UNIQUENESS OF K-POLYSTABLE DEGENERATIONS OF FANO
VARIETIES

HAROLD BLUM AND CHENYANG XU

ABSTRACT. We prove that K-polystable degenerations of Q-Fano varieties are unique.
Furthermore, we show that the moduli stack of K-stable Q-Fano varieties is sepa-
rated. Together with recently proven boundedness and openness statements, the
latter result yields a separated Deligne-Mumford stack parametrizing all uniformly
K-stable Q-Fano varieties of fixed dimension and volume. The result also implies
that the automorphism group of a K-stable Q-Fano variety is finite.
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1. INTRODUCTION

1.1. Moduli spaces of Fano varieties. To give a general framework for intrinsi-
cally constructing moduli spaces of Fano varieties is a challenging question in algebraic
geometry, especially if one wants to find a compactification. Unlike the KSBA con-
struction in the canonically polarized case, the Minimal Model Program often provides
more than one limit for a family of Fano varieties over a punctured curve. Thus, it
is unclear how to find a theory that picks the right limit. In examples, people have
obtained a lot of working experience on how to identify the simplest limit. On the
negative side, examples such as [PP10, Section 2.2], which gives a family that isotriv-
ially degenerates a homogeneous space to a different quasi-homogeneous space (with
non-reductive automorphism group), suggest that we should not consider all smooth
Fano varieties.

So when the definition of K-stability from complex geometry [Tia97] and its alge-
braic formulation [Don02], which were introduced to characterize when a Fano variety
admits a Kahler-Einstein metric, first appeared in front of algebraic geometers, it
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seemed bold to expect such a notion would be a key ingredient in constructing mod-
uli spaces of Fano varieties. However, as the theory has developed, more and more
evidence makes such an expectation believable.

We now expect that the moduli functor M}$ of n-dimensional K-semistable Q-
Fano varieties of volume V', which sends S € Sch;, to

Flat proper morphisms X — S, whose geometric fibers are
My (S) = n-dimensional K-semistable Q-Fano varieties with
volume V', satisfying Kollar’s condition

is represented by an Artin stack MKSS of finite type and admits a projective good mod-

uli space M5 — M,IL( - (in the sense of [Alp13]), whose closed points are in bijection
with n-dimensional K-polystable Q-Fano varieties of volume V. Here, Kollar’s condi-

tion means that the reflexive power wgf /]s is flat over S and commutes with arbitrary

base change for each m € Z (see [Kol09, 24]).

While smooth Kéhler-Einstein Fano manifolds with finite automorphism group are
asymptotically Chow stable [Don01], examples in [OSY12, LLSW17] show that the
GIT approach likely fails to treat those with infinite automorphism groups or singu-
larities. (See [WX14] for examples where asymptotic Chow stability fails to construct
compact moduli spaces in the KSBA setting.) Therefore, we need to take a more
abstract approach to constructing M:f v

The construction of M, ‘p/s reduces to proving a number of concrete statements about
families of Q-Fano varieties. We list the main ones:

(I) BOUNDEDNESS: There is a positive integer N = N(n,V) such that if X €
M (k), then —N Ky is a very ample Cartier divisor. This is settled in [Jial7]
using results in [Birl6].

(II) ZARISKI OPENNESS: If X — S is a family of Q-Fano varieties, then the locus
where the fiber is K-semistable is a Zariski open set.

Together, (I) and (II) show that M is an Artin stack of finite type and is a global

quotient. The following statements are needed to show ML{S‘E admits a projective good
moduli space.

(ITT) GooD QUOTIENT: The stack /\/lfsﬁ admits a good moduli space. To prove this,
it suffices to show:

(IIl.a) REDUCTIVE AUTOMORPHISM GROUP: If X is a K-polystable Q-Fano va-
riety X, then Aut(X) is reductive.

(III.Lb) GLUING OF LOCAL QUOTIENTS: Near each K-polystable Q-Fano variety
X € MEs(k), there exists a local atlas around [X] given by an Aut(X)
slice. Furthermore, a point in the slice is GIT (poly/semi)stable with re-
spect to Aut(X) if and only if the corresponding Q-Fano variety is K-
(poly/semi)stable. To complete this step, it remains to verify that the
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local GIT quotient spaces glue together to give the good quotient Mm{'}s

(e.g. the hypotheses of [AFS17, Theorem 1.2] are satisfied).

(IV) SEPARATEDNESS: Any two K-semistable degenerations of a family of K-semistable
Q-Fano varieties over a punctured curve C° = C'\ 0 lie in the same S-equivalence
class, i.e. they degenerate to a common K-semistable Q-Fano variety via special
test configurations.

(V) PROPERNESS: Roughly speaking, any family of K-semistable Fano varieties over
a punctured curve C° = C'\ 0 can be filled in over 0 to a family of K-semistable
Q-Fano varieties over C.

(VI) ProJeciTivTY: A sufficiently divisible multiple of the CM-line bundle yields

an ample line bundle on Mff v

We note that there are subtleties related to the requirement that objects in MES&(S )
satisfy Kollar’s condition. Luckily, such issues are of a local nature and have all
been addressed in the construction of the moduli space of KSBA stable varieties (see
[Ko0l09, Kol19]).

Strong evidence for the above picture is that, aside from (VI) (the projectivity of
M,If 7 ), the problem is completely solved in [LWX19] (see also [SSY16,0dal5]) for Q-
Fano varieties with a (Q-Gorenstein smoothing and some progress on the projectivity
was made in [LWX18a]. However, these results rely heavily on the deep analytic
tools established in [CDS15, Tial5]. Therefore, a completely algebraic proof is highly
desirable. Such a proof would likely allow us to drop the smoothable assumption.
The main result in this paper gives a complete solution to (IV). In the smoothable
case, this step is solved in [LWX19,SSY16] using analytic tools. The argument in this
document is purely algebraic.

1.2. Separatedness result. The following statement is our main result.

Theorem 1.1. Let 7 : (X,A) — C and 7" : (X', A’) — C be Q-Gorenstein families of
log Fano pairs over a smooth pointed curve 0 € C. Assume there exists an isomorphism

¢: (X,A) xc C° = (X', A") xc C°

over C°: =C'\ 0.

(1) K-semistable case: If (Xo,Ao) and (X{, A}) are K-semistable, then they are S-
equivalent.

(2) K-polystable case: If (Xo,Ao) and (X}, Ay) are K-polystable, then they are iso-
morphic.

(3) K-stable case: If (Xg,Ag) is K-stable and (X, Ay) is K-semistable, then ¢ extends
to an isomorphism (X, A) ~ (X', A") over C.

Remark 1.2. (1) The K-polystable case of Theorem 1.1 follows immediately from
the K-semistable case and Definitions 2.5 and 2.6.

(2) By [LWX18b], the K-semistable case of Theorem 1.1 can be strengthened to
say (Xo,Ao) and (X, Af) have a common K-polystable degeneration.
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(3) A special case of Theorem 1.1 was proved in [Odal2, 1.4] with the additional
assumption that a(Xg, Ag) > dim(Xy)/(dim(Xy) + 1) (see also [Che09, 5.7]).

Theorem 1.1 implies the following special case of Step (III.a).

Corollary 1.3. Let (X, A) be log Fano pair. If (X, A) is K-stable, then Aut(X,A)
s finite.

1.3. Moduli of uniformly K-stable Fano varieties. We now specialize our study
to the moduli of uniformly K-stable Fano varieties. Consider the moduli functor M

that sends S € Sch;, to

flat, proper morphisms X — S, whose geometric fibers
ME(S) = are n-dimensional uniformly K-stable Q-Fano varieties
of volume V, satisfying Kollar’s condition

Combining the following recent results:

(I") BOUNDEDNESS: Proved in [Jial7],
(II") ZARISKI OPENNESS: Proved in [BL18], and
(III") SEPARATEDNESS (AS A STACK): Theorem 1.1.3,

we obtain the following corollary.

Corollary 1.4. The functor Mﬁ}s is a separated Deligne-Mumford stack of finite

type, which has a coarse moduli space M;;@S that is a separated algebraic space.

One still missing property is
(IV") QUASI-PROJECTIVITY: M}%? is quasi-projective.

Significant progress on this problem was made in [CP18§].

1.4. Summary of the paper. The original definition of K-stability in [Tia97, Don02]
is defined in terms of the sign of the generalized Futaki invariant on all test configu-
rations or at least special test configurations (see [LX14]). Recently, there has been
tremendous progress in reinterpreting K-stability in terms of invariants associated to
valuations rather than test configurations.

More specifically, in [BHJ17], the data of a test configuration was translated into
the data of a filtration and it was shown that a nontrivial special test configuration
yields a divisorial valuation. Then in a series of papers [Fujl6, Fujl9a, Fuj18] of K.
Fujita, all divisorial valuations were studied and an invariant 8 was defined for each
divisorial valuation. After [Lil7], it became more natural to extend the setup to all
valuations over the log Fano variety rather than only considering divisorial valuations
(see also [LX16,BJ17]). Moreover, a characterization of K-stability notions in terms
of the sign of S-invariant for divisorial valuations was proved in [Lil17,Fuj19a] and lead
to another characterization by the J-invariant in [FO18,BJ17]. These interpretations
of K-stability using valuations have made it easier to apply techniques from birational
geometry, especially the Minimal Model Program, to the study of K-stability.
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In Section 2, we will have a short discussion on the above materials. More precisely,
we will provide information on the language of valuations and filtrations following
[BHJ17,Fuj19b,Lil17] and the invariants § and ¢ associated to them following [Fuj19b,
FO18,BJ17]. We also discuss the normalized volume function from [Lil8] and its
relation with the K-stability of Fano varieties (see [Lil7,LX16]).

To proceed with our discussion, let us define the above invariants. Let (X, A) be a
log Fano pair. Given a divisor F over X (i.e. F C Y is a prime divisor, where Y is a
normal variety with a proper birational morphism 7 : Y — X), the S-invariant of £
is given by

By a(E) = Axa(E)(—Kx — A)" — /0 T vol(rt (K — A) — tE)dt

where Ax A(E) is the log discrepancy of E. This invariant was defined in [Fuj18] and
the K-(semi)stability of (X, A) can be phrased in terms of the positivity of Sx a(E)
[Fuj19a, Lil7].

Next, is the d-invariant of (X, A), which, as defined in [FO18], measures log canon-
ical thresholds of a certain classes of anti-log canonical divisors of (X, A). It is shown
in [BJ17] that

§(X,A) = inf —— AxalB)(=Kx = 4) .
B [Fvol(r*(—Kx — A) — tE)dt

(1)

Hence, we say that a divisor E over X computes §(X,A) if it achieves the infimum
in (1). The pair (X,A) is uniformly K-stable (resp. K-semistable) if and only if
(X,A) > 1 (resp. §(X,A) > 1)[FO18,BJ17].

In Section 3, before attacking Theorem 1.1 in full generality, we consider the special
case in which (Xg,A¢) is uniformly K-stable and (X, A{) is K-semistable. In this
case, we provide a short proof of the separatedness result by using properties of the
d-invariant to reduce the question to the well known separatedness statement for the
moduli functor of klt log Calabi-Yau pairs (Proposition 3.2). This argument is more
straightforward than the general case and takes a slightly different approach. We hope
this perspective can be applied in other cases.

To prove Theorem 1.1 in full generality is more involved. We need to study the
case when the J-invariants of the special fibers equal one. In general, analyzing the
valuation computing § = 1 is quite subtle. For instance, the following statement has
been conjectured by experts.

Conjecture 1.5. Let (X,A) be a log Fano pair. If §(X,A) < 1 then §(X,A) is
computed by a divisor over X and any such divisor is dreamy.

The special case of Conjecture 1.5 when 6(X,A) = 1 implies that K-stability is
equivalent to the apparently stronger notion of uniform K-stability. This is known for
smooth Fano varieties by [BBJ15], but the proof relies on analytic tools, in particular
the existence of Kéahler-Einstein metrics.
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In Section 4, we will prove some special cases of Conjecture 1.5 which are needed
in our proof of Theorem 1.1. The first result is that if (X, A) is a log Fano variety
with 6(X,A) = 1, then any divisor computing 6(X, A) is necessarily dreamy and
induces a special test configuration of (X, A). The proof relies on the MMP techniques
developed in [LWX18b], which build upon work in [Lil7,L.X16, LX18]. Specifically,
we consider the cone over our log Fano pair and use the calculation in [Lil17, LX16]
which shows that Sx a(E) equals the derivative of the normalized volume function on
the valuation space of the cone along the path given by the interval connecting the
divisorial valuation associated to the pull back of E and the canonical valuation. A
careful study as in [LWX18b, Theorem 3.2] shows that E is indeed a dreamy divisor
and induces a special test configuration. In Section 4.2 and 4.3, we also address the
situations when the d-invariant can be calculated by an ideal or a Q-divisor. These
results may be of independent interest.

Section 5 is the core of this paper and where we prove Theorem 1.1. The majority
of the work in this section is to construct the S-equivalence stated in the theorem.

Step 1: We first observe that a pair of two different degenerations will induce filtra-
tions on each other’s section rings. Furthermore, the associated graded rings of the
filtrations are isomorphic with a grading shift matching the calculation of S-invariant.

Let us explain the above construction in more detail. Assume we have two Q-
Gorenstein families of log Fano pairs 7 : (X, A) — C and 7’ : (X', A") — C over a
smooth affine curve C' and an isomorphism

o: (X,A) xc C° — (X', A') xc C°,

that does not extend to an isomorphism over C° = C'\ 0. Fix r so that L :=
—r(Kx + A) and L := —r(Kx + A’) are Cartier. We choose a proper birational
model over X and X’

X
N
X /¢+ X'

and write X, and X}, for the birational transforms of X, and X} on X. The divisor
X{ induces a filtration F on the section ring of (Xg, Aq) defined by

s € FPH(Xy,mLy) if and only if ord)zé(é") >p

for some (non-unique) extension § € H°(X, mL). Then we define

=~ ee dlmfmxHO(XO mLo)
R n !/ : )
= (K, ~ o) Axau (%) - tim [~ ST

dz.

Similarly, we can define a filtration F’ of the section ring of (X{, Af) and the value
B’ using the divisor Xy. The construction here can be viewed as a relative version of
the one in [BHJ17, Section 5|, where they consider a test configuration and a trivial
family.
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Next, we observe that there is an isomorphism of the associated graded rings of the
filtrations

D D et (Xo,mLo) == P Pars ™ T H (X, mLp), 2)

meN peZ meN peZ

where a := Ax a1 x, ()N((’)) and o’ 1= AX/A/JFX(/)()N(O). Using this isomorphism, we deduce
that §+ 4 = 0.

Now if we assume (Xy, Ag) and (X, Aj) are K-semistable, then the S-invariant of
any divisor over Xy or X is non-negative [Fujl9a,Lil7]. A similar result is extended
to filtrations in [BL18]." We can then conclude that 3 = ' = 0.

Step 2: At this point, we know X, and X have a common degeneration. Indeed,
the Rees construction gives degenerations

Xo ~ X, := Proj ( P P o1 (X, mLO))

meN peZ

and

X} ~ X} := Proj ( P P ey H (X, ng)) :
meN peZ
By (2), the degenerations X and X are isomorphic.

An immediate concern is that the above graded rings are not necessarily finitely
generated. (Note that notions of K-stability have been investigated in the setting
of non-finitely generated filtrations [WN12,Szé15].) Since we aim to prove (X, Ay)
and (X, Aj) have a common degeneration to a K-semistable log Fano pair, we must
show that the filtrations F and F’ are finitely generated and induce special test
configurations with generalized Futaki invariant zero. By [LWX18b, 3.1], this will
imply that the degenerations are K-semistable log Fano pairs.

To proceed, we rely on the fact that our filtrations are induced by divisors over our
families. More precisely, we use that 3 = 0 to show that there exists an extraction
Y — X of X{ and the fiber Yo = VUW, where V and W are the birational transforms
of Xy and X{. Now, we set £ = W]y and observe that F induces a filtration Fg
on the section ring of (Xy,Ag). We then show F' := Supp(FE) is a prime divisor
and Bx,a,(F) = 0. Using Theorem 4.1, we see Fg is finitely generated and the
corresponding degeneration of (Xo, Ag) is a special test configuration with generalized
Futaki invariant zero.

Next, we seek to show that the filtrations F and Fg are equal. This statement is
equivalent to the surjectivity of certain restriction maps and is non-trivial. To achieve
the result, we take the relative cone of (X, A) over C' and run an analysis similar to
the proof of Theorem 4.1. After completing this argument, we can conclude that the
degenerations (Xy, Dy) and (X, Df) are naturally K-semistable pairs.

IThis is also independently obtained by Chi Li and Xiaowei Wang in [LW18].
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Finally, we need to show that the isomorphism &y ~ A sends the degeneration
of Ay to the degeneration of Aj, so that we get an isomorphism of pairs. To verify
this, we choose a divisor B C Supp(A) and write B’ C Supp(A’) for its birational
transform. Now, By degenerates to a divisor on X, that corresponds to the initial
ideal in(/p,) in the associated graded ring. Rather than showing ¢(in(Ip,)) = in(Iz,),
we introduce auxiliary ideals I and I’ such that the equality ¢(I) = I’ is clear. (The
ideal [ is defined by restricting elements of the relative section ring that vanish to
certain orders along B and X{.) Using the relative cone construction again, we show
that I and I" agree with in(/p,) to in(Ip;) at codimension one points. We can then
conclude that the desired isomorphism of boundaries holds.
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2. PRELIMINARIES ON VALUATIONS AND K-STABILITY

2.1. Conventions. We work over an algebraically closed field k of characteristic 0.
We follow the terminologies in [KM98,Kol13]. A pair (X, A) is composed of a normal
variety X and an effective Q-divisor A on X such that Ky + A is Q-Cartier. See
[KMO8, 2.34] for the definitions of kit, plt, and lc pairs. A pair (X, A) is log Fano if X
is projective, (X, A) is klt, and —Ky — A is ample. A variety X is Q-Fano if (X,0)
is log Fano.

Definition 2.1. A Q-Gorenstein family of log Fano pairs = : (X,A) — C over a
smooth curve C' is composed of a flat proper morphism 7 : X — C and an effective
Q-divisor A, not containing any fiber of 7, satisfying:

(1) 7 has normal, connected fibers (hence, X is normal as well)

(2) —Kx — A is Q-Cartier and m-ample, and

(3) (X, Ay) is Kkt for all ¢t € C.

2.2. Valuations. Let X be a variety. A valuation on X will mean a valuation v :
K(X)* — R that is trivial on k and has center on X. Recall, v has center on X if
there exists a point £ € X such that v > 0 on Ox¢ and > 0 on the maximal ideal.
Since X is assumed to be separated, such a point £ is unique, and we say v has center
cx(v) := €. See [JM12, 3.1] for the definition of quasimonomial valuations.
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Following [JM12,BAFFU15], we write Valy for the set of valuations on X and Valy
for the set of non-trivial ones. To any valuation v € Valy and p € N, there is an
associated valution ideal a,(v) . For an affine open subset U C X, a,(v)(U) = {f €
Ox(U)|v(f) > p}if ex(v) € U and a,(v)(U) = Ox(U) otherwise.

For an ideal a C Oy and v € Valy, we set

v(a) :=min{v(f)|f € a- Oxcrw)} € [0, +00].

We can define v(s) when £ is a line bundle on X and s € H(X, £). After trivializing
L at cx(v), we set v(s) = v(f), where f is the local function corresponding to s under
this trivialization (this is independent of choice of trivialization).

2.2.1. Diwvisors over X. Let X be a variety and 7 : Y — X be a proper birational mor-
phism, with Y normal. A prime divisor £ C Y defines a valuation ordg : K(X)* — Z
given by order of vanishing at E. Note that cx(ordg) is the generic point of 7(F)
and, assuming X is normal, a,(v) = 7.0y (—pE).

We identify two such prime divisors on Y; and Y, as above if one is the birational
transform of the other. Equivalently, they induce the same valuation of K(X). A
divisor over X is an equivalence class given by this relation.

2.2.2. Log discrepancies. Let (X, A) be a pair. We write
Ax a: Valy - RU{+o0}

for the log discrepancy function with respect to (X, A) as in [JM12, BAFFU15] (see
[Blul8b] for the case when A # 0).

When 7 : Y — X is a proper birational morphism with ¥ normal and £ C Y a
prime divisor,

AXA(OI“dE) =1+ coeffg (Ky — W*(KX + A)) .

We will often write Ax a(FE) for the above value.

The function Ax a is homogenous of degree 1, i.e. Axa(Av) = A - Axa(v) for
A€ Ryp and v € Valx. A pair (X,A) is kit (resp., lc) if and only if Axa(v) > 0
(resp., > 0) for all v € Valy.

2.2.3. Graded sequences. A graded sequence of ideals as = (a,)pez., O a variety X is
a sequence of ideals on X satisfying a, - a, C a,,, for all p,q € Z-,. By convention,
ap = Ox. We set M(a,) := {p € Z=o|a, # (0)} and always assume M (a,) is
nonempty. If v € Val, then a,(v) is a graded sequence of ideals.

Let a, be a graded sequence of ideals on X and v € Valy. It follows from Fekete’s
Lemma that the limit

v(ae) == lim v(am)
M(ae)dm—o0 MM

exists and equals inf,,>1 vlam) see [JM12, §2.1].

m
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Let x € X be a closed point. If a, is a graded sequence of ideals on X and each
ideal a, is m,-primary, we set
dimy (O
mult(a,) := lim M.
p—ro0 p*/n!
If v € Valx has center {z}, then a,(v) is m,-primary for each p > 0. In this case, we
call vol(v) := mult(ae(v)) the volume of v.

2.2.4. Log canonical thresholds. Let (X,A) be an lc pair. Given a nonzero ideal a C
Ox, the log canonical threshold of a is given by

let (X, A a) :==sup{c € Q¢ | (X, A+ a) is Ic}.
If a, a graded sequence of ideals on X, the log canonical threshold of a, is given by
let(X, Ajas) :== lim  m-let(X, A;a,,).

M (ae)dm—roo

Fekete’s Lemma implies that the above limit exists an equals sup,, m - lct(X, A; a,,)
[JM12, 2.5].
It is straightforward to show lct(X, A;a,) < Af(’i()v), for v € Val satisfying 0 #
Ax a(v) < +oo. Hence, if v € Valy satisfies Ax a(v) # 0, then
let (X, A ae(v)) < Ax a(v), (3)

since v(aq(v)) = 1 [Blul8b, 3.4.9].

2.2.5. Extractions. Let E be a divisor over a normal variety X. We say that p: Xgp —
X is an extraction of E if u is a proper birational morphism with Xz is normal, £
arises as a prime divisor £ C Xg, and —F is p-ample.

Note that if p : Xp — X is an extraction of E, then £ O Exc(u) and equality holds
if codimy (cx(ordg)) > 2. Indeed, Lemma 4.5 implies that if p € Z- is sufficiently
divisible, then g is the blowup along a,(ordg) and a,(ordg) - Oy = Oy (—pE).

The following technical statement gives a criterion for when an exceptional divisor
may be extracted. The criterion will be used repeatedly in Section 5.

Proposition 2.2. Let (X,A) be a kit pair or a plt pair such that |A] = S is a
non-zero Q-Cartier divisor. If E is a divisor over X satisfying

a:=Axa(E) —lct(X, A a.(ordg)) < 1,
then there exists an extraction u: Xg — X of E and (Xg, u; ' (A) + (1 — a)E) is le.

The proposition is a consequence of [BCHM10] and properties of the log canonical
threshold of a graded sequence of ideals.

Proof. See the argument in [Blul7, 1.5] for the case when (X, A) is klt. If (X, A) is
plt, observe that (X, A, := A —&S) is kit for 0 < e < 1. If we set

a. == Ax a.(ordg) — let(X, A ae(ordg)),

then hH(l) a. = a and we may reduce to the klt case. U
e—
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2.3. Filtrations. Let (X, A) be a n-dimensional log Fano pair. Fix a positive integer
r such that L := —r(Kx + A) is Cartier and write

R=R(X,L) =P Rn = P H°(X,0x(mL))

meN meN
for the section ring of L. Set M (L) := {m € N| H*(X, Ox(mL)) # 0}.

Definition 2.3. A filtration F of R we will mean the data of a family of vector
subspaces F*R,, C R,, for m € N and )\ € R satisfying

(1) F*R,, € F¥R,, when A > X

(2) ‘F)\Rm = mA’<AFA/Rm;

(3) F°R,, = R,, and F*R,, = 0 for A > 0.

(4) F Ry - F Ry € FM*Y Ry
A filtration F of R is a called an N-filtration if F R,, = FIMR. for all m € N and
A € R. To give a N-filtration F, it suffices to give a family of subspaces F?R,,, C R,,
for m, p € N satisfying (1), (3), and (4).

A filtration F is linearly bounded if there exists C' > 0 so that F°"R,, = 0 for all

m € N and trivial if F*R,, =0 for all m € N and \ > 0.

2.3.1. Rees construction. Let F be an N-filtration of R. The Rees algebra of F is the
k[t]-algebra
Rees(F) := @ @(F'Ra)t ™" C Rlt, t7].
meN peZ

The associated graded ring of F is

FPR,,
grr-R = @ @ gr- R, where gr’-R,, = FiR
meN peZ
Note that
B B Rees(F)
Rees(F) @ k[t t7'] ~ R[t,t™'] and Reos(7) ~ or - R. (4)

Hence, Rees(F) is said to give a degeneration of R to the associated graded ring of F.
An N-filtration F is finitely generated if Rees(F) is a finitely generated k[t]-algebra.
In this case, we set X' := Proj,: (Rees(F)). By (4),

Xy~ X x (A'\0) and X, ~ Proj(grzR).

We write D for the Q-divisor that is the closure of A x (A!\ 0) under the embedding
of X x (A'\ 0) in X.

The scheme X can naturally be endowed with the structure of a test configuration
of (X,A). The test configuration is called special if (X,D) — Al is a Q-Gorenstein
family of log Fano pairs. See [LX14, §3] and [BHJ17, §2] for information on test
configurations and the generalized Futaki invariant.
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With the above setup, consider a subscheme Z C X and write I, C R for the
corresponding homogenous ideal. The scheme theoretic closure of Z x (A'\ 0) in X,
denoted by Z, is defined by the ideal

B P (F R, N 1)t C Rees(F).
meN peZ

Indeed, the corresponding subscheme agrees with Z x (A! \ 0) away from 0 and is
torsion free over 0. The above description of Z yields that its scheme theoretic fiber
along 0 is given by the initial ideal

in(Iy) : @@mﬂ (FPR,, N1z — gr%R,,) C grleR,,.

meN peZ
2.3.2. Volume. Given a filtration F of R, we set

d' XTI m
vol(FRW) := lim sup —1m(.7: ftn)

m—s00 mn"/n!

for # € Rso. Assuming F is linearly bounded (which implies vol(FR®) = 0 for
x> 0), we set

1 oo
= 1 @) dz.?
S(F) Y g A)”/O vol(FR'Y) dx
y [BC11] (see also [BHJ17, 5.3]),
: 1 . i
S(F) = lim (m / dim(F Rm”l') )

2op>0 (p dim grg_-Rm)
mrdim R, .

In particular, if F is an N-filtration, then S(F) = lim,,

2.3.3. Base ideals. Given a filtration F of R, set
by = 1im (FPR,, @ Ox(—mL) — Ox).

for p,m > 0. We set b,(F) := by, for m > 1. The ideal b,(F) is well defined and
be(F) is a graded sequence of ideals assuming F is non-trivial [BJ17, 3.17-3.18].

2.3.4. Filtrations induced by valuations. Given v € Valy, we set
F)Ry ={s € Ry |v(s) > A}

for each A € R and m € N. Equivalently, F)R,, = H°(X,Ox(mL) ® ay(v)). Note
that F, is a non-trivial filtration of R.

If Axa(v) < +o00 , then F, is linearly bounded [BJ17, 3.1]. In this case, we set
S(v) == S(Fy).

ZNote that this differs from the definition of S(F) in [BJ17, BL18] by a factor of 1/r. Since we
are interested in the polarization —Ky — A, not L, such a convention is natural.
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2.3.5. Filtrations induced by divisors. If E is a divisor over X, we write Fg := Fora,
and S(F) := S(Fg). Following [Fujl9al, we say E is dreamy if Fg is a finitely
generated filtration of R.

When E arises as a prime divisor on a proper normal model y: Y — X

FpRpn = H(Y, Oy (mrp*(—Kx — A) — [\]E)).
Therefore,

S(E) = — NG /O  vol(u (—Kx — A) — o) da.

(—Kx —

2.4. K-stability. Based on the original analytic definition in [Tia97], an algebraic
definition of K-(semi,poly)-stability was introduced in [Don02]. Here, we will define
these notations for log Fano pairs using valuations.

2.4.1. B-invariant. Let (X, A) be an n-dimensional log Fano pair and F a divisor over
X. Following [Fuj19a],

PxalE) = (=Kx = A)" (Axa(E) - S(E)).
More generally, if v € Valy with Axa(v) < 400, we set Bxa(v) = (—Kx —
A)"(Axa(v) = S(v)).
Definition 2.4. A log Fano pair (X, A) is
(1) K-semistable if Bx A(E) > 0 for all divisors E over X;

(2) K-stable if Sx a(E) > 0 for all dreamy divisors E over X;
(3) uniformly K-stable if there exists an £ > 0 such that

Bxa(E) > cAxa(E)(—Kx — A)"
for all divisors E over X.

The equivalence of the above definition with the original definitions was addressed
in [Fujl19a,Fujl9b, Lil7] and the arguments rely on the special degeneration theory of
[LX14]. In Corollary 4.2, we will show that the wordy dreamy may be removed from
Definition 2.4.2.

Definition 2.5. A log Fano pair (X, A) is K-polystable if it is K-semistable and any
special test configuration (X, D) — A of (X, A) with (X, Dy) K-semistable satisfies
(X, D) ~(X,A) x AL

The equivalence of the above definition with the definition in [LX14, 6.2] relies on
the following result: If (X, A) is a K-semistable log Fano pair and (X', D) is a special
test configuration of (X, A), then Fut(X, D) = 0 if and only if (X}, Dy) is K-semistable
[LWX18b, 3.1].

Definition 2.6. Two K-semistable log Fano pairs (X, A) and (X', A") are S-equivalent
if they degenerate to a common K-semistable log Fano pair via special test configu-
rations.
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By [LWX18b, 3.2], S-equivalent log Fano pairs degenerate to a common K-polystable
pair via special test configurations. Furthermore, the K-polystable pair is uniquely
determined up to isomorphism.

2.4.2. d-invariant. We recall an interpretation of the above discussion using an invari-
ant introduced in [FO18].

Let (X, A) be a log Fano pair. Fix a positive integer r so that L := —r(Kx + A)
is a Cartier divisor and H°(X,Ox (L)) # 0. Given m € rN, we say D ~g —Kx — A
is m-basis type if there exists a basis {s1,...,sn,,} of H'(X,Ox(—m(Kx + A)) such
that

1
D_m—M({sl—0}+--~+{3Nm =0} ).
We set 0,,(X,A) := min{let(X,A; D) | D ~g —Kx — A is m-basis type}. The §-
invariant (also known as the stability threshold) of (X, A) is

(X, A) = limsup 6, (X, A),

m—0o0

and is independent of the choice of r [BJ17, 4.5]. The invariant may also be calculated
in terms of valuations or filtrations.

Theorem 2.7 ([BJ17, Theorems A,C]). We have

AX7A(E) — inf AX’A<U)
S(E) v S(U) 7

(X, A) zlrElf

where the first infimum runs through all divisors E over X and the second through all
v € Valy with Ax a(v) < +00. Furthermore, the limit im 0,,.(X, A) exists.
m—r0o0

Proposition 2.8 ([BL18, Proposition 4.10]). We have

56, 8) = it 1ct(X,S?];: [;.(]-'))

where the infimum runs through all non-trivial linearly bounded filtrations of R(X, L).
Combining Definition 2.4 and Theorem 2.7, we immediately see

Theorem 2.9 ([FO18,BJ17]). A log Fano pair (X, A) is uniformly K-stable (resp.,
K-semistable) if and only if 6(X,A) > 1 (resp., > 1).

While in Section 3 we will use the definition of the d-invariant in terms of m-basis
type divisors, in Section 5 we will rely on its characterization in terms of valuations
and filtrations.
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2.5. Normalized volume. Now, we discuss an invariant similar to the d-invariant,
but defined in a local setting. The invariant was first introduced in [Lil8] and is closely
related to the K-semistability of log Fano pairs.

Let (X,A) be an n-dimensional klt pair and x € X a closed point. The non-
archimedean link of X at x is defined as

Valy, = {v € Valx | cx(v) = 2 } C Valy.

Definition 2.10 ([Lil8]). The normalized volume function ;c?l(X,A),x : Valx, —
(0, +o0] is defined by

Ax,ny(v)" - vol(v) if Aix ay(v) < +o00;
+00 if A(X’A)(U) = +00.

VOI(X’A)’I (U) = {

The volume of the singularity (x € (X, A)) is defined as
\7o\l(m,X, A):= inf @(X,A)J(v).

UEV&IX’I

The previous infimum is a minimum by the main result in [Blul8a.

See [LLX18] for a survey on the recent study of the normalized volume function,
especially the guiding question, the Stable Degeneration Conjecture (see [Lil8, 7.1]
and [LLX18, 4.1]).

2.5.1. Relation to K-stability. The connection between the normalized volume func-
tion and K-semistability is via the cone construction first studied in [Lil7].

Let (X, A) be a log Fano pair and r a positive integer so that L := —r(Kx + A) is
a Cartier divisor. Let (Z,T') denote the cone over X with respect to the polarization
L and x € Z denote the vertex. Specifically, Z = Spec(R), where R = R(X, L) and I'
is the closure of the pullback of A via the projection map Z \ {z} — X.

There is a natural map X; — Z, where X, := Specx(@p>o Ox (pL)) is the total
space of the line bundle on X whose sheaf of sections is Ox(L). The map is an
isomorphism over Z \ x and the preimage of the vertex is the zero section X,s C X|.
We call vy := ordy,, the canonical valuation over the cone.

Theorem 2.11 ([Lil7,LL19, LX16]). The canonical valuation vy is a minimizer of
vol(z ). if and only if (X, A) is K-semistable.

At first sight, using the normalized volume function to study the K-stability of log
Fano pairs may seem indirect. However, this approach yields a number of new results
(for example, see [LX16, LWX18b]). In this paper, the following key ingredient in the
proof of Theorem 2.11 plays an important role in the proof of our main result.

Following [Li17,1.X16], let E be a divisor over X that arises on a proper normal
model p 1Y — X. Consider the natural birational maps

YL—>XL—>Z,
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where Y7, := SpeCY(@mzo (’)y(m,u*L)). Let Y,s C Y, denote the zero section and E,
the preimage of E under the projection Y, — Y. Setting v; equal to the quasimonomial
valuation with weights (1,¢) along Y, and E,, gives a ray of valuations

{ve | t €]0,00)} C Valz,,

where vp = ordy,, and vy, = ordg,_. When k € N, there exists a divisor Fj, over Z
satisfying v1 = %ordEk.
By the formula for the log discrepancy of a quasimonomial valuation [JM12, 5.1],

AZ,F(Ut) = AZ,F(OrdXZS) + tAZ,F(OrdEoo) = T‘_l + tAX7A(OI‘dE).

The valuation ideals are given by, for t > 0,

a,(ve) = @]—"E(p*m)/tRm CR and a,(v)= @Rm CR.

m>0 m>p

To see the previous formula holds, fix a uniformizer w € Oy g and a local section
s of Oy (u*L) that trivializes the sheaf at the generic point of E. The choice of s
induces a rational map Yz --» Y x A! that is an isomorphism at the generic point of
Y,.N E. The birational transforms of Y,; and E.c on Y x Al are Y x 0 and FE x A'.

Fix f =) o, fm € R. For m such that f,, # 0, set g, := [ JwOrdEm) which,
at the generic point of E, is a non-vanishing section of Oy (u*L). The image of f in
Oy wat gxo equals > (g—ﬁ) werde(fm)pm where 7 is the parameter for A'. Since 7 and
w are local equations for Y x 0 and E x A! at the generic point of E x 0 and 2 does
not vanish at £ x 0,

ve(f) 7= min{t - ordg(fm) +m | frm # 0}

and the formula for a,(v;) follows.
By the calculation in [Lil7, (31, 32)] (see also the proof of [LX16, 4.5] or Lemma 2.12)

d

Vol gy = (n + DBxa(E) (6)

This equation is a key input in our proof of Theorem 4.1. More specifically, we will
follow ideas from [LWX18b] and analyze directions along which the normalized volume
function has derivative equal to zero.

2.5.2. C. Li’s derivative formula. In the proof of Theorem 1.1, we will need a more
general version of (6). The more general formula follows from the original argument
in [Lil7].

Let (X, A) be an n-dimensional log Fano pair and r € Z~q so that L := —r(Kx+A)
is Cartier. Set R = R(X, L) and fix a linearly bounded filtration F of R.

Associated to F, we define a collection of graded sequences of ideals of R. For
t € Ropand j € Z~, set

b :=EPFU™/'R, CR and by;:=EPR. CR.

m>0 m>j
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Note that b, is a graded sequence of ideals of R for each for each t € R>(. Addition-
ally, b;; contains @,,>;R,.

Lemma 2.12. With the above notation, fir A > 0 and set
f@) = (" + At)"'mult(b,,)
fort € Rso. The following hold:
(1) mult(bye) =r"(—Kx — A)" — (n+1) [~ VOl(]:'R(x))#;
(2) Glizor = (n+1)(=Kx — A)" (A= 5(F)).

Proof. This follows from the argument in [Lil7, (18)-(25)]. For the reader’s conve-
nience, we give a brief proof. For t € R.(, we have

(n+1)!

mult(by,) —jl_}oO s dim(R/b; ;)
(n+1)! & A
(J—m)/t
]—>oo jn+l mz:O /F Rm)

J

1) |
¥ DUS™ (dim R, — dim F-/R,,)
m=0

j—>oo ]”+1

( d : j—m
= vol(L) — lim i Zdlm]:(] VR,
m=0

Statement (1) now follows from [Lil7, (25)], where ¢; =0, o = 8 = 1.
For (2), compute

df

dt

From (1), we know mult(bg,) = r"(—Kx — A)" and

d
= (n+ 1)Ar "mult(bg.) + 7”_”_1% (mult(b;,))

t=0+ t=0+

d e 1—(n+ 1)t

— 1t(by o = — 1 (FR®) [ ———= .

o (mult(by,)) . (n+ )/0 (VO (FRY™) ( 0 ta)es )) t:0+dx
Since the latter simplifies to —(n + 1) [;° vol(FR™)dz, (2) is complete. O

3. UNIFORMLY K-STABLE FANOS

In this section, we prove a special case of Theorem 1.1 for uniformly K-stable Fano
varieties. We Wlll then apply the result to study the moduli functor MUKS

3.1. Separatedness result. The following result is a special case of Theorem 1.1 and
will be reproved in Section 5. We present its proof independently, since the following
argument is simpler than the proof in Section 5.



18 HAROLD BLUM AND CHENYANG XU

Theorem 3.1. Letw: (X,A) = C and 7' : (X', A’) — C be Q-Gorenstein families of
log Fano pairs over a smooth pointed curve 0 € C'. Assume there exists an isomorphism
¢ (X,A) xc C° = (X'|A") xc C°
over C° := C\0. If (Xo, Ag) is uniformly K-stable and (X{, A}) is K-semistable, then

¢ extends to an isomorphism (X, A) ~ (X', A") over C.

The proof of Theorem 3.1 follows from properties of the J-invariant and the following
birational geometry fact.

Proposition 3.2. Let 7 : (X,A) — C and 7" : (X', A") — C be Q-Gorenstein
families of log Fano pairs over a smooth pointed curve 0 € C'. Assume there exists an
1somorphism
¢: (X,A) xc C° = (X', A") xc C°
over C° := C'\ 0. If there exist effective horizontal’ Q-divisors D and D' on X and
X' satisfying
(1) D ~Q,C —KX — A and D’ ~Q,C —KX/ A 5
(2) D is the birational transform of D', and
(3) (Xo,A¢ + Dy) is kit and (X}, AL + Dy) is lc,
then ¢ extends to an isomorphism (X, A) ~ (X', A") over C.
The above proposition is well known to experts and follows from the separatedness

of the moduli functor of klt log Calabi-Yau pairs (e.g. see [Odal2, Theorem 4.3],
[LWX19, Theorem 5.2]). For the convenience of the reader, we prove the result.

Proof. Fix a common log resolution X of (X,A) and (X', A)

P 55 Y’
vN

X - > X/

and write Xy and X/, for the birational transforms of Xy and X/, on X.

First, assume X, = X{. This equality implies ¢ : X --» X' is an isomorphism in
codimension one. Thus, ¢ induces an isomorphism

m.O0x(—m(Kx + A)) = 1.0x:/(—m(Kx + A"))

for all m € N. Since

X = Projo @ m.O0x(—m(Kx + A)) and X’ = Proj. @ 1. Ox/(—m(Kx + A')),

m>0 m>0

we conclude ¢ extends to an isomorphism over C.

3A Q-divisor on X or X' is called horizontal if its support does not contain a fiber of the map to

C.
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We now assume X, # )?6 and aim for a contradiction. Write
K¢+ ¢ A+ D) =¢*(Kx + A+ D)+ aX) + P
and
Kg+4, (A + D) =¢"(Kx + A'+ D) + d'Xo + P’
where the components of Supp(P) U Supp(P’) are both 1 and '-exceptional. By
assumption (2), P — P’ is supported on Xj.

Inversion of adjunction and our assumption that (Xo, Ag+ Dy) is klt imply (X, A+
D + Xj) is plt in a neighborhood of X,. Hence,

—1 < a(X§, X, A+ D+ Xg) = a — ordg, (Xo).

Since ord)}é (Xo) = 1, we see @ > 0. The same argument, but with the assumption
that (X}, Af + D) is lc implies a’ > 0.

Observe aX}—a' Xo+(P—P') ~gc 0, since Kx+A+D ~g o 0, Kx+A+D' ~g¢ 0,
and 7 (D4 A) = . (D' + A"). Therefore, there exists a rational number ¢ so that

aX)—a' X+ (P = P') ~go cb*(Xo).

Comparing the coefficients of )N((’] on the two sides implies ¢ > 0, while comparing the
coefficients of X implies ¢ < 0. This is a contradiction. 0

Lemma 3.3. Keep the notation and setup of Theorem 5.1. If m € Z~q is sufficiently
divisible, then there exist effective horizontal Q-divisors B and B' on X and X' such
that

(1) B ~Q,C —KX — A and B’ ~Q,C —KX/ — A/7

(2) B is the birational transform of B, and

(3) By and B{, are m-basis type with respect to (Xo, Ag) and (X}, Aj).

Proof. Fix a positive integer m so that L := —m(Kx — A) and L' := —m(Kx — A')
are Cartier and m,Ox (L) and 7.Ox/(L) are nonzero. Since H'(Xy, Ox,(L;)) and
H'(X{,Ox:(L})) are zero for all i > 0 and t € C' by Kawamata-Viehweg vanishing,
m.Ox (L) and 7,Ox/(L’) are vector bundles. Furthermore, the sheaves satisfy coho-
mology and base change.

Now, the birational map ¢ induces a map from local sections of m,Ox (L) to rational
sections of 7, Ox/(L'). After twisting by dX/, where d > 0, we get a morphism

W*OX(L) — W;OX/(L, + dX(/))
that is an isomorphism away from 0 € C'. Tensoring by O¢ gives a morphism
@ W*Ox([/) RKoe OC,O — W;OX/(L/ + dX(,]) X0oe OC’(),

of locally free O¢ ¢ modules that is an isomorphism after tensoring with K (C).
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Write ¢ for the uniformizer of Oc¢y. Since O¢ is a principal ideal domain, there
exist bases {s1,...,sy} and {s},..., sy} for the above free modules so that the trans-
formation matrix is diagonal. Hence, for each 1 < ¢ < N, there exist p; € Z>¢ and
a; € O so that p(s;) = a;t"s;.

For a sufficiently small neighborhood 0 € U C (', we may extend each s; to a section
5; € mOx(L)(U) and s to a section §, € 7.Ox/(L')(U). Let B and B’ denote the
closures of

1, . . Loy o
m({sl =0} +---+ {5y =0}) and W({Sl =0} + -+ {5y =0}).

in X and X’. By construction, By and B are both m-basis type divisors and B is
the birational transform of B’. O

Proof of Theorem 3.1. Since X is uniformly K-stable and X, is K-semistable,
5(Xo,Ag) > 1 and  §(X;, Ap) > 1.
Hence, we may choose 0 < £ < 1 so that
1—¢ €
5(Xo, Ao) | a(Xo, A)
where (X, Ag) is Tian’s a-invariant, i.e.

Oé(Xo,Ao) = 1nf{ 1Ct(X0,A0; D) ‘ 0 S D ~Q _KXO - Ao}

<1, (7)

Next, choose a positive integer M so that
1—c¢ i €
om(Xo, Ao)  a(Xo, Ag)

for all positive integers m divisible by M. Such a choice is possible by (7), the
inequality 0(X(,Aj) > 1, and the fact that ¢ is a limit.

Now, fix a positive integer m divisible by M so that the conclusion of Lemma 3.3
holds for m and —m(Kx, + A’) is relatively base point free over C'. Hence, we may
find Q-divisors B ~gc —Kx — A and B’ ~g ¢ —Kx» — A’ satisfying the conclusion
of Lemma 3.3 for m. Since By and By, are m-basis type,

ICt(X(), Ao, Bo) > (Sm(X(), Ao) and lCt(X[/), A{), Bé) > (Sm(X(,), A6> >1—c.

The latter implies (X§, Ay + (1 —€)By) is le.

Since —m(Kx: + A’) is relatively base point free over C, after shrinking C' in a
neighborhood of 0, we may apply [KM98, Lemma 5.17] to find an effective divisor
G’ € |-m(Kx:+A")| in general position so that (X}, Ay+(1—e)Bj+(c/m)Gy) remains
le. Write G for the birational transform of G’ on X. Note that G ~gc —m(Kx + A),
since the statement holds over C°. Thus, let(Xg, Ag; (1/m)Go) > a(Xo, Ao).

Now, consider the divisors

< 1and 6,,(X},Ay) >1—¢ (8)

D:=(1—-¢)B+ ‘G and D= (1—¢)B"+ SNed
m m
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Observe that D ~g¢ —Kx — A and D' ~g¢ —Kx — A’. As mentioned above,
(Xo, AL + Dyj) is le. Additionally, the pair (Xo, Ag + Do) is klt. Indeed, since

1/let(D + F) < 1/let(D) + 1/1ct(F)

for any two effective Q-Cartier Q-divisors D and F on a klt pair, we know
1 1 1

Tt (X, Ag: Do) = Tot(Xo, Bo: (1 —2)Bo) | 1ot(Xo, oz (/m) Go)
< 1—¢ n €
T (X0, Ag) (X0, Ay)
which is < 1 by (8). Proposition 3.2 now implies ¢ extends to an isomorphism. 0

Remark 3.4. If (X, Ay) and (X, A}) are only assumed to be K-semistable, then
they are not necessarily isomorphic (but are S-equivalent by Theorem 1.1). Therefore,
we do not expect the the above strategy to be useful in this more general case.

Recall, if (X, A) is a log Fano pair, then Aut(X, A) is the closed subgroup of Aut(X)
defined by

Aut(X,A) :={g € Aut(X) | g"A = A}.

The following result is an immediate corollary of Theorem 3.1 and a special case of
Corollary 1.3.

Corollary 3.5. Let (X, A) be a log Fano pair. If (X, A) is uniformly K-stable, then
Aut(X, A) is finite.

Proof. Since Aut(X,A) is a linear algebraic group, it is affine. To conclude that
Aut(X, A) is finite, it suffices to show that it is proper. To see the properness, consider
amap g:C° — Aut(X,A), where 0 € C' is a smooth pointed curve and C° = C'\ 0.
The map g induces an isomorphism

(X X C,AXC)xcC° = (X xC,AxC) xcC°

over C°. By applying Theorem 3.1 to the above isomorphism, we see f extends to a
map g : C' — Aut(X, A). Hence, Aut(X, A) is proper, and the proof is complete. [

In [BHJ16, Corollary EJ, it is shown that the polarized automorphism group of a
uniformly K-stable polarized manifold (X, L) is finite. Their proof uses analytic tools.

Remark 3.6. Our proofs of Theorem 3.1 and Corollary 3.5 extend to the case of
polarized klt pairs (X, A; L) (that is, (X, A) is a projective klt pair and L an ample
Q-Cartier divisor on X) such that Kx + A + L is nef and 6(X,A; L) > 1.

3.2. Moduli spaces.

Proof of Corollary 1.4. As previously mentioned, the result relies on [Jial7, BL18] and

Theorem 3.1. Indeed, [Jial7] (see also [Chel8] or [LLX18, 6.14]) states that the set

of varieties My (k) is bounded. Hence, there exists a positive integer M so that
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—M K is a very ample Cartier divisor for all X € /\/luKS( ). Furthermore, the set of

Hilbert functions m — x(w M ) with X € MU (k) is finite.

For such a Hilbert funct10n h, consider the subfunctor My C MNP parame-
terizing uniformly K-semistable @ Fano varieties with Hilbert functlon h. Note that
MRS =TT, MRS, Set N := h(1)—1, and let Hilb(P") be the Hilbert scheme param-
eterizing closed subschemes of PV with Hilbert polynomial h. Write X — Hilb(PY)
for the corresponding universal family.

Now, let U C Hilb(P") denote the open subscheme parameterizing normal, Cohen-
Macaulay varieties. By [HKO04, 3.11], there is a locally closed subscheme V C U
such that a map T" — U factors through V if and only if there is an isomorphism
w& AfT ~ L7 ®Ox, (1), where Lr is the pullback of a line bundle from T'. By applying
[BL18] to the normalization of V', we see

V' :={t € V| X; is a uniformly K-stable Q-Fano variety}

is open in V. Finally, we apply [Kol09, 25] or [AH11] to find a locally closed decom-
position W — V’ such that a morphism 7" — V' factors through W if and only if
X1 — X satisfies Kollar’s condition.

As a consequence of the above discussion, M}*s ~ [W/PGL(N + 1)]. Theorem
3.1 implies M}¥* is a separated Deligne-Mumford stack. Furthermore, we may apply
[KM97] to see M}XS has a coarse moduli space M5 which is a separated algebraic
space. 0

4. PLACES COMPUTING THE -INVARIANT

In this section, we will study the cases when valuations, ideals, and Q-divisors
compute the d-invariant. The results proved here are related to Conjecture 1.5 and
will be used in the proof of Theorem 1.1.

4.1. Divisors computing 6.

Theorem 4.1. Let (X, A) be a K-semistable log Fano pair. If E is a divisor over

X satisfying 0(X,A) = A);’(A;)E) = 1, then E is dreamy and induces a non-trivial
special test configuration (X, D) such that Fut(X,D) = 0. In particular, (X, A) is not

K-stable.

The proof follows an argument in [LWX18b, Section 3.1]. The argument will be
used again in the proof of Lemma 5.10 in a relative setting.

Proof. Fix a positive integer r so that L := —r(Kx + A) is a Cartier divisor and set
R = R(X, L). Consider the cone (Z,I') over (X, A) with respect to the polarization
L.

The divisor E over X induces a ray of valuations

{v,|t €]0,00)} C Valz,
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(see Section 2.5.1). For k € Z-, there is a divisor Ej over Z so that vi = %ordEk.

By (6),

1
k

d —
E Ol(Ut>‘t:0+ = (TL + 1),8X7A<E)
Since Ax a(E) — S(E) =0, we know Sx a(E) = 0. Defining f(t) := \70\1(%), a Taylor
expansion gives
f@#) = £(0)+ 0O for 0 <t < 1.
For a fixed positive integer k, set
ke = Oo(0rdg,) and ¢ :=1ct(Z, I ax.).

Note that ¢, < Azr(Ex) by (3). This implies

f(O) < CZJrl -mult((%,) < f(%) = AZ,F(Ek)ﬂrfl .mult(ak,.),

where the first inequality follows from [Liul8, 7] and the assumption that (X, A) is
K-semistable. Therefore,

1 w1 f(0) )”L Ck
_— < | =4 < — <1
(o) =Gam) =< mm <
Since (1 + O(1/k%*))Y Y is of the order 1 + O(1/k?), we see

1 Cr.
1-0l—=)=——"<1.
(kQ) Azr(Ey) ~

USng that AZ,I‘(Ek) = k?“_l + AX,A(E)a

Jim (Azr(By) — ) = lim (AZ’F(Ek) <1 Az,r(ﬂ:))) .

Hence, we may fix k> 0 so that Azr(Ex) — ¢ < 1.

By Proposition 2.2, there exists a proper birational morphism u: Z, — Z such
that E), C Z), and —FE), is ample over Z. Therefore, ®p20 s Oz, (—pEy) is a finitely
generated Oz-algebra. Since i (Oz, (—pEk)) = a,(kvy/k), the latter implies

DD R

peN meN

is a finitely generated R-algebra. Therefore, Rees(Fg) is finitely generated as well and
E is dreamy.

Let (X, D) denote the test configuration induced by Fg. The test configuration is
normal and non-trivial [Fujl7, 3.8] and Fut(X, D) is a multiple of Ax A(E) — S(F)
[Fujl9a, 6.12], which is zero. We conclude (X, D) is special, since otherwise there
would exist a test configuration of (X, A) with negative Futaki invariant [LX14, 1]. O

An immediate corollary to Theorem 4.1 is the following strengthening of [Fuj19a,
1.6] and [Lil8, 3.7]. The result was expected in the arXiv version of [Lil8].
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Corollary 4.2. A log Fano pair (X, A) is K-stable if and only if Bx A(E) > 0 for any
divisor £ over X.

Proof. Theorem 4.1 implies the forward implication. The reverse implication was
shown in [Fuj19a, 1.6] and [Li18, 3.7]. O

4.2. Ideals computing J. Let (X, A) be a log Fano pair and a C Oy a nonzero
ideal. Write m : Y — X for the normalized blowup of X along a and E for the
effective Cartier divisor on Y such that a - Oy = Oy (—FE). We set

1 +o0
= (7" (—Kx — A) — tE) dt.
S(a) Vol —Kx —A)/o vol(m* (—Kx ) —tE)dt
Proposition 4.3. If (X, A) is a log Fano pair and a C Ox a nonzero ideal, then
let(X, A; a)
—— 7 >5(X,A). 9
Sz x.A) )

Furthermore, write m : Y — X for the normalized blowup of a and E for the Cartier
divisor on'Y such that a - Oy = Oy(—FE). If (9) is an equality, then Supp(E) is a
prime divisor and computes §(X, A).

The above proposition is an analog of [LX16, Theorem 3.11] for the §-invariant and
is similar to [Fuj19b, Corollary 3.22].

Proof. Choose a divisor F' over X computing let(X, A;a). By [BCHM10], there is an
extraction p : Xp — X of F. Set p := ordp(a). Hence, Ax A(F)/p =lct(X, A;a) and
a® - Ox, C Ox,(—kpF) for all k € N.
By the previous inclusion, if we set L := —Kx — A, then
vol(m*L — tE) < vol(p*L — tpF)
for all ¢t € R>g. Hence, S(a) < p~'S(F), and we see
let(a) _ Axa(F)
S(a) S(F)
Since Ax A(F)/S(F) > §(X,A), (9) holds.
Now assume (9) is an equality. In this case, the above argument implies F' computes
d(X,A). To finish the proof, it suffices to show Y = X and Supp(FE) = F.

Fix a positive integer k so that —kpF' is Cartier and choose an ideal ¢ C Ox,. such
that

>

Clk : OXF =C- OXF(—p]{ZF).

Write 7 : Z — Xp for the normalized blowup of X along ¢ and G for the Cartier
divisor on Z such that ¢ - Oz = Oz(—G). Since Z is normal and

a¥- Oy = (¢c- Ox,p(—pkF)) - Oy = Oz(—pkt*(F) — G)

is locally free, p o 7 factors through 7:
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YlyZ\T)X
N oA

Additionally, o*(E) = 7*(pF) + k71G.

If we can show ¢ = Oyx,,, the proof will be complete. Indeed, if ¢ = Ox,,, then 7 is
an isomorphism and ¢*E = pF. But, since ¢*E = pF' is anti-ample over X, o must
also be an isomorphism and we are done.

We claim that if ¢ € Ox,, then

vol(m*L — tE) < vol(p*L — tpF)
for 0 <t < 1 and, thus, S(a) < (1/p)S(F). Since, we will then have

AX7A(F) < 1Ct(Cl>
S(F) S(a)

5(X,A) < = §(X, A),

a contradiction will be reached.
To prove the above claim, fix 0 < ¢ < 1/k so that H := pr*F + G is anti-ample
over X. Note that by our choice of ¢, we also have

vol(m*L — tE) = vol(7*(p*L) — to*E) < vol(7*(p*L) — tH).
Therefore, it suffices to show
vol(7*(p*L) — tH) < vol(p*L — tpF")
for 0 <t < 1.
Fix 0 < t < 1 so that both A; := p*L — tpF and B; := 7*(p*L) — tH are both
ample. Following an argument in [Fuj19b, 3.3], we note that for 0 <i <n —1,
0<etG-(T%A)" - B!
= (T"A; — By) - (T"A)" - B
since G is effective, 7% A; is nef, and B; is ample. Additionally,
0< (r"A,— By)- B .

We now see
n—1
0<Y ((T°A; = By) - (T*A)" - By 1)
=0
= (T7A)" = (By)"
=vol(p*L — tpF) — vol(7*(p*L) — tH),

and conclude vol(p*L — tpF) < vol(7*(p*L) —tH) for 0 < t < 1. O
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4.3. Q-divisors computing 6. Let (X, A) be a log Fano pair, p: Y — X a proper
birational morphism with Y normal, and F an effective Q-Cartier Q-divisor on Y such
that —FE is p-ample. We set a,(E) := 1Oy (—[pE]) C Ox and

1 °
A /0 vol(u*(—Kx — A) — tE) dt.

S(F) = (—KT

Proposition 4.4. With the above notation, we have
let(X, A; aq.(E))

S(E)
Furthermore, if (10) is an equality, then Supp(E) is a prime divisor.

> 5(X, A). (10)

The statement is a consequence Proposition 4.3 and the following elementary lemma.

Lemma 4.5. Let i : Y — X be a proper birational morphism of normal varieties and
E an effective Q-Cartier Q-diwvisor on'Y such that —E is pu-ample. Set

a,(E) = Oy (=[pE]) € Ox.

If p € Z~y is sufficiently divisible, then

(1) Y is the blowup of X along a,(E),

(2) a,(E) - Oy = Oy(—pE), and

(3) (a,(E))" = ap(E) for all € € Zsy.
Proof. Since —E is ample over X, @, .y am(E) is a finitely generated Ox-algebra
and Y ~ Projy(@,,cy @m(E)). The former statement implies that if p € Zs is
sufficiently divisible, then the p-th Veronese, €, .y @pm(E), is finitely generated in
degree 1. Hence, (1) and (3) are complete. For (2), observe that the natural map
1 iOx(—pE) — Oy(—pE) is surjective for p € Z-, sufficiently divisible, since —F
is p-~ample. 0
Proof of Proposition /.J. Fix p € Z~, satisfying (1)-(3) of Lemma 4.5 and set a :=
a,(E). By (1) and (2), p- S(a) = S(E). By (3)

let(X, A a.(E)) == lim (mp - let(X, Asay,(E))) =p - let(X, A a).
m—00

The result now follows immediately from Proposition 4.3. U

5. CONSTRUCTING THE S-EQUIVALENCE

In this section, we prove Theorem 1.1. In Section 5.1 we will construct filtrations
of

R=@D H(Xo,—mr(Kx, +4)) and R =D H(X;, —mr(Kx;, + Ap)),
meN meN

whose associated graded rings are isomorphic. Then in Section 5.2, we concentrate on
proving that these filtrations and their associated graded rings are finitely generated.
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5.1. Filtrations induced by degenerations. Let
7:(X,A)—=C and 7 : (X A)—=C
be Q-Gorenstein families of n-dimensional log Fano pairs over a smooth pointed curve
0 € C. Assume there exists an isomorphism
¢ (X,A) xc C° = (X',|A) xc C°
over C° := C'\ 0 that does not extend to an isomorphism (X, A) ~ (X', A’) over C.

Furthermore, assume C' is affine and there exists t € O(C') so that dive(t) = 0.
From this setup, we will construct filtrations on the section rings of the special

fibers. Set L := —r(Kx + A) and L' := —r(Kx, + A’), where r is a positive integer
so that L and L’ are Cartier. For each non-negative integer m, set

R = H(X,O0x(mL)) R, = H' (X', Ox/(mL))

R,, := H(Xo, Ox,(mLo)) R, = H°(X{,Ox; (mLy)).

Additionally, set
R :=®wRm, R:=&,R, R  =&,R,, and R :=&,R,.
Observe that the natural maps
Ry @k(0) = R, and R, @k(0)— R,

are isomorphisms. Indeed, Kawamata-Viehweg applied to the fibers of m and 7" implies
R'm,Ox(mL) and R'7.Ox:(mL’) vanish for all i > 0 and m > 0. Hence, 7,.0x(mL)
and 7. Ox:(mL') are vector bundles and their cohomology commutes with base change.
Since C' is affine, R,,, and R/, can be identified with the Oc-module 7,Ox(mL) and

m.Ox:(mL’), and the statement follows.
Fix a common log resolution X of (X, A) and (X', A')

P )? Y’
N

X -t > X'
and write Xy and X}, for the birational transforms of Xy and X}, on X. Set
a = AX,A-{-XO()?(I)) and a' = AX’,A’—I—Xé ()’ZO) (11)

Observe that X, # )?6, since otherwise ¢ would extend to an isomorphism over C' by
the second paragraph of the proof of Proposition 3.2.

5.1.1. Definition of filtrations. For each p € Z and m € N, set
F'Rin = {s € Ru|ordg, (s) = p}, and  FPR, ={s € R}, |ordg (s) = p}.
We define N-filtrations of R and R’ by setting
FPR,, = im(FPR,, — R,) and FPR, :=im(FPR,, — R.,),
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where the previous maps are given by restriction of sections. It is straightforward to
check that F and F’ are filtrations of R and R'.
Observe that R, ~ R,,/tR.,, and FPR,, ~ im(FPR,, = Ru/tRm) = %
and similar statement holds for F’. Therefore, we have natural isomorphisms
FPRm, FPR!
(FPRym NtRy) + FPHR,, (FPRL, NtR,) + FPHR

gr-Ry, ~ gr R, =~ (12)

5.1.2. Relating the filtrations. We aim to show that gr R and gr R’ are isomorphic
up to a grading shrift. N _
Since ¢¥*(Xy) = ¢"*(X{)) have multiplicity one along Xy and X/, we may write

Kg+ ¢ (A) =" (Kx +A) +aX}+ P
and N
Ko+, (A) =™ (Kx + A) +d' X+ P,
where the components of Supp(P) U Supp(P’) are both ¢ and ¢’-exceptional. Now,
FPR,, ~ H° ()?, Og(my*L — p)?é))
=H° ()?, O (my™ L' + (mra — p) X}, — mrd' Xo +mr(P — P’))) :
Hence, for s € FPR,,, multiplying ¢*s by t™"*7P gives an element of
H° <)A(, Og(my™L' — (mr(a+d') — p))?o)>,
which can be identified with F/""(e+ta)=rR!
As described above, for each p € Z and m € N, there is a map
(ﬁp,m : prm — f/mr(a+a/)pr;n’
which, when R,, and R/, are viewed as submodules of K(X) and K(X'), sends
s+ tMT97P(¢~1)*(s). Similarly, there is a map
Bt FPRY, s PR,
which sends s’ +— t™"*~P¢*(s'). Observe that ¢’ r(ata’)—pm © Ppm 1S the identity map,
since the composition corresponds to multiplication by ¢ —(mr(ata)=pjgmra—p — 1
Hence, ¢, is an isomorphism.
Lemma 5.1. For each p € Z and m € N,
(1) Gy (FPRyy M1R) = Frleta-phiRy
(2) @p,m(}_erlRm) — ‘F/mr(a+al)7p7?/;n ﬂtR;ﬂ.
Proof. To see (1), fix s € FPR,,. Now, s € tR,, if and only if s vanishes along X,

which is equivalent to the condition that

s e HO()?, Og (my*L —p)N((') — )N(0)>.



UNIQUENESS OF K-POLYSTABLE DEGENERATIONS OF FANO VARIETIES 29

Since the latter holds precisely when
tmrePyts € HO ()?, Og(my™L' — (mr(a+d)—p+ 1))N(0)>,

which is identified with F/™"(a+@)=p+1R! (1) holds. (2) follows from a similar argu-
ment. l

Proposition 5.2. The collection of maps (Ppm) induce an isomorphism of graded

TIngs
©: EB @ gro Ry, — @ @ grg(ﬁa/)_pR;n.

meN peZ meN peZ
Hence, gt R,, and gr', R, vanish for p > mr(a+ a’).
Proof. For fixed p € Z and m € N, consider the natural maps
0: F'R,, — gtheR,, and ¢ : FrretdeRl grrfnf"(aJral)_pR;n.
By (12) and Lemma 5.1, ¢,,, sends the kernel of o to the kernel ¢/. Hence, @,

/ p—
induces an isomorphism ¢, ,, : gz R,,, — gry (ata')—p R;,.

Write ¢ : grR — gr= R, for the induced module isomorphism on the direct sums.
Since
Ppm (51)Pqe(52) = Pprqme(S1 - 52)
for any §, € FPR,, and 5, € FIR,, we see ¢ is a ring isomorphism. Since gr-R,,
and gr'z, R/, vanish when p < 0, the isomorphism ¢ implies the vanishing when p >
mr(a+ a’). O

5.1.3. Properties of the filtrations.
Lemma 5.3. For each positive integer p,
b, (F) = ap(ordg) - Ox, and b,(F') = ay(ordg, ) - Ox;.

Proof. Recall that

b,(F) :=1im(F’R,, ® Ox,(—mLy) = Ox,)
for m > 0. Since FPR,, := im(FPR,, — R,,), we see

b,(F) = im(F* Ry @ Ox(—mL) = Ox) - Ox,.

Therefore, proving the first equality reduces to showing

ap(ord;((,)) = im(F*R,, ® Ox(—mL) — Ox)
for m > 0. Since FPR,, = H°(X,Ox(mL) ® ap(ord;(é)) and L is m-ample, the latter
statement holds. The argument for b,(F’) is the same. O

Proposition 5.4. The following hold:
(1) a > let(X , A+ Xo; a.(ord);(,))) = let(Xo, Ao; be(F));
(2) a’ > let(X', A" + Xg; ae(ordg ) = let(Xp, Ap; be(F)).
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Proof. The first pair of inequalities holds by (3). The second pair follows from Lemma
5.3 and inversion of adjunction. 0

Proposition 5.5. The filtrations F and F' of R and R' are linearly bounded, non-
trivial, and satisfy
a+a =S(F)+S(F).

Proof. Proposition 5.2 implies FPR,, = 0 and FPR! = 0 when m > 0 and p >
mr(a + a'). Therefore, F and F' are linearly bounded.

The base ideals b,(F) and b,/ (F’) are non-zero for p > 0 by Lemma 5.3. Therefore,
the filtrations cannot be trivial.

Applying Proposition 5.2, we see

Z (pdim gr>R,,) + Z (pdim grﬁ’mRﬁn) = Z (pdim grbR,,,) + Z (p dim gr?r(a+a/)*PRm)

p>0 p>0 p=>0 p=>0
= Z (mr(a+d')dimgr-R,,).
p=>0

=mr(a+ a')dim R,,.
Combining the previous equation with (5) gives S(F) + S(F') =a+d'. O
It also natural to rescale the above values and set
B = (—Kx, —A¢)"(a—S(F)) and p = (-Kx; —Ay)"(d — S(F)).
In this language, Proposition 5.5 states that 5+ 5" = 0.

5.2. Proof of Theorem 1.1. The goal of this subsection is to prove Theorem 1.1.
To do so, we consider the filtrations defined in Section 5.1. Under the hypothesis that
(Xo,Ap) and (X, Ap) are K-semistable, we will show that the filtrations are induced
by dreamy divisors.

Furthermore, we will prove that these dreamy divisors induce special test configura-
tions (X, D) and (X', D) of (X, Ag) and (X, Aj) with generalized Futaki invariant
zero. Hence, the log Fano pairs cannot be K-stable. Proposition 5.2 will then be used
to show that (Xp, Do) ~ (X, Df) and allow us to conclude that (X, Ag) and (X, Ap)
degenerate to a common K-semistable log Fano pair.

Proof of Theorem 1.1. Assume (Xg,Ag) and (X[, Aj) are both K-semistable and ¢
does not extend to an isomorphism. We must show (Xo, Ag) and (X, Af) are S-
equivalent and not K-stable. To do so, we use the filtrations F and F’ constructed in
Section 5.1.

Since (Xo, Ap) and (X, Aj) are K-semistable, Proposition 2.8 implies

let(Xo, Ag; be(F)) > S(F)  and  let(X(), Ag; bo(F')) > S(F).
Combining the previous inequalities with Propositions 5.4 and 5.5, we see
a = let(X, A + Xo; a.(ordgé)) = lct(Xo, Ag; be(F)) = S(F) (13)
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and
a' = let(X', A"+ Xj; as(ordg ) = let(Xp, Ap; bo(F)) = S(F). (14)
Furthermore, §(Xo, Ag) = §(X(, Af) = 1.
By the first pair of equalities in (13) and (14), we may apply Proposition 2.2 to ex-
tract X over X and X, over X'. Specifically, there exist proper birational morphisms
wand g

Vuwcy YOV uUW
dl [
XoC X -5 X' 5 X,

N

such that the following hold:

(1) the fibers of Y (respectively, Y’) over 0 contains two components V' and W
(respectively, V' and W’) and they are the birational transforms of X, and
Xo;
(2) =W and —V" are ample over X and X’ respectively;
(3) (V,V+W+u'A)and (Y, V' + W' + u/7tA’) are lc.
We write
po:V — Xy and  pg: W — X|
for the restrictions of p and p' to V and W’'. Clearly, po and py, are proper birational
0
morphisms.

Lemma 5.6. The pairs (Y,V + u'A) and (Y, W' + p,7*A’) are plt. Hence, V and
W' are normal.

Proof. By inversion of adjunction, (X, Xy + A) is plt. Therefore, (Y, V + u;'A) is plt
away from Exc(u) = W. Since (Y,V + W + u*A) is le, (Y, V + p*A) cannot have
lc centers in W. Therefore, (Y, V + p;tA) is plt, and V is normal by [KM98, 5.52].
The same argument works for Y. O

Now, consider the restrictions of W and V' to the birational transforms of X, and
X
E:=W]y and E :=V']y.
Since W and V' are Q-Cartier, but not necessarily Cartier, £ and E’ may have

fractional coefficients.
The Q-divisors E and E’ induce N-filtrations on R and R’ defined by

FyRy = H°(V,Ov (ui(mLo) - [pE])) C R

and
FY R = H° (W’, Ow (10" (mLy) — [pE'U) CR,
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for p,m > 0. Note that
FPR,, C FER,, and FPR, C FL,R..
Therefore,

S(F) < 8(Fp) and S(F) < S(Fw). (15)

Lemma 5.7. The supports F' := Supp(FE) and F' := Supp(E'’) are prime divisors
Furthermore,

_1 TN .
0 —d ’
(1) F computes §(Xo, Ag) and E = S F for some positive integer d
2) F' computes 6(X}, A}) and E' = LF' for some positive integer d'.
0> 20 d

Proof. Since —W is ample over X, the restriction map

11Oy (=pW) = 110, Oy (—pE)
is surjective for all positive integers p sufficiently divisible. Hence, if we set

& (E) = 0.0y (—pE) € Ox,.
then a,(E) = a,(ordy) - Ox, for such p and inversion of adjunction yields

let(Xo, Ag; ae(E)) = let(X, A + Xo; aq(ordy)).
Combining the previous equality with (13) and (15) yields
let(Xo, Ag; ae(E)) = S(F) < S(Fg). (16)

Since (Xg, Ag) is K-semistable, Proposition 4.4 implies (16) is an equality and F' :=
Supp(F) is a prime divisor. Therefore, S(F) = S(Fg) and F' := Supp(FE) is a prime
divisor that computes §(Xg, Ag).

To see E = éF for a positive integer d, we cut by hyperplanes to reduce the
statement to a surface computation. The statement then follows from the fact that
(Y, V + W + u;*(A)) is lc and the classification of lc surface pairs ([Kol13, 3.32] and
[Kol13, 3.35.2]). The argument for E’ is identical. O

Lemma 5.8. For all but finitely many © € R,
vol(FpR™W) = vol(FR®)  and  vol(Fg R'™®) = vol(F'R'™®).
Proof. As shown in the proof of Lemma 5.7, S(F) = S(Fg). Hence,

[e.9] 1 oo
i) vol(FRW) dz = S(F) = 5(Fe) = — /0 vol(FgR™) du.
Since vol(FR®) < vol(FzR®) by (15) and the two functions are continuous at all
but one value [BHJ17, 5.3.ii], the desired equality holds. O

Proposition 5.9. For allp € 7Z and m € N,
FPR,, = FoR,, and F"R, =FnR,.
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Proving this key proposition amounts to showing that the restriction map
H(Y, Oy (mp"L = pW) ) = H(V, Oy (myry Lo — [pE]) )

is surjective. Since such a statement is quite subtle, we will not study this restriction
map directly. Instead, we use a construction that originated in [Lil7] (with a refining
analysis from [LWX18b]) and work on the cone over our family of log Fano pairs.

Consider the relative cone over (X, A) — C with polarization L given by
Z :=C(X/C,L) =Spec(R) = C.

Write o : C' — Z for the section of cone points and I' for the closure of the inverse
image of A under the projection Z \ o(C) — X. Note that the fiber of (Z,I") over 0,
denoted (Zy,I'y), is the cone over (Xy, Ag) and Zy = Spec(R).
There is a natural proper birational morphism Y;, — Z, where Y, := Specy ( @,,, Oy (mL)),
and it is the total space of the line bundle whose sheaf of sections is Oy (mL). We
write Y, C Yy, for the zero section and W, for the preimage of W under the projection
map Y, — Y. Hence, Y, "W~ W.
Associated to the divisor W over X is a ray of valuations

{w,|t € [0,00)} C Valyg,

where w; is the quasi-monomial valuation with weights (1,¢) along Y, and W,,. For
each positive integer k, let Wj denote the divisor over X such that w,/, = %ordwk.
Note that
Azrizy(wi) = Azrizy(ordy, ) + tAzriz (ordw,) = Azriz(ordy,) + tAx asx,(ordw)
-1
= r " +ta

and, by a local computation as in 2.5.1,

a,(w,) = P FE"I'R, CR. (17)
meN
Therefore,
a,(w;) - Oz, = P FP™"R,, CR. (18)
meN

We also consider a ray in the valuation space of Z;. Consider the natural map
Vi, — Zo, where Vi, = Specv( D..~0 Ov(mu(’;Lo)). We write Vs C Vp, for the zero
section and F,, for the inverse image of F' under the projection Vi, — V. Let v,
denote the the quasi-monomial valuation with weights (1,td) along V,s and F,. Note
that

a,(v) = P FL ' Ry = P FL 'R, C R (19)

meN meN
For each positive integer k£ divisible by d, there is a divisor Fj over Z; such that
Uik = %ordpk. Since F' computes §(Xp, Ag) = 1, the proof of Theorem 4.1 implies
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that Fj, may be extracted for £ > 0. Let
Pk Zor, — Lo
denote this extraction.

Lemma 5.10. For k > 0, there exists an extraction 1, : Zw, — Z of Wy, over Z such
that (Zw,, Wi + i, H(T + Zp)) 1s lc.

Proof. Fort € Rxy, let aq(w;)-Oy, denote the restriction of as(w;) to a graded sequence
of ideals on Z,. By Lemma 2.12.1 and Lemma 5.8,

mult(ae(wy) - O,) = mult(ae(vy)) (20)
for each t € R>.
Set
)= (r"+ azf)n+1 mult(ae(wy) - Og,).
Applying Lemma 2.12, we see
f(0) = (=Kx, = Ag)"  and  f/(0) = (—Kx, — Ao)"(a — S(F)) = 0.

Hence, a Taylor expansion gives f(t) = f(0) + O(t?) for 0 < t < 1.
For each positive integer k, define

o = 1ct(Z, T + Zy; as(ordy, )).
Note that ¢y < Azryz,(Wi) = kr~' +a by (3). Additionally,
cr =k -1ct(Z, T + Zo; ae(wiy)) = k - 1ct(Zo, Lo; aa(wr /i) - Oz,)

by inversion of adjunction and the relation ao(ordw,) = as(w:x). Therefore,

f(0) <let (ZO, Lo; ae(wiyg) - Ozo)n+1mult (a.(wl/k) . (’)ZO)

— (%)nﬂ mult (ae(wy /i) - Oz,) < f(%),

where the first inequality follows from [Liul8, 7] and the assumption that (X, A) is
K-semistable (see also [Lil7, Theorem 3.1] and [LX16, Theorem A]).

Now, set a = Azriz,(Wi) — cx. As in the proof of Theorem 4.1, the previous
inequalities imply lim a; = 0. Hence, if £ > 0, Proposition 2.2 yields an extraction

Tk Zw, — Z of W/ljjsoach that the pair
(Zwie Tz (T + Zo) + (1 — ax) Wy)
is lc. Since kh_}rgo (1 —ax) = 1, the ACC for log canonical thresholds [HMX14] implies
(Zw,, : *(T + Zo) + W},) must be lc when k > 0. O
From now on, we fix a positive integer k£ so that d divides k, there exist extractions
Pk Zor, — 2o and Ty Zw, — Z,

and (Zw,, 7e; {(T + Zo) + Wy,) is le. The argument used to prove Lemma 5.6 implies
(Zw,, Tex {(T + Zp)) is plt and 74, (Zp) is normal.
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Lemma 5.11. We have a diagram

Fk CZO7FI€ — ZWk D) Wk

bl

Z()%Z

(i.e. the birational transform of Zy on Zy, is the extraction of Fy). Additionally,
(i) Wk|ZO,Fk = éFk and
(ii) dWy, is Cartier at the generic point of Fy.

Proof. Since —W), and —F}, are ample over Z and Z;, we may find a positive integer
p so that

apa(ordy,) C Oz and a,(ordp,) € Oy,
satisfy the conclusions of Lemma 4.5. Hence, Zy, is the blowup of Z along a,(ordy,)
and Zo g, is the blowup of Zj along a,(ordg, ). The former statement implies 74, (Z)
is the blowup of Z; along a,q(ordy, ) - Og,.

Claim: mult(ayq(ordw, ) - Oz,) = mult(a,(ordp, ))
To compute these multiplicities, observe

mult(a,(ordg,)) = Pt mult (ae(ordp,)) = (pd/k)™ 'mult (a.(vl/k)) ,

since ay(ordp,) = ay(ordp,)¢ for all £ > 0 and %ordp, = vy Similar reasoning
implies

mult(ayq(ordw, ) - Oz,) = (pd/k)" 'mult (ae(wi/x) - Oz,) -
Equation 20 now completes the claim.

Observe a,q(ordw, ) - Oz, C a,(ordp, ), since

apa(ordw, ) - Oz, = GB Fri-mkR C @ FrimEp = ay(ordp,).

meN meN

A theorem of Rees [Ree61] now implies that a,q(ordw, ) - Oz, and a,(ordg, ) have the
same integral closure.

The latter implies a,q(ordy, )-Og, and a,(ordg, ) have the same normalized blowups.
Since the corresponding blowups equal 7;,;(Zp) and Zy g, and are already normal,
they must be isomorphic. The equality of the integral closures further implies pd W}, |Tk;1( Z0) =
pFi, which completes (1).

To see (2), cut by n — 1 generic hyperplanes to get a lc surface pair. The statement
then follows from the fact that (Y, V + W + u;*(A)) is lc and the classification of lc
surface singularities (see [Koll13, 3.32] and [Kol13, 3.35.2]). O

Proof of Proposition 5.9. With the above results, the equality of the two filtrations is
now a statement concerning valuation ideals (see Equations 18 and 19).
Let us consider the restriction sequence

0— OZWk(_dek — ZO,Fk) — OZWk(_dek) — OZO,Fk(_ka) — 0. (21)
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where p is a positive integer. By the proof [KM98, 5.26], the sequence is exact if pdW,
is Cartier at all codimension two points of Zyy, contained in Zj . Since the latter
holds by Lemma 5.11, (21) is exact.

Claim: RlTk*OZWk (—pdWy, — Zo 5,) = 0 for all p > 0.
Note that (Zy,, 7y () is klt, since (Zyw, , 7u; '(T' + Zy)) is plt. Therefore, [Kol13,
10.37] implies the desired vanishing holds as long as

- dek - ZO,Fk - (KZWk + Tk‘*_l(r>> (22)
is T-nef. To prove the latter, observe

Kz, + T (D) ~om, Kz, + s (D) = 7 (Kz + T + Zo)
= (AZ,FJrZo (Orde> — 1)Wk — ZO,Fk~

Therefore, (22) is relatively Q-linearly equivalent to —(pd + Az 4z, (ordw,) — 1)W.
Since —W}, is m-ample, (22) is 7p-nef when p > 0 and the proof of the claim is
complete.

Returning to the proof of the proposition, we apply 74, to (21) and see

0 = 7. Oz, (—pdWi — Zo ) = apa(ordw,) = ay(ordp,) = 0

is exact for all p > 0. The right exactness implies FP" R, = FP"™ R for all
p > 0 and m > 0. Since k was chosen to be a multiple of d, the latter implies
FPIR, = FPYR,, for all p,m > 0. Using the relations

FPRyy C FoRy = F' "Ry,
we conclude FPR,, = FLR,, for all p,m > 0. O

We now return to the proof of Theorem 1.1. Recall, F' := Supp(F) and F” := Supp(E’)
compute 6(Xo, Ag) and §(X|, Ap), which are both one. Theorem 4.1 implies F' and
F’" are dreamy. Therefore, (X, Ag) and (X}, Aj) are not K-stable.

It remains to show that (Xo, o) and (X{,Af) are S-equivalent. Consider the
filtrations F and F’, which agree with Fr and Fg by Proposition 5.9. The filtrations
F and F' are finitely generated (since F' and F’ are dreamy). Let (X', D) and (X', D)
denote the test configuration of (Xg, Ag) and (X, Aj) associated to these filtrations.

We claim that (X, D) and (X', D’) are non-trivial special test configurations and
the fibers over 0 € A! are K-semistable. Indeed, (X, D) is a normal non-trivial test
configuration [Fujl7, 3.8] and its Futaki invariant is a multiple of Ax, a,(F) — S(F)
[Fujl9a, 6.12], which is zero. Therefore, (X, D) must be special, since otherwise there
would exist a test configuration of (Xo, Ag) with negative Futaki invariant [LX14, 1].
[LWX18b, 3.1] now implies (Xy, Dy) is K-semistable. Since the same argument may
be applied to (X', D’), the claim holds.
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To finish the proof of the S-equivalence, we are left to show that there is an isomor-
phism (X, Dy) ~ (X}, Df). Note that

Xy = Proj ( @ @gr’}Rm) and X; = Proj ( @ @grf,R >

meN peN meN peN

Therefore, the isomorphism ¢ : grrR — gr R’ in Proposition 5.2 induces an iso-
morphism Ay ~ Aj. This proves Theorem 1.1 in the case when the boundaries
A and A’ are trivial. We claim that ¢ indeed induces an isomorphism of pairs
(X0, Do) ~ (A5, Dy). Proving Dy and Dj match under the isomorphism Ay ~ A
is quite delicate.

To proceed, fix a prime divisor B C Supp(A), and let B’ C Supp(4A’) denote
its birational transform on X’. Write B C Supp(D) and B’ C Supp(D) for the
degenerations of By C Xy and B C X on X and A’. To complete the proof, we
will show that the isomorphism Xy ~ &} sends By to B, where By and B, denote the
divisorial parts of the scheme theoretic fibers of B and B’ over 0.

Recall that the scheme theoretic fibers of B and B’ over 0 are defined by the ideals

in(/p,) CgrpR and in(Ip) C grp R,

where Ip, C Rand Iz, C R denote the ideals defining By and By,. Observe that in(Ip,)
and in(Ip,) are homogenous with respect to the gradings by m and p. Furthermore,
the graded components may be expressed as

FPR, NIg
(IBO )P, (]BO) m gr]‘—R lm (‘FPR m ‘[BO —> gr]:R ) .Fp+1R m I;O
and
: . FPR;, N g
(L = (L) O gl o, = i (FP 0 0 Ly = e ) = g I,

Rather than showing that the isomorphism grR — grz R’ sends in(/p,) to in(/p;),
we introduce auxiliary ideals defined using sections of the relative section rings that
vanish along B and B’. For p,m > 0, set

Ly = im (FPR, NIp — gty Ry)  and I, :=im (F?R,, NIp — gt R,,),

where Zg C R and Zp C R’ are the ideals defining B and B’. It is straightforward
to check that

I:= @@Ip,m CgrsR and [':= @@I;o,m CgrpR

meN peN meN peN

are ideals and are contained in in(/p,) and in(Ip) .

The following two propositions show that the isomorphism Ay ~ &{ induced by ¢
sends By to Bj. Indeed, Proposition 5.12 states that the isomorphism XO X} sends
V(I) to V([’). Since V(I) and V(I') agree with By and B}, away from codimension
two subsets by Proposition 5.13, the result follows. O
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We are left to prove the following two propositions used in the above proof.
Proposition 5.12. The isomorphism ¢ : gr R — gr-R' sends I to I'.
Proof. Observe that for § € FPR,,,

§€ FPRnNIp ifand only if  @,,n(5) € Fmata) =PRI N Ty,

Indeed, § and @, ,,(5) differ by a unit away from 0 € C' and membership in the ideals
Zp and Zp may be tested away from 0 € C, since B and B’ are horizontal. Therefore,
©(Lpm) =L} atary—pm a0d the result follows. O

The next proposition is more difficult to prove.

Proposition 5.13. The subschemes defined by

(1) in(Ip,) and I on Xy;
(2) in(Ip;) and I' on X
agree away from codimension 2 subsets.

To prove the statement for (1), it suffices to show that
(s ),
dim (@ M) = O(m"?). (23)
p>0 o

To bound the dimension of the previous module, we return to the cone construction
argument used earlier in this section.
Consider the the relative cone (Z,I') and the extractions

Tk Zw, — Z and  pp: Zop, — 2o

used in the proof of Proposition 5.9. Let G C Supp(I') denote the prime divisor
defined via pulling back B C Supp(A). Write G and G for the birational transforms
of G and Gy on Zy, and Zj p, .

Observe that for j > 0

aja(ordw,) N Ze = @) (F* ™R, N Ip)

m>0
and
a;(ordp,) NZ, = @ (F* ™ Ry N I5,) .
m>0
Therefore,
a;(ordp, ) N Zg, N in(1p,) jd—mk,m

~ 24
(Cljd(OI"de) N Ig) . OZO + (aj+1(ordpk) ﬂIGO) m>0 [jd—mkz,m ( )

Lemma 5.14. We have
Clj(OI‘dFk) N IGO

=0(j"?).
(Cljd(OI‘de) mIG) ’ OZO + (aj+1 (OrdFk) N IGO)
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A key subtlety in proving this lemma is that the divisors G and G, may fail to be
Q-Cartier. The proof we will utilize the fact that

(ZWk7 Wk + ZO,Fk + Tk*_l(r))
is lc. The latter implies Fy, = Wy N Zy 5, is not contained in Supp(7i,~*(T)) by
[Kol13, 2.32.2]. Hence, F;, ¢ G.

Proof. Fix a positive integer ¢ such that ¢dWj, is Cartier. For each r € {0,...,q— 1},
set

Q,. = coker <OZWk(_é —rdWy) — OZO’Fk(—CNJO — TFk)) ,
where the previous map is defined via restriction.
Claim: The support of Q, is contained in the intersection of Zj r, and the locus where
G is not Q-Cartier.
To prove the claim, it suffices to show
OZWk (—é — T’de) — OZO,Fk (—éo — TFk) — 0
is exact along N
U:={z € Zw, |G is Q-Cartier at z}.

The the proof of [KM98, 5.26] implies the statement holds, assuming

(i) (G + rdWy)|y and Zo i, |u are Q-Cartier and

(ii) (G4+rdWy)|y is Cartier at all codimension two points of U contained in Zy g, |v-

Statement (i) is clear, since W), and Z, g, are Q-Cartier and U is the locus where G
is Q-Cartier. For (ii), observe that G+rdW} is Cartier at the generic point of Fj,, since

Fy, ¢ G and dW)}, is Cartier at the generic point of Fj. Note that Zyy, is regular at the
remaining codimension two points contained in Zj p, . Indeed, Zy, \ Wy ~ Z \ o(C)
and Z is regular along all codimension one points of Zj, since Zj is a normal Cartier
divisor on Z.

We now return to the proof of the lemma. Given a positive integer j, write j = bg+r
where r € {0,...,¢ — 1}. Consider the exact sequence

Ozy, (=G — jdWk) = Og, . (—=Go — jFk) = Qy(—bgdWy) — 0.
Pushing forward the sequence by 7%,, we see
ajq(ordw, ) NZeg — a;(ordp,) N Ze, — Tra Qr (—bgdWy,) — 0,
is exact for b > 0, since —W}, is 7p-ample. Hence,

dim ( a; (Odek) N IGO )
(aja(ordwy) NZg) - Oz, + (aj41(ordr,) N Ig,)
. a'(ordF ) N IG )
< dlm ) k 0
N ((ajd(ordwk) NZg) - Oz, + (ajsq(ordpr,) NZg,)
< dim (coker (74, Q- (—bgdWy) = 71, Q- (— (b + 1)gdWy)) ).
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We are now reduced to showing that the last term equals O(b"2).
Let D denote the effective Cartier divisor qdW),. Consider the exact sequence

Q.(—(b+1)D) — Q,.(-bD) = Q.(—=bD)|p — 0
After pushing forward by 7, we see

T4x Qp(—(b+1)D) = 73,9, (—bD) — H°(D, Q,(—bD)|p) — 0.

is exact for b > 0. Since Q, is supported on the locus of Zj r, where G is not Q-
Cartier, Lemma 5.15 implies Q,|p has dimension at most dim(Zy ) —3 = n — 2.
Therefore,

H(D, Q,|p(~bD|p)) = O (b"?)

and the lemma is complete. 0

The previous proof used the following property of lc pairs.

Lemma 5.15. Let (X, A+ E; + E») be an lc pair such that (i) (X, A) is klt and (i1)
Ey and Es are Q-Cartier prime divisors. If v € X is a codimension three point and
x € E1 N Ey N Supp(A), then X is Q-factorial at x.

Proof. After taking appropriate index one covers, we can assume F; and F, are
Cartier. By cutting, we can assume dim(X) = 3 and z is a closed point. Since
(X,A) is klt, E; is Cohen-Macaulay [KM98, 5.25].

We claim F; is normal at x. If not, since F; is Sy, it cannot be R; by Serre’s
Theorem. Hence, F; is singular on a curve C passing through x. Note that C' ¢
Supp(A) U Ey by [Koll3, 2.32]. If we consider the normalization EY — E;, we
see Diff zv(A) has coefficient one along the divisors in the preimage of C' and pos-
itive coefficient along the preimage of Supp(A). By [Koll3, 2.31], this implies that
(EY, Diff pr (A) + Es|pr) is not lc, which contradicts adjunction.

Shrinking around z, we may assume Fj is normal. Adjunction gives (E1, A|g, + E2|g,)
is lc. Since Fs|g, is Cartier, (Ey, A|g,) is canonical at z. Using that € Supp(A|g,),
[Kol13, 2.29.2] yields that E; is smooth at z. Hence, X is smooth at z. O

Proof of Proposition 5.13. To prove the statement for (1), it suffices to show

> dim N, = O(m"™?), (25)

p>0

where Ny, = in(Ip,)pm/Ipm. The previous estimate follows from Lemma 5.14.
Indeed, by Lemma 5.14 and (24)

Z dim de—mk,m =0 (jn_Q) .

m>0



UNIQUENESS OF K-POLYSTABLE DEGENERATIONS OF FANO VARIETIES 41

Since F is linearly bounded, there exists a positive integer C' so that gr’-R,, = 0 for
all p > mC. Hence, N,,, = 0 for p > mC and we see

M(C+k)/d

ZZdlmdimS Z ZdlmN]d mkm:O(Mn_l)

m=0 p>0 m>0
Therefore,
. -2
E dim Npg . = O(mM" 7).
p=>0

Observe that gr'zR,, = 0 for all p not divisible by d by Proposition 5.9 and the fact
that E = d~'F. Therefore, the previous equation implies (25) holds. Hence, (1) holds

and (2) holds by an identical argument. O

Proof of Corollary 1.5. The proof is the same as the proof of Corollary 3.5, but with

Theorem 3.1 replaced by Theorem 1.1 (3). O
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