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Abstract. We prove that K-polystable log Fano pairs have reductive automor-
phism groups. In fact, we deduce this statement by establishing more general re-
sults concerning the S-completeness and Θ-reductivity of the moduli of K-semistable
log Fano pairs. Assuming the conjecture that K-semistability is an open condition,
we prove that the Artin stack parametrizing K-semistable Fano varieties admits a
separated good moduli space.
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Throughout, we work over an algebraically closed field k of characteristic 0.

1. Introduction

The construction of moduli spaces parametrizing K-semistable and K-polystable
Fano varieties is a profound goal in the study of Fano varieties. The K-moduli Con-
jecture predicts that the moduli functor XKss

n,V of K-semistable Q-Fano varieties of
dimension n and volume V , which sends a k-scheme S to

XKss
n,V (S) =

 Flat proper families X → S, whose geometric fibers are
K-semistable Q-Fano varieties of dimension n and

volume V , satisfying Kollár’s condition (see [BX19, §1])

 ,

Date: June 22, 2020.
JA was partially supported by NSF grant DMS-1801976. HB was partially supported by NSF

grant DMS-1803102. DHL was partially supported by NSF grant DMS-1762669. CX was partially
supported by a Chern Professorship of the MSRI (NSF No. DMS-1440140), by NSFC grant No.
11425101 (2015-2018) and by NSF grant DMS-1901849.

1



2 JAROD ALPER, HAROLD BLUM, DANIEL HALPERN-LEISTNER, AND CHENYANG XU

is represented by a finite type Artin stack XKss
n,V and it admits a projective good moduli

space XKss
n,V → XKps

n,V (see Definition 2.1), whose closed points precisely parameterize
n-dimensional K-polystable Q-Fano varieties of volume V . The ingredients needed in
the construction can be translated into deep properties of such Fano varieties. See
[BX19, Introduction] for a more detailed discussion of the prior state of the art.

1.1. Main theorems. In this paper, we show that if the moduli functor XKss
n,V is

represented by an Artin stack, then it admits a separated good moduli space (see
Step (III) in [BX19, Introduction]). A prototype of the good moduli space of a stack
is given by the morphism [Xss/G] → X//G to the geometric invariant theory (GIT)
quotient of a polarized projective variety (X,L) by a reductive group G. However, for
the question of K-stability of Fano varieties, it is not clear how to realize it as a GIT
question: on the one hand, we know there are K-polystable Fano varieties which are
not asymptotically Chow semistable (see e.g. [OSY12,LLSW17]); on the other hand,
the more natural CM line bundle is not positive on the Hilbert scheme (see [FR06]).

Roughly speaking, for moduli problems which are not known to be global GIT quo-
tients, however, we still aim to find a quotient space, such that the quotient morphism
behaves as well as the GIT quotient morphism [Xss/G]→ X//G from many perspec-
tives (see Definition 2.1). In this note, we adapt the general framework developed in
[AHLH18] to the case of K-semistable Q-Fano varieties.

Theorem 1.1. The functor XKss
n,V satisfies the valuative criterion for S-completeness

(see Definition 2.3) and Θ-reductivity (see Definition 2.7) with respect to essentially
of finite type DVRs.

For an Artin stack of finite type with affine diagonal over a field of characteristic 0,
[AHLH18, Theorem A] states that the conditions of S-completeness and Θ-reductivity
are equivalent to the existence of a separated good moduli space. An immediate
corollary is that

Corollary 1.2. Let X ⊂ XKss
n,V be a subfunctor representable by an Artin stack of finite

type, such that if x ∈ X then {x} ⊂ X. Then X admits a separated good moduli space.

The stack Xn,V is an Artin stack with affine diagonal, and it is known that the
semistable locus is bounded (cf. [Jia17]), so it remains to show that XKss

n,V ⊂ Xn,V is an
open substack (see [BX19, Step II]). This question was settled shortly after this paper
was first released (see Remark 1.4). For smoothable K-semistable Fano varieties, the
existence of the good moduli space as well as its properness were settled in [LWX19].

In fact, we prove S-completeness and Θ-reductivity of the moduli functor param-
eterizing families of K-semistable log Fano pairs. Since S-completeness implies the
reductivity of the automorphism group of any polystable point, we can conclude:

Theorem 1.3. If (X,D) is a K-polystable log Fano pair, then Aut(X,D) is reductive.

This theorem has a long history: it is a classical result for Kähler-Einstein Fano
manifolds in [Mat57] (and even holds in the more general case of polarized manifolds
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with constant scalar curvature metrics). For log Fano pairs with a weak conical
Kähler-Einstein metric, this is a much harder result and it is a key step in the proofs
of the Yau-Tian-Donaldson Conjecture for smooth Fano manifolds (see e.g. [CDS15,
Tia15, BBE+19]). Our method is purely algebro-geometric. In [BX19], it was shown
that if (X,D) is K-stable, then Aut(X,D) is finite. That paper also establishes a
key ingredient in the proof of Theorem 1.3, the Finite Generation Condition 3.1. We
also note that when X is only K-semistable, then Aut(X) can be non-reductive (see
[CS18, Example 1.4]).

1.2. Sketch of the proof. We sketch the main ideas in the proof of Theorem 1.1.
The conditions of S-completeness and Θ-reductivity of XKss

n,V both involve extending
a family of K-semistable Q-Fano varieties over the complement of a closed point in
a certain regular surface to a family over the entire surface. We first show that the
pushforward sheaves of m-th relative anti-pluri-canonical line bundles extend, then
we prove that the direct sum of these sheaves is finitely generated. After taking
Proj of this algebra, we argue that the central fiber is a K-semistable Q-Fano variety,
which gives the desired extension of the family of K-semistable Q-Fano varieties. Of
course, such finite generation results are highly nontrivial. Fortunately, for families of
K-semistable Fano varieties, the finite generation needed for S-completeness was es-
sentially settled in [BX19] and the case for Θ-reductivity is proved in Section 5, closely
following similar arguments in [LWX18]. This general strategy could conceivably be
applied to general K-semistable polarized varieties; however, the corresponding finite
generation statements (see Conditions 3.1 and 5.1) appear to be very challenging.

We now explain in more detail the proof of S-completeness. We say any two K-
semistable Q-Fano varieties lie in the same S-equivalence class if they degenerate to a
common K-semistable Q-Fano variety via special test configurations (see e.g.[BX19,
Def. 2.6]). The first extensive study of the geometry of K-semistable Q-Fano varieties
belonging to the same S-equivalence class was completed in [LWX18]. In particular,
it was shown that there is a unique object, namely a K-polystable Q-Fano variety, in
each S-equivalence class.

Then in [BX19], the study of families of K-semistable Fano varieties is extended from
test configurations to families over a curve. Namely, given two Q-Gorenstein families of
K-semistable Q-Fano varieties f : X → C and f ′ : X ′ → C over the germ of a pointed
smooth curve (C = Spec(R), 0) and an isomorphism X ×C (C \ 0) ∼= X ′ ×C (C \ 0),
[BX19] established that X0 and X ′0 are always S-equivalent. The argument for
this fact can be divided into two parts: (1) one constructs filtrations F and F ′ of
V :=

⊕
m Vm =

⊕
mH

0(X0,−mrKX0) and V ′ =
⊕

m V
′
m =

⊕
mH

0(X ′0,−mrKX′0
)

for some fixed sufficiently divisible r such that grF(V ) =
⊕

m grF(Vm) is isomorphic
to grF ′(V

′) =
⊕

m grF ′(V
′
m), and (2) one shows that the above graded rings are in-

deed finitely generated and moreover that their Proj give a common K-semistable
degeneration of X0 and X ′0.
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Meanwhile, the property of S-completeness was introduced in [AHLH18] as part of
a general criterion for the existence of good moduli space (see Theorem 2.9). The first
key observation in this paper is that the construction of the filtration in [BX19] indeed
can be put into this framework of S-completeness. More precisely, in the current note,
we verify that for each fixed m, in the above construction from [BX19], the m-th
graded module, grF(Vm) ∼= grF ′(V

′
m) is precisely the fiber over 0 of the pushforward

along STR \ 0 ⊂ STR (where STR is a local model of the quotient [A2/Gm] with
weights 1 and −1—see (1) for the precise definition) of the locally free sheaf over
STR \ 0 obtained by gluing Vm = f∗(−mrKX/C) and V ′m = f ′∗(−mrKX′/C). Indeed,
we show that the graded module in [BX19] is the same, up to a grading shift, as the
one naturally arising from the module over STR. Hence by taking the direct sum
over all m, we produce a graded algebra over STR, which is finitely generated exactly
by the finite generation results proved in [BX19]. Finally, by taking the Proj, we
construct the extended family of K-semistable Q-Fano varieties over STR.

In some sense, the S-completeness criterion in [AHLH18] provides a conceptual
framework for enhancing the ‘pointwise’ results in [LWX18,BX19] to results over fam-
ilies. Remarkably, this even yields new results for a single Fano variety, e.g. Theorem
1.3.

To prove the Θ-reductivity (see Definition 2.7), we need to show that, given a
family of K-semistable Q-Fano varieties f : X → C over the germ of a pointed curve
(C = Spec(R), 0), any family of test configurations for X ×C (C \ 0) over C \ 0 with
K-semistable central fibers can be extended to a family of test configurations for X
over C with K-semistable central fibers. When X/C itself is a test configuration, the
proof is contained in [LWX18]. To establish the Θ-reductivity, we need to generalize
the argument in [LWX18] from the base curve being Θ = [A1/Gm] to a more general
base curve C. Nevertheless, the techniques are similar.

Remark 1.4 (Postscript). After the first version of the current paper was written,
there were two related developments. First, it was proved in [BLX19] and [Xu20] that,
for a family of log Fano pairs, the locus where the fibers are K-semistable is open.
This together with [Jia17] implies the functor XKss

n,V is represented by an Artin stack

of finite type. Therefore, we can apply Theorem 1.2 to XKss
n,V itself and conclude it

admits a good moduli space. Second, the moduli functors of log Fano pairs over a
general base has been appropriately defined in [Kol19], which also can be shown to
be represented by an Artin stack. The results in this paper then confirm this Artin
stack also has a good moduli space. For a detailed account, see [XZ19, Sec. 2.6].

Acknowledgement: JA and CX thank Xiaowei Wang, and CX thanks Jun Yu
for helpful conversations. We thank the referees for suggestions on revising the pa-
per. Much of the work on this paper was completed while the authors enjoyed the
hospitality of the MSRI, which is gratefully acknowledged.
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2. Preliminaries

2.1. Good moduli spaces. In this section, we discuss some general facts about good
moduli spaces. The following definition was introduced in [Alp13].

Definition 2.1 (Good moduli space). If X is an Artin stack of finite type over k, a
morphism φ : X → X to an algebraic space is called a good moduli space if (1) φ∗ is
exact on the category of coherentOX -modules and (2)OX → φ∗OX is an isomorphism.

Remark 2.2. We note that X is unique as the map X → X is initial for maps to
algebraic spaces [Alp13, Thm. 6.6] and X is necessarily of finite type over k [Alp13,
Thm. 4.16(xi)]. Moreover, two k-points of X are identified in X if and only if their
closures intersect [Alp13, Thm. 4.16(iv)]. In particular, there is a bijection between
the closed k-points of X (i.e. the polystable objects) and the k-points of X.

The canonical example arises from GIT: if G is a reductive group acting on a closed
G-invariant subscheme X ⊂ P(V ), where V is a finite dimensional G-representation,
then the morphism

[Xss/G]→ Xss//G := Proj
⊕
m

H0(X,OX(m))G

to the GIT quotient is a good moduli space.
However, the K-stability moduli problem does not have a known GIT interpretation.

So to prove the moduli stack XKss
n,V yields a good moduli space XKps

n,V is quite nontrivial.

2.1.1. S-completeness. Let R be a DVR over k with fraction field K, residue field κ,
and uniformizing parameter π. We define the Artin stack

STR := [Spec
(
R[s, t]/(st− π)

)
/Gm], (1)

where s and t have weights 1 and −1. This can be viewed as a local model of the
quotient [A2/Gm] where A2 has coordinates s and t with weights 1 and−1; indeed, STR

is the base change of the good moduli space [A2/Gm] → Spec(k[st]) along SpecR →
Spec(k[st]) defined by st 7→ π. We denote by 0 ∈ STR the unique closed point
defined by the vanishing of s and t. Observe that STR \ 0 is the non-separated union
Spec(R)

⋃
Spec(K) Spec(R).

Denote Θκ = [A1
κ/Gm] as the quotient of the usual scaling action. The following

two cartesian diagrams yield a useful schematic picture of STR

Spec(R)� r
s 6=0

$$

ΘκN n

s=0

}}

Spec(K)
+ �

88

� s

&&

STR BκGm

1 Q

bb

M m

||
Spec(R)

, � t6=0

::

Θκ

0 P
t=0

aa (2)
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where the maps to the left are open immersions and to the right are closed immersions.

Definition 2.3 (S-completeness). A stack X over k is S-complete if for any DVR R
and any diagram

STR \ 0 //

��

X

STR

<<

(3)

there exists a unique dotted arrow filling in the diagram.
Moreover, if R is a DVR, we say that X satisfies the valuative criterion for S-

completeness for R if any diagram (3) can be uniquely filled in.

Remark 2.4. This definition was introduced for Artin stacks in [AHLH18, §3.5]. At
the time this paper was written, it was not known if XKss

n,V was an Artin stack, so we
were careful not to assume this about X . This question has since been resolved (see
Remark 1.4).

Remark 2.5. If X is Deligne-Mumford, then X is S-complete if and only if X is
separated ([AHLH18, Prop. 3.44]). If X is an Artin stack with affine diagonal, then
any lift is automatically unique ([AHLH18, Prop. 3.40]).

Remark 2.6. If G is a linear algebraic group over k, then BG is S-complete (equiv-
alently S-complete with respect to essentially of finite type DVRs) if and only if G
is reductive ([AHLH18, Prop. 3.45 and Rem. 3.46]). Moreover, as S-completeness is
preserved under closed substacks, it follows that every closed point (i.e. polystable
object) in an Artin stack with affine diagonal, which is S-complete with respect to
essentially of finite type DVRs, has reductive stabilizer.

2.1.2. Θ-reductivity. We define Θ = [A1/Gm] with coordinate x on A1 having weight
−1, and we set ΘR = Θ ×k Spec(R) for any DVR R. We let 0 ∈ ΘR be the unique
closed point defined by the vanishing of x and the uniformizing parameter π ∈ R.
Observe that ΘR \ 0 = ΘK

⋃
Spec(K) Spec(R). Analogous to (2), we have the two

following cartesian diagrams

Spec(R)� r
x 6=0

$$

BRGmM m

x=0

{{
Spec(K)

+ �

88

� s

&&

ΘR BκGm

2 R

dd

L l

zz
ΘK

, � π 6=0

::

Θκ

1 Q
π=0

cc
(4)

where the maps to the left are open immersions and to the right are closed immersions.
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Definition 2.7 (Θ-reductivity). A stack X over k is Θ-reductive if for any DVR R
and any diagram

ΘR \ 0 //

��

X

ΘR

<<

(5)

there exists a unique dotted arrow filling in the diagram.
Moreover, if R is a DVR, we say that X satisfies the valuative criterion for Θ-

reductivity for R if any diagram (5) can be uniquely filled in.

Remark 2.8. This definition was introduced in [HL18]. As with S-completeness, if
X is an Artin stack with affine diagonal, then any lift is automatically unique.

2.1.3. The existence of good moduli spaces. The following criterion is established in
[AHLH18].

Theorem 2.9. [AHLH18, Thm. A] Let X be an Artin stack of finite type with affine
diagonal over k. Then X admits a good moduli space X → X with X separated if and
only if X is S-complete and Θ-reductive.

Remark 2.10. The following technical refinement of Theorem 2.9 will be useful to us
as we are unable to verify the valuative criteria for S-completeness and Θ-reductivity
for every DVR R (see Definitions 2.3 and 2.7). To show the existence of a good
moduli space X → X with X separated, it suffices to verify the valuative criteria
for S-completeness and Θ-reductivity for DVRs R essentially of finite type over k
([AHLH18, Rmk. 5.5]). Once this is established, it follows in fact (from applying the
converse of Theorem 2.9) that X satisfies the valuative criteria for S-completeness and
Θ-reductivity for all DVRs R.

Remark 2.11 (Comparing with an earlier criterion). In [LWX19], a variant of the
above theorem ([AFS17, Thm. 1.2]) was used to construct a good moduli space of Q-
Gorenstein smoothable, K-semistable Fano varieties. Specifically, [AFS17, Thm. 1.2]
states that if X is an Artin stack of finite type with affine diagonal over k, then X
admits a good moduli space X → X if the following conditions hold:

(1) for every closed point x ∈ X , the stabilizer Gx is reductive and there exists an
étale morphism f : (W , w)→ (X , x) where W ∼= [Spec(A)/Gx] such that
(a) f induces an isomorphism of stabilizer groups at all closed points and
(b) f sends closed points to closed points, and

(2) for any k-point y ∈ X , the closure {y} admits a good moduli space.

Vaguely speaking, condition (1a) ensures that the two projectionsR :=W×XW ⇒W
induce isomorphism of stabilizer groups while conditions (1b) and (2) ensure that the
projections send closed points to closed points. This is sufficient to imply that the two
projections induce an étale equivalence relation R ⇒ W on good moduli spaces and
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that the algebraic space quotient W/R is a good moduli space of X Zariski-locally
around x.

We would like to explain the general idea of why the properties of S-completeness
and Θ-reductivity imply that the above conditions hold. First, S-completeness implies
that Gx has a reductive stabilizer (Remark 2.6) and the existence of an étale morphism
f : (W := [Spec(A)/Gx], w)→ (X , x) then follows from [AHR20, Thm. 1.2].

S-completeness implies that after shrinking Spec(A), we may arrange that (1a)
holds. A complete argument is given in [AHLH18, Prop. 4.4] but we explain here only
how S-completeness implies that f induces an isomorphism of stabilizer groups at any
generization of w. Let ξ : (Spec(R), 0) → (W , w) be a morphism from a complete
DVR R (with fraction field K). Then

AutW(ξK) ∼= {maps g : STR \ 0→W and isomorphisms g|s6=0 ' ξ ' g|t6=0}
∼= {maps g : STR →W and isomorphisms g|s 6=0 ' ξ ' g|t6=0}

where we have used S-completeness in the second line. There is an analogous descrip-
tion of AutX (f(ξK)). Since f is étale and R is complete, Tannaka duality implies that
any map (STR, 0) → (X , x) lifts uniquely to a map (STR, 0) → (W , w). It follows
that AutW(ξK) ∼= AutX (f(ξK)).

Similarly, Θ-reductivity implies that after shrinking Spec(A) further, we may ar-
range that (1b) holds. A complete argument is given in [AHLH18, Prop. 4.4] but we
show here that if ξ ∈ W is a generization of w such that ξ ∈ WK is closed where
K = k(ξ), then η := f(ξ) ∈ XK is also closed. Indeed, suppose η  η0 is a spe-
cialization to a closed point in XK ; this can be realized by a map λ : ΘK → X . If
h : Spec(R)→W is a map from a DVR with fraction field K realizing the specializa-
tion ξ  w, then λ and f ◦ h glue to form a map ΘR \ 0→ X which can be extended
(using Θ-reductivity) to a map (ΘR, 0)→ (X , x), and this in turn (using étaleness of
f and completeness of R) lifts to a unique map (ΘR, 0)→ (W , w). But since ξ ∈ WK

is closed, the image of ΘK →W consists of a single point, and thus the same is true
for the image of λ. It follows that f(ξ) = η0 ∈ XK is closed.

Finally, both the S-completeness and Θ-reductivity imply that (2) holds. Let y0 ∈
Y := {y} be a closed point and f : (W := [Spec(A)/Gy0 ], w0) → (Y , y0) be an étale
morphism in which we can arrange that w0 is the unique preimage of y0. By Zariski’s

main theorem, we may factor f as the composition of a dense open immersionW ↪→ W̃
and a finite morphism W̃ → Y . Note that w0 ∈ W̃ is necessarily closed and that any

other closed point in W̃ is a specialization of a k-point inW . As W̃ is also Θ-reductive,
any k-point has a unique specialization to a closed point. It follows that w0 is the

unique closed point in W̃ and thus the complement W̃ \ W is empty. This in turn
implies that f : W → Y is finite étale of degree 1 and thus an isomorphism.

In [LWX19], using analytic results, a stronger result than (2) was obtained, and as
a result, the good moduli space is a scheme instead of merely an algebraic space.
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Lemma 2.12. Let f : X → Y be a finite type monomorphism of Artin stacks locally
of finite type over k such that for every geometric point x : Spec(l) → X , the image

under Xl → Yl of the closure {x} ⊂ Xl is closed in Yl. If Y is Θ-reductive (resp.,
S-complete) with respect to essentially of finite type DVRs, then so is X .

Proof. Zariski’s main theorem implies that there is a factorization f : X ↪→ X̃ → Y
where X ↪→ X̃ is an open immersion and X̃ → Y is finite. By [AHLH18, Prop. 3.20(1)],

X̃ is also Θ-reductive with respect to essentially of finite type DVRs, so may assume
that f is an open immersion. Consider an essentially of finite type DVR R with
residue field l = R/π and a morphism h : ΘR \ 0 → X . Since Y is Θ-reductive, h
extends to a diagram

Spec(l)
π=0 //

� _

��

ΘR \ 0
h //

� _

��

X� _
f

��
Θl

π=0 // ΘR
h̃ // Y .

In particular, if x denotes the composition Spec(l)→ ΘR \ 0→ X , we have a special-

ization x h̃(0) in Yl. The hypotheses imply that h̃(0) ∈ Xl so that h̃ factors though
X . The argument for S-completeness is analogous. �

2.2. Log Fano pairs and K-stability. In this section, we introduce some basic no-
tions concerning log Fano pairs and K-stability. For further background information,
see [BX19, Sect. 2] and the references therein.

A pair (X,D) is composed of a normal variety X and an effective Q-divisor D on
X such that KX +D is Q-Cartier. See [KM98, 2.34] for the definitions of klt, plt, and
lc pairs. A pair (X,D) is log Fano if X is projective, (X,D) is klt, and −KX −D is
ample. A variety X is Q-Fano if (X, 0) is log Fano.

2.2.1. Families of log Fano pairs.

Definition 2.13. Let T be a normal scheme. A Q-Gorenstein family of log Fano
pairs (X,D)→ T is composed of a flat projective morphism between normal schemes
X → T and a Q-divisor D on X satisfying:

(1) Supp(D) does not contain any fiber,
(2) KX/T +D is Q-Cartier, and
(3) (Xt, Dt) is a log Fano pair for all t ∈ T .

In (3), Dt denotes the divisorial pullback of D. More generally, if S → T is a morphism
of normal schemes, we set XS := X ×T S and write DS for the Q-divisor on XS

associated to Cycle(D ×T S).

A special test configuration of a log Fano pair (X,D) is the data of a Gm-equivariant
Q-Gorenstein family of log Fano pairs (X ,D)→ A1 with an isomorphism (X1,D1) '
(X,D) for {1} → A1.
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2.2.2. K-stability. Let (X,D) be an n-dimensional log Fano pair. A divisor over X is a
prime divisor E on a normal variety Y with a proper birational morphism µ : Y → X.
Following [Fuj18], we set

βX,D(E) = (−KX −D)nAX,D(E)−
∫ ∞

0

vol(µ∗(−KX −D)− tE) dt,

where AX,D(E) := 1 + coeffE(KY − µ∗(KX +D)) is the log discrepancy.

Definition 2.14. A log Fano pair (X,D) is

(1) K-semistable if βX,D(E) ≥ 0 for all divisors E over X;
(2) K-stable if βX,D(E) > 0 for all divisors E over X;
(3) K-polystable if it is K-semistable and for any special test configuration of

(X ,D)→ A1 of (X,D) with (X0,D0) K-semistable there is an isomorphism of
Q-Gorenstein families of log Fano pairs (X ,D) ' (XA1 , DA1) := (X,D)× A1.

The equivalence of the above definition with the original definitions in [Tia97,
Don02] was proven in [Fuj19,Li17,LWX18,BX19].

Though the above notions of stability make sense for log Fano pairs over charac-
teristic zero fields that are not algebraically closed, we will not use them due to the
following issue: Let (XK , DK) be a log Fano pair over a characteristic zero field K
and K ′/K a field extension. While it is expected that (XK , DK) is K-semistable if
and only if (XK′ , DK′) is K-semistable, the result is only known when both K and K ′

are algebraically closed (for example, see [BL18, Cor. 15]). 1

The following result proved in [LWX18] will be needed in various places.

Lemma 2.15 ([LWX18, Lem. 3.1]). Let (X ,D) be a special test configuration of
a K-semistable log Fano pair (X,D) with the central fiber denoted by (X0, D0). If
Fut(X ,D) = 0, then (X0, D0) is K-semistable.

2.3. Flat families of polarized schemes over a surface. We will be considering
S-completeness and Θ-reductivity of stacks parameterizing polarized varieties. Both
conditions are formulated in terms of the existence of extensions of equivariant flat
families of polarized varieties over punctured regular surfaces.

We thus consider a regular noetherian 2-dimensional scheme S, and a closed point
0 ∈ S. Let j : S \ 0 → S be the open immersion. The key fact that we will use
is that for any finite rank locally free sheaf E on S \ 0, j∗(E) is locally free as well.
j∗(E) is coherent because S is normal and 0 has codimension 2, and the reflexive sheaf
j∗(E) is locally free because any reflexive sheaf on a regular 2-dimensional scheme is
locally free [Har80, Cor. 1.4]. More precisely, j∗ induces an equivalence between the
categories of locally free (and more generally, flat quasi-coherent) sheaves on S \0 and
on S locally free (respectively, flat quasi-coherent) sheaves on S, with inverse given
by restriction.

1Since the first version of the current paper was written, this expectation was proved in [Zhu20].
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Lemma 2.16. Let q : X → S \ 0 be a flat projective morphism of schemes, and let L
be a relatively ample line bundle on X . Then the following are equivalent:

(1) there exists an extension of q to a flat projective family X̃ → S with an ample

Q-line bundle L̃ extending L;
(2) the algebra

⊕
m≥0 j∗(q∗(OX (mL))) is finitely generated as an OS-algebra; and

(3) the restriction
⊕

m≥0 j∗(q∗(OX (mL)))|0 is finitely generated as a κ(0)-algebra.

If these conditions hold, then

X̃ = ProjS

(⊕
m≥0

j∗
(
q∗OX (mL)

))
is the unique extension, with the polarization OX̃ (1). If X is equivariant for an action

of Gm on S, then so is X̃ .

Proof. (1) ⇔ (2): Note that q∗(OX (mL)) is locally free on S for m � 0 because q

is flat. It follows that X̃ = ProjS(
⊕

m j∗(q∗OX (mL))) is a flat extension of X if this

algebra is finitely generated, and conversely for any flat extension Γ(X̃ ,OX̃ (mL̃)) =
j∗(q∗(OX (mL))) for m� 0.

(3)⇔ (2): Note that (2)⇒ (3) automatically, and finite generation is local over S
by definition, so we may assume S is affine. Then we may lift a finite homogeneous
set of generators of

⊕
m≥0 j∗(q∗(OX (mL))) ⊗OS κ(0) to

⊕
m≥0 j∗(q∗(OX (mL))), and

by assumption we may find homogeneous elements in the latter which generate the
algebra

⊕
m≥0 q∗(OX (mL)) after restriction to S \ 0. Together these define a map of

graded OS-algebras φ : OS[x1, . . . , xN ] →
⊕

m≥0 j∗(q∗(OX (mL))), where the degree
of the generators xi vary but are all ≥ 0. φ is surjective after restriction to κ(0) and
S\0, so because the graded pieces of both algebras are finite OS-modules, Nakayama’s
lemma implies that φ is surjective.

Note that if X̃ is equivariant for a Gm-action on S, then
⊕

m j∗(q∗(OX (mL))) has an
additional grading coming from the Gm-action, and this grading induces a Gm-action

on X̃ extending the one on X . �

3. S-completeness

In this section, we will prove that the moduli of K-semistable log Fano pairs is S-
complete (Theorem 3.3). We first study S-completeness for quasi-coherent sheaves in
Section 3.1 and then S-completeness of polarized varieties in Section 3.2. Applying this
to the direct sum of the pushforwards of the m-th tensor product of the polarization
for a family of polarized varieties, this naturally leads to a finite generation condition
on the graded algebra (see Condition 3.1). In Section 3.3, we confirm this condition
for K-semistable log Fano pairs.

3.1. S-completeness for coherent sheaves. In this subsection, we establish S-
completeness for the stack parameterizing coherent sheaves on Spec(k) or, in other
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words, that every flat and coherent sheaf on STR \ 0 extends uniquely to a flat and
coherent sheaf on STR.

We begin by discussing the correspondence between flat coherent sheaves on Θk

and filtrations. A quasi-coherent sheaf F on Θk = [Spec(k[x])/Gm] corresponds to
a Gm-equivariant quasi-coherent sheaf on Spec(k[x]) or, in other words, a Z-graded
k[x]-module

⊕
p∈Z Fp; this in turn corresponds to diagram of k-vector spaces: · · · →

Fp+1
x−→ Fp

x−→ Fp−1 → · · · . The restriction of F along Spec(k)
1−→ Θk is colim(· · · →

Fp+1
x−→ Fp → · · · ) and along BkGm

0−→ Θk is the associated graded quasi-coherent
sheaf

⊕
p Fp/xFp+1. Moreover, F is flat and coherent over Θk if and only if each Fp

is a finite dimensional k-vector space, the maps x are injective, Fp = 0 for p� 0 and
x : Fp → Fp−1 is an isomorphism for p� 0.

Similarly, if R is a DVR with fraction field K, residue field κ and uniformizing
parameter π, then a quasi-coherent sheaf F on STR = [Spec

(
R[s, t]/(st − π)

)
/Gm]

corresponds to a Gm-equivariant quasi-coherent sheaf on Spec(k[s, t]/(st − π)) or, in
other words, a Z-graded R[s, t]/(st− π)-module

⊕
p∈Z Fp; this in turn corresponds to

a diagram of maps of R-modules

· · ·
t ,,
Fp+1

t
**

s
jj Fp

t ,,

s
ll Fp−1

t
**

s
jj · · ·

s
ll ,

such that st = ts = π. The reader may wish to refer to the schematic picture (2) of
STR. The restriction of F along

• Spec(R)
t6=0
↪−−→ STR is colim(· · · t−→ Fp

t−→ Fp−1
t−→ · · · ),

• Spec(R)
s 6=0
↪−−→ STR is colim(· · · s←− Fp

s←− Fp−1
s←− · · · ),

• Θκ
t=0
↪−−→ STR is the object corresponding to the sequence

(· · · s←− Fp/tFp+1
s←− Fp−1/tFp

s←− · · · ),

• Θκ
s=0
↪−−→ STR is (· · · t−→ Fp+1/sFp

t−→ Fp/sFp−1
t−→ · · · ), and

• BκGm
s=t=0
↪−−−→ STR is the Z-graded κ-module

⊕
p∈Z Fp/(tFp+1 + sFp−1).

The sheaf F is flat and coherent over STR if and only if each Fp is flat and coherent
over R, the maps s and t are injective, the induced maps s : Fp−1/tFp → Fp/tFp+1 are
injective (or equivalently the maps t : Fp+1/sFp → Fp/sFp−1 are injective), t : Fp →
Fp−1 is an isomorphism for p� 0 and s : Fp−1 → Fp is an isomorphism for p� 0.

Let j : STR \ 0 ↪→ STR be the open immersion. We will show how to compute the
pushforward of coherent sheaves under this open immersion. Let jt, js : Spec(R) →
STR and jst : Spec(K)→ STR be the open immersions corresponding to t 6= 0, s 6= 0
and st 6= 0. Let E be a flat coherent sheaf on STR \ 0; this corresponds to a pair
of R-modules E and E ′ together with an isomorphism α : EK → E ′K . Under α, we
may view both E and E ′ as submodules of EK . Then j∗E ∼= (jt)∗E ∩ (js)∗E

′ ⊂
(jst)∗EK . As morphisms of graded R[s, t]/(st − π)-modules, jt and js correspond to



REDUCTIVITY OF THE AUTOMORPHISM GROUP OF K-POLYSTABLE FANO VARIETIES 13

the inclusions R[s, t]/(st−π) ⊂ R[t]t and R[s, t]/(st−π) ⊂ R[s]s, and jst corresponds
to R[s, t]/(st− π) ⊂ K[t]t. Recalling that t has weight −1, we compute that

(jst)∗EK ∼= EK ⊗R R[t]t ∼=
⊕
p∈Z

EKt
−p,

(jt)∗E ∼= E ⊗R R[t]t ∼=
⊕
p∈Z

Et−p ⊂ (jst)∗EK ,

(js)∗E
′ ∼= E ′ ⊗R R[s]s ∼=

⊕
p∈Z

(πp · E ′)t−p ⊂ (jst)∗EK

where in the last line we have used the identification s = t−1π. Finally, we compute
that

j∗E ∼=
⊕
p∈Z

(
E ∩ (πp · E ′)

)
t−p ⊂

⊕
p∈Z

EKt
−p. (6)

If we define the filtration GpE = E ∩ (πp ·E ′), then j∗E is the OSTR
-module given by

the diagram

· · ·
t --
Gp+1E

t ,,

s
kk GpE

t --

s
mm Gp−1E

t
++

s
ll · · ·

s
mm ,

of R-modules where t : Gp+1E → GpE is inclusion and s : GpE → Gp+1E is multipli-
cation by π. Note that j∗E is necessarily a flat and coherent OSTR

-module, because
non-equivariantly it is the pushforward of a vector bundle from the complement of a
closed point in the regular surface Spec(R[s, t]/(st− π)).

3.2. S-completeness for polarized varieties. Suppose (X,L) and (X ′, L′) are flat
families of polarized varieties over Spec(R) and α : (XK , LK) → (X ′K , L

′
K) is an iso-

morphism. Then (X,L) and (X ′, L′) can be glued along the isomorphism α to a
polarized family (X ,L)→ STR \ 0. This yields a diagram

X
q
��

STR \ 0
j // STR .

Now we state our key condition:

Condition 3.1 (Finite Generation Condition). TheOSTR
-algebra

⊕
m≥0 j∗q∗OX (mL)

is finitely generated.

By Lemma 2.16, this condition is equivalent to the existence of a flat extension of

X to a polarized family (X̃ , L̃)→ STR, where

X̃ := Proj
STR

⊕
m≥0

j∗q∗OX (mL)
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and L̃ = OX̃ (1). To provide a more explicit description for this algebra, Equation (6)
implies that for each m ≥ 0,

j∗q∗OX (mL) ∼=
⊕
p∈Z

(
H0(X,OX(mL)) ∩ πpH0(X ′,OX′(mL′))

)
t−p

⊂
⊕
p∈Z

H0(XK ,OXK (mLK))t−p.

Define a filtration of Vm := H0(X,OX(mL)) by

GpVm := H0(X,OX(mL)) ∩ πpH0(X ′,OX′(mL′)),
which consists of sections in Vm with at worst a pole of order p along X ′0. We have a
diagram of R-modules

· · ·
t ..
Gp+1Vm

t ,,

s
kk GpVm

t --

s
mm Gp−1Vm

t
++

s
ll · · ·

s
nn ,

where t : Gp+1Vm → GpVm is inclusion and s : GpVm → Gp+1Vm is multiplication by
π. This gives the direct sum

⊕
p,m GpVm the structure of a bigraded R[s, t]/(st− π)-

algebra. Assume the Finite Generation Condition 3.1 holds, then the grading in m
defines a projective scheme

P = Proj
Spec(R[s,t]/(st−π))

⊕
p,m

GpVm

and the grading in p gives an action of Gm on P and a linearization of OP(1). Observe

that (X̃ , L̃) = ([P/Gm],OP(1)).

Example 3.2. Let (X,L) be a polarized κ-variety, and let R = κ[[t]] and K = κ((t)).
Let (XK , LK) → (XK , LK) be an automorphism induced from a one-parameter sub-

group α : Gm → Aut(X,L). The above construction produces a flat family (X̃ , L̃)
over STR which corresponds to the trivial flat family(

X × Spec(R[s, t]/(st− π)), p∗1L
)

over Spec(R[s, t]/(st−π)) with the Gm-action given by α on the first factor. Observe
that if Aut(X,L) is reductive, then any α ∈ Aut(X,L)(K) is in the same double
coset as a one-parameter subgroup by the Iwahori decomposition, and it follows that
any family over STR \ 0 obtained by gluing two trivial families over Spec(R) along an
isomorphism α ∈ Aut(X,L)(K) extends to a family over STR. On the other hand if
Aut(X,L) is not reductive, such an extension need not exist.

3.3. S-completeness for K-semistable log Fano pairs. In this section, we will
prove that Condition 3.1 holds for K-semistable log Fano pairs with anticanonical
polarization (Theorem 3.3). This is obtained by showing that the filtration considered
in [BX19] is equivalent to the filtration in Section 3.2 up to a grading shift. Hence,
we can invoke finite generation results proved in [BX19] to verify that Condition 3.1
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is satisfied and then use a result in [LWX18] (see Lemma 2.15) to show that the
corresponding special fiber of the flat extension over STR is K-semistable.

Let R be a DVR essentially of finite type over k with uniformizer π, fraction field
K, and residue field κ. Let

(X,D)→ Spec(R) and (X ′, D′)→ Spec(R)

be Q-Gorenstein families of log Fano pairs and assume there is a birational map
α : X 99K X ′ that induces an isomorphism (XK , DK)→ (X ′K , D

′
K). Following Section

3.2, the above data gives a Gm-equivariant Q-Gorenstein family of log Fano pairs

(X ,D)→ Spec (R[s, t]/(st− π)) \ 0, (7)

where 0 ∈ Spec (R[s, t]/(st− π)) is the closed point defined by the vanishing of (s, t).

Theorem 3.3. If (Xκ, Dκ) and (X ′κ, D
′
κ) are K-semistable, then the map in (7) ex-

tends uniquely to a Gm-equivariant Q-Gorenstein family of log Fano pairs

(X̃ , D̃)→ Spec (R[s, t]/(st− π)) .

Furthermore, the geometric fiber over 0 is K-semistable.

Remark 3.4. (1) The above theorem immediately implies that XKss
n,V is S-complete

with respect to essentially of finite type DVRs.
(2) Theorem 3.3 is an extension of [BX19, Thm 1.1.1], which states that if (Xκ, Dκ)

and (X ′κ, D
′
κ) are K-semistable, then they degenerate to a common K-semistable

log Fano pair via special test configurations. Indeed, the restriction of (X ,D)→
Spec (R[s, t]/(st− π)) to s = 0 and t = 0 are naturally test configurations of

(Xκ, Dκ) and (X ′κ, D
′
κ) with special fiber (X̃0, D̃0).

(3) The results in [BX19] are phrased in the setting of families over a smooth
pointed curve, not the spectrum of a DVR. Fortunately, the proofs in [BX19,
Sect. 5] extend with little change to the more general setting of families over
DVRs which are essentially of finite type over k.

However, the argument does not automatically generalize to families over
the spectrum of a general DVR over k, since a key ingredient in the proof relies
on the MMP, specifically [BCHM10]. While the latter results hold for varieties
(and, hence, have natural extensions to essentially of finite type k-schemes),
they are not known to hold more generally.

3.3.1. Filtration from [BX19]. Consider a diagram over Spec(R)

Y

X X ′

ρ′ρ

φ′

,

where ρ and ρ′ are proper birational morphisms and Y is normal. Write X̃0 and X̃ ′0
for the birational transforms of X0 and X ′0 on Y .
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Fix a positive integer r such that L := −r(KX + D) and L′ := −r(KX′ + D′) are
Cartier divisors. Let

V :=
⊕
m∈N

Vm :=
⊕
m∈N

H0(X,OX(mL)) and V ′ :=
⊕
m∈N

V ′m :=
⊕
m∈N

H0(X ′,OX′(mL′))

denote the section rings of X and X ′ with respect to L and L′. We write Vκ =
⊕

m Vκ,m
and VK =

⊕
m VK,m for the restrictions of V to Spec(κ) and Spec(K), respectively.

Note that each Vm is a flat R-module and satisfies cohomology and base change, since
H i(X,OX(mL)) = 0 for i > 0 and m ≥ 0 by [Kol13, Thm. 10.37]. Therefore, Vκ and
VK are isomorphic to the section rings of Lκ and LK .

Following [BX19, Sect. 5.1], for each m ∈ N and p ∈ Z, we set

FpVm := {g ∈ Vm | ordX̃′0
(g) ≥ p}, (8)

where ordX̃′0
(g) equals the coefficient of X̃ ′0 in div(ρ∗(g)). Observe that

πFp−1Vm = FpVm ∩ πVm (9)

and setting

FpVκ,m := im(FpVm ⊗R κ→ Vm,κ) ⊆ Vκ,m,

gives a filtration of the section ring Vκ. We state two results from [BX19, Section 5.2]
concerning this filtration.

Proposition 3.5. If (Xκ, Dκ) and (X ′κ, D
′
κ) are K-semistable, then:

(1) The κ[t]-algebra
⊕
m∈N

⊕
p∈Z

(FpVκ,m) t−p and κ-algebra
⊕
m∈N

⊕
p∈Z

grpFVκ,m are finitely

generated;
(2) The test configuration (Xκ,Dκ) → A1

κ of (Xκ, Dκ) induced by the κ[t]-algebra
in (1) is special and the geometric fiber over 0 is K-semistable.

Proof. The argument in [BX19, Sect. 5.2] implies (1) and that the induced test config-
uration (Xκ,Dκ)→ A1

κ of (Xκ, Dκ) is a special test configuration with Futaki invariant
zero. Since Fut(Xκ,Dκ) = Fut(Xκ,Dκ) and the latter is zero, (Xκ,Dκ)0 must be K-
semistable by Lemma 2.15. �

In the proof of Theorem 3.3, we will need to show that the boundary divisor D in
(7) extends to a well defined family of cycles over Spec (R[s, t]/(st− π)). For this, let
B be a prime divisor in Supp(D) and write IB ⊆

⊕
m Vm for the homogenous ideal

defining B. Consider the homogenous ideal

I :=
⊕
m∈N

⊕
p∈Z

im (IB ∩ FpVm → grpFVκ,m) ⊆
⊕
m∈N

⊕
p∈Z

grpFVκ,m. (10)

Proposition 3.6. If (Xκ, Dκ) and (X ′κ, D
′
κ) are K-semistable, then the subscheme

defined by I is of codimension at least one.
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Proof. Let (Xκ,Dκ) → A1
κ denote the test configuration described in Proposition 3.5

and write Bκ for the closure ofBκ×(A1\0) in Xκ under the imbeddingXκ × (A1 \ 0) ↪→ Xκ.
Clearly, the scheme theoretic fiber of Bκ over 0 is of codimension one in (Xκ)0 '
Proj(

⊕
m

⊕
p grpFVκ,m). Since V (I) and the scheme theoretic fiber of Bκ over 0 agree

away from a codimension 2 subset by [BX19, Prop. 5.13.1], V (I) is also of codimension
at least one. �

In light of the discussion in Section 3.2, observe that⊕
m∈N

⊕
p∈Z

(FpVm) t−p (11)

has the structure of a Z-graded R[s, t]/(st−π)-module, where the map (FpVm) t−p
s→

(Fp+1Vm) t−p−1 is defined by gt−p 7→ πgt−p−1. Additionally,(⊕
m∈N

⊕
p∈Z

(FpVm) t−p
) ⊗
R[s,t]/(st−π)

κ[t] '
⊕
m∈N

⊕
p∈Z

(FpVκ,m) t−p, (12)

since (9) implies FpVm
πFp−1Vm

= FpVm
πVm∩FpVm ' im

(
FpVm → Vm

πVm

)
. Therefore,(⊕

m∈N

⊕
p∈Z

(FpVm)t−p
) ⊗
R[s,t]/(st−π)

κ '
⊕
m∈N

⊕
p∈Z

grpFVκ,m, (13)

where R[s, t]/(st− π)→ κ is the morphism that sends s and t to 0.

The following proposition states that the filtration F• from [BX19] coincides with
the filtration from Section 3.2 up to a shift. See [BHJ17, Section 2.5], [Fuj19, Claim
5.4] or [Li17, (64)] for related arguments applied to test configurations.

Proposition 3.7. For each p ∈ Z and m ∈ N,

Fp−mraVm = Vm ∩ πpV ′m,

where a := coeffX̃′0
(KY − ρ∗(KX +D)).

The intersection in the above proposition is taken after using the isomorphism
α∗ : K(X ′)→ K(X) to view V ′m := H0(X ′,OX′(mL′)) as a R-submodule of K(X).

Proof. First, observe that there are natural isomorphisms

πpH0 (X ′,OX′(mL′)) ' H0 (X ′,OX′(mL′ − pX ′0))

' H0
(
Y,OY

(
ρ′
∗
(mL′ − pX ′0)

))
= H0

(
Y,OY

(
mρ∗L+m(ρ′

∗
L′ − ρ∗L)− pρ′∗X ′0

))
.

Next, fix g ∈ H0(X,OX(mL)) and set G = div(g). By the above isomorphisms,
g ∈ πpH0(X ′,OX′(mL′)) if and only if

G′ := ρ∗G+
(
m(ρ′

∗
L′ − ρ∗L)− pρ′∗X ′0

)
≥ 0.
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Note that G′ is the pullback of a Q-Cartier Q-divisor on X ′, since

G′ ∼Q mρ
∗L+

(
m(ρ′

∗
L′ − ρ∗L)− pρ′∗X ′0

)
∼Q ρ

′∗(mL′ − pX ′0).

Therefore, G′ is effective if and only if ρ′∗G
′ is effective.

To understand whether or not ρ′∗G
′ is effective, observe

ρ′
∗
L′ − ρ∗L = r((KY − ρ∗(KX +D))− (KY − ρ′∗(KX′ +D′)))

and, hence,

ρ′∗
(
m(ρ′

∗
L′ − ρ∗L)− pρ′∗X ′0

)
= m (r(D′ + aX ′0)− rD′)− pX ′0 = (mra− p)X ′0

Therefore, ρ′∗G
′ is effective if and only if coeffX̃′0

(ρ∗G) + (mra− p) ≥ 0. �

3.3.2. Proof of S-completeness. We are now in position to prove Theorem 3.3 as a
consequence of the results in Sections 3.2 and 3.3.1.

Proof of Theorem 3.3. Following Section 3.2, we consider the Z-graded R[s, t]/(st−π)-
algebra ⊕

m∈N

⊕
p∈Z

(Vm ∩ πpV ′m) t−p. (14)

Note that this algebra equals
⊕
m

⊕
p

(Fp−mraVm) t−p by Proposition 3.7 and its restric-

tion to 0 ∈ Spec(R[s, t]/(st− π) is isomorphic to
⊕
m

⊕
p

grp−mraF Vκ,m by Equation (13).

Since the latter κ-algebra is of finite type by Proposition 3.5 (1), Lemma 2.16 implies
that the the R[s, t]/(st− π)-algebra (14) is finite type.

Set X̃ := Proj
R[s,t]/(st−π)

(⊕
m

⊕
p

(Vm∩πpV ′m)t−p
)

and write D̃ for the component-wise

closure of D × (A1 \ 0) under the embedding X × (A1 \ 0) ' X̃t6=0 ↪→ X̃ . The grading

with respect to p gives a Gm-action on X̃ that fixes D̃.

We claim that X̃ → Spec (R[s, t]/(st− π)) has normal fibers, no component of D̃
contains a fiber, and KX̃ + D̃ is Q-Cartier. The statement is clear away from the

fiber over 0. Next, note that X̃0 ' Proj(
⊕

m

⊕
p grp−mraF Vκ,m), which is the fiber over

0 ∈ A1
κ of the special test configuration in Proposition 3.5. Hence, X̃0 is normal.

To see X̃0 6⊂ Supp(D̃), fix a prime divisor B in the support of D and write B̃ for

the closure of B × (A1 \ 0) in X̃ . If IB ⊆
⊕

m Vm is the homogenous ideal defining B,

then B̃ is defined by the homogenous ideal⊕
m

⊕
p

(IB ∩ Fp−mraVm)t−p ⊆
⊕
m

⊕
p

(
Fp−mraVm

)
t−p.

Hence, the scheme theoretic fiber of B̃ over 0 ∈ Spec(R[s, t]/(st− π)) agrees with the
vanishing of the ideal in (10). Since the latter ideal defines a locus of codimension at

least one in X̃0 by Proposition 3.6, X̃0 6⊂ B.
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To see KX̃ + D̃ is Q-Cartier, KX̃ + D̃ is Q-Cartier fix a Q-divisor L̃ on X̃ such

that mrL̃ is in the linear equivalence class of OX̃ (m) for a positive integer m. By

construction L̃|s6=0 ∼Q (−KX̃ − D̃)|s 6=0. Therefore, L̃ ∼Q −KX̃ − D̃ +G, for some Q-

divisor G supported on X̃ |s=0. Since X̃ |s=0 is an irreducible Cartier divisor, −KX̃ −D̃
must be Q-Cartier.

Finally, note that (X̃ , D̃)|s=0 → A1
κ coincides with the special test configuration in

Proposition 3.5 by (12). Therefore, (X̃0, D̃0) is a K-semistable log Fano pair. This

implies (X̃ , D̃) → Spec(R[s, t]/(st − π)) is a Q-Gorenstein family of log Fano pairs
and is the unique extension of (7) by Lemma 2.16. �

4. Reductivity of the automorphism group

In this section, we prove that if (X,D) is a K-polystable log Fano pair, then the
automorphism group

Aut(X,D) := {g ∈ Aut(X) | g∗D = D}
is reductive (Theorem 1.3).

We note that this result would follow formally from results in the previous section
if one could establish that a suitably defined stack parameterizing K-semistable log
Fano pairs was represented by a finite type Artin stack. Indeed, Theorem 3.3 would
show that this stack is S-complete with respect to essentially of finite type DVRs and
therefore any closed point (i.e. a K-polystable log Fano pair) has reductive stabilizer
(Remark 2.6). We will provide a direct alternative argument for the reductivity of
Aut(X,D) inspired by the property of S-completeness. Our argument has the advan-
tage that it entirely avoids the language of stacks.

4.1. Setup. In this section, we fix a log Fano pair (X,D) and write D =
∑

i∈I aiDi

where the Di are distinct prime divisors. For each a in the coefficient set {ai | i ∈ I},
set Ba :=

⋃
a=ai

Di. Choose r sufficiently divisible and large so that L := OX(−r(KX+
D)) is a very ample line bundle.

We will now equip Aut(X,D) with the structure of a linear algebraic group. Since
L is very ample, Aut(X,L) := {g ∈ Aut(X) | g∗L ' L} is a linear algebraic group as
it is a closed subgroup of PGL(H0(X,L)). For an element g ∈ Aut(X), observe that
g∗D = D if and only if g∗(L) ' L and for all a in the coefficient set, g fixes Ba. In
other words,

Aut(X,D) = {g ∈ Aut(X,L) | ∀a, g(Ba) = Ba}
As the conditions that g(Ba) = Ba are closed conditions, this shows that Aut(X,D) ⊂
Aut(X,L) is a closed subgroup.

4.2. Isotrivial families of K-polystable log Fano pairs. We begin by stating a
special case of Theorem 3.3 when the family is obtained by gluing two trivial families.

Let R be a DVR essentially of finite type over k with fraction field K and residue
field κ. Fix a birational map XR 99K XR that induces an isomorphism α : (XK , DK)→
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(XK , DK). As Spec(R[s, t]/(st − π)) \ 0 is the union of Spec(R[s]s) and Spec(R[t]t)
along Spec(K[s]s) = Gm,K , we may glue the two trivial families XR[s]s → Spec(R[s]s)
and XR[t]t → Spec(R[t]t) along the Gm-equivariant isomorphism induced by α to
obtain a Gm-equivariant Q-Gorenstein family of log Fano pairs

(X ,D)→ Spec (R[s, t]/(st− π)) \ 0. (15)

Note that if we write Ba for the closure of Ba×Spec(R[t]t) under the inclusion XR[t]t ↪→
X , then D =

∑
aBa.

Proposition 4.1. If (X,D) is K-polystable, then

(X ,D)→ Spec (R[s, t]/(st− π)) \ 0

extends to a Gm-equivariant Q-Gorenstein family of log Fano pairs

(X̃ , D̃)→ Spec (R[s, t]/(st− π)) .

with (X̃0, D̃0) ' (Xκ, Dκ). Furthermore, if we write D̃ =
∑
aB̃a, where B̃a is the

closure of Ba, then each B̃a is flat over Spec(R[s, t]/(st− π)) with pure fibers.

By pure fibers, we mean that the fibers are equidimensional and have no embedded
components.

Proof. By Theorem 3.3, the map in (15) extends to a family (X̃ , D̃) with K-semistable

geometric fiber over 0 ∈ Spec (R[s, t]/(st− π)). Hence, the restriction (X̃ , D̃)|s=0,κ is
naturally a special test configuration of (Xκ, Dκ) with K-semistable geometric fiber
over 0 ∈ A1

κ. Since (X,D) is K-polystable, this test configuration must be a product

(i.e. it is isomorphic to (XA1
κ
, DA1

κ
)). Therefore, (X̃0, D̃0) ' (Xκ, Dκ).

Next, fix a in the coefficient set of D and consider the divisor B̃a. By [Kol17, Thm.
4.33], there exists a locally closed decomposition S = tSi → Spec(R[s, t]/(st − π))
such that a morphism of schemes T → Spec(R[s, t]/(st− π)), with T reduced, factors

through S if and only if B̃a|T → T is flat and has pure fibers. Such locally closed
decomposition is unique by definition.

Now, the loci {s = 0}, {s 6= 0} and {t 6= 0} factor through S, since the divisorial

restrictions B̃a|s=0, B̃a|s 6=0 and B̃a|t6=0 are trivial families. Therefore, each of them
factors through some locally closed set, denoted by S0, S1 and S2. However, it then
follows that S0 = S2 as {s = 0} ∩ {t 6= 0} 6= ∅ and S1 = S2 as {s 6= 0} ∩ {t 6= 0} 6= ∅.
Therefore, we have S = S0 = Spec(R[s, t]/(st−π)), so B̃a → Spec (R[s, t]/(st− π)) is
flat with pure fibers. �

4.3. Reductivity via Iwahori decompositions. Throughout this section, let R =
k[[π]] and K = k((π)). Given a linear algebraic group G, Iwahori’s theorem (cf.
[MFK94, p.52]) states that ifG is reductive, then for any element g ∈ G(K), there exist
a, b ∈ G(R) and a one-parameter subgroup λ ∈ Hom(Gm, G) such that g = a · λ|K · b,
where λ|K denotes the composition Spec(K)→ Gm = Spec(k[π]π)

λ→ G. If we let ΛG
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denote the set of K-points induced by one-parameter subgroups of G, then Iwahori’s
theorem states that if G is reductive, then

G(K) = G(R)ΛGG(R).

The following argument, which states that the converse also holds, was communicated
to us by Jun Yu. See [AHLH19] for a proof using Artin stacks and S-completeness.

Proposition 4.2. Let G be a linear algebraic group. If G(K) = G(R)ΛGG(R), then
G is reductive.

Proof. Write G = Gu o Gs for the Levi decomposition of G. That means, Gu is the
unipotent radical of G, which is a (connected) unipotent group over k, and Gs is a
reductive group over k; the map (x; y)→ xy where (x ∈ Gu, y ∈ Gs) gives a bijection
Gu ×Gs → G.

For any one-parameter subgroup λ : Gm → G defined over k, the image of λ consists
of semisimple elements. Thus, it is contained in a conjugate of Gs. That means,
there exists g ∈ G(k) such that Ad(g)(λ) has image lying in Gs, or in other words
Ad(g) · λ ∈ ΛGs . Therefore,

ΛG = Ad(G(k))(ΛGs) ⊂ G(k)ΛGsG(k).

Since G = Gu oGs, we get

G(R) = Gu(R) oGs(R) = Gu(R)Gs(R) = Gs(R)Gu(R).

Combining the above, we get

G(R)ΛGG(R) ⊂ G(R)G(k)ΛGsG(k)G(R)

= G(R)ΛGsG(R)

= Gu(R)Gs(R)ΛGsGs(R)Gu(R)

= Gu(R)Gs(K)Gu(R),

where we used Iwahori’s theorem to Gs in the last equality. Thus, G(R)ΛGG(R) =
Gu(R)Gs(K)Gu(R).

Suppose

G(K) = G(R)ΛGG(R) = Gu(R)Gs(K)Gu(R).

Then,

Gu(K) =
(
Gu(R)Gs(K)Gu(R)

)
∩Gu(K) = Gu(R)

(
Gs(K) ∩Gu(K)

)
Gu(R) = Gu(R).

Since Gu is a connected unipotent group, we have Gu
∼= An as a variety over k, where

n = dimGu. Then, Gu(K) = Gu(R) implies that Kn = Rn, which in turn implies
that n = 0 and that G is reductive. �

The following lemma will allow us to work with essentially finite type DVRs when
checking that the hypotheses of Proposition 4.2 are satisfied.
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Lemma 4.3. If G is a linear algebraic group, then for any g ∈ G(K), there is an
algebraic point g0 such that g · g−1

0 ∈ G(R), where algebraic means that g0 ∈ G(k(C))
for the function field k(C) of a smooth curve over k embedded in K via a dominant
morphism Spec(R)→ C.

Proof. Fix an embedding G ⊂ GLm for some m > 0 and N � 0 so that πN · g−1 ∈
Mm×m(R). By Artin approximation ([Art69]), we can find an algebraic point g0 ∈
G(K) such that g − g0 ∈ πN+1 ·Mm×m(R). Since gg−1

0 =
(

1− g−g0
g

)−1

and g−g0
g
∈

π ·Mm×m(R), we know

g · g−1
0 = 1 +

∞∑
i=1

(
g0 − g
g

)i
∈ GLm(R) ∩G(K) = G(R).

�

4.4. Proof of reductivity. Theorem 1.3 is an immediate consequence of Lemma 4.2
and the following proposition.

Proposition 4.4. If (X,D) is a K-polystable log Fano pair, then G := Aut(X,D)
satisfies G(K) = G(R)ΛGG(R).

Proof. Set R = k[[π]] and K = k((π)). By Lemma 4.3, it suffices to show that all
algebraic points of G(K) are contained in G(R)ΛGG(R). To proceed, fix a smooth
pointed curve x ∈ C with local ring R0 := OC,x, function field K0 := Frac(OC,x),
and an extension of DVRs R0 ⊂ R. We will show that if g ∈ G(K0), then g|K ∈
G(R)ΛGG(R).

Consider the isomorphism (XK0 , DK0) → (XK0 , DK0) of log Fano pairs induced by
g. This data gives a Gm-equivariant Q-Gorenstein family of log Fano pairs

(X ,D)→ Spec (R0[s, t]/(st− π)) \ 0

and we may write D =
∑
aBa. By Proposition 4.1, the above family extends to a Gm-

equivariant Q-Gorenstein family of log Fano pairs (X̃ , D̃) → Spec(R0[s, t]/(st − π))

such that (X̃0, D̃0) ' (X,D). Moreover, D̃ =
∑
aB̃a where each B̃a is flat over

Spec(R0[s, t]/(st− π)) with pure fibers. The Gm-action on the fiber (X̃0, D̃0) induces
a 1-parameter subgroup λ : Gm → G.

Replace (X̃ , D̃) with its base change byR to get a family over S := Spec (R[s, t]/(st− π)).

We will show that there is a Gm-equivariant isomorphism (X̃ , D̃) ∼= (XS , DS), where
Gm acts on (XS , DS) = (X × S, D × S) diagonally, via λ on the left factor and

the standard action S. As every geometric fiber of the family (X̃ , D̃) → Spec(R) is

isomorphic to the base change of (X,D) and since each B̃a is flat over S, the scheme

I := IsomS((X̃ , D̃), (XS , DS))

parameterizing isomorphisms is a G-torsor over S (c.f. [SdJ10, Lemma 2.3.2]). For any
test scheme T , a T -point of I consists of a point p ∈ S(T ) along with an isomorphism
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φ : (X̃p, D̃p) ∼= (XT , DT ) of families over T . The Gm-action on both pairs gives a
Gm-action on I, where for any test scheme T , a T -point t ∈ Gm(T ) acts on I(T ) by

t · (p, φ) =
(
t · p, λ(t) · φ(t−1 · (−)) : X̃t·p ∼= XT

)
.

Note that the projection I → S is Gm-equivariant, and a Gm-equivariant section of

this morphism classifies a Gm-equivariant isomorphism of families (X̃ , D̃) ∼= (XS , DS)
over S.

The projection I → S is smooth because it is a principal G-bundle and G is
smooth. Let Sn be the nth nilpotent thickening of 0 ∈ S. By construction, we have
a Gm-equivariant section s0 : S0 → I. By the formal lifting criteria for smoothness,
s0 extends to a compatible family of Gm-equivariant sections sn : Sn → I. We claim
that the sections sn algebraize to a Gm-equivariant section s : S → I. The Gm-
actions induce Z-gradings Γ(OS) =

⊕
d Γ(OS)d, Γ(OSn) =

⊕
d Γ(OSn)d and Γ(OI) =⊕

d Γ(OI)d. To prove the existence of the desired section s : S → I, it suffices to
verify the existence of a graded homomorphism Γ(OI)→ Γ(OS) extending the given
homomorphisms Γ(OI)→ Γ(OSn). To see this, observe that for each d, the compatible
maps Γ(OI)d → Γ(OSn)d extend to a map Γ(OI)d → lim←−n Γ(OSn)d. The latter R-

module can be explicitly computed to be isomorphic to Γ(OS)d since R is complete.

To conclude, let φ : (X̃ , D̃) ∼= (XS , DS) be the Gm-equivariant isomorphism con-
structed in the previous paragraph. Restricting to S \ 0 and quotienting by the Gm-
action, φ gives an isomorphism between two families over Spec(R) ∪Spec(K) Spec(R).
Each family was obtained by gluing two copies of the trivial family along an iso-
morphism over Spec(K), the first family corresponding to g ∈ G(K) and the sec-
ond to λ(π) ∈ G(K). Thus φ|(S\0)/Gm corresponds to a pair a, b ∈ G(R) such that
a · g = λ(π) · b, and hence g = a−1 · λ(π) · b ∈ G(R)ΛGG(R).

�

5. Θ-reductivity

In this section, we will carry out an analysis similar to that in Section 3 for Θ-
reductivity.

5.1. Θ-reductivity for coherent sheaves. Let R be a DVR with fraction field K,
residue field κ and uniformizing parameter π. Recall that Θ = [A1/Gm] and that
ΘR = Θ × Spec(R) = [Spec(R[x])/Gm], where x has weight −1. The reader may
wish to refer to the schematic picture (4) of ΘR. In this subsection, we establish
Θ-reductivity for the stack parameterizing coherent sheaves on Spec(k) or, in other
words, that every flat and coherent sheaf on ΘR \ 0 extends uniquely to a flat and
coherent sheaf on ΘR.

A quasi-coherent sheaf F on ΘR corresponds to a Gm-equivariant quasi-coherent
sheaf on Spec(R[x]) or, in other words, a Z-graded R[x]-module

⊕
p∈Z Fp; this in

turn corresponds to a diagram · · · x−→ Fp+1
x−→ Fp

x−→ Fp−1
x−→ · · · of R-modules. The
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restriction of F to Spec(R)
x 6=0
↪−−→ ΘR is the R-module colimFp and the restriction to

Θκ
π=0
↪−−→ ΘR is the Z-graded κ-module

⊕
p∈Z Fp/πFp. Moreover, F is flat and coherent

over ΘR if and only if each Fp is flat and coherent over R, the maps x : Fp+1 → Fp are
injective, each Fp/Fp+1 is flat, Fp = 0 for p� 0, and Fp stabilize for p� 0.

We will compute the pushforward along the open immersion j : ΘR \ 0 ↪→ ΘR.
Denote the open immersions by

jx : Spec(R)
x 6=0
↪−−→ ΘR, jπ : ΘK

π 6=0
↪−−→ ΘR and jxπ : Spec(K)

xπ 6=0
↪−−−→ ΘR.

Let E be a flat coherent sheaf on ΘR \ 0; this corresponds to a free R-module E of
finite rank and a Z-filtration G•EK : · · · ⊂ Gp+1EK ⊂ GpEK ⊂ · · · of EK . Then
j∗E = (jx)∗E ∩ (jπ)∗G•EK ⊂ (jxπ)∗EK . As morphisms of graded R[x]-modules, jx and
jπ correspond to the inclusions R[x] ⊂ R[x]x and R[x] ⊂ K[x], and jxπ corresponds
to R[x] ⊂ K[x]x. We compute that

(jxπ)∗EK ∼= K[x]x ⊗R EK ∼=
⊕
p∈Z

EKx
−p,

(jx)∗E ∼= E ⊗R R[x]x ∼=
⊕
p∈Z

Ex−p ⊂ (jxπ)∗EK ,

(jπ)∗G•EK ∼=
⊕
p∈Z

(GpEK)x−p ⊂ (jxπ)∗EK

Therefore

j∗E ∼=
⊕
p∈Z

(
E ∩ GpEK

)
x−p ⊂

⊕
p∈Z

EKx
−p. (16)

The sheaf j∗E is flat and coherent over ΘR, and is given by the filtration GpE :=
E ∩ GpEK of E.

5.2. Θ-reductivity for polarized families. A polarized family (X ,L) over ΘR \ 0
corresponds to a polarized family (X,L) over Spec(R) and a polarized family (XK ,LK)
over ΘK together with an isomorphism of (XK , LK) with the fiber of (XK ,LK) over 1.
The polarized family (XK ,LK) over ΘK corresponds to a test configuration over A1

K .

Consider the composition X q−→ ΘR \ 0
j−→ ΘR.

Condition 5.1 (Finite Generation Condition). The OΘR-algebra
⊕

m≥0 j∗q∗OX (mL)
is finitely generated.

If Condition 5.1 holds, then

X̃ := Proj
ΘR

⊕
m≥0

j∗q∗OX (mL),

is a flat family of polarized schemes over ΘR.
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For each m ≥ 0, set Vm := H0(X,OX(mL)). For each m ≥ 0, the vector space
VK,m := H0(XK ,OXK (mLK)) inherits a Z-filtration G•VK,m. Equation (16) yields

j∗q∗OX (mL) ∼=
⊕
p∈Z

(
Vm ∩ GpVK,m

)
x−p ⊂

⊕
p∈Z

VK,mx
−p.

If we set GpVm = Vm ∩ GpVK,m, then the direct sum
⊕

p,m GpVm is a bigraded

R[x]-module, where multiplication by x is given by the inclusions GpVm → Gp−1Vm.
The grading in m defines a projective scheme P = Proj

Spec(R[x])

⊕
p,m GpVm and the

grading in p gives an action of Gm on P and a linearization of OP(1). Observe that

(X̃ ,OX̃ (1)) = ([P/Gm],OP(1)).

5.3. Θ-reductivity for K-semistable log Fano pairs. In this section, we will verify
that XKss

V,n satisfies the valuative criterion for Θ-reductivity over any essentially finite
type DVR. The result follows from modifying an argument in [LWX18, Sect. 3].

Fix the following notation: Let R be a DVR essentially of finite type over k with
fraction field K and residue field κ. We will write x for the parameter of A1. To avoid
confusion, we write 0K ∈ A1

K for the closed point defined by the vanishing of x and
0 ∈ A1

R for the one defined by the vanishing of x and a uniformizing parameter π ∈ R.
Fix a Q-Gorenstein family of log Fano pairs (X,D) → Spec(R) and a special test

configuration (XK ,DK) → A1
K of (XK , DK). Following Section 5.2, this data gives a

Gm-equivariant Q-Gorenstein family of log Fano pairs

(X ,D)→ A1
R \ 0 .

Theorem 5.2. If the geometric fibers of (X,D) → Spec(R) and (XK ,DK) → A1
K

are K-semistable, then (X ,D) → A1
R \ 0 extends uniquely to a Gm-equivariant Q-

Gorenstein family of log Fano pairs

(X̃ , D̃)→ A1
R.

Furthermore, the geometric fiber over 0 is K-semistable.

Throughout the proof, we will use notation similar to that in Section 3.3.1. Specif-
ically, fix a positive integer r such that L := −r(KX + D) is a Cartier divisor. Let
V :=

⊕
m Vm denote the section ring of X with respect to L. Recall that each Vm is a

flat R-module and the restrictions of V to Spec(K) and Spec(κ), which we denote by
VK :=

⊕
m VK,m and Vκ :=

⊕
m Vκ,m, are isomorphic to the section rings of LK and

Lκ, respectively.

5.3.1. Extending filtrations defined by a divisor. Let EK be a divisor over XK and
write A := AXK ,DK (EK). Setting

FpKVK,m := {f ∈ VK,m | ordEK (f) ≥ p},
for each p ∈ Z and m ∈ N, gives a filtration of VK . The filtration F•K of VK,m extends
to a filtration F• of Vm by subbundles by setting

FpVm := FpKVK,m ∩ Vm.
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Note that
⊕

m

⊕
p (FpVm)x−p is a graded R[x]-algebra.

If the above algebra is finitely generated, we set X̃ := ProjA1
R

(⊕
m

⊕
p (FpVm)x−p

)
.

Since ⊕
m∈N

⊕
p∈Z

(FpVm)x−p ⊗R[x] R[x, x−1] ' V
⊗
R

R[x, x−1]

there is an isomorphism X×(A1\0) ' X̃x 6=0. We write D̃ for the closure of D×(A1\0)

under the previous embedding X × (A1 \ 0) ↪→ X̃ .

Proposition 5.3. If the geometric fibers of (X,D)→ Spec(R) are K-semistable and
βXK ,DK (EK) = 0, then:

(1) The R[x]-algebra
⊕

m

⊕
p (FpVm)x−p is of finite type.

(2) The induced family (X ,D) → A1
R is a Q-Gorenstein family of log Fano pairs

and (X0,D0) is K-semistable.

The proof is a modification of an argument in [LWX18, Sect. 3]. Similar arguments
are also used to prove the main theorems in [BX19]. Throughout, we will use notation
and background material from [BX19, Sect. 2] on valuations, log canonical thresholds,
and the normalized volume function.

Proof. Let (Y,Γ) → Spec(R) denote the relative cone over (X,D) → Spec(R) with
respect to the polarization L. Hence, Y = Spec

R
(V ) and Γ is defined via pulling back

D. Note that (YK ,ΓK) and (Yκ,Γκ) are the cones over (XK , DK) and (Xκ, Dκ).
Following [BX19, Sect. 2.5.1], the divisor EK over XK induces a ray of quasimono-

mial valuations
{vt | t ∈ [0,+∞)} ⊂ ValYK

satisfying

AYK ,ΓK (vt) = 1/r + tA and ap(vt) =
⊕
m

F (p−m)/t
K VK,m.

For each q ∈ N, there is a divisor EK,q over YK such that q · v1/q = ordEK,q .
The divisor EK,q over YK extends to a divisor Eq over Y . Note that AY,Γ(Eq) =
AYK ,ΓK (EK,q) and

ap(ordEq) =
⊕
m∈N

Fp−mqVm. (17)

To see Equation (17) holds, observe that the order of vanishing of f ∈ OY along Eq
equals the order of vanishing of f ·OYK along EK,q. Hence, the statement follows from
the definition of F and the formula ap(ordEK,q) =

⊕
mF

p−mq
K VK,m.

Claim 1. The following holds:

lim
q→∞

(
AY,Γ+Yκ(Eq)− lct(Y,Γ + Yκ; a•(ordEq))

)
= 0.

To prove this claim, for each positive integer q, consider the graded sequence of
ideals on Yκ given by

bq,• := a•(ordEq) · OYκ .
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Note that a•(ordEK,q) = a•(ordEq) · OYK by (17). Therefore, the lower semicontinuity
of the log canonical threshold and [BX19, Eq. (3)] imply

lct (Yκ,Γκ; bq,•) ≤ lct
(
YK ,ΓK ; a•(ordEK,q)

)
≤ AYK ,ΓK (EK,q) (18)

Additionally,

mult(bq,•) = lim
p→∞

dimκ (OYκ/bq,p)
pn+1/(n+ 1)!

= lim
p→∞

dimK

(
OYK/ap(ordEK,q)

)
pn+1/(n+ 1)!

= mult(a•(ordEK,q)),

(19)
where the left and right equalities is the formula for multiplicity in [LM09, Thm 3.8] and

the center equality follows from (17) and the fact that each FpVm ⊂ Vm is a subbundle.
We aim to show the inequalities:

Q

r
≤ lct(Yκ,Γκ; bq,•)

n+1mult(bq,•) ≤ AYK ,ΓK (EK,q)
n+1mult(a•(ordEK,q)) ≤

Q

r
+O

(
1

q2

)
,

(20)
with Q := (−KXK −DK)n = (−KXκ−Dκ)n. The first inequality follows from [Liu18, Thm

7] and the assumption that (Xκ, Dκ) is K-semistable and the second from (18) and (19). For
the remaining equality, Li’s derivative formula (for example, see [BX19, Prop. 2.12]) gives

d v̂ol(vt)

dt

∣∣∣∣
t=0+

= (n+ 1)βXK ,DK (EK).

Since the latter is zero, a Taylor expansion implies

v̂ol(v1/q) = v̂ol(v0) +O

(
1

q2

)
=
Q

r
+O

(
1

q2

)
.

Using that v̂ol is scaling invariant, we observe

v̂ol(v1/q) = v̂ol(ordEK,q) := AYK ,ΓK (EK,q)
n+1mult(a•(ordEK,q))

and (20) follows.
Comparing (19) and (20), we see

1

1 +O
(

1
q2

) ≤ ( lct(Yκ,Γκ; bq,•)

AYK ,ΓK (EK,q)

)n+1

≤ 1.

Since AYK ,ΓK (EK,q) = AY,Γ(Eq) = AY,Γ+Yκ(Eq),

lct(Yκ,Γκ; bq,•) = lct(Y,Γ + Yκ; a•(ordEq))

by inversion of adjunction, and (1 +O( 1
q2

))1/(n+1) = 1 +O( 1
q2

), it follows that

1−O
(

1

q2

)
≤

lct(Y,Γ + Yκ; a•(ordEq))

AY,Γ+Yκ(Eq)
≤ 1.

Recall, AY,Γ+Yκ(Eq) = AY,Γ(Eq) = q/r +A is of order O(q). Therefore,

AY,Γ+Yκ(Eq)− lct(Y,Γ + Yκ; a•(ordEq)) = AY,Γ+Yκ(Eq)

(
1−

lct(Y,Γ + Yκ; a•(ordEq))

AY,Γ+Yκ(Eq)

)
is of order O(1/q) and the desired limit is 0.



28 JAROD ALPER, HAROLD BLUM, DANIEL HALPERN-LEISTNER, AND CHENYANG XU

Claim 2 : For q � 0, there exists an extraction Eq ⊂ Yq
µ→ Y such that

(Yq, µ
−1
∗ (Γ + Yκ) + Eq)

is lc. (By an extraction, we mean µ is a proper birational morphism, Yq is normal, Eq
appears as a divisor on Yq, and −Eq is µ-ample.)

Set εk := AY,Γ+Yκ(Eq) − lct(Y,Γ + Yκ; a•(ordEq)). Since limq→∞ εq = 0 by Claim 1, we
may fix q � 0 so that εq < 1. Hence, [BX19, Prop. 2.2] may be applied to get an extraction
µ : Yq → Y of Eq with

(Yq, µ
−1
∗ (Γ + Yκ) + (1− εq)Eq)

lc. Since limq→∞ εq = 0, the ACC for log canonical thresholds [HMX14] implies (Yq, µ
−1
∗ (Γ+

Yκ) + Eq) is lc for q � 0 and the proof of the claim is complete.

Since −Eq is µ-ample,
⊕

p∈N µ∗OYq(−pEq) is a finitely generated OY -algebra. Using that

µ∗OYk(−pEq) = ap(ordEq) =
⊕
m

Fp−mqVm,

we see ⊕
p∈N

⊕
m∈N
Fp−mqVm =

⊕
m∈N

⊕
p≥−mq

FpVm

is a finitely generated V -algebra. Since V is a finitely generated R-algebra, it follows that⊕
m

⊕
p

(FpVm)x−p is finitely generated R[x]-algebra and we may consider the degeneration

(X̃ , D̃)→ A1
R by taking Proj.

We also consider the degeneration (Y, Γ̃) of (Y,Γ) defined by

Y := SpecA1
R

(⊕
p∈Z

apx
−p
)
, where ap := µ∗OYq(−pEq) ⊆ OY

and Γ̃ is the degeneration of Γ as in [LWX18, Defn. 2.19]. Since (Yq, µ
−1
∗ (Γ + Yκ) + Eq) is

lc, a relative version of [LWX18, Lem. 2.20] implies (Y, Γ̃ + Yx=0 + Yκ) is lc. Using that

(X̃ , D̃) is a Gm-quotient of an open set of (Y, Γ̃), we see (X̃ , D̃ + X̃κ + X̃x=0) is lc as well.

Observe that (X̃K , D̃K)→ A1
K is the test configuration induced by the filtration FK . By

[Fuj17, Section 3.2], this test configuration is normal and its Futaki invariant is a multiple

of βXK ,DK (EK), which is zero. Since Fut(X̃K , D̃K) = Fut(X̃K , D̃K) and the latter is zero,

(X̃K , D̃K)→ A1
K

must be special (otherwise [LX14, Thm. 1] would imply there exists a test

configuration of (XK , DK) with negative Futaki invariant). Appling Lemma 2.15 gives that
the geometric fiber over 0K is K-semistable.

We will proceed to show (X̃ , D̃)→ A1
R is Q-Gorenstein family of log Fano pairs. Since the

statement holds over {π 6= 0} and {x 6= 0}, it remains to consider the behavior over 0 ∈ A1
R.

Since (X̃ , D̃ + X̃κ + X̃x=0) is lc, KX̃ + D̃ is Q-Cartier and, by [Kol13, Prop. 2.32.2], D̃ does

not contain an irreducible component of X̃κ ∩ X̃x=0. We are left to show that the geometric
fiber over 0 is a log Fano pair.

First, we claim that X̃κ is normal. By Serre’s criterion, it suffices to show that X̃κ is S2

and R1. To verify the first condition, note that (X̃ , D̃) is klt, since (X̃ , D̃+ X̃κ + X̃x=0) is lc
and klt away from {πx = 0}. Therefore, [KM98, Prop. 5.25] implies Xκ is CM and, hence,
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S2. For the second condition, note that Supp(X̃κ+ X̃x=0) has at worst nodes at codimension

two points of X̃ by [Kol13, Prop 2.32.2]. Therefore, Xκ is R1 in a neighborhood of Xκ∩Xx=0.
Since Xκ \ Xx=0 ' Xκ × (A1 \ 0) and Xκ is R1, this implies Xκ is R1.

Now, recall that the Futaki invariant may be written as a combination of intersection
numbers of line bundles and intersections number are locally constant in flat projective

families. Therefore, Fut(X̃K , D̃K) = Fut(X̃κ, D̃κ) and the latter is also zero. Since (Xκ, Dκ)

is K-semistable and Fut(X̃κ, D̃κ) = 0, the test configuration (X̃κ, D̃κ)→ A1
κ must be special

(otherwise [LX14, Theorem 1] would imply there exists a test configuration with negative
Futaki invariant). Applying Lemma 2.15 gives that the fiber over 0 is K-semistable. �

5.3.2. Proof of Θ-reductivity result. We will now deduce Theorem 5.2 from Proposition
5.3.

Proof of Theorem 5.2. Following Section 5.2, the test configuration (XK ,DK)→ A1
K ,

corresponds to a Z-filtration GK of VK . By setting

GpVm := GpKVK,m ∩ Vm for each p ∈ Z ,

we get a filtration G of Vm by subbundles, which restricts to the filtration GK over
Spec(K). We consider the graded R[x]-algebra

⊕
m∈N

⊕
p∈Z (GpVm)x−p .

Since the test configuration (XK ,DK) is special, the filtration GK is induced by a
divisorial valuation of the form b ·ordEk over XK [Fuj19, Claim 5.4]. Specifically, there
is a divisor EK over XK and b ∈ Z>0 so that

GpKVK,m = FmrA+dp/be
K VK,m,

where FK is the filtration of VK defined by EK and A := AXK ,DK (EK).
Observe that Fut(XK ,DK) = 0. Indeed, Fut(XK ,DK) = Fut(XK ,DK) and the

latter is the same as the Futaki invariant associated to the Gm-action on (XK ,DK)0.
Since the Futaki invariants associated to a Gm-action and its inverse add to zero
[LWX18, Lem. 2.23] and (XK ,DK)0 is K-semistable, they must both be zero.

Now, βXK ,DK (EK) is a multiple of Fut(XK ,DK) by [Fuj19, Thm. 5.1]. Therefore,
the value is zero and we may apply Proposition 5.3.1 to see that

⊕
m

⊕
p (GpVm)x−p

is a finitely generated R[x]-module. Furthermore, if we set

X̃ := ProjA1
R

(⊕
m∈N

⊕
p∈N

(GpVm)x−p
)

and D̃ equal to the component-wise closure of D × (A1 \ 0) under the embedding

X × (A1 \ 0) ' X̃ |x 6=0 ↪→ X̃ ,

then (X̃ , D̃)→ A1
R is a finite base change of the family considered in Proposition 5.3.

Hence, (X̃ , D̃) → A1
R is a Q-Gorenstein family of log Fano pairs and the geometric

fiber over 0 ∈ A1
R is K-semistable. By Lemma 2.16, this is the unique extension of

(X ,D)→ A1
R \ 0. �
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Proof of Theorem 1.1. The S-completeness and Θ-reductivity of XKss
n,V statements fol-

low immediately from Theorems 3.3 and 5.2. �

Proof of Corollary 1.2. It follows from Theorem 1.1 and Lemma 2.12 that X is S-
complete and Θ-reductive with respect to essentially of finite type DVRs. Theorem
2.9 and Remark 2.10 imply that X has a separated good moduli space. �
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