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ABSTRACT. We prove that K-polystable log Fano pairs have reductive automor-
phism groups. In fact, we deduce this statement by establishing more general re-
sults concerning the S-completeness and ©-reductivity of the moduli of K-semistable
log Fano pairs. Assuming the conjecture that K-semistability is an open condition,
we prove that the Artin stack parametrizing K-semistable Fano varieties admits a
separated good moduli space.
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Throughout, we work over an algebraically closed field k of characteristic 0.

1. INTRODUCTION

The construction of moduli spaces parametrizing K-semistable and K-polystable
Fano varieties is a profound goal in the study of Fano varieties. The K-moduli Con-
jecture predicts that the moduli functor 3655; of K-semistable Q-Fano varieties of
dimension n and volume V', which sends a k-scheme S to

Flat proper families X — S, whose geometric fibers are
Xy (9) = K-semistable Q-Fano varieties of dimension n and
volume V', satisfying Kolldr’s condition (see [BX19, §1])
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is represented by a finite type Artin stack %KSS and it admits a projective good moduli

space %KSS — Xf v (see Definition 2.1), Whose closed points precisely parameterize
n- dlmensmnal K- polystable Q-Fano varieties of volume V. The ingredients needed in
the construction can be translated into deep properties of such Fano varieties. See
[BX19, Introduction] for a more detailed discussion of the prior state of the art.

1.1. Main theorems. In this paper, we show that if the moduli functor 3{55‘5 is
represented by an Artin stack, then it admits a separated good moduli space (see
Step (III) in [BX19, Introduction]). A prototype of the good moduli space of a stack
is given by the morphism [X*/G] — X /G to the geometric invariant theory (GIT)
quotient of a polarized projective variety (X, L) by a reductive group G. However, for
the question of K-stability of Fano varieties, it is not clear how to realize it as a GIT
question: on the one hand, we know there are K-polystable Fano varieties which are
not asymptotically Chow semistable (see e.g. [OSY12, LLSW17]); on the other hand,
the more natural CM line bundle is not positive on the Hilbert scheme (see [FR06]).

Roughly speaking, for moduli problems which are not known to be global GIT quo-
tients, however, we still aim to find a quotient space, such that the quotient morphism
behaves as well as the GIT quotient morphism [X*/G| — X /G from many perspec-
tives (see Definition 2.1). In this note, we adapt the general framework developed in
[AHLH18] to the case of K-semistable Q-Fano varieties.

Theorem 1.1. The functor .’fffsﬁ satisfies the valuative criterion for S-completeness
(see Definition 2.3) and ©-reductivity (see Definition 2.7) with respect to essentially
of finite type DVRs.

For an Artin stack of finite type with affine diagonal over a field of characteristic 0,
[AHLH18, Theorem A] states that the conditions of S-completeness and ©-reductivity
are equivalent to the existence of a separated good moduli space. An immediate
corollary is that

Corollary 1.2. Let X C %SS& be a subfunctor representable by an Artin stack of finite
type, such that if x € X then m C X. Then X admits a separated good moduli space.

The stack X,y is an Artin stack with affine diagonal, and it is known that the
semistable locus is bounded (cf. [Jial7]), so it remains to show that X% C X, v is an
open substack (see [BX19, Step II]). This question was settled shortly after this paper
was first released (see Remark 1.4). For smoothable K-semistable Fano varieties, the
existence of the good moduli space as well as its properness were settled in [LWX19].

In fact, we prove S-completeness and ©-reductivity of the moduli functor param-
eterizing families of K-semistable log Fano pairs. Since S-completeness implies the
reductivity of the automorphism group of any polystable point, we can conclude:

Theorem 1.3. If (X, D) is a K-polystable log Fano pair, then Aut(X, D) is reductive.

This theorem has a long history: it is a classical result for Kahler-Einstein Fano
manifolds in [Mat57] (and even holds in the more general case of polarized manifolds
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with constant scalar curvature metrics). For log Fano pairs with a weak conical
Kahler-Einstein metric, this is a much harder result and it is a key step in the proofs
of the Yau-Tian-Donaldson Conjecture for smooth Fano manifolds (see e.g. [CDS15,
Tial5, BBET19]). Our method is purely algebro-geometric. In [BX19], it was shown
that if (X, D) is K-stable, then Aut(X, D) is finite. That paper also establishes a
key ingredient in the proof of Theorem 1.3, the Finite Generation Condition 3.1. We
also note that when X is only K-semistable, then Aut(X) can be non-reductive (see
[CS18, Example 1.4]).

1.2. Sketch of the proof. We sketch the main ideas in the proof of Theorem 1.1.
The conditions of S-completeness and ©-reductivity of %ffs‘i both involve extending
a family of K-semistable Q-Fano varieties over the complement of a closed point in
a certain regular surface to a family over the entire surface. We first show that the
pushforward sheaves of m-th relative anti-pluri-canonical line bundles extend, then
we prove that the direct sum of these sheaves is finitely generated. After taking
Proj of this algebra, we argue that the central fiber is a K-semistable Q-Fano variety,
which gives the desired extension of the family of K-semistable Q-Fano varieties. Of
course, such finite generation results are highly nontrivial. Fortunately, for families of
K-semistable Fano varieties, the finite generation needed for S-completeness was es-
sentially settled in [BX19] and the case for ©-reductivity is proved in Section 5, closely
following similar arguments in [LWX18]. This general strategy could conceivably be
applied to general K-semistable polarized varieties; however, the corresponding finite
generation statements (see Conditions 3.1 and 5.1) appear to be very challenging.

We now explain in more detail the proof of S-completeness. We say any two K-
semistable Q-Fano varieties lie in the same S-equivalence class if they degenerate to a
common K-semistable Q-Fano variety via special test configurations (see e.g.[BX19,
Def. 2.6]). The first extensive study of the geometry of K-semistable Q-Fano varieties
belonging to the same S-equivalence class was completed in [LWX18]. In particular,
it was shown that there is a unique object, namely a K-polystable Q-Fano variety, in
each S-equivalence class.

Then in [BX19], the study of families of K-semistable Fano varieties is extended from
test configurations to families over a curve. Namely, given two Q-Gorenstein families of
K-semistable Q-Fano varieties f: X — C and f’: X' — C over the germ of a pointed
smooth curve (C' = Spec(R),0) and an isomorphism X x¢ (C'\ 0) = X’ x¢ (C'\ 0),
[BX19] established that X, and X{ are always S-equivalent. The argument for
this fact can be divided into two parts: (1) one constructs filtrations F and F' of
V=@, Vm =, H(Xo,—mrKx,) and V' = @,,Vy, = @,, H* (X}, —mrKx;)
for some fixed sufficiently divisible r such that gr-(V) = @,, grz(Vi») is isomorphic
to grm (V') = @,,8r=(V,,), and (2) one shows that the above graded rings are in-
deed finitely generated and moreover that their Proj give a common K-semistable
degeneration of Xy and X{.
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Meanwhile, the property of S-completeness was introduced in [AHLH18] as part of
a general criterion for the existence of good moduli space (see Theorem 2.9). The first
key observation in this paper is that the construction of the filtration in [BX19] indeed
can be put into this framework of S-completeness. More precisely, in the current note,
we verify that for each fixed m, in the above construction from [BX19], the m-th
graded module, gr-(V,) = grz (V) is precisely the fiber over 0 of the pushforward
along STk \ 0 C STy (where STy is a local model of the quotient [A2/G,,] with
weights 1 and —1—see (1) for the precise definition) of the locally free sheaf over
STg \ 0 obtained by gluing V,, = fi(=mrKx,c) and V), = fi(=mrKxc). Indeed,
we show that the graded module in [BX19] is the same, up to a grading shift, as the
one naturally arising from the module over STr. Hence by taking the direct sum
over all m, we produce a graded algebra over ST, which is finitely generated exactly
by the finite generation results proved in [BX19]. Finally, by taking the Proj, we
construct the extended family of K-semistable Q-Fano varieties over STx.

In some sense, the S-completeness criterion in [AHLH18] provides a conceptual
framework for enhancing the ‘pointwise’ results in [LWX18,BX19] to results over fam-
ilies. Remarkably, this even yields new results for a single Fano variety, e.g. Theorem
1.3.

To prove the O-reductivity (see Definition 2.7), we need to show that, given a
family of K-semistable Q-Fano varieties f: X — C over the germ of a pointed curve
(C' = Spec(R),0), any family of test configurations for X x¢ (C'\ 0) over C'\ 0 with
K-semistable central fibers can be extended to a family of test configurations for X
over C' with K-semistable central fibers. When X/C' itself is a test configuration, the
proof is contained in [LWX18]. To establish the ©-reductivity, we need to generalize
the argument in [LWX18] from the base curve being © = [A!/G,,] to a more general
base curve C'. Nevertheless, the techniques are similar.

Remark 1.4 (Postscript). After the first version of the current paper was written,
there were two related developments. First, it was proved in [BLX19] and [Xu20] that,
for a family of log Fano pairs, the locus where the fibers are K-semistable is open.
This together with [Jial7] implies the functor X5 is represented by an Artin stack
of finite type. Therefore, we can apply Theorem 1.2 to %555 itself and conclude it
admits a good moduli space. Second, the moduli functors of log Fano pairs over a
general base has been appropriately defined in [Kol19], which also can be shown to
be represented by an Artin stack. The results in this paper then confirm this Artin
stack also has a good moduli space. For a detailed account, see [XZ19, Sec. 2.6].

Acknowledgement: JA and CX thank Xiaowei Wang, and CX thanks Jun Yu
for helpful conversations. We thank the referees for suggestions on revising the pa-
per. Much of the work on this paper was completed while the authors enjoyed the
hospitality of the MSRI, which is gratefully acknowledged.
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2. PRELIMINARIES

2.1. Good moduli spaces. In this section, we discuss some general facts about good
moduli spaces. The following definition was introduced in [Alp13].

Definition 2.1 (Good moduli space). If X is an Artin stack of finite type over k, a
morphism ¢: X — X to an algebraic space is called a good moduli space if (1) ¢, is
exact on the category of coherent O y-modules and (2) Ox — ¢.Oy is an isomorphism.

Remark 2.2. We note that X is unique as the map X — X is initial for maps to
algebraic spaces [Alp13, Thm. 6.6] and X is necessarily of finite type over k [Alp13,
Thm. 4.16(xi)]. Moreover, two k-points of X are identified in X if and only if their
closures intersect [Alp13, Thm. 4.16(iv)]. In particular, there is a bijection between
the closed k-points of X' (i.e. the polystable objects) and the k-points of X.

The canonical example arises from GIT: if G is a reductive group acting on a closed
G-invariant subscheme X C P(V'), where V' is a finite dimensional G-representation,
then the morphism

[X*/G] = X*//G = Proj @ H(X, Ox(m))“

to the GIT quotient is a good moduli space.
However, the K-stability moduli problem does not have a known GIT interpretation.
So to prove the moduli stack %Esﬁ yields a good moduli space Xﬁf ¥ is quite nontrivial.

2.1.1. S-completeness. Let R be a DVR over k with fraction field K, residue field &,
and uniformizing parameter 7. We define the Artin stack

STg := [Spec(R][s, t]/(st — 7)) /G, (1)
where s and ¢ have weights 1 and —1. This can be viewed as a local model of the
quotient [A? /G,,] where A% has coordinates s and ¢ with weights 1 and —1; indeed, STx
is the base change of the good moduli space [A%/G,,] — Spec(k[st]) along SpecR —
Spec(k|[st]) defined by st — 7. We denote by 0 € STx the unique closed point
defined by the vanishing of s and ¢. Observe that STg \ 0 is the non-separated union
SpeC(R) USpec(K) SpeC(R>

Denote O, = [Al/G,,] as the quotient of the usual scaling action. The following
two cartesian diagrams yield a useful schematic picture of STg
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where the maps to the left are open immersions and to the right are closed immersions.

Definition 2.3 (S-completeness). A stack X over k is S-complete if for any DVR R
and any diagram

STR\0—= X
/1
| .- )
STr

there exists a unique dotted arrow filling in the diagram.
Moreover, if R is a DVR, we say that X satisfies the valuative criterion for S-
completeness for R if any diagram (3) can be uniquely filled in.

Remark 2.4. This definition was introduced for Artin stacks in [AHLH18, §3.5]. At
the time this paper was written, it was not known if %Es‘i was an Artin stack, so we

were careful not to assume this about X'. This question has since been resolved (see
Remark 1.4).

Remark 2.5. If X is Deligne-Mumford, then X is S-complete if and only if X" is
separated ([AHLH1S8, Prop. 3.44]). If X is an Artin stack with affine diagonal, then
any lift is automatically unique ([AHLH1S8, Prop. 3.40]).

Remark 2.6. If GG is a linear algebraic group over k, then BG is S-complete (equiv-
alently S-complete with respect to essentially of finite type DVRs) if and only if G
is reductive ([AHLH18, Prop. 3.45 and Rem. 3.46]). Moreover, as S-completeness is
preserved under closed substacks, it follows that every closed point (i.e. polystable
object) in an Artin stack with affine diagonal, which is S-complete with respect to
essentially of finite type DVRs, has reductive stabilizer.

2.1.2. ©-reductivity. We define © = [A! /G,,] with coordinate z on A! having weight
—1, and we set Op = © x; Spec(R) for any DVR R. We let 0 € O be the unique
closed point defined by the vanishing of x and the uniformizing parameter 7 € R.
Observe that Op \ 0 = Ok Ugpe(x) SPeC(R). Analogous to (2), we have the two
following cartesian diagrams

Spec(R) BrGy,

SpeC(K/ \ / \
S A S

where the maps to the left are open immersions and to the right are closed immersions.
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Definition 2.7 (O-reductivity). A stack X over k is ©-reductive if for any DVR R
and any diagram

Or\0— X
/1
| - )
Or

there exists a unique dotted arrow filling in the diagram.
Moreover, if R is a DVR, we say that X satisfies the valuative criterion for ©-
reductivity for R if any diagram (5) can be uniquely filled in.

Remark 2.8. This definition was introduced in [HL18]. As with S-completeness, if
X is an Artin stack with affine diagonal, then any lift is automatically unique.

2.1.3. The existence of good moduli spaces. The following criterion is established in
[AHLH18S|.

Theorem 2.9. [AHLH18, Thm. A| Let X be an Artin stack of finite type with affine
diagonal over k. Then X admits a good moduli space X — X with X separated if and
only if X is S-complete and ©-reductive.

Remark 2.10. The following technical refinement of Theorem 2.9 will be useful to us
as we are unable to verify the valuative criteria for S-completeness and O-reductivity
for every DVR R (see Definitions 2.3 and 2.7). To show the existence of a good
moduli space X — X with X separated, it suffices to verify the valuative criteria
for S-completeness and ©-reductivity for DVRs R essentially of finite type over k
([AHLH18, Rmk. 5.5]). Once this is established, it follows in fact (from applying the
converse of Theorem 2.9) that X’ satisfies the valuative criteria for S-completeness and
O-reductivity for all DVRs R.

Remark 2.11 (Comparing with an earlier criterion). In [LWX19], a variant of the
above theorem ([AFS17, Thm. 1.2]) was used to construct a good moduli space of Q-
Gorenstein smoothable, K-semistable Fano varieties. Specifically, [AFS17, Thm. 1.2]
states that if X' is an Artin stack of finite type with affine diagonal over k, then X
admits a good moduli space X — X if the following conditions hold:

(1) for every closed point x € X, the stabilizer G, is reductive and there exists an
étale morphism f: (W, w) — (X, z) where W = [Spec(A)/G,] such that
(a) f induces an isomorphism of stabilizer groups at all closed points and
(b) f sends closed points to closed points, and

(2) for any k-point y € X, the closure {y} admits a good moduli space.

Vaguely speaking, condition (1a) ensures that the two projections R := WxxW =2 W
induce isomorphism of stabilizer groups while conditions (1b) and (2) ensure that the
projections send closed points to closed points. This is sufficient to imply that the two
projections induce an étale equivalence relation R = W on good moduli spaces and
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that the algebraic space quotient W/R is a good moduli space of X Zariski-locally
around .

We would like to explain the general idea of why the properties of S-completeness
and ©-reductivity imply that the above conditions hold. First, S-completeness implies
that G, has a reductive stabilizer (Remark 2.6) and the existence of an étale morphism
f: (W :=[Spec(A)/G,],w) — (X, x) then follows from [AHR20, Thm. 1.2].

S-completeness implies that after shrinking Spec(A), we may arrange that (1a)
holds. A complete argument is given in [AHLH18, Prop. 4.4] but we explain here only
how S-completeness implies that f induces an isomorphism of stabilizer groups at any
generization of w. Let &: (Spec(R),0) — (W, w) be a morphism from a complete
DVR R (with fraction field K'). Then

Autyy(éx) = {maps g: STg \ 0 = W and isomorphisms g|sz0 =~ & ~ gliz0}
>~ fmaps ¢g: STg — W and isomorphisms g|szo =~ & > gliz0}

where we have used S-completeness in the second line. There is an analogous descrip-
tion of Autx(f(£x)). Since f is étale and R is complete, Tannaka duality implies that
any map (STg,0) — (X, ) lifts uniquely to a map (STg,0) — (W, w). It follows
that Autw(§x) = Autx(f(Ex)).

Similarly, ©-reductivity implies that after shrinking Spec(A) further, we may ar-
range that (1b) holds. A complete argument is given in [AHLH18, Prop. 4.4] but we
show here that if £ € W is a generization of w such that £ € Wy is closed where
K = k(€), then n := f(€) € Xk is also closed. Indeed, suppose 1 ~ 1 is a spe-
cialization to a closed point in Xk; this can be realized by a map A\: O — X. If
h: Spec(R) — W is a map from a DVR with fraction field K realizing the specializa-
tion £ ~» w, then X\ and f o h glue to form a map O \ 0 — X which can be extended
(using ©-reductivity) to a map (Og,0) — (X, z), and this in turn (using étaleness of
f and completeness of R) lifts to a unique map (©g,0) — (W, w). But since £ € Wy
is closed, the image of © — VW consists of a single point, and thus the same is true
for the image of \. It follows that f(§) = ny € X is closed.

Finally, both the S-completeness and O-reductivity imply that (2) holds. Let yo €
Y = {y} be a closed point and f: (W := [Spec(A)/G,,], wo) — (Y, o) be an étale
morphism in which we can arrange that wy is the unique preimage of y,. By Zariski’s
main theorem, we may factor f as the composition of a dense open immersion W < W
and a finite morphism W — Y. Note that wg € W is necessarily closed and that any
other closed point in W is a specialization of a k-point in WW. As W is also O-reductive,
any k-point has a unique specialization to a closed point. It follows that wy is the
unique closed point in W and thus the complement W\ W is empty. This in turn
implies that f: W — ) is finite étale of degree 1 and thus an isomorphism.

In [LWX19], using analytic results, a stronger result than (2) was obtained, and as
a result, the good moduli space is a scheme instead of merely an algebraic space.
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Lemma 2.12. Let f: X — Y be a finite type monomorphism of Artin stacks locally
of finite type over k such that for every geometric point x: Spec(l) — X, the image
under X; — Y, of the closure {x} C A} is closed in Y,. If Y is O-reductive (resp.,
S-complete) with respect to essentially of finite type DVRs, then so is X.

Proof. Zariski’s main theorem implies that there is a factorization f: X — X =Y
where X < X is an open immersion and X — ) is finite. By [AHLH18, Prop. 3.20(1)],

X is also O-reductive with respect to essentially of finite type DVRs, so may assume
that f is an open immersion. Consider an essentially of finite type DVR R with
residue field [ = R/m and a morphism h: O \ 0 — X. Since Y is ©-reductive, h
extends to a diagram

Spec(l) =% O\ 0 > X

[

6, ———Op
In particular, if = denotes the composition Spec(l) — Og \ 0 — X', we have a special-

ization x ~ E(O) in ). The hypotheses imply that ~(0) € A} so that h factors though
X. The argument for S-completeness is analogous. U

2.2. Log Fano pairs and K-stability. In this section, we introduce some basic no-
tions concerning log Fano pairs and K-stability. For further background information,
see [BX19, Sect. 2] and the references therein.

A pair (X, D) is composed of a normal variety X and an effective Q-divisor D on
X such that Kx + D is Q-Cartier. See [KM98, 2.34] for the definitions of klt, plt, and
le pairs. A pair (X, D) is log Fano if X is projective, (X, D) is klt, and —Ky — D is
ample. A variety X is Q-Fano if (X, 0) is log Fano.

2.2.1. Families of log Fano pairs.

Definition 2.13. Let T be a normal scheme. A Q-Gorenstein family of log Fano
pairs (X, D) — T is composed of a flat projective morphism between normal schemes
X — T and a Q-divisor D on X satisfying:

(1) Supp(D) does not contain any fiber,

(2) Kx/r + D is Q-Cartier, and

(3) (X3, Dy) is a log Fano pair for all t € T..
In (3), D; denotes the divisorial pullback of D. More generally, if S — T'is a morphism
of normal schemes, we set Xg := X X7 S and write Dg for the Q-divisor on Xg
associated to Cycle(D xr 5).

A special test configuration of a log Fano pair (X, D) is the data of a G,,-equivariant
Q-Gorenstein family of log Fano pairs (X, D) — A! with an isomorphism (X}, D;) ~
(X, D) for {1} — AL



10 JAROD ALPER, HAROLD BLUM, DANIEL HALPERN-LEISTNER, AND CHENYANG XU

2.2.2. K-stability. Let (X, D) be an n-dimensional log Fano pair. A divisor over X is a
prime divisor £ on a normal variety Y with a proper birational morphism p: Y — X.
Following [Fuj18], we set

By (E) = (—Kx — D) Ay p(E) — /0 Vol (—Kx — D) — tE) dt,

where Ax p(F) := 1+ coeffg(Ky — p*(Kx + D)) is the log discrepancy.

Definition 2.14. A log Fano pair (X, D) is

(1) K-semistable if Bx p(E) > 0 for all divisors E over X;

(2) K-stable if Sx p(F) > 0 for all divisors E over X;

(3) K-polystable if it is K-semistable and for any special test configuration of
(X, D) — Al of (X, D) with (X, Dy) K-semistable there is an isomorphism of
Q-Gorenstein families of log Fano pairs (X, D) ~ (Xa1, Da1) := (X, D) x Al

The equivalence of the above definition with the original definitions in [Tia97,
Don02] was proven in [Fuj19,Lil7, LWX18,BX19].

Though the above notions of stability make sense for log Fano pairs over charac-
teristic zero fields that are not algebraically closed, we will not use them due to the
following issue: Let (Xg, D) be a log Fano pair over a characteristic zero field K
and K'/K a field extension. While it is expected that (Xg, Dr) is K-semistable if
and only if (X, Dk+) is K-semistable, the result is only known when both K and K’
are algebraically closed (for example, see [BL18, Cor. 15]). *

The following result proved in [LWX18] will be needed in various places.

Lemma 2.15 ([LWX18, Lem. 3.1]). Let (X,D) be a special test configuration of
a K-semistable log Fano pair (X, D) with the central fiber denoted by (Xo, Do). If
Fut(X,D) = 0, then (Xo, Do) is K-semistable.

2.3. Flat families of polarized schemes over a surface. We will be considering
S-completeness and O-reductivity of stacks parameterizing polarized varieties. Both
conditions are formulated in terms of the existence of extensions of equivariant flat
families of polarized varieties over punctured regular surfaces.

We thus consider a regular noetherian 2-dimensional scheme S, and a closed point
0€S. Let j: S\0 — S be the open immersion. The key fact that we will use
is that for any finite rank locally free sheaf E on S\ 0, j.(FE) is locally free as well.
J«(E) is coherent because S is normal and 0 has codimension 2, and the reflexive sheaf
J«(E) is locally free because any reflexive sheaf on a regular 2-dimensional scheme is
locally free [Har80, Cor. 1.4]. More precisely, j. induces an equivalence between the
categories of locally free (and more generally, flat quasi-coherent) sheaves on S\ 0 and
on S locally free (respectively, flat quasi-coherent) sheaves on S, with inverse given
by restriction.

ISince the first version of the current paper was written, this expectation was proved in [Zhu20].
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Lemma 2.16. Let q: X — S\ 0 be a flat projective morphism of schemes, and let £
be a relatively ample line bundle on X. Then the following are equivalent:

(1) there exists an extension of q to a flat projective family X — S with an ample
Q-line bundle L extending L;

(2) the algebra @, j+(¢:(Ox(mL))) is finitely generated as an Og-algebra; and

(3) the restriction @, -, j«(q.(Ox(mL)))|o is finitely generated as a r(0)-algebra.

If these conditions hold, then

X = Projg (EB]* (q*(’);((m[,)))

m>0

is the unique extension, with the polarization O 5(1). If X is equivariant for an action
of G,, on S, then so is X.

Proof. (1) < (2): Note that ¢.(Ox(mL)) is locally free on S for m > 0 because ¢
is flat. It follows that X = Projq(€D,, 7«(¢.Ox(mL))) is a flat extension of X" if this

algebra is finitely generated, and conversely for any flat extension I'(X, O f(mZ)) =
J:(q(Ox(mL))) for m > 0.

(3) < (2): Note that (2) = (3) automatically, and finite generation is local over S
by definition, so we may assume S is affine. Then we may lift a finite homogeneous
set of generators of @, J«(¢:(Ox(MmL))) ®oy £(0) to €D, J«(¢:(Ox(mL))), and
by assumption we may find homogeneous elements in the latter which generate the
algebra @, - ¢-(Ox(mL)) after restriction to S\ 0. Together these define a map of
graded Og-algebras ¢ : Oglz1, ..., 28] = ,,50J<(2:(Ox(mL))), where the degree
of the generators z; vary but are all > 0. ¢ is surjective after restriction to #(0) and
S\ 0, so because the graded pieces of both algebras are finite Og-modules, Nakayama’s
lemma implies that ¢ is surjective.

Note that if X" is equivariant for a G,,-action on S, then €, j.(¢.(Ox(mL))) has an
additional grading coming from the G,,-action, and this grading induces a G,,-action
on X extending the one on X. U

3. S-COMPLETENESS

In this section, we will prove that the moduli of K-semistable log Fano pairs is S-
complete (Theorem 3.3). We first study S-completeness for quasi-coherent sheaves in
Section 3.1 and then S-completeness of polarized varieties in Section 3.2. Applying this
to the direct sum of the pushforwards of the m-th tensor product of the polarization
for a family of polarized varieties, this naturally leads to a finite generation condition
on the graded algebra (see Condition 3.1). In Section 3.3, we confirm this condition
for K-semistable log Fano pairs.

3.1. S-completeness for coherent sheaves. In this subsection, we establish S-
completeness for the stack parameterizing coherent sheaves on Spec(k) or, in other
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words, that every flat and coherent sheaf on ST \ 0 extends uniquely to a flat and
coherent sheaf on ST.

We begin by discussing the correspondence between flat coherent sheaves on Oy
and filtrations. A quasi-coherent sheaf F' on ©y = [Spec(k[z])/G,,] corresponds to
a G,,-equivariant quasi-coherent sheaf on Spec(k[z]) or, in other words, a Z-graded
k[z]-module P,y Fp; this in turn corresponds to diagram of k-vector spaces: - -+ —
Foo1 5 F, % F, ; — ---. The restriction of F along Spec(k) % @y, is colim(- -+ —
Fy N F, — ---) and along B;G,, 9, O} is the associated graded quasi-coherent
sheaf P, F},/xF)1. Moreover, F is flat and coherent over Oy if and only if each F},
is a finite dimensional k-vector space, the maps x are injective, Fj, = 0 for p > 0 and
x: F, = F,_; is an isomorphism for p < 0.

Similarly, if R is a DVR with fraction field K, residue field x and uniformizing
parameter 7, then a quasi-coherent sheaf F' on STg = [Spec(R[s,t]/(st — 7)) /G,,]
corresponds to a G,,-equivariant quasi-coherent sheaf on Spec(kl[s,t|/(st — 7)) or, in
other words, a Z-graded R[s,t]/(st — m)-module €P,; Fp; this in turn corresponds to
a diagram of maps of R-modules

t t t t

— — — —
.&/Fpﬂ(_/Fp‘&_,}?’p_l(_/...7
S S S S

such that st = ts = m. The reader may wish to refer to the schematic picture (2) of
STg. The restriction of F' along

Spec(R) i STp is colim(- - - 5 F, 4 F, L),

Spec(R) 7 ST is colim(- -+ <= F, <> F, 1 < ---),

O, 8 STy is the object corresponding to the sequence
(o & FJtEyyy <& Fy JtE, < ),

¢ 0, 5 STris (- Fyp1/sF, & F,/sF,1 - -+), and
e B.G,, <% STy is the Z-graded x-module D,z Fo/ tF 1 + sFp1).

The sheaf F is flat and coherent over STy if and only if each F), is flat and coherent
over R, the maps s and t are injective, the induced maps s: F,_1/tF, — F,/tF,; are
injective (or equivalently the maps ¢: Fj,i1/sF, — F,/sF,_; are injective), t: F, —
F,_1 is an isomorphism for p < 0 and s: F},_; — F}, is an isomorphism for p > 0.

Let j: STr\ 0 < STg be the open immersion. We will show how to compute the
pushforward of coherent sheaves under this open immersion. Let j;, js: Spec(R) —
STg and j: Spec(K) — STg be the open immersions corresponding to ¢ # 0, s # 0
and st # 0. Let & be a flat coherent sheaf on STy \ 0; this corresponds to a pair
of R-modules F and E’ together with an isomorphism a: Ex — Ej. Under a, we
may view both E and E’ as submodules of Ex. Then j.& = (ji).F N (js)«E' C
(jst)«Ex. As morphisms of graded R|[s,t]/(st — m)-modules, j; and js correspond to
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the inclusions R|s,t]/(st —m) C R[t]; and R[s,t]/(st —m) C R][s]s, and jg corresponds
to R[s,t]/(st — ) C K[t];. Recalling that ¢ has weight —1, we compute that

(Jst)+ Ex = Ex ®@g R[t]; = @ Ext™?,

PEZL
(]t)*E = E ®R R[t]t = @ Et_p C (jst)*EIO
PEZL
(o)o E' = E' @5 Rls]s = (" BN C (o) Brc
PEL

where in the last line we have used the identification s = t~'7. Finally, we compute
that

e (En(a"- EN)t " C P Ext™. (6)
pEZ PEZL
If we define the filtration GPE = E N (77 - £'), then j.& is the Ogg, -module given by
the diagram
.../_>t ngE’_*ng’_*t gp—lE—\>lt e

-~
S S S S

of R-modules where t: GP*'E — GPE is inclusion and s: GPE — GPYE is multipli-
cation by 7. Note that j.€ is necessarily a flat and coherent Ogg -module, because
non-equivariantly it is the pushforward of a vector bundle from the complement of a
closed point in the regular surface Spec(R][s,t]/(st — m)).

3.2. S-completeness for polarized varieties. Suppose (X, L) and (X', L') are flat
families of polarized varieties over Spec(R) and a: (Xk, Lx) — (X, L) is an iso-
morphism. Then (X, L) and (X', L) can be glued along the isomorphism « to a
polarized family (X, £) — STg \ 0. This yields a diagram

X
Jo
STz \ 0.~ STy.
Now we state our key condition:

Condition 3.1 (Finite Generation Condition). The Ogg, -algebra P, - j«¢-Ox(mL)
is finitely generated. -

By Lemma 2.16, this condition is equivalent to the existence of a flat extension of
X to a polarized family (X, L) — STg, where

X := Proj T, @j*q*(’)x(mﬁ)

m>0
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and £ = O +(1). To provide a more explicit description for this algebra, Equation (6)
implies that for each m > 0,

3+q:Ox(mL) = @ (H°(X,O0x(mL)) N7 H* (X', Ox/(mL')))t ™"

C @ H0<XK, OXK (mLK))tfp

PEZL
Define a filtration of V,, := H*(X, Ox(mL)) by
GV, = HY(X,Ox(mL)) N7 H*(X', Ox:(mL')),
which consists of sections in V;,, with at worst a pole of order p along X|. We have a
diagram of R-modules

t t

t t
— +1 —_— —_— —1 —_—
< gp Vm gpvm gp Vm _ Ty
S S S S

where t: GPHV,, — GPV,, is inclusion and s: GPV,, — GPT'V,, is multiplication by
7. This gives the direct sum P, ,, G"Vi, the structure of a bigraded R[s,]/(st — m)-
algebra. Assume the Finite Generation Condition 3.1 holds, then the grading in m
defines a projective scheme

_ ; P
P =Projg  nisa/(st—m) @ G"Vin
p7m

and the grading in p gives an action of G,, on P and a linearization of Op(1). Observe

that (X, L) = ([P/G,], Op(1)).

Example 3.2. Let (X, L) be a polarized s-variety, and let R = k[t] and K = r((t)).
Let (Xk, Lx) — (Xk, Li) be an automorphism induced from a one-parameter sub-
group a: G, — Aut(X,L). The above construction produces a flat family (X, L)
over ST which corresponds to the trivial flat family

(X x Spec(R[s, t]/(st — 7)), piL)

over Spec(R]s,t]/(st —m)) with the G,,-action given by « on the first factor. Observe
that if Aut(X, L) is reductive, then any o € Aut(X,L)(K) is in the same double
coset as a one-parameter subgroup by the Iwahori decomposition, and it follows that
any family over ST \ 0 obtained by gluing two trivial families over Spec(R) along an
isomorphism o € Aut(X, L)(K) extends to a family over STz. On the other hand if
Aut(X, L) is not reductive, such an extension need not exist.

3.3. S-completeness for K-semistable log Fano pairs. In this section, we will
prove that Condition 3.1 holds for K-semistable log Fano pairs with anticanonical
polarization (Theorem 3.3). This is obtained by showing that the filtration considered
in [BX19] is equivalent to the filtration in Section 3.2 up to a grading shift. Hence,
we can invoke finite generation results proved in [BX19] to verify that Condition 3.1
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is satisfied and then use a result in [LWX18] (see Lemma 2.15) to show that the
corresponding special fiber of the flat extension over STy is K-semistable.

Let R be a DVR essentially of finite type over k with uniformizer «, fraction field
K, and residue field s. Let

(X,D) — Spec(R) and (X',D") — Spec(R)

be Q-Gorenstein families of log Fano pairs and assume there is a birational map
a: X --» X' that induces an isomorphism (X, D) — (X}, D% ). Following Section
3.2, the above data gives a G,,-equivariant Q-Gorenstein family of log Fano pairs

(X, D) — Spec (R[s, t]/(st —m)) \ 0, (7)
where 0 € Spec (R]s, t]/(st — m)) is the closed point defined by the vanishing of (s, ).

Theorem 3.3. If (X%, Dx) and (XL, DZ) are K-semistable, then the map in (7) ex-
tends uniquely to a G,,-equivariant Q-Gorenstein family of log Fano pairs

(X, D) — Spec (R[s, 1]/ (st — )) .
Furthermore, the geometric fiber over 0 is K-semistable.

Remark 3.4. (1) The above theorem immediately implies that X5 is S-complete
with respect to essentially of finite type DVRs.

(2) Theorem 3.3 is an extension of [BX19, Thm 1.1.1}, which states that if (X%, Dx)
and (X~, D&) are K-semistable, then they degenerate to a common K-semistable
log Fano pair via special test configurations. Indeed, the restriction of (X', D) —
Spec (R]s,t]/(st — 7)) to s = 0 and ¢ = 0 are naturally test configurations of
(X«, Dy) and (X[, DI) with special fiber (Xp, Dy).

(3) The results in [BX19] are phrased in the setting of families over a smooth
pointed curve, not the spectrum of a DVR. Fortunately, the proofs in [BX19,
Sect. 5] extend with little change to the more general setting of families over
DVRs which are essentially of finite type over k.

However, the argument does not automatically generalize to families over
the spectrum of a general DVR over k, since a key ingredient in the proof relies
on the MMP, specifically [BCHM10]. While the latter results hold for varieties
(and, hence, have natural extensions to essentially of finite type k-schemes),
they are not known to hold more generally.

3.3.1. Filtration from [BX19]. Consider a diagram over Spec(R)

where p and p’ are proper birational morphisms and Y is normal. Write )?0 and )?6
for the birational transforms of Xy and X on Y.
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Fix a positive integer r such that L := —r(Kx + D) and L' := —r(Kx + D’) are
Cartier divisors. Let

V=P V=P H(X,0x(mL)) and V' =PV, = H (X, Ox(mL))

meN meN meN meN

denote the section rings of X and X' with respect to L and L'. We write V, = @, Vii.m
and Vi = @,, Vikm for the restrictions of V' to Spec(x) and Spec(K), respectively.
Note that each V,, is a flat R-module and satisfies cohomology and base change, since
HY(X,0x(mL)) =0 for i >0 and m > 0 by [Kol13, Thm. 10.37]. Therefore, V, and
Vi are isomorphic to the section rings of L, and L.

Following [BX19, Sect. 5.1], for each m € N and p € Z, we set

TPV = {g € Vi ordg, (9) = p}, (8)
where ord g (g9) equals the coefficient of X/ in div(p*(g)). Observe that

T FP 1V, = PPV, NaV,, (9)

and setting
FPVim =1m(FPV,, Qr k= Vinw) C Vi,

gives a filtration of the section ring V.. We state two results from [BX19, Section 5.2]
concerning this filtration.

Proposition 3.5. If (Xz, Dx) and (X%, DL) are K-semistable, then:
(1) The k[t]-algebra @ @ (FPViem) t7F and k-algebra @ @ g1 Vi m are finitely

meN peZ meN peZ
generated;
(2) The test configuration (X.,D,) — Al of (X,, D,) induced by the k[t]-algebra
in (1) is special and the geometric fiber over 0 is K-semistable.

Proof. The argument in [BX19, Sect. 5.2] implies (1) and that the induced test config-
uration (X, D.) — Al of (X, D,) is a special test configuration with Futaki invariant
zero. Since Fut(AXx, Dr) = Fut(X,, D) and the latter is zero, (X5, D)o must be K-
semistable by Lemma 2.15. O

In the proof of Theorem 3.3, we will need to show that the boundary divisor D in
(7) extends to a well defined family of cycles over Spec (R[s,t]/(st — m)). For this, let
B be a prime divisor in Supp(D) and write Ip C €D, Vi for the homogenous ideal
defining B. Consider the homogenous ideal

1= @ @im(Is N FViu = e5Vim) € DPersVim: (10)
meN peZ meNpeZ

Proposition 3.6. If (Xz, Dz) and (XL, DL) are K-semistable, then the subscheme
defined by I is of codimension at least one.
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Proof. Let (X,,D,) — Al denote the test configuration described in Proposition 3.5
and write B, for the closure of B, x (A'\0) in X, under the imbedding X, x (A!\ 0) — X,.
Clearly, the scheme theoretic fiber of B, over 0 is of codimension one in (Xy)y =~
Proj(€D,, @, &r’xVi,m). Since V(I) and the scheme theoretic fiber of B, over 0 agree
away from a codimension 2 subset by [BX19, Prop. 5.13.1], V() is also of codimension
at least one. O

In light of the discussion in Section 3.2, observe that

PP F V)i (11)

meNpeZ

has the structure of a Z-graded R[s, ]/ (st — 7)-module, where the map (FPV,)t™? >
(FPHV, ) t7P~1 is defined by gt — mgt P!, Additionally,

(@ D (F*Van) t”) QR sl ~P P F Vi)t (12)

meN peZ Rls,t]/(st—m) meN peZ
. o FPVi . FPVu A P Yim_
since (9) implies =~ = 7 =2~ ~ im (]—" Vin — ﬂvm) . Therefore,

(@@(P’Vm)fﬁ) ® K~ @@grgv&m (13)

meN peZ Rl[s,t]/(st—m) meN peZ
where R[s,t]/(st — 7) — & is the morphism that sends s and ¢ to 0.

The following proposition states that the filtration F* from [BX19] coincides with
the filtration from Section 3.2 up to a shift. See [BHJ17, Section 2.5], [Fuj19, Claim
5.4] or [Lil7, (64)] for related arguments applied to test configurations.

Proposition 3.7. For each p € Z and m € N,
Fromrey . =V, Natv)
where a := Coeff);(,) (Ky — p*(Kx + D)).

The intersection in the above proposition is taken after using the isomorphism
o K(X') = K(X) to view V! := H(X',Ox:(mL')) as a R-submodule of K(X).

Proof. First, observe that there are natural isomorphisms
™ HY (X', Ox:(mL)) ~ H* (X', Ox:(mL — pX}))
~ H° (Y, Oy (p"(mL' — pX{)))
= H° (Y,Oy (mp"L +m(p"L' — p*L) — pp" X{)) .

Next, fix ¢ € H(X,Ox(mL)) and set G = div(g). By the above isomorphisms,
g € H(X’,Ox/(mL')) if and only if

G = p'G+ (m(p"L' — p"L) — pp"X;) > 0.
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Note that G’ is the pullback of a Q-Cartier Q-divisor on X', since
G ~gmp*L+ (m(p"L' — p*L) — pp"” X{)) ~q p""(mL' — pX}).
Therefore, G’ is effective if and only if p,G’ is effective.
To understand whether or not p,G’ is effective, observe

prL = p'L=r((Ky - p"(Kx + D)) = (Ky — p"(Kx + D))
and, hence,
P (m(p"L = p*L) = pp” Xg) = m (r(D' + aXp) — rD') — pXg = (mra — p)X;
Therefore, p,G’ is effective if and only if coeff ¢, (p*G) + (mra—p) > 0. O

3.3.2. Proof of S-completeness. We are now in position to prove Theorem 3.3 as a
consequence of the results in Sections 3.2 and 3.3.1.

Proof of Theorem 3.3. Following Section 3.2, we consider the Z-graded R]s, t|/(st—m)-

algebra
PP V. nav) . (14)

meNpeZ
Note that this algebra equals @D (FP~™*V,,)t™? by Proposition 3.7 and its restric-
m p

tion to 0 € Spec(R[s,t]/(st — ) is isomorphic to PPgr’s ™" *V,.m by Equation (13).
m p

Since the latter k-algebra is of finite type by Proposition 3.5 (1), Lemma 2.16 implies
that the the R[s,t|/(st — m)-algebra (14) is finite type.

Set X := ProjR[&tV(Stiﬁ) (@@(Vmﬂﬂp‘%)t*p) and write D for the component-wise
m p

closure of D x (A" \ 0) under the embedding X x (A!\ 0) ~ X,y < X. The grading
with respect to p gives a G,,-action on X that fixes D.

We claim that X — Spec (R][s,t]/(st — 7)) has normal fibers, no component of D
contains a fiber, and K3 + D is Q-Cartier. The statement is clear away from the
fiber over 0. Next, note that X, ~ Proj(6D,, D, gr’s ""“Vim), which is the fiber over
0 € Al of the special test configuration in Proposition 3.5. Hence, )?0 is normal.

To see /1?0 7 Supp(ﬁ), fix a prime divisor B in the support of D and write B for
the closure of B x (A'\ 0) in X. If Iy C D, Vi is the homogenous ideal defining B,
then B is defined by the homogenous ideal

@ @(]B N fp—mr‘lvm)t_p C @ @ (]:'p—mravm> P

Hence, the scheme theoretic fiber of B over 0 € Spec(R]s, t]/(st — 7)) agrees with the
vanishing of the ideal in (10). Since the latter ideal defines a locus of codimension at

least one in Ay by Proposition 3.6, Xy Z B.
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To see K3 + D is Q-Cartier, K5 + D is Q-Cartier fix a Q-divisor L on X such
that mrL is in the linear equlvalence class of O3 ( ) for a p081tlve integer m. By
construction £|S¢o ~q (— ~K5 — D)|5¢0 Therefore, £ ~g — K5 — D + G, for some Q-
divisor GG supported on X |s=0. Since X |s=0 is an irreducible Cartier divisor, —K 3 — D
must be Q-Cartier.

Finally, note that (X, D)[,_o — Al coincides with the special test configuration in
Proposition 3.5 by (12). Therefore, (X, Dg) is a K-semistable log Fano pair. This
implies (X, D) — Spec(R]s, ]/(st — 7)) is a Q-Gorenstein family of log Fano pairs
and is the unique extension of (7) by Lemma 2.16. O

4. REDUCTIVITY OF THE AUTOMORPHISM GROUP

In this section, we prove that if (X, D) is a K-polystable log Fano pair, then the
automorphism group

Aut(X, D) :={g € Auwt(X) | g*D = D}

is reductive (Theorem 1.3).

We note that this result would follow formally from results in the previous section
if one could establish that a suitably defined stack parameterizing K-semistable log
Fano pairs was represented by a finite type Artin stack. Indeed, Theorem 3.3 would
show that this stack is S-complete with respect to essentially of finite type DVRs and
therefore any closed point (i.e. a K-polystable log Fano pair) has reductive stabilizer
(Remark 2.6). We will provide a direct alternative argument for the reductivity of
Aut(X, D) inspired by the property of S-completeness. Our argument has the advan-
tage that it entirely avoids the language of stacks.

4.1. Setup. In this section, we fix a log Fano pair (X, D) and write D = ZZE[
where the D; are distinct prime divisors. For each a in the coefficient set {a; |7 € ] }
set B, := Ua:ai D;. Choose r sufficiently divisible and large so that £ := Ox(—r(Kx+
D)) is a very ample line bundle.

We will now equip Aut(X, D) with the structure of a linear algebraic group. Since
L is very ample, Aut(X, L) := {g € Aut(X) | ¢g*L ~ L} is a linear algebraic group as
it is a closed subgroup of PGL(H(X, £)). For an element g € Aut(X), observe that
g*D = D if and only if ¢g*(£) ~ £ and for all a in the coefficient set, g fixes B,. In
other words,

Aut(X, D) ={g € Aut(X, L) |Va, g(B,) = B, }
As the conditions that g(B,) = B, are closed conditions, this shows that Aut(X, D) C
Aut(X, £) is a closed subgroup.

4.2. Isotrivial families of K-polystable log Fano pairs. We begin by stating a
special case of Theorem 3.3 when the family is obtained by gluing two trivial families.

Let R be a DVR essentially of finite type over k with fraction field K and residue
field k. Fix a birational map Xg --+ Xg that induces an isomorphism «a: (Xg, Dg) —
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(XK, Dk). As Spec(R|[s,t]/(st — 7)) \ 0 is the union of Spec(R|[s];) and Spec(R]t];)
along Spec(K[s]s) = G,y ik, we may glue the two trivial families X g, — Spec(R[s]s)
and Xpgy, — Spec(R[t];) along the G,,-equivariant isomorphism induced by o to
obtain a G,,-equivariant Q-Gorenstein family of log Fano pairs

(X,D) — Spec (R]s, t]/(st —m)) \ 0. (15)

Note that if we write B, for the closure of B, x Spec(R[t];) under the inclusion Xpgp, —
X, then D = )" aB,.

Proposition 4.1. If (X, D) is K-polystable, then
(X, D) — Spec (R]s,t]/(st — 7))\ 0
extends to a G,,-equivariant Q-Gorenstein family of log Fano pairs
(X, D) — Spec (R[s, 1]/ (st — 7))

with (X5, Dy) ~ (X, Dx).  Furthermore, if we write D = S aBB,, where B, is the
closure of B,, then each B, is flat over Spec(R|[s,t]/(st — 7)) with pure fibers.

By pure fibers, we mean that the fibers are equidimensional and have no embedded
components.

Proof. By Theorem 3.3, the map in (15) extends to a family (X', D) with K-semistable
geometric fiber over 0 € Spec (R[s,t]/(st — m)). Hence, the restriction (X, D)|s—ox is
naturally a special test configuration of (X%, Dz) with K-semistable geometric fiber
over 0 € Al. Since (X, D) is K-polystable, this test configuration must be a product
(i.e. it is isomorphic to (X1, Dy1)). Therefore, (X5, Dg) ~ (X, Dx).

Next, fix a in the coefficient set of D and consider the divisor B,. By [Kol17, Thm.
4.33], there exists a locally closed decomposition S = LS; — Spec(R][s,t]/(st — 7))
such that a morphism of schemes T" — Spec(R][s, t]/(st — 7)), with T' reduced, factors
through S if and only if ga|T — T is flat and has pure fibers. Such locally closed
decomposition is unique by definition.

Now, the loci {s = 0}, {s # 0} and {t # 0} factor through S, since the divisorial
restrictions ga|szo7 ga|s7go and Bva|t¢0 are trivial families. Therefore, each of them
factors through some locally closed set, denoted by Sy, S7 and S5. However, it then
follows that Sy = Sy as {s =0} N{t #0} #0 and S; = S5 as {s # 0} N{t # 0} # 0.
Therefore, we have S = Sy = Spec(R|[s, t]/(st —m)), so B, — Spec (R][s,t]/(st — 7)) is
flat with pure fibers. O

4.3. Reductivity via Iwahori decompositions. Throughout this section, let R =
k[[r]] and K = k((m)). Given a linear algebraic group G, Iwahori’s theorem (cf.
[MFK94, p.52]) states that if G is reductive, then for any element g € G(K), there exist
a,b € G(R) and a one-parameter subgroup A € Hom(G,,, G) such that g = a - M| - b,

where \|x denotes the composition Spec(K) — G,,, = Spec(k[r],) A G. If we let Ag
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denote the set of K-points induced by one-parameter subgroups of GG, then Iwahori’s
theorem states that if GG is reductive, then

G(K) = G(R)AcG(R).

The following argument, which states that the converse also holds, was communicated
to us by Jun Yu. See [AHLH19] for a proof using Artin stacks and S-completeness.

Proposition 4.2. Let G be a linear algebraic group. If G(K) = G(R)A¢G(R), then
G is reductive.

Proof. Write G = G, x G4 for the Levi decomposition of G. That means, G, is the
unipotent radical of G, which is a (connected) unipotent group over k, and G is a
reductive group over k; the map (z;y) — xy where (v € G,y € G) gives a bijection
G, x Gy = G.

For any one-parameter subgroup A: G,, — G defined over k, the image of A consists
of semisimple elements. Thus, it is contained in a conjugate of Gs. That means,
there exists g € G(k) such that Ad(g)(\) has image lying in G, or in other words
Ad(g) - A € Ag,. Therefore,

Ag = Ad(G(k))(Ac,) € G(k)Aa,G(k).
Since G = G, x G, we get
G(R) = Gu(R) x G4(R) = Gu(R)G(R) = Gs(R)Gu(R).
Combining the above, we get

G(R)IAGG(R) € G(R)G(k)Ae,G(K)G(R)

= G(R)Aq,G(R)
= Gu(R)G(R)A¢,Gs(R)Gu(R)
— GLU(R)G(K)CR)
where we used Iwahori’s theorem to Gy in the last equality. Thus, G(R)A¢G(R) =
Gu(R)Gs(K)Gu(R).
Suppose

G(K) = G(R)AcG(R) = Gu(R)Gs(K)Gu(R).
Then,
G.(K) = (GU(R)GS(K)GU(R)) NG.(K) = Gy(R) (GS(K) N GU(K))GU(R) = Gu(R).

Since G, is a connected unipotent group, we have GG, = A" as a variety over k, where
n = dimG,. Then, G,(K) = G,(R) implies that K™ = R"™, which in turn implies
that n = 0 and that G is reductive. O

The following lemma will allow us to work with essentially finite type DVRs when
checking that the hypotheses of Proposition 4.2 are satisfied.
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Lemma 4.3. If G is a linear algebraic group, then for any g € G(K), there is an
algebraic point go such that g - g, € G(R), where algebraic means that gy € G(k(C))
for the function field k(C') of a smooth curve over k embedded in K via a dominant
morphism Spec(R) — C.

Proof. Fix an embedding G C GL,, for some m > 0 and N > 0 so that 7% . g7! €

Mxm(R). By Artin approximation ([Art69]), we can find an algebraic point gg €
-1

G(K) such that g — go € ™+ - Mysm(R). Since ggy' = <1 - %) and g;go €

7T Mpxm(R), we know

99" :1+§: <g°_g)i € GL..(R) N G(K) = G(R).

9
U

4.4. Proof of reductivity. Theorem 1.3 is an immediate consequence of Lemma 4.2
and the following proposition.

Proposition 4.4. If (X, D) is a K-polystable log Fano pair, then G := Aut(X, D)
satisfies G(K) = G(R)A¢G(R).
Proof. Set R = k[[n]] and K = k((7)). By Lemma 4.3, it suffices to show that all
algebraic points of G(K') are contained in G(R)A¢G(R). To proceed, fix a smooth
pointed curve x € C with local ring Ry := Oc¢,, function field Ky := Frac(O¢.),
and an extension of DVRs Ry C R. We will show that if ¢ € G(Kj), then g|x €
G(R)AcG(R).

Consider the isomorphism (Xg,, Di,) — (Xk,, Dk,) of log Fano pairs induced by
g. This data gives a G,,-equivariant Q-Gorenstein family of log Fano pairs

(X, D) — Spec (Ryls, t]/(st —m)) \ 0

and we may write D = Y alB3,. By Proposition 4.1, the above family extends to a G,,-
equivariant Q-Gorenstein family of log Fano pairs (/? , 15) — Spec(Ro[s, t]/(st — m))
such that (X, Dy) ~ (X,D). Moreover, D = Y aB, where each B, is flat over
Spec(Ro[s, 1]/ (st — 7)) with pure fibers. The G,,-action on the fiber (X,, Do) induces
a l-parameter subgroup A : G,, — G.
Replace (X, D) with its base change by R to get a family over S := Spec (R]s, t]/(st — 7).

We will show that there is a G,,-equivariant isomorphism (2? , 15) ~ (Xs, Ds), where
G, acts on (Xs,Ds) = (X x 8§, D x 8) diagonally, via A on the left factor and
the standard action S. As every geometric fiber of the family (X, D) — Spec(R) is
isomorphic to the base change of (X, D) and since each B, is flat over S , the scheme

7= Isomg((f, 5), (Xs, Ds))

parameterizing isomorphisms is a G-torsor over S (c.f. [SdJ10, Lemma 2.3.2]). For any
test scheme T', a T-point of Z consists of a point p € S(T') along with an isomorphism
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¢ (fp,ﬁp) = (Xp, Dr) of families over T. The G,,-action on both pairs gives a
G-action on Z, where for any test scheme T, a T-point t € G,,(T) acts on Z(T') by

- (0.6) = (t-p A 6t () s By ™ X ).

Note that the projection Z — § is Gy,-equivariant, and a Gp,-equivariant section of
this morphism classifies a G,,-equivariant isomorphism of families (X, D) = (Xs, Ds)
over S.

The projection Z — S is smooth because it is a principal G-bundle and G is
smooth. Let §,, be the nth nilpotent thickening of 0 € S. By construction, we have
a G,,-equivariant section so: Sg — Z. By the formal lifting criteria for smoothness,
so extends to a compatible family of G,,-equivariant sections s,: S, — Z. We claim
that the sections s, algebraize to a G,,-equivariant section s: § — Z. The G,,-
actions induce Z-gradings I'(Os) = @, 1'(Os)q4, I'(Os,) = B,1(Os,)q and I'(Oz) =
@D, I'(Oz1)a. To prove the existence of the desired section s: & — Z, it suffices to
verify the existence of a graded homomorphism I'(O7) — I'(Os) extending the given
homomorphisms I'(O7) — I'(Os, ). To see this, observe that for each d, the compatible
maps ['(Oz7); — I'(Os, )a extend to a map I'(Oz)g — lgln ['(Os,)a- The latter R-
module can be explicitly computed to be isomorphic to I'(Og)q since R is complete.

To conclude, let ¢ : (z’? , 75) >~ (Xs, Ds) be the G,,-equivariant isomorphism con-
structed in the previous paragraph. Restricting to S\ 0 and quotienting by the G,,,-
action, ¢ gives an isomorphism between two families over Spec(R) Uspec(i) Spec(R).
Each family was obtained by gluing two copies of the trivial family along an iso-
morphism over Spec(K), the first family corresponding to g € G(K) and the sec-
ond to A(m) € G(K). Thus ¢|s\0)/c,, corresponds to a pair a,b € G(R) such that
a-g=\m)-b,and hence g =a™' - \(7) - b € G(R)AcG(R).

O

5. ©-REDUCTIVITY

In this section, we will carry out an analysis similar to that in Section 3 for ©-
reductivity.

5.1. ©-reductivity for coherent sheaves. Let R be a DVR with fraction field K,
residue field x and uniformizing parameter w. Recall that © = [A!'/G,,] and that
Or = O X Spec(R) = [Spec(R[z])/G,,], where = has weight —1. The reader may
wish to refer to the schematic picture (4) of ©f. In this subsection, we establish
O-reductivity for the stack parameterizing coherent sheaves on Spec(k) or, in other
words, that every flat and coherent sheaf on Of \ 0 extends uniquely to a flat and
coherent sheaf on ©p.

A quasi-coherent sheaf F' on O corresponds to a G,,-equivariant quasi-coherent
sheaf on Spec(R[z]) or, in other words, a Z-graded R[z]-module D, ; Fp; this in

turn corresponds to a diagram --- = Fj,4q = F, = F, 1 = -+ of R-modules. The
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#0
restriction of F' to Spec(R) B r is the R-module colim F), and the restriction to

O, 5o r is the Z-graded x-module P, F},/mF},. Moreover, F is flat and coherent
over O if and only if each F), is flat and coherent over R, the maps z: Fj,;; — F, are
injective, each F,/F,y is flat, F}, = 0 for p > 0, and F), stabilize for p < 0.
We will compute the pushforward along the open immersion j: O \ 0 — Ogp.
Denote the open immersions by
. z#0 . m#0 . w0
Ju: Spec(R) —— Op, j.: Ox — Op and j.r: Spec(K) —— Op.

Let € be a flat coherent sheaf on ©f \ 0; this corresponds to a free R-module E of
finite rank and a Z-filtration G*Ex: --- C GPT'Ex C GPEx C --- of Ex. Then
J+€ = (4o )+ EN (Jr)+G* Ex C (Jur)«Ex. As morphisms of graded R[z]-modules, j, and
Jr correspond to the inclusions R[z] C R[z], and R[z] C K|[z|, and j,. corresponds
to R[z] C Klx],. We compute that

(jxﬂ')*EK = K[x]m ®R EK = @EKxipv

PEZ

(]m)*E =K ®R R['T]z = @ Exip C (j:mr)*EKv

PEZ

(jﬂ)*g.EK = @(ngK)rip - (]:m)*EK

PEZL

Therefore
=P (ENGE)r™ C P Exa™. (16)
PEZL PEL

The sheaf j,.€ is flat and coherent over Of, and is given by the filtration GPE =
ENGPEK of E.

5.2. ©-reductivity for polarized families. A polarized family (X, L) over O \ 0
corresponds to a polarized family (X, L) over Spec(R) and a polarized family (X, Lx)
over O together with an isomorphism of (X, Ly ) with the fiber of (X, Lk ) over 1.
The polarized family (X, L) over O corresponds to a test configuration over A}

Consider the composition X % O\ 0 % Op.

Condition 5.1 (Finite Generation Condition). The Og-algebra @, -, 7«¢:Ox(mL)
is finitely generated. N

If Condition 5.1 holds, then

X := Proj on @j*q*(’)x(mﬁ),

m>0

is a flat family of polarized schemes over ©x.
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For each m > 0, set V, := H%(X,Ox(mL)). For each m > 0, the vector space
Vicm = HY(Xk, Ox, (mLy)) inherits a Z-filtration G*Vi,,,. Equation (16) yields

7+ Ox(mL) = @ (Vm N (]pVKm)m_p C @ Vima P,
pEZL PEZL
If we set G*V,,, = V,,, N GPVi pp,, then the direct sum @pm grv,, is a bigraded
R[z]-module, where multiplication by z is given by the inclusions GPV,, — GP~1V,.
The grading in m defines a projective scheme P = ESpec(R[m]) @pm GPV,, and the
grading in p gives an action of G,, on P and a linearization of Op(1). Observe that

(¥,05(1)) = ([P/Gnl, Op(1)).

5.3. O©-reductivity for K-semistable log Fano pairs. In this section, we will verify
that %‘Iﬁsj satisfies the valuative criterion for ©-reductivity over any essentially finite
type DVR. The result follows from modifying an argument in [LWX18, Sect. 3].

Fix the following notation: Let R be a DVR essentially of finite type over k with
fraction field K and residue field k. We will write x for the parameter of A'. To avoid
confusion, we write O € AL for the closed point defined by the vanishing of = and
0 € AL for the one defined by the vanishing of z and a uniformizing parameter 7 € R.

Fix a Q-Gorenstein family of log Fano pairs (X, D) — Spec(R) and a special test
configuration (X, Dx) — Ak of (Xg, Dr). Following Section 5.2, this data gives a
Gyn-equivariant Q-Gorenstein family of log Fano pairs

(X, D) — A} \ 0.

Theorem 5.2. If the geometric fibers of (X, D) — Spec(R) and (Xx,Dg) — Ak
are K-semistable, then (X, D) — AL\ 0 extends uniquely to a G,,-equivariant Q-
Gorenstein family of log Fano pairs

(X, D) — Ak,
Furthermore, the geometric fiber over 0 is K-semistable.

Throughout the proof, we will use notation similar to that in Section 3.3.1. Specif-
ically, fix a positive integer r such that L := —r(Kx + D) is a Cartier divisor. Let
V :=@p,, Vi denote the section ring of X with respect to L. Recall that each V,, is a
flat R-module and the restrictions of V' to Spec(K’) and Spec(k), which we denote by
Vi == @,, Vkm and V,, := €, Vi.,m, are isomorphic to the section rings of Lk and
L, respectively.

5.3.1. Extending filtrations defined by a divisor. Let Ex be a divisor over Xy and
write A := Ax, p,(Ek). Setting

f'.ﬁVK,m = {f € VK,m ’ OrdEK(f) Z p}7

for each p € Z and m € N, gives a filtration of Vx. The filtration F3 of Vi ,, extends
to a filtration F* of V,,, by subbundles by setting

]-"me = _/—'}P;-VK’m N Vm
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Note that P, B, (F*'Vi,) 277 is a graded R[z|-algebra.
If the above algebra is finitely generated, we set X := Proj, , (@m D, (F"Vn) :c_p) :
- R

Since

@EB (FPVn) xp®R[z]R.iL'x V®Rmx1

meN peZ
there is an isomorphism X x (A'\0) ~ X,o. We write D for the closure of D x (A!\0)
under the previous embedding X x (A!\ 0) < X.

Proposition 5.3. If the geometric fibers of (X, D) — Spec(R) are K-semistable and
BXK,DK(EK) = 0, then
(1) The R[z]-algebra D,, D, (FP'Vi) x7P is of finite type.
(2) The induced family (X,D) — AL is a Q-Gorenstein family of log Fano pairs
and (X, Dy) is K-semistable.

The proof is a modification of an argument in [LWX18, Sect. 3|. Similar arguments
are also used to prove the main theorems in [BX19]. Throughout, we will use notation
and background material from [BX19, Sect. 2] on valuations, log canonical thresholds,
and the normalized volume function.

Proof. Let (Y,I') — Spec(R) denote the relative cone over (X, D) — Spec(R) with
respect to the polarization L. Hence, Y = MR(V) and I is defined via pulling back
D. Note that (Y, 'x) and (Y, T's) are the cones over (Xg, D) and (X, Dy).

Following [BX19, Sect. 2.5.1], the divisor Ex over X induces a ray of quasimono-
mial valuations

{ve |t €]0,400)} C Valy,
satisfying
Ay, rp(v) =1/r +tA and a,(v,) @f” "N .

For each ¢ € N, there is a divisor Fg, over YK such that q - vy, = ordg,.
The divisor Ek, over Yx extends to a divisor E, over Y. Note that Ayr(E,) =
AYKIK(EK#Z) and

a,(ordg,) = @ FrV,. (17)
meN
To see Equation (17) holds, observe that the order of vanishing of f € Oy along E,
equals the order of vanishing of f- Oy, along Fk ,. Hence, the statement follows from
the definition of F and the formula a,(ordg, ) = @,, Fr " Vi.m-

Claim 1. The following holds:
lim (Ayryy, (By) — 1lct(Y,T + Y,; as(ordg,))) = 0.

q—
To prove this claim, for each positive integer ¢, consider the graded sequence of
ideals on Y given by

bq, = Cl.(Ol"qu) : Oyﬂ.
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Note that a,(ordg, ) = a.(ordg,) - Oy, by (17). Therefore, the lower semicontinuity
of the log canonical threshold and [BX19, Eq. (3)] imply

lct (Ym F,g; bq7.) S let (YK, FK; Cl.(Ol"dEqu)) S AYK,FK (EK,q) (18)
Additionally,
. dim, (Oyn/bq,p) s dimg (OYK/ap(OrdEK,q)) _
mult(bge) = M T D) e gy ee(ordeg)),
(19)

where the left and right equalities is the formula for multiplicity in [LM09, Thm 3.8] and
the center equality follows from (17) and the fact that each FPV,, C V,, is a subbundle.
We aim to show the inequalities:

1
Q < let (Y, Ty; bq,.)”+1mult(bq7.) < Ay, rg (EKq)"Hmult(a.(ordEKq)) < Q +0(—= ),
r ’ " q

(20)

with Q := (—Kx, —Dg)" = (—Kx, —D,)". The first inequality follows from [Liul8, Thm
7] and the assumption that (X7, Dg) is K-semistable and the second from (18) and (19). For
the remaining equality, Li’s derivative formula (for example, see [BX19, Prop. 2.12]) gives

dvol(v
DO (1 4+ 1) (B
dt o+
Since the latter is zero, a Taylor expansion implies
— — 1 Q 1
1 = vol Ol=)==+0(-].
vol(vy4) = vol(vo) + <q2> , + <q2>

Using that vol is scaling invariant, we observe
VOl(’Ul/q) = vol(ordEqu) = AYKIK(EKQ)"Hmult(a.(ordEK’q))

and (20) follows.
Comparing (19) and (20), we see

1 (m(ym Ty;bge) > el
1+0 (q%) =\ Ay ri (Bryg)

Since Ay ry (Prq) = Ayr(Ey) = Ayriy, (Ey),

<1

let (Y, Ti; bge) = let (Y, + Y ae(ordg, )
by inversion of adjunction, and (1 + O(q%))l/(”"’l) =1+ O(q%), it follows that

let(Y,I' + Yi; ae (ord
1_O<12>SC(’+ Golorde,))
q Ayriy, (Eq)
Recall, Ay iy, (Ey) = Ayr(Ey) = q/r + A is of order O(q). Therefore,
let(Y, I + Yi; a.(orqu))>

Ayriy, (Eq)

Ayrty, (Eq) —lct(Y, T + Yy ae(ordpg, ) = Ayriv,. (Eq) <1

is of order O(1/q) and the desired limit is 0.
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Claim 2: For ¢ > 0, there exists an extraction F, C Y, £ Y such that
(an ,u*_l(r +Y) + Eq)

is lc. (By an extraction, we mean g is a proper birational morphism, Y; is normal, £,
appears as a divisor on Y, and —E, is y-ample.)

Set e := Ay iy, (Ey) —1ct(Y,I' + Yy; ae(ordg,)). Since limg o gq = 0 by Claim 1, we
may fix ¢ > 0 so that ¢, < 1. Hence, [BX19, Prop. 2.2] may be applied to get an extraction
Yy, =Y of B, with

(Yoo 11T+ Vi) + (1 £q) Ey)
le. Since limy—00 4 = 0, the ACC for log canonical thresholds [HMX14] implies (Y, u; }(T'+
Y,.) + E;) is lc for ¢ > 0 and the proof of the claim is complete.

Since —FEj; is p-ample, @peN 1+ Oy, (—pEy) is a finitely generated Oy-algebra. Using that
110y, (—pEqg) = ap(ordg,) = @ FP ™1V,
m

we see
DO - B .
peEN meN meN p>—mgq
is a finitely generated V-algebra. Since V is a finitely generated R-algebra, it follows that
PP (FPV,,)x~P is finitely generated R[x]-algebra and we may consider the degeneration

m p

(/E 5) — Al by taking Proj.
We also consider the degeneration (V,T) of (Y,T') defined by
y = SpecA}?(éBZapx_p» where ap 1= /‘I/*OYq(iqu) C OY
pE

and T is the degeneration of I' as in [LWX18, Defn. 2. 19]. Since (Yo, i 2T + Yy) + E,) is
lc, a relative version of [LWX18, Lem. 2.20] 1mphes ), L+ yx 0+ y,.i) is lc. Using that
(X,D) is a G- -quotient of an open set of (Y, I), we see (X, D + Xy, + Xy—p) is lc as well.

Observe that (X K DK) — Al is the test configuration induced by the filtration Fr. By
[Fujl7, Section 3.2], this test configuration is normal and its Futaki invariant is a multiple
of Bxy Dk (EK), which is zero. Since Fut(/%?, 15?) = Fut(Xx, Dk) and the latter is zero,
(i;?’ 5f) — Al? must be special (otherwise [LX14, Thm. 1] would imply there exists a test
configuration of (X4, D) with negative Futaki invariant). Appling Lemma 2.15 gives that
the geometric fiber over O is K-semistable.

We will proceed to show (é’? 75) — AL is Q-Gorenstein family of log Fano pairs. Since the
statement holds over {77 # 0} and {z # 0} it remains to consider the behavior over 0 € Ak
Since (X, D + X, + Xp—q) is I, K5+ D is Q-Cartier and, by [Kol13, Prop. 2.32.2], D does
not contain an irreducible component of X N Xy 0. We are left to show that the geometric
fiber over 0 is a log Fano pair.

First, we claim that X, is normal. By Serre’s criterion, it suffices to show that X, is S,
and Ry. To verify the first condition, note that (X, D) is klt, since (X, D + X + Xp—g) is lc
and klt away from {mz = 0}. Therefore, [KM98, Prop. 5.25] implies X is CM and, hence,
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S5. For the second condition, note that Supp(zﬁ + /'szo) has at worst nodes at codimension
two points of X by [Kol13, Prop 2.32.2]. Therefore, X, is Ry in a neighborhood of X,; NAX,—.
Since X, \ Xp—o ~ X, x (A1 \ 0) and X, is Ry, this implies X is Ry.

Now, recall that the Futaki invariant may be written as a combination of intersection
numbers of line bundles and intersections number are locally constant in flat projective
families. Therefore, Fut(/f?, 25f) = Fut(Xg, Dx) and the latter is also zero. Since (X, D)
is K-semistable and Fut(Xs, Dx) = 0, the test configuration (Xg, Dg) — AL must be special
(otherwise [LX14, Theorem 1] would imply there exists a test configuration with negative
Futaki invariant). Applying Lemma 2.15 gives that the fiber over 0 is K-semistable. (]

5.3.2. Proof of ©-reductivity result. We will now deduce Theorem 5.2 from Proposition
5.3.

Proof of Theorem 5.2. Following Section 5.2, the test configuration (Xg, Dx) — A,
corresponds to a Z-filtration Gi of V. By setting

GV = GV NV, for each p € Z ,

we get a filtration G of V,, by subbundles, which restricts to the filtration Gx over
Spec(K). We consider the graded R[z]-algebra D,y D, ez (GPVin) 277 .

Since the test configuration (Xk, D) is special, the filtration Gy is induced by a
divisorial valuation of the form b-ordg, over Xx [Fujl9, Claim 5.4]. Specifically, there
is a divisor Ex over Xg and b € Z~( so that

g?{ VK,m = [T(V"'A+ [p/b] VK,m:

where Fp is the filtration of Vi defined by Ex and A := Ax, p,(Ek).

Observe that Fut(Xg,Dk) = 0. Indeed, Fut(Xx,Dk) = Fut(X, Dr) and the
latter is the same as the Futaki invariant associated to the G,,-action on (X%, Dx)o.
Since the Futaki invariants associated to a G,,-action and its inverse add to zero
[LWX18, Lem. 2.23] and (X, D)o is K-semistable, they must both be zero.

Now, Sx, px(Ek) is a multiple of Fut(Xy, Dk) by [Fujl9, Thm. 5.1]. Therefore,
the value is zero and we may apply Proposition 5.3.1 to see that B, €D, (G"Vin) 277
is a finitely generated R|x]-module. Furthermore, if we set

¥ = Proj,, (D EP @Va) s ™)

meN peN
and D equal to the component-wise closure of D x (A!\ 0) under the embedding
X % (A" 0) ~ X|ppo — X,

then (.}? , 25) — A} is a finite base change of the family considered in Proposition 5.3.

Hence, (X ,5) — AL is a Q-Gorenstein family of log Fano pairs and the geometric
fiber over 0 € A} is K-semistable. By Lemma 2.16, this is the unique extension of
(X,D) — AL\ 0. O
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Proof of Theorem 1.1. The S-completeness and O-reductivity of %ifs‘i statements fol-
low immediately from Theorems 3.3 and 5.2. U

Proof of Corollary 1.2. It follows from Theorem 1.1 and Lemma 2.12 that X is S-
complete and ©-reductive with respect to essentially of finite type DVRs. Theorem
2.9 and Remark 2.10 imply that X has a separated good moduli space. O
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