terms gives the vectorization of BIω̇k
BIω̇k = Cω̇ +Cδp

ω̇ pk +Cξ
ω̇ξk +Cω

ω̇ωk +Cδu
ω̇ δuk, (23)

where

Cc
ω̇ =− ω̂opBIωop +RT

opτop − (B̂Iωop − ω̂opBI)ωop

−RT
op(
∑

ûop)pop

Cδp
ω̇ = RT

op(
∑
i

ûiop)

Cξ
ω̇ = (I⊗ τTop)N − (B̂Iωop − ω̂opBI)ω̂op

Cω
ω̇ = B̂Iωop − ω̂opBI

Cδu
ω̇ = RT

op[r̂
1
op, r̂

2
op, r̂

3
op, r̂

4
op].

(24)

The discrete dynamics of ω is propagated using forward
Euler scheme ωk+1 = ωk + dtω̇k.

D. Discrete-time Affine Dynamics

The single rigid body model introduced in Section II-A
has nonlinear dynamics in R and ω. Hence, a variation-based
linearization scheme is proposed in Section II-B to linearize
the nonlinear dynamics. Section II-C presents a vectorization
method to reformulate the matrix variables into the vector
form. Based on the aforementioned procedures, the new set
of state and control vectors are defined as,

xk := [pTk ṗTk ξTk
BωTk]T ∈ R12

δuk := [δuT1,k δuT2,k δuT3,k δuT4,k]T ∈ R12,
(25)

where the new control input δui ∈ R3 is the variation of GRF
from the operating point ui,op for the ith leg.

By assembling the corresponding terms from (21), (23)
into matrix form, the discrete-time affine dynamics could be
expressed in the state-space form:

xt+k+1|t = A|op · xt+k|t +B|op · δut+k|t + d|op, (26)

where A|op ∈ Rn×n,B|op ∈ Rn×m, and d|op ∈ Rn are
matrices constructed by the measurements at the operating
point. Therefore, nonlinear dynamics have been linearized
about the operating point to result in a locally-valid linear
time-varying (LTV) system. This system can be stabilized to
track reference trajectories.

The discrete-time affine dynamics are imposed as equality
constraint as in (1b).

E. Cost Function

The cost function in the nonlinear MPC formulation (1)
includes both terminal and stage costs. In this work, the cost
is set as a quadratic function that penalizes deviation from the
reference trajectories. The stage cost is

`(xk,uk) = ||xk − xd,k||2Qx
+ ||uk − ud,k||2Ru

, (27)

where ||x||2Q is a shorthand notation of the matrix norm xTQx
where Q is a positive definite matrix; xd,k and ud,k are the
desired state and control at the kth prediction step; Qx and
Ru are the block diagonal positive definite gain matrices for
state and control, respectively. The first term in (27) consisting
of the error functions of the state vector could be decomposed
as:

||xk−xk,d||2Q = ||epk ||2Qp
+||eṗk ||2Qṗ

+||eRk
||2QR

+||eωk
||2Qω

,
(28)

where Qp,Qṗ,QR,Qω are diagonal positive definite weight-
ing matrices; epk , eṗk are the error terms for deviations from
the corresponding reference trajectories pdk, ṗ

d
k constructed

from the user input. The error function for the rotation matrix
and angular velocity are given by [32] as

eRk
= log(RT

d,k ·Rk)∨ (29)

eωk
= ωk −RT

kRd,kωd,k, (30)

IEEE TRANSACTIONS ON ROBOTICS 6

where Rd,k and ωd,k are the desired rotation matrix and
angular velocity trajectories. The terminal cost function is
similarly defined.

In the stage cost expression (28), all the error terms are in
linear form of the state and control vectors except the error
of orientation eRk

, which involves matrix logarithm map as
shown in (29). A linear approximation of the nonlinear error
term on the rotation matrix is used. Taking the hat map on
(29) and applying the matrix exponential map give

exp(êRk
) = RT

d,kRk ≈ RT
d,kRopexp(ξ̂k), (31)

where the same approximation is made here as in (5). Taking
the matrix logarithm of (31) and then applying the vee map
give the approximate error term on Rk,

eRk
= log(RT

d,k ·Rop)
∨ + ξk. (32)

The error function defined in (32) is in linear form of the
state variable ξk since both RT

d,k and Rop are known matrices.
The error function could be interpreted as the sum of (a) the
geodesic between Rop and Rd,k and (b) the vector ξk which
lies in the tangent space at Rop. The orientation error function
Ψ on R could therefore be defined as,

Ψ(ξk) = eTRk
QReRk

= ||eRk
||2QR

, (33)

which is in quadratic form of ξk. Given that the weighting
matrix QR is positive definite, the orientation error function
Ψ is positive definite.

The terminal cost `T is similarly defined as (28) with
terminal gains. The cost of control is constructed as

||uk − ud,k||2Ru
= ||uop + δuk − ud,k||2Ru

, (34)

where δuk is the kth predicted variation from the operating
point uop.

F. Force Constraints

The force constraints are imposed to ensure that the solved
GRF are physically feasible. When the foot is in contact with
the ground, the normal force should be non-negative and the
tangent forces should lie within the friction cone, which is
prescribed as

{ui|uni ≥ 0, ||uti||2 ≤ µ|uni |}, (35)

where µ is the coefficient of friction; superscript (·)t and (·)n
indicate tangential and normal force components, respectively.
|| · ||2 is the 2-norm and | · | takes the absolute value of a scalar.

Since the friction cone constraint is a second-order cone
constraint, it is not admissible to the QP formulation with
linear constraints. Instead, the conservative friction pyramid
[51] is used as an approximation of the friction cone. In
addition, the normal force is bounded to ensure that the
commanded torque does not exceed the actuator limits. The
feasible control set U in (1) is defined as:

Ui := {δui | |ux/yi,op + δu
x/y
i,k | ≤ µ|u

z
i,op + δuzi,k|,

uz,mini,k ≤ uzi,op + δuzi,k ≤ u
z,max
i,k ,

uz,mini,k ≥ 0},

(36)

where the z axis is aligned with the normal vector of the
ground and x, y are two axes orthogonal to each other that lie
in the tangent plane at the contact point; uz,mini,k and uz,maxi,k are
the minimum and maximum normal forces at the kth predicted
step for leg i. If leg i was in swing phase, then the value for
both lower and upper bounds are set to zero so that the swing
leg controller takes over and guides the foot towards the next
foothold position. It could be observed that (36) denotes an
intersection of a finite set of closed halfspaces in R3. Hence,
Ui is a polyhedron. Similarly, the feasible force set U is also
polyhedral.

G. Quadratic Program Formulation
Given the convex quadratic cost function from Section

II-E, the affine dyanmics from Section II-D and linear force
constraints from Section II-F, the general nonlinear MPC
problem (1) could be be reformulated as a Quadratic Program
(QP),

min. γN `T (xt+N |t) +
N−1∑
k=0

γk`(xt+k|t, δut+k|t) (37a)

s.t. xt+k+1|t = Axt+k|t +Bδut+k|t + d (37b)
δut+k|t ∈ Uk, k = 0, · · · , N − 1 (37c)
xt|t = x(t) = xop, (37d)

where the cost function is defined in (27); the decay rate factor
γ ∈ (0, 1] discounts cost further from the current moment. The
definition of the affine dynamics could be found in (26) and
the force constraint is expressed in (36). Note that we lifted the
explicit constraints on the state vectors but instead relied on the
cost function for the state regulation. The QP in (37) could be
rewritten in a more compact form. Following the formulation
in [52], the new optimization variable z is constructed as

z = [δuT0 ,x
T
1 , · · · , δuTN−1,xTN]T ∈ R24N , (38)

such that (37) could be transcribed into the standard QP form
[53],

minimize
1

2
zTPz + cTz

subject to Aineq · z ≤ bineq
Aeq · z = beq,

(39)

where P ∈ RN(n+m) is a symmetric positive definite matrix
assembled from the gain matrices Qx,Ru; the inequality
constraint Aineq ·z ≤ bineq imposes the force constraints; the
equality constraint Aeq ·z = beq respects the linear dynamics.

III. NUMERICAL RESULTS

This section first defines a function that quantifies the
closeness to singularity for Euler angles in the numerical
sense. Then we present the simulation results of RF-MPC
stabilizing various periodic gaits and an aperiodic 3D acrobatic
maneuver. Furthermore, RF-MPC is compared with the MPC
that uses Euler angles as orientation representation (EA-
MPC) in the acrobatic maneuver. The resulting QPs from the
MPC formulation in all of the simulations are solved using
MATLAB quadprog. Gain values and gait pattern parameters
for the following simulations could be found in Table II.

IEEE TRANSACTIONS ON ROBOTICS 7

A. Singularity in Euler Angles

Orientation representations include Axis-angle, Euler angles
and quaternion [54]. In this work, we compare the proposed
RF-MPC with EA-MPC, which is based on the convex MPC
[55] used on MIT Mini Cheetah, with parameters from [56].

Here, we define a function to quantify the distance to the
singularity of Euler angles. Such function helps us to identify
singularity and its neighborhood. Assuming EA-MPC adopts
the Z-Y-X sequence in body frame {B}, which is equivalent
to the X-Y-Z sequence in stationary inertial frame {S}. The
Euler angles Θ = [φ θ ψ]T , where φ is the roll, θ is the pitch,
and ψ is the yaw. The attitude of frame {B} is expressed by
a sequence of rotations in frame {S} as

R = Rz(ψ)Ry(θ)Rx(φ), (40)

where Rx(φ) means a positive rotation of angle φ around the
x-axis of frame {S}.

We define TΘ : R3 → R3×3 to be the matrix that converts
Θ̇ to the angular velocity expressed in {S} as

ω = TΘ · Θ̇ =

cos(θ) cos(ψ) − sin(ψ) 0
cos(θ) sin(ψ) cos(ψ) 0
− sin(θ) 0 1

 Θ̇. (41)

The matrix TΘ in equation (41) is invertible when θ 6= ±π2 ,
and Θ̇ could be calculated using the following equation

Θ̇ =

cos(ψ)/ cos(θ) sin(ψ)/ cos(θ) 0
− sin(ψ) cos(ψ) 0

cos(ψ) tan(θ) sin(ψ) tan(θ) 1

ω. (42)

In this work, we use the function

κ−1(TΘ) ∈ (0, 1] (43)

to quantify singularity in Euler angles, where κ(·) calculates
the condition number of a matrix. When the robot approaches
singular poses, the condition number κ(TΘ) increases rapidly,
and its inverse κ−1(TΘ) tends to 0.

Here, a pose control simulation is conducted to investigate
the singularity of Euler angles. As shown in Fig. 3(a), the
singular pose Rs is shown as the shadowed box; the desired
pose Rd is shown as the solid box. All feet of the robot
are assumed to be fix in this simulation so that the force
constraints (36) could be lifted to focus on the effect of
singularity. The desired poses are varied from the singular
pose to the pose rotated 1 rad around the +y axis. A 0.5 s
simulation is conducted in each desired pose and the CoM
deviation at the end of the simulation is plotted for both RF-
MPC and EA-MPC. As could be observed in Fig. 3(b), while
RF-MPC remains stable, EA-MPC is significantly affected by
singularity once |log(RT

sRd)
∨| < 0.3 rad, which corresponds

to κ−1(TΘ) < 0.15.

B. Walking Trot

The data of a walking trot simulation is shown in Fig. 4. The
robot starts from a stationary pose and accelerates in the x-
direction until it reaches the final velocity of 0.5 m/s. As could
be seen in Fig. 4 (a), the velocity in the x-direction reaches
0.5 m/s and the velocity deviation for all directions is within

(a) (b)

Fig. 3: The pose control simulation result of a investigation on the
singularity of Euler angles. (a) The schematics of the pose control,
where the shaded box represents the singular pose; the solid box
represents the commanded pose; the red lines represent the GRF,
with the force constraints (36) lifted. (b) The CoM position deviations
(log scale) after a 0.5 s simulation of both RF-MPC and EA-MPC
are plotted against |log(RT

s Rd)∨|.

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.2

0

0.2

0.4

V
e
lo

c
it
y
 [
m

/s
]

(a) vx
vy
vz

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.04

-0.02

0

0.02

0.04

O
ri
e
n
ta

ti
o
n
 [
ra

d
]

(b) log(R)∨x
log(R)∨y
log(R)∨z

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

0

20

40

V
e
rt

ic
a
l
G

R
F

 [
N

]

(c) FL
FR
HL
HR

Fig. 4: Simulation data of walking trot where the robot starts from
static pose and accelerates in the x-direction (a) CoM velocity; the
robot accelerates at 0.5 m/s2 and reaches the desired velocity of 0.5
m/s in the x-direction. (b) Orientation in terms of the log map of the
rotation matrix (c) Vertical ground reaction forces of four legs.

±0.1 m/s. Fig. 4 (b) shows that the orientation deviation in
all directions is bounded within ±0.02 rad. The vertical GRFs
of all four legs are shown in Fig. 4 (c). Further details about
the generation of the reference trajectory for trotting could be
found in Section III-F.

The simulation is setup such that at each sampling time,
the control input is applied to the original nonlinear model (4)
simulated using MATLAB ode45 to integrate the dynamics.
The gait pattern in the walking trot simulation is executed
using a time-based schedule.

C. Bounding

To demonstrate the capability of RF-MPC to stabilize dy-
namic motions with large body attitude oscillation, the bound-
ing simulation is presented. The bounding motion involves an
aerial phase when all four feet lose contact with the ground.
To stabilize the bounding motion, the reference trajectory is

IEEE TRANSACTIONS ON ROBOTICS 8

-0.2 0 0.2

log(R)∨y [rad]

-5

0

5
B
ω
y
[r
ad

/s
] (a)

0 2 4

Time [s]

-1

0

1

2

3

v
x
[m

/s
]

(b)

Reference
Measured

0 1 2 3 4 5

Time [s]

0

50

100

u
z
[N

]

(c)
FL
HL

Fig. 5: Simulation data of bounding. (a) Phase portrait of body angle
and angular velocity in the y-axis. (b) Velocity tracking performance
in the x-direction. (c) Vertical GRFs of FL and HL legs.

designed based on the impulse-scaling principle [8] to preserve
the periodicity of the gait. Details about the generation of
reference trajectory could be found in Section III-F3. Here, we
kindly note that an elaborate reference trajectory is optional for
RF-MPC to stabilize bounding. While a trivial reference such
as that used for trotting also works, the reference trajectory
presented in Section Section III-F3 enables bounding motions
with longer aerial phase. Similar to the walking trot, the robot
is commanded to start from the static pose and accelerates at
1.0 m/s2 to reach the final velocity of 2.5 m/s.

Fig. 5 (a) presents the phase portrait of angle and angular
velocity along the y-axis. It shows that the motion converges
to a periodic orbit. The velocity tracking performance shown
in Fig. 5 (b) demonstrates that the MPC controller is capable
of stabilizing bounding velocity up to 2.5 m/s. The vertical
GRF profiles of legs FL and HL are shown in Fig. 5 (c).

D. Aperiodic Complex Dynamic Maneuver

A complex acrobatic dynamic maneuver is presented in this
section to demonstrate that RF-MPC is capable of controlling
aperiodic dynamic motions that involves orientations that
correspond to singularities in Euler angle representation. RF-
MPC is benchmarked with an MPC controller with Euler
angles for its orientation representation. In addition, initial
condition is perturbed to investigate the robustness of RF-
MPC.

Fig. 6 (a) shows the reference trajectory of the acrobatic
motion, which is a backflip with a twist. The reference CoM
trajectory is colored black and the reference poses are shown
in blue. The robot initially stands on a slope with the slope
angle of 45◦, with the front of the robot facing upwards and
body parallel to the slope. The stance phase of this acrobatic
jump consists of 0.1 s of all four feet in contact, followed
by 0.1 s of only the hind feet pair in contact with the slope.
After the stance phase, all four feet are airborne and the robot
enters the aerial phase for 0.3 s before landing. The landing

direction of the robot is facing away from the slope. The feed-
forward GRF and the dynamically-feasible reference trajectory
are generated by solving an off-line TO problem, where the
slope is set to be 45◦. Further details about the generation of
the reference trajectory is provided in Section III-F.

As could be observed from Fig. 6 (a), when the robot
approaches the singularity, EA-MPC becomes unstable and
exerted large vertical force that pushes the robot away from
the reference trajectory. As shown in Fig. 6 (c) (d), the
body orientation and CoM position eventually diverges from
the reference trajectory after the robot encounters singularity,
which is visualized in Fig. 6 (e). In comparison, Fig. 6 (b)
shows that RF-MPC could successfully stabilize the backflip
motion that involves singularity. Here, we would like to point
out in 6 (e) that the robot actually passes through singularity
when the hind legs are in contact as indicated by the duration
when κ−1(TΘ) < 10−1, in the light shaded area. Fig. 6 (c)
(d) display that the orientation and CoM position deviation
are kept small during the motion. The CoM position and
orientation deviations are defined as

|ep| = |p(t)− pd(t)|
|eR| = |log(RT

d (t)R(t))∨|,
(44)

where pd and Rd are the reference CoM position and body
orientation, respectively.

To demonstrate the robustness of RF-MPC, the slope angle
for the simulated cases is changed from 45◦ to 53.6◦. Since
the body of the robot is parallel to the slope at the beginning of
the jump, the initial orientation of the robot is also perturbed.
As could be observed from Fig. 6 (c), the backflip could be
executed and stabilized by RF-MPC. In contrast, an open-loop
simulation shows that in the absence of feedback control, the
orientation of the robot quickly deviates from the reference
trajectory due to the initial condition perturbation.

E. Comparison of Linearization Schemes

One of the crucial decisions we made in the proposed
RF-MPC is to linearize the dynamics about the operating
point. The choice is made because RF-MPC represents ori-
entation using the rotation matrix, which presumes SO(3)
structure. Such a structure loses its validity when the predicted
states are far away from the point where the linearization
is performed upon. Nevertheless, a reasonable alternative is
linearizing around the reference trajectory, which is a widely
used technique in robotics. To investigate which linearization
scheme provides more robust behavior, this section presents a
simulation case study that compares MPC linearized around
the reference trajectory (scheme 1) with MPC linearized
around the operating point (scheme 2).

Scheme 1 linearizes dynamics around the reference tra-
jectory, which includes the desired state {xdt+k|t} and con-
trol {udt+k|t} within the prediction horizon, where k =
0, · · · , N − 1 and N is the prediction horizon. Hence, Ak

and Bk are matrices for a Linear Time-Varying (LTV) system,
parametrized by the reference trajectory within the prediction
horizon. Scheme 2 linearizes dynamics around the operating
point, which involves current state xop and control uop, as

IEEE TRANSACTIONS ON ROBOTICS 9

EA-MPC RF-MPC

Fig. 6: Simulation results of a complex aperiodic 3D maneuver where
the robot performs a twist jump off an inclined surface. The reference
poses are shown in blue and the poses controlled by MPC are shown
in red; the reference CoM trajectory is shown in black. The deep-
shaded area is when four legs are in contact with the surface; the
light-shaded area is when only hind legs are in contact and the non-
shaded area is when the robot is in aerial phase. (a) The EA-MPC
becomes unstable when the robot is close to the singular pose. (b) RF-
MPC could track the reference motion that involves singular poses.
(c) The orientation deviation |eR| of open-loop control, RF-MPC,
and the EA-MPC. (d) The CoM position deviation. (e) The function
to quantify the distance to singularity κ−1(TΘ).

defined in Section II. Constant matrices A|op and B|op are
used to propagate the state through the prediction horizon
using a Linear Time-Invariant (LTI) system.

The robustness of these two linearization schemes are
qualitatively compared by examining how much external dis-
turbance they can handle. The simulation is setup such that
robot is bounding at a constant speed of 1.0 m/s in the +x
direction. The disturbance with a maximum force of 27 N
is applied on the robot in the +y direction, causing it to
deviate from the reference trajectory. The reference trajectory,
controller gain, gait timing and disturbance are same for both
schemes, with only the linearization scheme being different.

Fig. 7 (a) shows a sequential snapshot of the simulated
scenario for scheme 2. The GRFs are shown in red and the
disturbance force (visible at t = 1.0 s and t = 1.5 s) is in cyan.
Fig. 7 (b) shows the disturbance force profile, which is applied
at the FR shoulder of the robot.

RF-MPC using scheme 1 fails at 1.5 s since the velocity

t = 0.2 s t = 0.6 s t = 1.0 s

t = 1.5 s t = 2.0 s t = 3.0 s

(a)

Fig. 7: Comparison between two linearization schemes. (a) A se-
quential snapshot of the simulation scenario for scheme 2. The
GRFs are shown in red and the disturbance force is shown in cyan.
The translucent box represents the reference pose of the robot. (b)
Disturbance force profile. (c) Velocity deviation and (d) Orientation
deviation in the y-direction from the reference trajectory, respectively.
(e) Prediction error of the Rotation matrix.

and orientation start to diverge from the reference, as shown
in Fig. 7 (c) and (d), respectively. In comparison, the RF-MPC
using scheme 2 recovers from the disturbance and successfully
tracks the reference trajectory. To investigate the reason for the
discrepancy, we defined a quantity that measures the prediction
quality of the rotation matrices,

Φ(t) =
N∑
k=1

||R̃k −Rk||F + ||log(RT
op,t+kR̃k)∨||, (45)

where Rop,t+k ∈ SO(3) is the rotation matrix at time t+ k ·
dt; Rk is the kth predicted rotation matrix at time t, whose
projection to the SO(3) manifold is denoted as R̃k ∈ SO(3);
|| · ||F is the Frobenius norm of a matrix. The prediction error
of rotation matrices is plotted in Fig. 7 (e), where the error
value of scheme 1 became high when the system started to
deviate from the reference trajectory. This numerical study
serves as an empirical validation of the robustness of scheme
2 in comparison to scheme 1 in disturbance rejection.

IEEE TRANSACTIONS ON ROBOTICS 10

F. Reference Trajectory Generation

1) Trotting: The reference control trajectory uk,d for trot-
ting is defined based on the heuristic that the total weight of
the robot should be supported evenly by all the legs that are
in contact:

u
x/y
i,k,d = 0

uzi,k,d =
bi,k∑4
i=1 bi,k

Mg,
(46)

where bi,k ∈ {0, 1} is a binary variable that indicates the
contact condition of leg i at instance t + k, where bi,k = 1
indicates contact phase and 0 otherwise. The value of the
binary variable bi,k is defined according to the time schedule
of a Finite State Machine (FSM), which is introduced in
Section IV-A. The reference state xk,d is constructed by
simply assuming the robot accelerate from static pose with
constant acceleration until reaching the maximal velocity. Both
walking trot and running trot use the same reference trajectory.

2) Aperiodic Complex Dynamic Maneuver: The reference
trajectory is generated by an off-line TO algorithm based
on the single-shooting method. The twist jump motion is
decomposed into three phases with fixed timing. Phase one is
when four feet are in contact, which lasts for 0.1 s; phase two
is when front legs lift off and hind legs are in contact, which
lasts for 0.1 s; phase three is when the robot is airborne, which
lasts for 0.3 s. The optimization variables are the magnitude of
the GRFs, which is assumed to be constant throughout phases
one and two. The cost function is the weighted sum of the
control effort and the deviation from the desired landing pose.
The constraints imposed in the optimizations are
• Fixed initial state and bounded final state
• Fixed contact sequence and timing
• Kinematic reachability of each leg
• Collision avoidance with the environment
• Unilateral GRF stay within friction cone.

The TO is formulated as a nonlinear program with 24 vari-
ables, representing the force magnitude of 4 GRFs (each has 3
components) in two stance phases. The optimization problem
is solved by the MATLAB NLP solver fmincon.

3) Bounding: The periodic trajectory for bounding gait is
generated by considering the robot as a single rigid body in
2D, which has 3 DoFs (x, z, θ). The contact sequence and
timing is pre-specified as front-stance, aerial phase I, hind-
stance and aerial phase II. The shapes of vertical GRF and
pitch torque profiles are parametrized by Bézier polynomials.
Periodicity in the z and θ directions is achieved by finding the
scaling factors and initial condition based on the principle of
impulse-scaling [8] analytically.

4) Controlled Backflip: To generate the reference trajec-
tory of the controlled backflip in Section V-D, we used the
open-source OptimTraj library [57] to set up the TO problem
using the direct collocation method. The optimization is done
on a 2-D single rigid body model of the robot. The convex
quadratic cost function penalizes large GRF and rewards
smooth force profiles. In addition to the constraints mentioned
in 2), the following constraints are also imposed
• The constraint that enforces feasible dynamics

• Path constraints on the state and control.
The above problem setup has 27 time steps, which results in an
optimization problem with 272 variables and 366 constraints
solved by MATLAB NLP solver fmincon.

IV. CONTROLLER IMPLEMENTATION DETAILS

The MPC framework in Section II is combined with other
components such as state estimation and swing leg controllers
to give rise to various motions implemented on the robot
hardware platform. This section presents the implementation
details that are required to realize the MPC control design on
the hardware.

Fig. 8 shows the schematics of the overall control system.
The Finite State Machine (FSM) sends the desired state and
control trajectories Xd,Ud to the MPC, which formulates a
Quadratic Program (QP). The QP is solved by the custom
QP solver qpSWIFT [58] to obtain the optimal solution δu,
which is added to the control at the operating point u−op to
get the GRF uop. A swing leg controller calculates the swing
force usw to track the swing foot trajectories. The commanded
torque is modified by a lower-level joint controller, which
compensates for friction and motor dynamics. The Brush-Less
Direct Current (BLDC) motors actuate the robot to interact
with the environment.

A. Finite State Machine

Various gaits are generated by a finite state machine (FSM).
Fig. 9 shows the schematics of the FSM where the timing
schedules are sent from the gait planner to each leg. A
leg independent phase variable si quantifies the percentile
completion of either stance or swing state. The phase variables
are defined as si := {t̄/Tj s.t. j ∈ {st, sw}}, where t̄
represents the current dwell time, Tst, Tsw are stance and
swing times, respectively. The period of the gait is the sum
of the dwell times T = Tst + Tsw. The guard sets Gi and
reset maps ∆j define the transition between states. The guard
sets are given as Gi := {t̄ s.t. t̄ = Tj}. The reset map is
defined as ∆j(t̄) = 0 such that it resets the phase variable and
current dwell time. This framework allows the implementation
of any gait sequence by changing the timing schedules. The
contact detection algorithm could be incorporated to adjust
the gait timings and extend the time-based FSM to event-based
FSM. Using the FSM scheme, trotting, bounding and aperiodic
motions could be realized.

It is worth noting that the prediction horizon could cover
multiple phases. Hence, in motions with aerial phases such as
bounding and acrobatic jump, the RF-MPC could take into
consideration of the upcoming phase change and plan the
current control accordingly.

B. Platform Description

The hardware platform used for the experiments is a 5.5
kg fully torque controllable, electrical quadruped robot named
Panther. Three custom-made BLDC motor units are assem-
bled into a leg module [59] which is capable of executing
highly dynamic maneuvers [60] [61]. The body of Panther is

IEEE TRANSACTIONS ON ROBOTICS 11

User
input

Finite State Machine
(FSM)

Model Predictive
Control (MPC)

QP solver
(qpSWIFT)

Joint
Controller BLDC motor

Encoder

IMU

{QP}

𝑢𝑜𝑝
−

𝑋𝑑, 𝑈𝑑 𝑢𝑜𝑝
𝑥𝑜𝑝

𝑢𝑜𝑝 + 𝑢𝑠𝑤

Environment

Robot𝜏12

Swing
Controller

𝑝𝑓, ሶ𝑝𝑓

𝑢𝑠𝑤

𝜸
𝑥𝑜𝑝

𝑝𝑑
𝑓
, ሶ𝑝𝑑

𝑓

State
Estimator

Fig. 8: Overview of the control system. The user sends commands to the on-board computer (blue), where the finite state machine schedules
the gait and sends desired trajectories to the MPC block to formulate the QP. The custom QP solver qpSWIFT solves for the uop and send
it to the FSM. The FSM combines the stance and swing forces and send to the joint controller (green), which maps leg forces to joint torque
and send to the BLDC motors. The state estimator (green) receives sensor signals for the MPC formulation of the next cycle. The previous
solution of the QP u−op is sent to the MPC as the control at the operating point.

Gait
planner

Finite State Machine (FSM)

Swing HL
(3)

Stance

𝑠3

Swing FR
(2)

Stance

𝑠2

Swing HR
(4)

Stance

𝑠4

Swing
s1 = ҧ𝑡/𝑇𝑠𝑤

FL
(1)

Stance
s1 = ҧ𝑡/𝑇𝑠𝑡

𝐺1, Δ𝑗

Timing schedule

Fig. 9: Schematics of the Finite State Machine (FSM). The gait
planner sends to all legs the timing schedules; the normalized variable
si is the percentile completion of the current state. ∆j , j ∈ {st, sw}
are the reset maps and Gi are the guard sets.

ABAD
motor

KNEE motor
HIP motor

Linkage

Carbon
fiber tube

Knee joint
Thigh

Shank

(a)

Foot

(b)

Amplifiers Computer

IMU

Encoder

Fig. 10: An illustration of the hardware platform. (a) CAD model
of the mechanical components of the leg module, which includes
ABAD, HIP and KNEE modules and linkages of the leg. (b) A picture
of the assembled quadruped platform, which integrates a computer,
sensors including an IMU and 12 encoders.

assembled from carbon fiber reinforced 3D printed parts that
connect carbon fiber tubes and plates for higher strength to
weight ratio. The point foot is cushioned with sorbothane for
its shock absorption capability. The electronic system consists
of an on-board computer PC104 with Intel i7-3517UE at 1.70
GHz, Elmo Gold Twitter amplifiers, RLS-RMB20 magnetic
encoders on each joint, and an inertial measuring unit (IMU)
VN-100. Fig. 10 shows the CAD model of the mechanical
components of a leg module and the picture of the assembled
quadruped platform with all the parts integrated.

C. Computation Setup

The MPC framework is implemented using Simulink Real-
Time (SLRT). The encoder readings and lower-level kinemat-
ics calculations are carried out at a base rate of 4 kHz, while
the IMU signals are received and state estimation is performed
at 1 kHz. The user input from the joystick is updated at 23 Hz,
and the QP is solved at between 160 Hz to 250 Hz depending
on the size of the problem. The proposed QP (39) is solved
by a custom QP solver qpSWIFT [58] for all the experiments.
Written in ANSI C, the solver is library-free while and it
interfaces with SLRT through a gateway s-function. A RF-
MPC with prediction horizon of 6 entails solving a QP with
144 variables, 72 inequality and 72 equality constraints.

D. Swing Leg Control

Since the leg mass is less than 10% of the total mass of
the robot and the motor inertia is much smaller than body
inertia, the inertia effect of the legs could be neglected during
stance. Nevertheless, leg inertia is considered when designing
the swing leg controller. The swing leg is modeled as a 3-link
serial manipulator attached to a stationary base. The swing leg
controller consists of feed-forward and feedback terms, where
the former is based on the workspace inverse dynamics,

τ ffsw = D(q)J−1(afx − J̇ q̇) + h(q, q̇), (47)

where τ ffsw is the feed-forward torque; D(q) is the Inertia
matrix and h(q, q̇) includes the centrifugal, Corolis and grav-
itational terms of the swing leg; q, q̇ are the joint angle and
velocity vectors; J is the leg Jacobian matrix and J̇ is its
time derivative; afx is workspace acceleration vector, which is
defined as

afx = p̈fd +Kff
p (pfd − p

f) +Kff
d (ṗfd − ṗ

f), (48)

where p̈fd is the desired foot workspace acceleration; pfd , ṗ
f
d

are the desired foot position and velocity; Kff
p , Kff

d are
the position and velocity gain matrices. The full swing leg
controller consists of both feed-forward and feedback terms,

τsw = τ ffsw +Kfb
p (pfd − p

f) +Kfb
d (ṗfd − ṗ

f), (49)

where Kfb
p and Kfb

d are the position and velocity gain
matrices for the feedback term of the swing leg controller.

IEEE TRANSACTIONS ON ROBOTICS 12

The desired foot placement is a linear combination of a
velocity-based feed-forward term and a capture-point [62]
based feedback term.

pfstep = ph +
Tst
2
ṗhd +

√
zh0
g

(ṗh − ṗhd), (50)

where pfstep is the desired step location on the ground plane;
ph is the projection of the hip joint on the ground plane and ṗh

is the corresponding velocity; ṗhd is the desired hip velocity
projected on the ground plane; Tst is the stance time; g is
the gravitational acceleration constant; zh0 is the nominal hip
height.

E. State Estimation

Kalman Filter [63] has been applied for a range of ap-
plications in legged robots. Meanwhile, simple linear single-
input single-output (SISO) complementary filters [64] has
been proven to work robustly in practice [65] [66]. The
complementary filter performs low-pass filtering on a low-
frequency estimation and high-pass filtering on a biased high-
frequency estimation. For instance, the CoM velocity ṗ is
obtained by combining the CoM velocity estimate from leg
kinematics data ṗenc and the accelerometer readings aacc from
the on-board IMU.

ṗk+1 = ṗk + ak ·∆t
ak = aacck −Kv

p (ṗk − ṗenck),
(51)

where ṗk is the estimated velocity from the previous iteration;
the subscript (·)k is the discrete time index; ∆t is the IMU
sampling period; Kv

p is a positive diagonal gain matrix; aacck
is the accelerometer reading; ṗenck is the average of all the
velocities from contact feet to CoM based on kinematic cal-
culations. Similarly, the CoM position p ∈ R3 is estimated by
fusing the CoM position estimate from leg position kinematics
penc and the estimated CoM velocity ṗ.

F. Contact Detection

Contact sensing plays a crucial role in legged locomotion.
However, conventional force estimation is fragile and noisy,
which is not suitable for dynamic locomotion applications.
Proprioceptive sensing [67] is utilized in this work because of
the highly-transparent actuation design. We use the generalized
momenta based disturbance observer [68], which only requires
proprioceptive measurements q, q̇ and the commanded torque
τ . In this work, only the knee joints are considered in
contact detection based on the assumption that the knee joint
momentum is changed the most by the contact impact. The
residual vector rk is defined as,

rk = KI · [Iknq̇knk −
k∑
i=1

(τ kni + ri−1)∆t], r0 = 0, (52)

where rk ∈ R4 is the residual vector for the four legs. k
is the index for the current instance; KI is a diagonal gain
matrix; Ikn is the diagonal inertia matrix for all the knee
joints; q̇knk is the vector of knee joint velocity; τ knk is the
commanded knee torque; r0 is the initial value of the residual.

The summation accumulates all the previous residuals and
the commanded torque. Contact is declared when the residual
vector rk exceeds a threshold value rth.

G. System Identification

1) Friction Compensation: The gear ratio of the planetary
gearbox in each motor module is 23.36:1, which is higher than
other quadruped robots with proprioceptive actuation scheme,
including MIT Cheetah 3 (7.67:1) [9], Mini Cheetah (6:1) [13]
and Minitaur (1:1) [4]. Due to the relatively higher gear ratio,
the friction induced by the gearbox and bearing is modeled
and compensated for more accurate force control. Following
[13], the friction is modeled by the expression

τfriction = c1 · sat(ω) + c2 · τmotor · sat(ω), (53)

where ω is the output angular velocity; τmotor is the com-
manded motor torque amplified by the gear ratio; c1, c2
are tunable constants that are motor-specific. τfriction is the
friction compensation term and the output torque τoutput =
τmotor + τfriction. The saturation function is defined as

sat(ω) =


−1 ω ≤ −ωthr
1/ωthr −ωthr < ω ≤ ωthr
1 ωthr < ω,

(54)

which serves as a relaxed version of the sign function. The
threshold value ωthr could be tuned to prevent chattering
around the equilibrium point.

2) Center of Mass Location: The CoM location estimation
from the CAD model of small robots is less accurate than
that of larger robots. That is because for small robots, a
large portion of the body mass is occupied by the electronics,
whose mass distribution cannot be exactly captured by the
CAD model. Instead, we obtained the CoM location by
suspending the robot by a string. When robot is stationary, the
accelerometer reading is recorded. This procedure is repeated
for several other known attachment points on the robot. A
bundle of lines could be constructed from the readings of
the accelerometer and the position of the attachment points
obtained from the CAD model. The CoM location could be
obtained by solving a least-square problem,

argmin
pCoM

∑
i

||pCoM − li||2, (55)

where pCoM is the CoM location; li is the bundle of lines
constructed from the accelerometer readings. The norm takes
the smallest distance from the point to the line. The legs are
commanded to a stationary nominal position throughout the
experiment.

3) Mass Moment of Inertia: Mass moment of inertia BI is
an important parameter for the dynamic modeling of the robot.
However, the value directly obtained from the CAD model for
a small robot may not be as accurate due to the the unknown
mass distribution of electronics. Therefore, a linear version of
the bifilar (two-wire) torsional pendulum [69] is used to obtain
the mass moment of inertia.

IEEE TRANSACTIONS ON ROBOTICS 13

65 70 75 80 85 90 95 100 105 110
0.1

0.15

0.2

[m
]

pz

(a)

Reference
Measured

65 70 75 80 85 90 95 100 105 110
-0.5

0

0.5

[r
ad

]

log(R)∨y

(b)

65 70 75 80 85 90 95 100 105 110

Time [s]

-0.5

0

0.5

[r
ad

]

log(R)∨z

(c)

Fig. 11: Pose control experiment data. (a) the position tracking
performance for pz , (b) and (c) present the orientation tracking
performance in the y and z directions.

V. EXPERIMENT RESULTS

The proposed RF-MPC controller is a general motion con-
trol framework which could be used to achieve multiple mo-
tion objectives. This section presents the experimental results
of some common tasks for quadrupedal robots, including pose
control, balancing on a moving platform, and periodic loco-
motive gaits such as walking trot, running trot and bounding.
In addition, a controlled backflip experiment is presented to
show that the RF-MPC framework is capable of controlling
dynamic motions previously hard to achieve because of the
presence of singularity. The gain values and the gait timing
for all experiments could be found in Table II. Clips of all the
experiments could be found in the supplementary video.

A. Pose and Balancing Control

To exhibit the tracking performance of the MPC controller,
the pose control experiment is conducted. The experimenter
sends the desired CoM vertical height and orientation com-
mands in y and z directions to the robot from the joystick. The
MPC controller continuously solves for the desired GRFs at
the four feet, which are in contact with the ground throughout
the experiment. The position and orientation reference tracking
data shown in Fig. 11 suggests that RF-MPC could closely
track the reference command. To demonstrate the capability
of RF-MPC to balance its body under large disturbances, the
balancing experiment is presented. The experimental setup is
shown in Fig. 12 (a). The robot stands on a pivoted platform,
attempting to maintain the balance at the nominal standing
pose when the platform is perturbed by the operator. The robot
body coordinate {B} and the coordinate of the platform {P}
are both plotted in Fig. 12 (a). The origin of {P} is set at
the center of the four feet. Fig. 12 (b) shows the orientation
deviation in the x and y directions for {P} in blue and {B}
in red; Fig. 12 (c) shows the angular velocity in the x and
y directions. As shown in Fig. 12, the balancing controller
significantly reduces the movement of the robot’s body frame
{B} compared to that of the platform-fixed frame {P}.

(a)

{𝐵}

{𝑃}

Fig. 12: The balancing control experiment (a) Experimental setup.
The robot stands on a platform pivoted on a sphere, the pivot point
is shown as a solid circle. The four triangles indicate the foot contact
points. (b) The orientation deviation of the platform coordinate {P}
(blue) and the body coordinate {B} (red). (c) The body angular
velocity of the platform coordinate (blue) and the body coordinate
(red).

B. Walking Trot

To demonstrate that RF-MPC can stabilize basic locomotion
gaits, the walking trot experiment is presented. The robot could
move in any direction parallel to the ground while maintaining
the body orientation. Fig. 13 (a) and (b) exhibit the velocity
tracking performance of the controller, and Fig. 13 (c) shows
that the orientation deviation is kept small (within ±0.06
rad) during the walking trot experiment; Fig. 13 (d) presents
the vertical GRF during the walking trot. The velocities are
measured from the state estimation.

C. Running Trot and Bounding

To investigate the performance of RF-MPC for dynamic
gaits, experiments of running trot and bounding gaits with
full aerial phases are conducted. Fig. 14 presents the running
trot experiment data, where Fig. 14 (a) shows that the vertical
CoM velocity experiences 40 ms free fall during the aerial
phase. Fig. 14 (b) shows that the robot could produce abruptly
changing GRF as the contact condition changes. During the
trot running experiment, the vertical GRF could reach as high
as 60 N while the knee torque goes up to 6.3 Nm, as could
be observed in Fig. 14(b) and (c), respectively.

The bounding gait leverages the full dynamics of the robot
and involves extensive body pitch oscillation. A sequential
snapshots of the bounding experiment could be found in Fig.
15 (a). The robot starts from a static pose and the MPC stabi-
lizes the robot to follow the desired GRF and state trajectories.
More details about reference trajectory generation could be
found in Section III-F. The reference and measured trajectories
of orientation and angular velocity in the y-direction are shown
in Fig. 15 (b), (c). Since the robot started from a static pose,
there is an initial offset. The vertical GRF profile is shown in
Fig. 15 (d). The transition from swing to stance phase occurs
when a touchdown event is declared by the contact detection
algorithm described in Section IV-F.

IEEE TRANSACTIONS ON ROBOTICS 14

125 130 135 140

-0.2

0

0.2

ṗ
x
[m

/s
] (a)

Reference
Measured

125 130 135 140

-0.2

0

0.2

ṗ
y
[m

/s
] (b)

125 130 135 140
-0.1

0

0.1

[r
ad

] (c)

log(R)∨x
log(R)∨y

125 130 135 140

Time [s]

0

50

u
z
[N

] (d)
FL

FR

Fig. 13: Walking trot experiment data. (a) Velocity tracking in the
x-direction. (b) Velocity tracking in the y-direction (c) Orientation
deviations along the x and y-axes, where the reference is 0. (d)
Vertical GRF uz for front legs.

275 276 277 278 279 280
-0.4

-0.2

0

0.2

ṗ
z
[m

/s
] (a)

Reference
Measured

275 275.2
-0.4

-0.2

0

0.2
(a1)

275 276 277 278 279 280
0

20

40

60

u
z
[N

]

(b)

275 275.2
0

20

40

60 (b1)

275 276 277 278 279 280

Time [s]

-2

0

2

4

6

8

τ
k
n
e
e
[N

m
] (c)

275 275.2
-2

0

2

4

6

8
(c1)

FL
FR
HL
HR

Fig. 14: Running trot experiment data. Zoomed-in views placed at
the right of the figure show the details of the signals. (a) Reference
and measured CoM vertical velocity in the z-direction (b) Vertical
GRF (c) Knee torque.

(a1) t = 50 ms (a2) t = 70 ms (a3) t = 100 ms

(a4) t = 110 ms (a5) t = 120 ms (a6) t = 150 ms

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

lo
g
(R

)∨ y
[r
ad

]

(b)

0 0.2 0.4 0.6 0.8 1

-5

0

5

B
ω
y
[r
ad

/s
]

(c)

Reference
Measured

0 0.2 0.4 0.6 0.8 1

Time [s]

0

50

u
z
[N

] (d)
FL
FR
HL
HR

Fig. 15: Bounding experiment data (a) Sequential snapshots of the
robot in a bounding experiment. (b) Orientation tracking in the y-
direction log(R)∨y (c) Angular velocity tracking in the y-direction
Bωy (d) Vertical GRF.

D. Controlled Backflip

To demonstrate the capability of RF-MPC to control dy-
namic maneuvers that involve singularity poses, a controlled
backflip experiment is presented. As shown in Fig. 1, the
robot flips backwards around the y-axis, passing through the
pose where the robot is upright, before it lands with the
upside-down orientation. Note that even though the reference
trajectory is generated based on a 2-D model of the robot as
presented in Section III-F, RF-MPC controls the 3D robot in
the controlled backflip experiment without resorting to decom-
position of sagittal plane motion and out-of-plane motion.

The image sequence in Fig. 16 (a) is plotted along with the
body orientation, which is reconstructed from the experiment
data as shown in Fig. 16 (b). The rotation matrix is represented
by the body coordinate frame axes (x-blue, y-red, z-green);
the three color-coded rings correspond to the Euler angles
with the roll-pitch-yaw sequence convention (roll-blue, pitch-
red, yaw-green). Note that the robot is at the singular pose at
around 300 ms as shown in Fig. 16 (a3). In the corresponding
body orientation plot, the axes of the rings for Euler angles
almost coincide. Therefore, the robot indeed passes through
the singularity pose when the RF-MPC is actively controlling
the hind legs to track the reference trajectory. To the best of
the authors’ knowledge, this is the first instance of hardware
experimental implementation of MPC to control acrobatic
motion which involves singularity.

Fig. 17 presents the data from the controlled backflip

IEEE TRANSACTIONS ON ROBOTICS 15

experiment, where the robot goes through three phases. The
deep-shaded area corresponds to the phase when all four
legs are in contact; the light-shaded area indicates the phase
when only the hind legs are in contact; the non-shaded area
corresponds to the landing phase. The RF-MPC controller is
activated during the first two phases, and an impedance control
is utilized in the third phase. Experiment data gathered from
10 backflip trials are shown in Fig. 17, where the solid lines
are the mean values of all the tests, and the shaded tube is the
value within one standard deviation.

As could be observed from Fig. 17 (d), the robot passes
through the neighborhood of singularity as the number in-
troduced in Section III-A drops below the threshold 10−1.
Fig. 17 (c) shows that the pitch angle θ is not monotonic
throughout the controlled backflip while log(R)∨y decreases
monotonically. The dash-dot curves in Fig. 17 (a) and (c) are
from the experiment trial where the initial state of the robot
is perturbed. Specifically, the height of the stage on which
the front legs are positioned is increased from 80 mm to 130
mm. It could be observed that while in this case the trajectory
of the robot deviates more than one standard deviation from
the average, RF-MPC could still stabilize the motion and land
safely.

VI. DISCUSSION

In this section we briefly discuss some of the important
aspects of this work. That includes the interpretation of some
of the experiment results, discussion of the findings, and
limitations of this work.

In this work, the proposed RF-MPC uses the rotation matrix
to represent the orientation, which is capable of stabilizing
dynamic motion in 3D that involves singularity in the Eu-
ler angle formulation. Specifically, Section V-D presents the
controlled backflip experiment, where RF-MPC stabilized the
robot to perform an acrobatic maneuver that passes through
the singularity. The simulation result in Section III-D suggests
that the function value dropping below the threshold would
result in the failure of the EA-MPC. Another problem EA-
MPC has is shown in Fig. 17 (c), where the pitch angle θ
decreased until −π2 and went back to 0 rad. Notice how the
monotonicity changed as the value of κ−1(TΘ) went below the
threshold of 10−1 s shown in Fig. 17 (d). In contrast, log(R)∨y
monotonically decreased to −π. Note that though the motion
of the controlled backflip remains in the sagittal plane, RF-
MPC is stabilizing the 3D motion without decomposing the
motion into in-plane and out-of-plane parts. This experiment
is our initial demonstration of the RF-MPC framework that
could potentially open up the possibilities of controlling legged
robots to perform the extremely agile motions as shown in [3].

One of the findings is that, a simulation case study shown
in Section III-E suggests that within the RF-MPC framework,
linearizing around the operating point (scheme 2) provides
more robust behavior compared with linearizing around the
reference trajectory (scheme 1). The result is counter-intuitive
because scheme 1 uses time-varying Jacobian matricesAk,Bk

parametrized by the reference trajectory within the prediction
horizon, while scheme 2 uses matrices parameterized only by

the operating point A|op,B|op throughout the prediction hori-
zon. Namely, scheme 1 utilizes more information than scheme
2. Our conjecture for the reason why scheme 2 provides
more robustness is stated as follows. Since RF-MPC represents
orientation using the rotation matrix, which presumes SO(3)
structure, linearizing around the operating point guarantees an
accurate dynamics model for predicted states that are close
to the operating point. In comparison, when the orientation
deviation from the reference trajectory is large, the dynamics
linearized about the reference no longer provide a realistic
local approximation of the original nonlinear dynamics. This
phenomenon is shown in Fig. 7(e), where the prediction error
of the rotation matrix in scheme 1 became large, which leads
to the failure of the controller. The decay rate γ is used in
both schemes to discount the effect of states that are farther
in the future, where the linearized model is less accurate.

A limitation of the proposed RF-MPC formulation is that
the predicted rotation matrices constructed from ξ are not
elements of the SO(3) manifold since the first order approxi-
mation is unable to fully capture the SO(3) structure. Hence,
the prediction error is more pronounced for a longer prediction
horizon. Currently, prediction horizon remains an important
design parameter with a trade-off between the predictive
ability of MPC and the accuracy of the linearized dynamics
model. Prediction horizon being too long leads to inaccurate
rotational dynamics, while being too short leads to myopic
behaviors. To mitigate this issue, we envision a hierarchical
framework with multiple MPCs running at different rates.
Specifically, an MPC with simpler model and longer prediction
horizon could be running at lower update rate, while the RF-
MPC with shorter prediction horizon could be running at a
higher rate.

The larger deviation towards the end of the bounding motion
may be caused by the simple state estimation and contact
detection algorithms presented in Sections IV-E and IV-F,
respectively. The tracking error in Fig. 11, 13, and 15 could
also be affected by these reasons since the velocities were
measured from state estimation instead of external sensors.

VII. CONCLUSION AND FUTURE WORK

In this work we presented a representation-free model
predictive control framework that directly represents orienta-
tion using the rotation matrix instead of using other orienta-
tion representations. Despite the local validity of linearized
dynamics on the rotation matrix, this approach introduces
the possibility to stabilize 3D complex acrobatic maneuvers
that involve singularities in the Euler angles formulation. By
directly working on the rotation matrix, this method avoids
issues arising from the usage of other representations such
as unwinding phenomenon (quaternion) or singularity (Euler
angles). The application of a variation-based linearization
scheme and a vectorization routine linearized the nonlinear
dynamics and transformed the matrix variables into vector
variables. The deliberate construction of the orientation error
function enabled us to formulate the MPC into the standard
QP form.

We reported both simulation and experiment results of the
RF-MPC controller applied on the quadruped Panther robot.

IEEE TRANSACTIONS ON ROBOTICS 16

(a3) (a4) (a5) (a6)(a2)(a1)

(b1)

t = 0 ms t = 150 ms t = 300 ms t = 350 ms t = 400 ms t = 600 ms

(b3) (b4) (b5) (b6)(b2)

Fig. 16: Quadruped robot Panther performing a controlled backflip that passes through singularity pose. (a) An image sequence of the robot
executing the controlled backflip, with its front legs launching from a 80 mm high platform. (b) The body orientation reconstructed from
the experimental data. The rotation matrix is represented by the body coordinate frame axes (x-blue, y-red, z-green); the Euler angles are
visualized by the three colored rings with arrow (φ-blue, θ-red, ψ-green). The robot passes through the upright pose (a3) while the hind legs
are in contact with the ground. The Gimbal lock effect is shown in (b3) where axes of Euler angles are aligned.

TABLE II: Cost function weights for the simulations and experiments. The values in parenthesis represent weights on the terminal costs.

Sim. Sim. Sim. Acro. Exp. Pose/ Exp. Exp. Exp. Exp.
Pose TrotWalk Bound Mnvr. Balance TrotWalk TrotRun Bound Backflip

Qpx 3e5 (1e5) 1e5 8e4 5e6 3e5 (1e5) 1e5 1e5 2e5 (1.2e5) 1e5
Qpy 5e5 (1e5) 2e5 5e4 5e6 5e5 (1e5) 1e5 (1.5e5) 1e5 (1.5e5) 4e5 1e5 (2e5)
Qpz 2e5 (1e5) 3e5 3e6 5e6 2e5 (1e5) 1.5e5 (2.2e5) 2e4 1.5e5 (2e5) 1.5e5 (2.2e5)
Qṗx 10 (30) 5e2 4e3(5e2) 5e3 10 (30) 1e3 (1.5e3) 1e3 (1.5e3) 50 1e3 (1.5e3)
Qṗy 8 (30) 1e3 5e2 5e3 8 (30) 1e3 1e3 200 (150) 1e3
Qṗz 10 (30) 1e3 7e2(5e2) 5e3 10 (30) 150 100 30 150
QRx 5e2 1e3 8e3 1e6 5e2 2e3 1e3 (2e3) 3e3 (1e3) 4e3 (6e3)
QRy 2e3 (3e3) 1e4 5e5 (5e4) 1e6 2e3 (3e3) 2e3 2e3 4e3 (8e3) 0 (10)
QRz 1e3 8e2 8e3 1e6 1e3 8e2 8e2 1e3 (3e3) 8e2
Qωx 2 40 2e2 5e3 2 60 (100) 60 (100) 3 (2) 60 (100)
Qωy 4 40 1e2 5e3 4 40 (45) 40 (45) 6 (2) 0 (1)
Qωz 3 10 2e2 5e3 3 10 10 5 (8) 10
Rux 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
Ruy 0.1 0.2 0.2 0.1 0.1 0.18 0.18 0.18 0.12
Ruz 0.1 0.1 0.2 0.1 0.1 0.08 0.08 0.2 0.1
Tst N/A 0.3 0.1 0.1 (0.2) N/A 0.3 0.12 / 0.2 0.1 0.12 (0.3)*
Tsw N/A 0.15 0.16 N/A N/A 0.15 0.2 / 0.1 0.2 0.3
Nhor 7 6 6 7 6 6 6 7 6
γ 1.0 1.0 0.9 0.9 1.0 1.0 1.0 0.8 0.8

Tpred 0.05 0.08 0.01 0.01 0.02 0.08 0.05 0.01 0.02
fMPC 100 100 100 100 250 250 250 160 200

Note: Tst, Tsw and Tpred all have the unit of [s]; Nhor is the MPC prediction horizon; Tpred is the prediction time step; fMPC is the MPC
control frequency with the unit of [Hz].
*0.13 s is the front stance time, and 0.3 s is the hind stance time.

In the simulation case study presented in Section III-E we
found out that in the RF-MPC framework, linearizing around
the operating point provides a more robust control strategy
compared with linearizing around the reference trajectory.
Experiments including pose/balance control, walking/running
trot and bounding were conducted on the robot. In addition,
the controlled backflip experiment demonstrated that RF-MPC
controller can stabilize dynamic motions that involve the
singularity. By utilizing a custom QP solver qpSWIFT, the
MPC could reach control frequency as high as 250 Hz.

This novel RF-MPC framework is likely to open up possi-
bilities for quadruped robots and legged robots in general to

realize extremely dynamic 3D motions. We also envision to
equip the robot with special end-effectors (e.g., climbing robot
with claws [70] or magnetic grippers), enabling it to climb
up vertical surfaces and walk on the ceiling. Moreover, with
the emergence of powerful and light-weight computing units,
the variation-based formulation could potentially be applied to
stabilizing acrobatic maneuvers in UAVs.

ACKNOWLEDGMENT

The authors would like to thank Prof. Patrick Wensing for
the insightful discussion, Prof. João Ramos for his advice and
support, and Jaejun Park for his help in hardware assembly.

IEEE TRANSACTIONS ON ROBOTICS 17

Fig. 17: Experimental data from 10 controlled backflip trials. The
solid lines are the average (avg.) of all the tests, and the shaded tube
is the range within one standard deviation. The black dash-dot curves
in (a) and (c) are from the case where the initial condition of the
backflip is perturbed (pert.). The deep-shaded area is when four legs
are in contact; the light-shaded area is when hind legs are in contact,
and the non-shaded area is when all legs are in the impedance control
phase. (a) The CoM height. (b) The knee torque of legs FL and
HL. (c) Comparison between the pitch angle θ and rotation matrix
log(R)∨y . (d) The function κ−1(TΘ) indicates that the robot indeed
encountered the singular pose in the controlled backflip experiment.

REFERENCES

[1] Y. Ding, A. Pandala, and H.-W. Park, “Real-time model predictive
control for versatile dynamic motions in quadrupedal robots,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 8484–8490.

[2] L. Aronson, “The ibex—king of the cliffs,” Massada, Tel Aviv,(in
Hebrew), 1982.

[3] Alex & jumpy - the parkour dog. YouTube:. [Online]. Available:
https://www.youtube.com/watch?v=39oGCTAJ9Vw&t=117s

[4] A. De and D. E. Koditschek, “Vertical hopper compositions for preflex-
ive and feedback-stabilized quadrupedal bounding, pacing, pronking, and
trotting,” The International Journal of Robotics Research, vol. 37, no. 7,
pp. 743–778, 2018.

[5] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch et al., “Anymal-
a highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 38–44.

[6] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of HyQ–a hydraulically and electrically
actuated quadruped robot,” Proceedings of the Institution of Mechanical

Engineers, Part I: Journal of Systems and Control Engineering, vol.
225, no. 6, pp. 831–849, 2011.

[7] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim, “Design
principles for highly efficient quadrupeds and implementation on the
MIT cheetah robot,” in 2013 IEEE International Conference on Robotics
and Automation. IEEE, 2013, pp. 3307–3312.

[8] H.-W. Park, P. M. Wensing, and S. Kim, “High-speed bounding with
the MIT cheetah 2: Control design and experiments,” The International
Journal of Robotics Research, vol. 36, no. 2, pp. 167–192, 2017.

[9] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim,
“MIT cheetah 3: Design and control of a robust, dynamic quadruped
robot,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2018, pp. 2245–2252.

[10] P. Fankhauser, M. Bjelonic, C. Dario Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 5761–5768.

[11] H.-W. Park, P. M. Wensing, and S. Kim, “Jumping over obstacles with
mit cheetah 2,” Robotics and Autonomous Systems, p. 103703, 2020.

[12] Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, and S. Kim, “Optimized
jumping on the mit cheetah 3 robot,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 7448–7454.

[13] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for
pushing the limits of dynamic quadruped control,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
6295–6301.

[14] M. H. Raibert, Legged robots that balance. MIT press, 1986.
[15] L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, and S. Schaal,

“Optimal distribution of contact forces with inverse-dynamics control,”
The International Journal of Robotics Research, vol. 32, no. 3, pp. 280–
298, 2013.

[16] M. Hutter, C. Gehring, M. Bloesch, C. D. Remy, and R. Siegwart, “Hy-
brid operational space control for compliant legged systems,” Robotics,
p. 129, 2013.

[17] X. Xiong and A. Ames, “Sequential motion planning for bipedal
somersault via flywheel slip and momentum transmission with task space
control,” arXiv preprint arXiv:2008.02432, 2020.

[18] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, 2019.

[19] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[20] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control applied
to the HRP-2 humanoid,” in 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 3346–3351.

[21] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[22] R. Grandia, F. Farshidian, A. Dosovitskiy, R. Ranftl, and M. Hutter,
“Frequency-aware model predictive control,” IEEE Robotics and Au-
tomation Letters, vol. 4, no. 2, pp. 1517–1524, 2019.

[23] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc
for torque-controlled legged robots,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 4730–
4737.

[24] C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini,
“Motion planning for quadrupedal locomotion: coupled planning, terrain
mapping and whole-body control,” IEEE Transactions on Robotics,
2020.

[25] S. Fahmi, C. Mastalli, M. Focchi, and C. Semini, “Passive whole-body
control for quadruped robots: Experimental validation over challenging
terrain,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2553–
2560, 2019.

[26] M. Focchi, R. Orsolino, M. Camurri, V. Barasuol, C. Mastalli, D. G.
Caldwell, and C. Semini, Heuristic Planning for Rough Terrain Loco-
motion in Presence of External Disturbances and Variable Perception
Quality. Cham: Springer International Publishing, 2020, pp. 165–209.

[27] M. D. Shuster, “A survey of attitude representations,” Navigation, vol. 8,
no. 9, pp. 439–517, 1993.

[28] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer,
2016.

[29] S. P. Bhat and D. S. Bernstein, “A topological obstruction to global
asymptotic stabilization of rotational motion and the unwinding phe-

https://www.youtube.com/watch?v=39oGCTAJ9Vw&t=117s

IEEE TRANSACTIONS ON ROBOTICS 18

nomenon,” in American Control Conference, 1998. Proceedings of the
1998, vol. 5. IEEE, 1998, pp. 2785–2789.

[30] X. Yang, Y. Chen, L. Chang, A. A. Calderón, and N. O. Pérez-Arancibia,
“Bee+: A 95-mg four-winged insect-scale flying robot driven by twinned
unimorph actuators,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 4270–4277, 2019.

[31] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “On quaternion-based
attitude control and the unwinding phenomenon,” in Proceedings of the
2011 American Control Conference, 2011, pp. 299–304.

[32] F. Bullo and A. D. Lewis, Geometric control of mechanical systems:
modeling, analysis, and design for simple mechanical control systems.
Springer Science & Business Media, 2004, vol. 49.

[33] G. Wu and K. Sreenath, “Variation-based linearization of nonlinear
systems evolving on SO(3)and S2,,” IEEE Access, vol. 3, pp. 1592–
1604, 2015.

[34] T. Lee, M. Leok, and N. H. McClamroch, “Stable manifolds of saddle
equilibria for pendulum dynamics on S2 and SO(3),” in Decision and
Control and European Control Conference (CDC-ECC), 2011 50th IEEE
Conference on Decision and Control and European Control Conference
(CDC-ECC). IEEE, 2011, pp. 3915–3921.

[35] E. S. Meadows, M. A. Henson, J. W. Eaton, and J. B. Rawlings, “Re-
ceding horizon control and discontinuous state feedback stabilization,”
International Journal of Control, vol. 62, no. 5, pp. 1217–1229, 1995.

[36] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct
solution of optimal control problems,” IFAC Proceedings Volumes,
vol. 17, no. 2, pp. 1603–1608, 1984.

[37] O. von Stryk, Numerical Solution of Optimal Control Problems by Direct
Collocation. Basel: Birkhäuser Basel, 1993, pp. 129–143.

[38] R. J. Full and D. E. Koditschek, “Templates and anchors: neuromechan-
ical hypotheses of legged locomotion on land,” Journal of experimental
biology, vol. 202, no. 23, pp. 3325–3332, 1999.

[39] S. Kajita, “Study of dynamic biped locomotion on rugged terrain-
derivation and application of the linear inverted pendulum mode,” in
Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento, CA,
1991, 1991, pp. 1405–1411.

[40] J. Ramos and S. Kim, “Humanoid dynamic synchronization through
whole-body bilateral feedback teleoperation,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 953–965, 2018.

[41] X. Xiong and A. D. Ames, “Orbit characterization, stabilization and
composition on 3d underactuated bipedal walking via hybrid passive
linear inverted pendulum model,” in 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2019, pp. 4644–4651.

[42] D. E. Orin, A. Goswami, and S. H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176,
2013.

[43] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with simple dynamics and full kinematics,” in Proceedings of the IEEE-
RAS international conference on humanoid robots, 2014.

[44] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in 2013
IEEE International Conference on Robotics and Automation. IEEE,
2013, pp. 3103–3109.

[45] C. Li, Y. Ding, and H.-W. Park, “Centroidal-momentum-based trajectory
generation for legged locomotion,” Mechatronics, vol. 68, p. 102364,
2020.

[46] J. E. Marsden and T. S. Ratiu, “Introduction to mechanics and symme-
try,” Physics Today, vol. 48, no. 12, p. 65, 1995.

[47] M. Chignoli and P. M. Wensing, “Variational-based optimal control of
underactuated balancing for dynamic quadrupeds,” IEEE Access, vol. 8,
pp. 49 785–49 797, 2020.

[48] T. Lee, M. Leoky, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on SE(3),” in Decision and Control (CDC), 2010
49th IEEE Conference on. IEEE, 2010, pp. 5420–5425.

[49] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[50] A. Graham, Kronecker products and matrix calculus with applications.

Courier Dover Publications, 2018.
[51] J. C. Trinkle, J.-S. Pang, S. Sudarsky, and G. Lo, “On dynamic multi-

rigid-body contact problems with coulomb friction,” ZAMM-Journal of
Applied Mathematics and Mechanics/Zeitschrift für Angewandte Math-
ematik und Mechanik, vol. 77, no. 4, pp. 267–279, 1997.

[52] Y. Wang and S. Boyd, “Fast model predictive control using online opti-
mization,” IEEE Transactions on Control Systems Technology, vol. 18,
no. 2, pp. 267–278, March 2010.

[53] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[54] J. J. Craig, Introduction to robotics: mechanics and control, 3/E.
Pearson Education India, 2009.

[55] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the MIT Cheetah 3 through convex model-predictive
control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[56] MIT-Biomimetics-Robotics-Lab, “Cheetah-software,” https:
//github.com/charlespwd/project-title[Accessed 29 June 2020], 2019.

[57] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.

[58] A. G. Pandala, Y. Ding, and H.-W. Park, “qpSWIFT: A real-time sparse
quadratic program solver for robotic applications,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3355–3362, 2019.

[59] Y. Ding and H.-W. Park, “Design and experimental implementation of
a quasi-direct-drive leg for optimized jumping,” in Intelligent Robots
and Systems (IROS), 2017 IEEE/RSJ International Conference. IEEE,
2017, pp. 300–305.

[60] Y. Ding, C. Li, and H.-W. Park, “Single leg dynamic motion planning
with mixed-integer convex optimization,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 1–6.

[61] ——, “Kinodynamic motion planning for multi-legged robot jumping
via mixed-integer convex program,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

[62] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in Humanoid Robots, 2006 6th
IEEE-RAS International Conference on. IEEE, 2006, pp. 200–207.

[63] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[64] S. Osder, W. Rouse, and L. Young, “Navigation, guidance, and control
systems for V/STOL aircraft.” Sperry Tech, vol. 1, no. 3, 1973.

[65] P. Corke, “An inertial and visual sensing system for a small autonomous
helicopter,” Journal of robotic systems, vol. 21, no. 2, pp. 43–51, 2004.

[66] S. Saripalli, J. M. Roberts, P. Corke, G. Buskey, and G. Sukhatme, “A
tale of two helicopters,” in Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2003 (IROS 2003), vol. 1.
IEEE, 2003, pp. 805–810.

[67] P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim,
“Proprioceptive actuator design in the MIT Cheetah: Impact mitigation
and high-bandwidth physical interaction for dynamic legged robots,”
IEEE Transactions on Robotics, vol. 33, no. 3, pp. 509–522, 2017.

[68] A. De Luca and R. Mattone, “Sensorless robot collision detection
and hybrid force/motion control,” in Proceedings of the 2005 IEEE
international conference on robotics and automation. IEEE, 2005,
pp. 999–1004.

[69] M. R. Jardin and E. R. Mueller, “Optimized measurements of unmanned-
air-vehicle mass moment of inertia with a bifilar pendulum,” Journal of
Aircraft, vol. 46, no. 3, pp. 763–775, 2009.

[70] J. Park, D. H. Kong, and H. Park, “Design of anti-skid foot with passive
slip detection mechanism for conditional utilization of heterogeneous
foot pads,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
1170–1177, 2019.

Yanran Ding (M’16) received his B.S. degree in
Mechanical Engineering from Shanghai Jiao Tong
University (SJTU), Shanghai, China, in 2015 and
the M.S. degree from the Mechanical Science and
Engineering Department, University of Illinois at
Urbana-Champaign (UIUC), Champaign, in 2017.
He is currently pursuing his Ph.D. degree at the Dy-
namic Robotics Laboratory in UIUC. His research
interests include the design of agile robotic systems
and optimization-based control for legged robots to
achieve dynamic motions. He is one of the best

student paper finalists in the International Conference on Intelligent Robots
and Systems (IROS) 2017.

https://github.com/charlespwd/project-title
https://github.com/charlespwd/project-title

IEEE TRANSACTIONS ON ROBOTICS 19

Abhishek Pandala received his Master of Science
in Mechanical Engineering from the University of
Illinois at Urbana-Champaign (UIUC) in 2019 and
a Dual Degree (B.Tech and M.Tech) in Mechanical
Engineering from the Indian Institute of Technology
Madras (IIT-M) in 2017. He is currently pursuing
his Ph.D. degree in Mechanical Engineering at the
Virginia Polytechnic Institute and State University.
His research interests include optimization-based
control of dynamical systems with application to
high degree of freedom robots.

Chuanzheng Li received his B.S. degree in Mecha-
tronics from Zhejiang University, Hangzhou, China
in 2014, and the M.S. degree from the Mechanical
Science and Engineering Department, University of
Illinois at Urbana-Champaign, Champaign, IL, USA
in 2017. He is currently in the Ph.D. program at
University of Illinois at Urbana-Champaign super-
vised by Dr. Hae-Won Park, working primarily on
the design of mechatronic systems and the real-time
control of legged robots.

Young-Ha Shin received his BS degrees in the
Department of Mechanical Engineering from Ko-
rea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea in 2019. He is
currently a graduate student in the MS course in
the Department of Mechanical Engineering in Ko-
rea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea. His research inter-
ests include actuator design, model predictive control
for quadruped robots.

Hae-Won Park is an Assistant Professor of Mechan-
ical Engineering at the Korea Advanced Institute of
Science and Technology (KAIST). He received B.S.
and M.S. degrees from Yonsei University, Seoul,
Korea, in 2005 and 2007, respectively, and the Ph.D.
degree from the University of Michigan, in 2012,
all in mechanical engineering. His research interests
lie at the intersection of control, dynamics, and
mechanical design of robotic systems, with special
emphasis on legged locomotion robots. He is the
recipient of the 2018 National Science Foundation

(NSF) CAREER Award, NSF most prestigious awards in support of early-
career faculty.

	I Introduction
	I-A Contribution
	I-B Outline

	II Model Predictive Control
	II-A 3D Single Rigid Body Model
	II-B Variation-based Linearization
	II-C Vectorization
	II-D Discrete-time Affine Dynamics
	II-E Cost Function
	II-F Force Constraints
	II-G Quadratic Program Formulation

	III Numerical Results
	III-A Singularity in Euler Angles
	III-B Walking Trot
	III-C Bounding
	III-D Aperiodic Complex Dynamic Maneuver
	III-E Comparison of Linearization Schemes
	III-F Reference Trajectory Generation
	III-F1 Trotting
	III-F2 Aperiodic Complex Dynamic Maneuver
	III-F3 Bounding
	III-F4 Controlled Backflip

	IV Controller Implementation Details
	IV-A Finite State Machine
	IV-B Platform Description
	IV-C Computation Setup
	IV-D Swing Leg Control
	IV-E State Estimation
	IV-F Contact Detection
	IV-G System Identification
	IV-G1 Friction Compensation
	IV-G2 Center of Mass Location
	IV-G3 Mass Moment of Inertia

	V Experiment Results
	V-A Pose and Balancing Control
	V-B Walking Trot
	V-C Running Trot and Bounding
	V-D Controlled Backflip

	VI Discussion
	VII Conclusion and Future Work
	References
	Biographies
	Yanran Ding
	Abhishek Pandala
	Chuanzheng Li
	Young-Ha Shin
	Hae-Won Park

