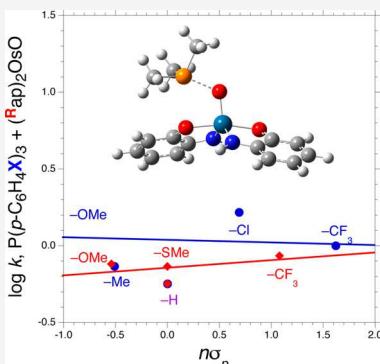


Amphiphilicity in Oxygen Atom Transfer Reactions of Oxbis(iminoxolene)osmium Complexes

Alexander N. Erickson, Jacqueline Gianino, Sean J. Markovitz, and Seth N. Brown*

Cite This: *Inorg. Chem.* 2021, 60, 4004–4014

Read Online


ACCESS |

Metrics & More

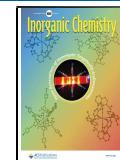
Article Recommendations

Supporting Information

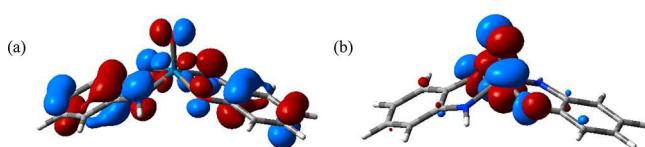
ABSTRACT: Oxbis(iminoxolene)osmium(VI) compounds (^Rap)₂OsO (^Rap = 2-(4-RC₆H₄N)-4,6-^tBu₂C₆H₂O) are readily deoxygenated by phosphines and phosphites to give five-coordinate (^Rap)₂Os(PR'₃) or six-coordinate (^Rap)₂Os(PR'₃)₂. Structural data indicate that this net two-electron reduction is accompanied by apparent oxidation of the iminoxolene ligands due to their greater ability to engage in π donation to the reduced deoxy form of the osmium complex. In (^Rap)₂Os(PR'₃)₂, the HOMO is a ligand-based combination of the iminoxolene redox-active orbitals, while the LUMO is a highly covalent metal-iminoxolene π^* orbital. In the trans isomer, the HOMO is required to be ligand-localized by symmetry, while in the cis isomer, the ligands adopt a conformation that minimizes metal–ligand π^* interactions in the HOMO. Kinetic studies indicate that the deoxygenations involve the rate-determining attack of the phosphorus(III) reagent on the five-coordinate oxo complexes. Varying the substituents of the aryl groups on the iminoxolene ligands or on the triarylphosphines has little effect on the rate of oxygen atom transfer, with the best correlation shown between oxygen atom transfer rates and the HOMO–LUMO gap of the oxo complexes. This suggests that the osmium oxo group shows a balance between electrophilic and nucleophilic character in its oxygen atom transfer reactions with phosphorus(III) reagents.

INTRODUCTION

Oxygen atom transfer (OAT) reactions are two-electron, inner-sphere redox reactions in which an oxygen atom is transferred from the oxidant to the reductant. Such reactions are typically slow between main group (phosphines, sulfides, and alkenes) substrates, but reactions between transition-metal oxo compounds and main group reductants are more rapid, leading to applications of transition-metal oxo compounds in catalysis.


The thermodynamic parameters of OAT reactions have been studied extensively,¹ revealing a large range of oxidizing power in OAT couples from the highly oxidizing (e.g., N₂O/N₂) to the highly reducing (e.g., R₃PO/R₃P). The mechanism of OAT reactions between metal oxo complexes and main group substrates has also been studied extensively, particularly the reactions of phosphines, which react cleanly with most metal oxo compounds to form phosphine oxides. Theoretical² and experimental³ studies of this reaction paint a consistent picture wherein the phosphine attacks the oxo ligand directly to form an intermediate phosphine oxide adduct. An open coordination site at the metal center is not required, and indeed prior coordination of phosphine appears to preclude oxygen atom transfer to it.⁴ The principal orbital interaction in the transition state is a donor–acceptor interaction between the lone pair on phosphorus and the lowest-lying metal–oxygen π^* orbital, so the reaction is well described as a nucleophilic attack of the phosphine at oxygen. This is consistent with substituent studies, where electron-donating

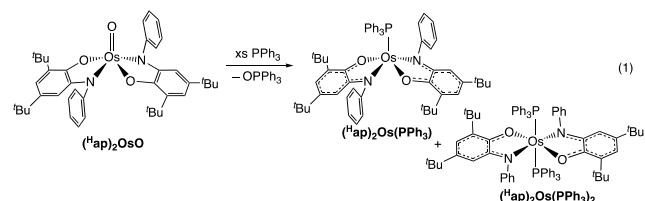
substituents on triarylphosphines^{5–10} and electron-withdrawing substituents on metal oxo complexes^{11–15} lead to enhanced rates. Even oxo compounds that are capable of nucleophilic reactivity, such as complexation with Lewis acids, still display a preference for the oxidation of electron-rich phosphines.¹⁶


We recently reported the preparation and characterization of bis(iminoxolene)osmium oxo compounds (^Rap)₂OsO (^Rap = 2-(p-RC₆H₄N)-4,6-^tBu₂C₆H₂O).¹⁷ Structural and spectroscopic data indicate that the strong π bonding of the metal to the oxo group precludes strong π interactions with the iminoxolenes, which are well described as dianionic amidophenoxy ligands bonded to an osmium(VI) center. The modest π donation of the amidophenoxydes produces noticeable electronic anisotropy in the metal–oxo π bonding, with the *B*-symmetry combination of amidophenoxy donor orbitals (known as the redox-active orbital or RAO of the iminoxolene ligand) interacting appreciably with the OsO π^* orbital that runs from one amidophenoxy to the other but with the *A*-symmetry amidophenoxy combination precluded by symmetry from donating to an OsO π^* orbital. This results

Received: January 8, 2021

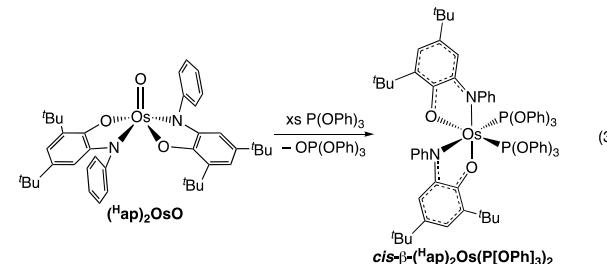
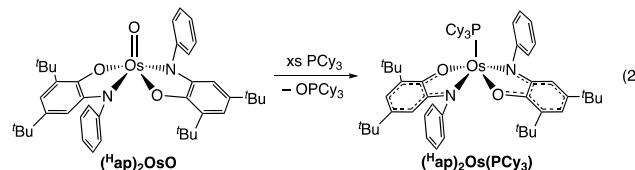
Published: March 3, 2021

in a nucleophilic face of the oxo ligand (where the oxygen p orbital contributes significantly to the HOMO, Figure 1a) and


Figure 1. Bonding anisotropy in the oxo group in $(C_6H_4[NH]-O)_2OsO$. (a) HOMO, oriented roughly parallel to the line connecting the centers of the two iminoxolene ligands. (b) LUMO, oriented roughly perpendicular to the line connecting the centers of the two iminoxolene ligands.

an electrophilic face of the oxo ligand (where the $OsO\pi^*$ orbital does not interact with the iminoxolene π orbitals, Figure 1b). Some nucleophilic reactivity of the oxo groups (reaction with Me_3SiCl or PCl_5 to form osmium dichloride complexes) was described.

Here we describe the reactivity of oxobis(iminoxolene)-osmium complexes with triarylphosphines, tricyclohexylphosphine, and triarylphosphites. The compounds are cleanly deoxygenated to form reduced $(^H\text{ap})_2\text{Os}(\text{PR}'_3)_n$ adducts in which the net reduction is accompanied by partial oxidation of the iminoxolene ligands. Varying the substituents on both the metal oxo compound and on the triarylphosphine results in little change in reactivity, painting a picture of a remarkably amphiphilic metal oxo group.



RESULTS

Scope of OAT Reactions of Oxobis(iminoxolene) osmium Complexes. The treatment of oxobis(iminoxolene) complex $(^H\text{ap})_2\text{OsO}$ with triphenylphosphine results in the rapid (minutes at room temperature) formation of 1 equiv of triphenylphosphine oxide and the formation of a mixture of green monophosphine complex $(^H\text{ap})_2\text{Os}(\text{PPh}_3)$ and brown bis(phosphine) complex $trans-(^H\text{ap})_2\text{Os}(\text{PPh}_3)_2$ (eq 1). The

monophosphine complex precipitates from the reaction mixture if the reaction is carried out in dichloromethane with a stoichiometric amount of phosphine (2 equiv), while the bis(phosphine) adduct can be isolated if the reaction is carried out with excess PPh_3 . Both compounds are diamagnetic by NMR, and ^{31}P NMR spectroscopy indicates that they are in rapid exchange with each other (and with free PPh_3) at room temperature. Para-substituted triarylphosphines behave similarly to PPh_3 , but bulkier triarylphosphines such as tri-*o*-tolylphosphine and trimesitylphosphine do not react with $(^H\text{ap})_2\text{OsO}$, even upon heating.

Other phosphorus(III) reagents also deoxygenate $(^H\text{ap})_2\text{OsO}$. Tricyclohexylphosphine reacts more slowly than PPh_3 (over the course of an hour at 50°C) to give OPCy_3 and the monophosphine adduct $(^H\text{ap})_2\text{Os}(\text{PCy}_3)$ (eq 2). There is no evidence of the formation of a bis(phosphine) adduct by UV-visible or NMR spectroscopy. The observation of sharp,

distinct signals in the ^{31}P NMR for $(^H\text{ap})_2\text{Os}(\text{PCy}_3)$ and free PCy_3 indicates that the formation of a bis(phosphine) adduct is not only thermodynamically unfavorable but also kinetically slow at ambient temperature. Triphenylphosphite is more reactive than triphenylphosphine, reacting to form triphenylphosphite within seconds at room temperature. In this case, the diamagnetic product has two inequivalent, mutually coupled doublets (δ 58.0, 50.8, $J = 62$ Hz) in the $^{31}\text{P}\{^1\text{H}\}$ NMR, indicating the exclusive formation of the unsymmetrical bis(phosphite) adduct $cis\text{-}\beta\text{-}(\text{Hap})_2\text{Os}(\text{P}[\text{OPh}]_3)_2$ (eq 3). The bulkier tri-*o*-tolylphosphite reacts more slowly but gives principally the analogous product, as judged by its ^{31}P NMR spectrum (Figure S1, $\delta = 57.4, 53.2$, with both signals broadened, likely due to exchange with free $\text{P}(\text{O-}o\text{-Tol})_3$). An additional singlet in the ^{31}P NMR (δ 50.7) indicates that this species is accompanied by $\sim 10\%$ of a symmetric isomer.

Species that form weaker bonds to oxygen than trivalent phosphorus do not react with $(^H\text{ap})_2\text{OsO}$. Instead, the oxygen atom transfer reactions go in the reverse direction, with the oxygenated forms of the compounds being deoxygenated by $(^H\text{ap})_2\text{Os}(\text{PPh}_3)_2$. Over the course of several days at room temperature, triphenylarsine oxide and diphenylsulfoxide are deoxygenated to give triphenylarsine and diphenylsulfide, respectively, with the osmium being converted to $(^H\text{ap})_2\text{OsO}$ and the Ph_3P being converted to Ph_3PO . 2,6-Lutidine-*N*-oxide is deoxygenated to give 2,6-lutidine at room temperature; pyridine-*N*-oxide is partially deoxygenated, but the reaction does not give full conversion because binding of the product pyridine to osmium eventually halts the reaction. Molecular oxygen reacts rapidly to give phosphine oxide and $(^H\text{ap})_2\text{OsO}$. While interpreting these data in terms of the thermodynamic stability of the osmium–oxo bond is complicated by the binding and release of triphenylphosphine as deoxygenation takes place, the fact that Ph_3AsO (As–O BDE = 103 kcal mol $^{-1}$)^{1b} is deoxygenated indicates qualitatively that $(^H\text{ap})_2\text{OsO}$ contains a relatively strong osmium–oxygen bond and is thus a thermodynamically weak oxidant.

Structure and Bonding of Deoxygenated $(^H\text{ap})_2\text{OsL}_n$ Compounds. The solid-state structure of $(^H\text{ap})_2\text{Os}(\text{PPh}_3)_2$ (Tables 1 and 2, Figure 2) confirms the trans stereochemistry of the compound. The intraligand bond distances of the iminoxolene ligands can be analyzed using established correlations to estimate the apparent degree of oxidation of the ligands, called the metrical oxidation state (MOS).¹⁸ Strikingly, the intraligand bond distances in $(^H\text{ap})_2\text{Os}(\text{PPh}_3)_2$ are consistent with substantial transfer of electron density to

Table 1. X-ray Crystallography of *trans*-(^Hap)₂Os(PPh₃)₂, *trans*-(^Hap)₂Os(CNC₆H₃-2,6-Me₂)₂·2 CD₂Cl₂, *cis*- β -(^Hap)₂Os(P[OPh]₃)₂·CH₃CN, and *cis*- β -(^Hap)₂Os(P[O-*o*-Tol]₃)(NCCH₃)·CD₂Cl₂

	<i>trans</i> -(^H ap) ₂ Os(PPh ₃) ₂	<i>trans</i> -(^H ap) ₂ Os(CNC ₆ H ₃ -2,6-Me ₂) ₂ ·2 CD ₂ Cl ₂	<i>cis</i> - β -(^H ap) ₂ Os(P[OPh] ₃) ₂ ·CH ₃ CN	<i>cis</i> - β -(^H ap) ₂ Os(P[O- <i>o</i> -Tol] ₃)(NCCH ₃)·CD ₂ Cl ₂
empirical formula	C ₇₆ H ₈₀ N ₂ O ₂ OsP ₂	C ₆₀ H ₆₈ D ₄ Cl ₄ N ₄ O ₂ Os	C ₇₈ H ₈₃ N ₃ O ₈ OsP ₂	C ₆₄ H ₇₄ D ₂ Cl ₂ N ₃ O ₅ OsP
temperature (K)	120(2)	120(2)	120(2)	120(2)
λ (Å)	0.71073 (Mo K α)	0.71073 (Mo K α)	0.71073 (Mo K α)	0.71073 (Mo K α)
crystal system	triclinic	monoclinic	triclinic	triclinic
space group	$P\bar{1}$	$P2_1/n$	$P\bar{1}$	$P\bar{1}$
total data collected	27 410	56 823	81 641	122 638
no. of indep. reflns	7676	7276	17 718	29 715
R_{int}	0.0442	0.0354	0.0460	0.0588
obsd. reflns [$I > 2\sigma(I)$]	7547	5823	15 752	22 297
a (Å)	12.0659(7)	11.520(7)	11.804(2)	10.3998(13)
b (Å)	12.3523(7)	17.819(12)	15.024(3)	24.486(3)
c (Å)	12.5973(7)	14.303(9)	21.624(4)	26.713(3)
α (deg)	71.005(2)	90	77.903(3)	111.521(2)
β (deg)	69.696(2)	95.141(9)	77.677(3)	97.431(2)
γ (deg)	62.731(2)	90	68.709(3)	102.177(2)
V (Å ³)	1533.63(15)	2924(3)	3454.0(12)	6024.0(13)
Z	1	2	2	4
μ (mm ⁻¹)	2.181	2.407	1.951	2.282
crystal size (mm)	0.14 × 0.14 × 0.13	0.26 × 0.19 × 0.13	0.29 × 0.15 × 0.07	0.14 × 0.11 × 0.07
no. refined params	536	466	1161	1461
R indices [$I > 2\sigma(I)$]	R1 = 0.0288, $wR2$ = 0.0518	R1 = 0.0161, $wR2$ = 0.0359	R1 = 0.0280, $wR2$ = 0.0615	R1 = 0.0393, $wR2$ = 0.0893
R indices (all data)	R1 = 0.0299, $wR2$ = 0.0523	R1 = 0.0258, $wR2$ = 0.0391	R1 = 0.0359, $wR2$ = 0.0641	R1 = 0.0657, $wR2$ = 0.0979
goodness of fit	1.030	1.043	1.028	1.031

Table 2. Selected Bond Distances (Å), Metrical Oxidation States (MOS), and Angles (deg) for *trans*-(^Hap)₂Os(PPh₃)₂, *trans*-(^Hap)₂Os(CNC₆H₃-2,6-Me₂)₂·2CD₂Cl₂, *cis*- β -(^Hap)₂Os(P[OPh]₃)₂·CH₃CN, and *cis*- β -(^Hap)₂Os(P[O-*o*-Tol]₃)(NCCH₃)·CD₂Cl₂

	<i>trans</i> -(^H ap) ₂ Os(PPh ₃) ₂	<i>trans</i> -(^H ap) ₂ Os(CNC ₆ H ₃ -2,6-Me ₂) ₂ ·2CD ₂ Cl ₂	<i>cis</i> - β -(^H ap) ₂ Os(P[OPh] ₃) ₂ ·CH ₃ CN	<i>cis</i> - β -(^H ap) ₂ Os(P[O- <i>o</i> -Tol] ₃)(NCCH ₃)·CD ₂ Cl ₂	^a	
	$n = 1$	$n = 1$	$n = 1$	$n = 2$	$n = 1, 3$	$n = 2, 4$
Os—On	2.0537(14)	2.0582(15)	2.0719(15)	2.0306(16)	2.061(3)	2.028(3)
Os—Nn	1.9972(17)	2.0238(17)	2.0142(19)	2.0590(18)	1.990(5)	1.988(3)
Os—Pn	2.4199(6)		2.2330(7)	2.2746(7)	2.216(2)	
Os—C30		2.0126(19)				
C30—N30		1.157(2)				
Os—NCMe						2.069(6)
On—Cn1	1.328(2)	1.3268(19)	1.314(3)	1.331(3)	1.324(5)	1.336(5)
Nn—Cn2	1.390(3)	1.391(2)	1.394(3)	1.380(3)	1.398(6)	1.401(6)
Cn1—Cn2	1.413(3)	1.417(2)	1.428(3)	1.427(3)	1.415(5)	1.412(7)
Cn2—Cn3	1.393(3)	1.415(2)	1.408(3)	1.416(3)	1.405(6)	1.403(7)
Cn3—Cn4	1.379(3)	1.377(2)	1.377(3)	1.387(3)	1.380(11)	1.380(6)
Cn4—Cn5	1.395(3)	1.418(2)	1.419(3)	1.412(3)	1.412(10)	1.409(12)
Cn5—Cn6	1.390(3)	1.393(2)	1.378(3)	1.385(3)	1.381(7)	1.387(5)
Cn6—Cn1	1.415(3)	1.426(2)	1.428(3)	1.419(3)	1.417(6)	1.410(6)
MOS	-1.59(9)	-1.44(10)	-1.33(12)	-1.43(6)	-1.50(11)	-1.63(9)
On—Os—Nn	77.68(6)	78.17(6)	79.33(7)	79.44(7)	79.8(2)	79.58(13)
P1—Os—P2	180.0		87.28(2)			
Os—C30—N30		174.17(14)				
Os—N5—C1					164.3(4)	

^aValues given are the averages of chemically equivalent distances in the two crystallographically distinct molecules. The given esd's combine the variance of the independent values with the esd's of each individual observation.

the osmium, MOS = -1.59(9). These are more oxidized ligands than are found in oxobis(iminoxolene)osmium compounds, which have ligands that are structurally indistinguishable from fully reduced amidophenoxides. No crystal

structure of (^Hap)₂OsO is available, but the MOS of linked bis(amidophenoxide) complex (Egan)OsO, which is spectroscopically very similar to unlinked (^Rap)₂OsO, has a ligand MOS = -1.98(12),¹⁷ and DFT calculations on (ap)₂OsO (ap

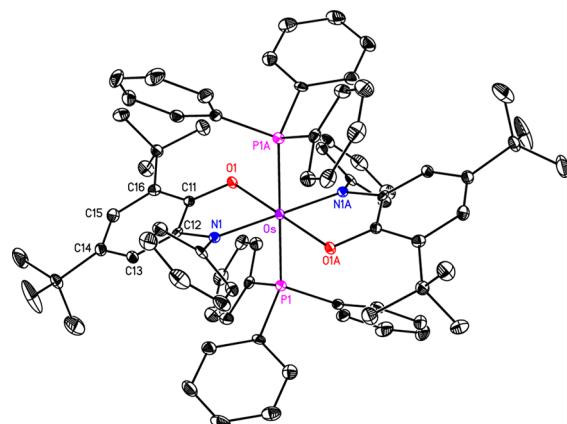


Figure 2. Thermal ellipsoid plot of *trans*-(^Hap)₂Os(PPh₃)₂, with hydrogen atoms omitted for clarity.

= 1,2-OC₆H₄NH) give MOS = −1.92(6). In other words, two-electron reduction of the (^Hap)₂OsO complex is accompanied by a roughly one-electron oxidation of the iminoxolene ligands! This phenomenon is reproduced in DFT calculations on (ap)₂Os(PMe₃)₂, MOS = −1.37(7). The five-coordinate monophosphine complex is calculated to be similar, with (ap)₂Os(PMe₃) having an average MOS = −1.42(5).

While the apparent ligand oxidation is perplexing when viewed from a redox perspective, it makes perfect sense when viewed through the lens of π bonding. The amidophenoxydes in the square-pyramidal oxo complex are not strong π donors because they do not compete effectively with the π donor oxo ligand.¹⁷ The Os=O π^* orbitals are high in energy, so the energy match with the amidophenoxyde redox-active orbital (RAO) is poor. Once (ap)₂OsO is deoxygenated, the osmium d π orbitals fall in energy and the interaction of the B_g combination of RAOs in (ap)₂Os(PR₃)₂ with the d_{xz} orbital becomes quite strong. (The LUMO in Figure 3 is the

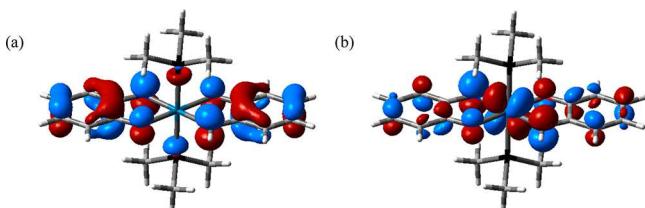


Figure 3. Calculated frontier Kohn–Sham orbitals of *trans*-(C₆H₄[NH]O)₂Os(PMe₃)₂. (a) HOMO and (b) LUMO.

antibonding component of this interaction.) Indeed, studies of other osmium and ruthenium iminoxolenes (without strongly π -bonding ancillary ligands) have concluded that the metal-iminoxolene π bonding involves nearly equal sharing of electrons.¹⁹ The A_u combination has no overlap with the d orbitals and remains purely ligand-centered (Figure 3, HOMO). The average of one fully ligand-centered RAO (MOS = −2) and one highly covalent RAO (MOS ≈ −1) predicts that the product should have an MOS close to −1.5, as observed for (^Hap)₂Os(PPh₃)₂ as well as for isoelectronic (Clip)Os(py)₂ (MOS = −1.68(13)).¹⁹ Put succinctly, the apparent oxidation of the ligands on reduction of (ap)₂OsO to (ap)₂Os(PPh₃)₂ is due to a change in the metal–iminoxolene π bond order from 0 in the oxo complex to 0.5 in the *trans*-diphosphine complex.

The *cis* geometry of (^Hap)₂Os(P[OPh]₃)₂ implied by the presence of inequivalent, mutually coupled phosphorus atoms in its ³¹P NMR spectrum is confirmed by X-ray crystallography (Figure 4). A *cis*-bis(iminoxolene)osmium complex with

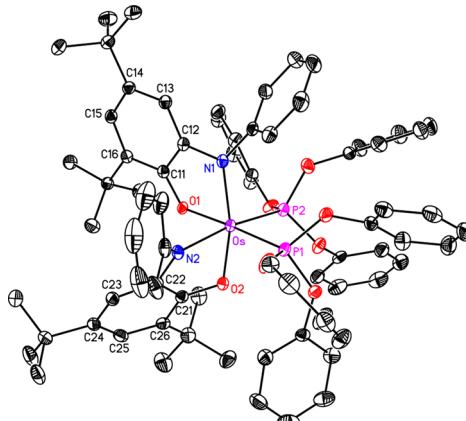


Figure 4. Thermal ellipsoid plot of *cis*- β -(^Hap)₂Os(P[OPh]₃)₂·CH₃CN, with hydrogen atoms and the lattice solvent omitted for clarity.

neutral donors (intramolecularly coordinated thioethers), Os(L_{N,O,S})₂, has been prepared,²⁰ and *cis*-bis(iminoxolene)-ruthenium complexes with neutral donors are also known.^{21,22} In the *trans* geometry, the inversion center means that the ungerade ligand-centered combination is strictly nonbonding, giving rise to two filled d π nonbonding orbitals, one filled metal–ligand π bonding orbital, and one filled ligand-centered nonbonding orbital in the metal complex. In contrast, in the C₂- or pseudo-C₂ symmetry of the *cis* geometry, the d π orbitals transform as 2A + B, so both combinations of the ligand RAOs can interact with the d π orbitals.²³ This would be expected to give rise to two filled metal–ligand π bonding orbitals, one filled nonbonding d π orbital, and one filled metal–ligand π^* orbital.

While this leads to the same net π bond order as the *trans* geometry, DFT calculations on (ap)₂Os(P[OMe]₃)₂ (Figure 5), consistent with those on isoelectronic Os(L_{N,O,S})₂,²⁰ do not

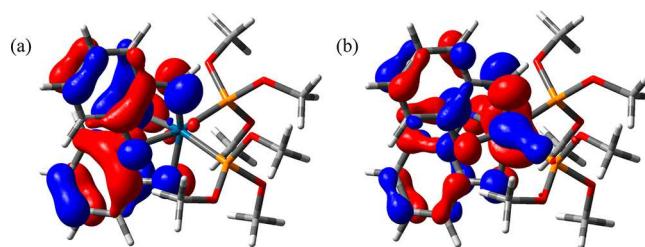


Figure 5. Calculated frontier Kohn–Sham orbitals of *cis*- β -(C₆H₄[NH]O)₂Os(P[OMe]₃)₂. (a) HOMO and (b) LUMO.

support the characterization of the HOMO as metal–ligand antibonding. Instead, the HOMO, which is antisymmetric with respect to the pseudo-2-fold axis, is essentially completely ligand-centered and thus nonbonding. The *cis* and *trans* isomers thus have similar electronic structures. This is borne out by their similar optical spectra, which are dominated by very intense transitions in the red ($\lambda_{\text{max}} = 917$ nm for *trans*-(^Hap)₂Os(PPh₃)₂, 950 nm for *cis*- β -(^Hap)₂Os(P[OPh]₃)₂,

assigned (with the aid of TDDFT calculations) to HOMO \rightarrow LUMO transitions.

Careful inspection of the structures of *cis*-(ap)₂OsX₂ complexes indicates that the compounds with neutral donors adopt conformations where the iminoxolene ligands are twisted so as to minimize their interactions with the metal *B*-symmetry $d\pi$ orbital (Figure 6). As the X–Os–N–C₂

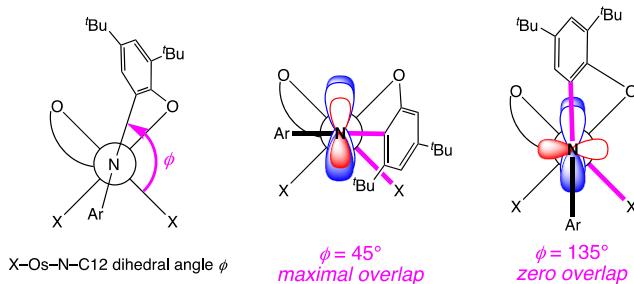


Figure 6. Effect of the iminoxolene–osmium dihedral angle on π overlap in *cis*-(ap)₂OsX₂.

dihedral angle ϕ (or the analogous X–Os–O–C₁ dihedral if the ligand is bound with O axial) increases, the $p\pi$ orbital on the axial donor pivots in such a way as to decrease the overlap with the osmium *B*-symmetry $d\pi$ orbital. (The equatorial donors on the iminoxolenes have essentially no overlap with this $d\pi$ orbital regardless of conformation.) With $\phi = 135^\circ$, there is no overlap between these orbitals, while $\phi = 45^\circ$ corresponds to maximum overlap. In *cis*- β -(^Hap)₂Os(P-[OPh]₃)₂, with dihedral angles of 122.2° (axial O) and 109.1° (axial N), there is expected to be little iminoxolene–osmium overlap, and hence the ligand-centered HOMO is essentially nonbonding. These dihedral angles are reproduced in DFT calculations on *cis*- β -(ap)₂Os(P[OMe]₃)₂ (axial O, $\phi = 109.4^\circ$; axial N, $\phi = 112.8^\circ$). The mono-tri-*o*-tolylphosphite complex *cis*- β -(^Hap)₂Os(P[O-*o*-Tol]₃)(NCCH₃), which crystallizes from a solution of the bis(phosphite) complex layered with acetonitrile (Figure S2), shows average dihedral angles of $\phi = 125.9^\circ$ (axial O) and 91.8° (axial N). Large dihedral angles are observed in Os(L_{N,O,S})₂ ($\phi = 117.7^\circ, 118.9^\circ$ ²⁰ as well as in isoelectronic ruthenium complexes such as (ap)₂Ru(bpy) (three examples, avg $\phi = 121.5^\circ$).²¹

These large dihedral angles are not merely an intrinsic structural bias of the *cis*-bis(iminoxolene) fragment because they change substantially as the electronic structure of the metal complex changes. For example, in *cis*- α -(^Hap)₂OsCl₂, with two fewer π electrons than in (^Hap)₂OsL₂, the *B*-symmetry π orbitals need to accommodate only two (rather than four) electrons, and the complex is expected to have a filled π bonding and empty π^* orbital of this symmetry. This is in agreement with the ligand bond lengths and DFT calculations on this complex, which show strong osmium–iminoxolene π interactions involving these orbitals. Here, where the π overlap is energetically favorable, the complex adopts a conformation with a drastically smaller dihedral angle ($\phi = 68.3^\circ$).¹⁷ Similar angles are observed in *cis*- β -(Clip)OsCl₂ (67.6 and 69.7°),¹⁹ *cis*- α -(^Hap)₂Os(OCH₂CH₂O) (67.8 and 68.2°),¹⁷ and ruthenium complex (^Hap)(PhNHC₆H₄NH)-RuCl₂ (77.6°).²⁴ The shift from a repulsive filled–filled π interaction to a favorable filled–empty π interaction thus results in a conformational shift in the ligand dihedral angle of about 50°.

The phosphite complex has slightly more positive MOS values than does the phosphine complex. While this might be due to differences in bonding between the *cis* and *trans* geometries, it is more likely due to the greater π -acceptor capabilities of the phosphite ligands. Consistent with this, isonitrile complex *trans*-(^Hap)₂Os(CNC₆H₃-2,6-Me₂)₂, crystallized from the reaction of *trans*-(^Hap)₂Os(PPh₃)₂ and xylyl isonitrile (Table 1, Figure S3), has an MOS value of $-1.44(10)$ (Table 2), similar to those in the *cis*-bis(phosphite) compound. Analogously, *cis*- β -(^Hap)₂Os(P[O-*o*-Tol]₃)(NCCH₃), where one π -acceptor phosphite has been replaced by acetonitrile, has a more negative MOS (-1.57 avg) than the bis(phosphite) complex, similar to the *trans* bis(phosphine) complex.

Kinetics of Oxygen Atom Transfer Reactions. The reaction of triphenylphosphine with brown oxo complex (^Hap)₂OsO to form a mixture of (^Hap)₂Os(PPh₃) ($\lambda_{\text{max}} = 654$ nm) and (^Hap)₂Os(PPh₃)₂ ($\lambda_{\text{max}} = 917$ nm) can be monitored by optical spectroscopy (Figure 7). The observation

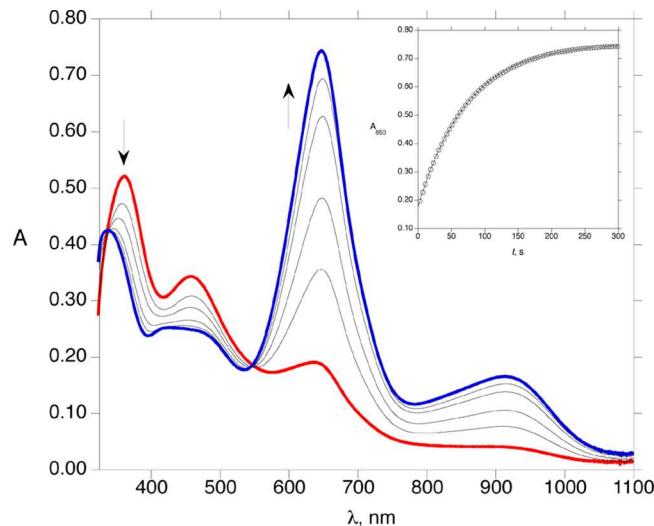
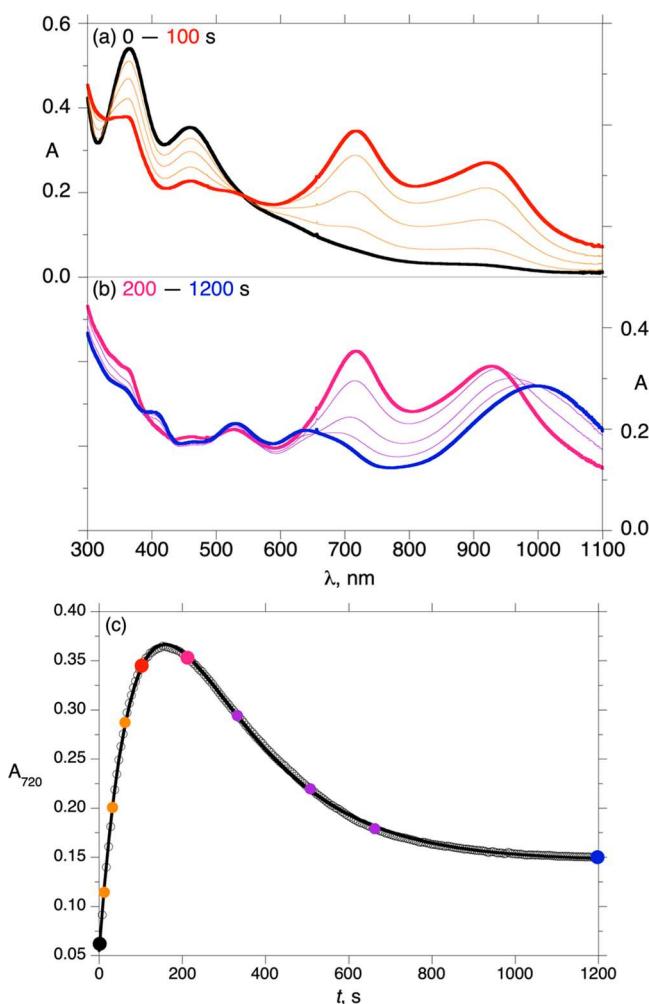



Figure 7. Successive optical spectra for the reaction of (^Hap)₂OsO (3.42×10^{-5} M) with PPh₃ (0.0327 M) in CH₂Cl₂ at 23 °C. Spectra are shown at $t = 2$ (red), 27, 55, 111, 165, and 275 s (blue). Inset: A_{650} as a function of time. The solid line is a fit to exponential decay.

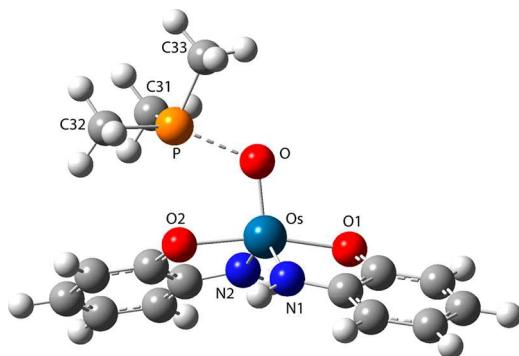
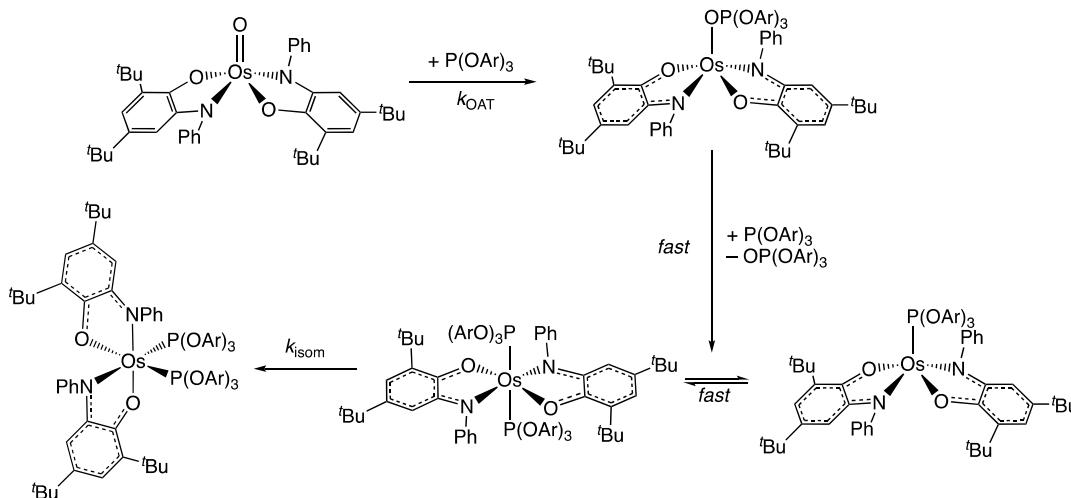
of an isosbestic point confirms that the reaction cleanly produces the two phosphine adducts in their equilibrium ratio, and the absorbance changes over time in the presence of excess phosphine conform to exponential decay (Figure 7 inset). Increasing the concentration of phosphine causes an enhancement of the 917 nm absorption at the expense of the 654 nm absorption as the product equilibrium increasingly favors (^Hap)₂Os(PPh₃)₂, and a linear increase in k_{obs} with increasing [PPh₃] is observed (Figure S4). These data indicate that the reaction is first order in both (^Hap)₂OsO and in PPh₃, with an overall second-order rate constant of $0.57(6)$ L mol⁻¹ s⁻¹ (CH₂Cl₂, 23 °C). Entirely analogous behavior is observed in reactions of (^Hap)₂OsO with para-substituted triarylphosphines P(C₆H₄X)₃ (X = CH₃, Cl, CH₃O, and CF₃; Figure S4) and in reactions of iminoxolene complexes (^Rap)₂OsO substituted in the para position of the N-phenyl group (R = CH₃O, CH₃S, or CF₃) with PPh₃ (Figure S5).

Reactions of (^Rap)₂OsO with tri-*ortho*-tolylphosphite take a different kinetic course, with the absorbances at long wavelength showing a rapid rise followed by a slower fall, consistent with the formation of a long-lived intermediate in

this reaction. An inspection of the optical spectra taken at time points near the maximum in absorbance (Figure 8), where the

Figure 8. UV-visible monitoring of the reaction of $(^H\text{ap})_2\text{OsO}$ (3.28×10^{-5} M) with $\text{P}(\text{O}-\text{o-Tol})_3$ (2.37×10^{-3} M) in CH_2Cl_2 at 22.4°C . (a) Successive optical spectra from 0 to 100 s. (b) Successive optical spectra from 200 to 1200 s. (c) A_{720} as a function of time. The solid line is a fit to successive irreversible pseudo-first-order reactions. The highlighted time points correspond to the spectra in (a) and (b).

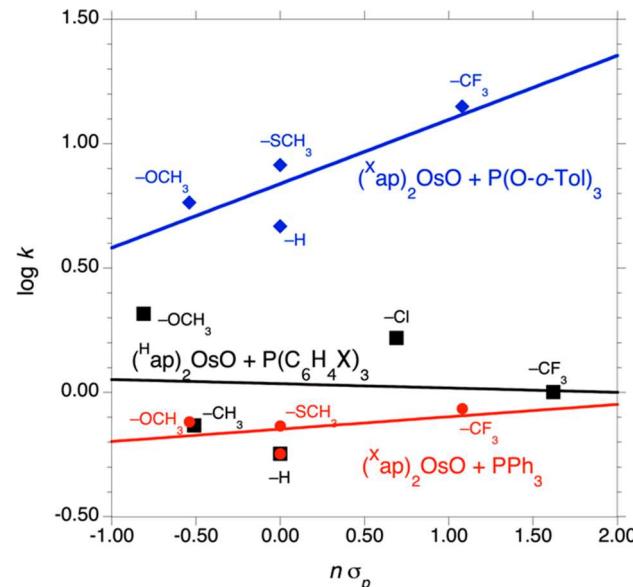
intermediate is near its maximal concentration, show a marked resemblance to those shown by the equilibrium mixture of $(^R\text{ap})_2\text{Os}(\text{PAr}_3)$ and *trans*- $(^R\text{ap})_2\text{Os}(\text{PAr}_3)_2$ that is formed in the reaction of triarylphosphines with $(^R\text{ap})_2\text{OsO}$. The initial phase of the reaction is thus assigned to the oxidation of phosphite to phosphate, with the initial formation of rapidly equilibrating $(^R\text{ap})_2\text{Os}(\text{P}[\text{O}-\text{o-Tol}]_3)$ and *trans*- $(^R\text{ap})_2\text{Os}(\text{P}[\text{O}-\text{o-Tol}]_3)_2$, followed by subsequent slower isomerization to the final product, *cis*- β - $(^R\text{ap})_2\text{Os}(\text{P}[\text{O}-\text{o-Tol}]_3)_2$. While the dependence of $k_{2(\text{obs})}$ on $[\text{P}(\text{OAr})_3]$ is complex, $k_{1(\text{obs})}$ is linearly dependent on phosphite concentration (Figure S6), and the second-order rate constant k_1 is thus assigned to the direct oxygen atom transfer reaction of phosphite with the osmium–oxo group to give the phosphate complex, which is displaced rapidly by phosphite (Scheme 1). Triphenylphosphite shows a similar time course in its reactions with $(^H\text{ap})_2\text{OsO}$, but with a rate constant for atom transfer that is an order of magnitude faster than that shown by the bulkier tri(*o*-tolyl)phosphite (82(8) vs 4.66(6) $\text{L mol}^{-1} \text{s}^{-1}$).



■ DISCUSSION

The accepted mechanism for oxygen atom transfer between metal oxo complexes and phosphorus(III) reagents involves the direct attack of R_3P on the oxygen atom of the metal oxo complex to form an intermediate $\text{M}(\text{OPR}_3)$ complex.^{2,3,5} While this intermediate is not observed in reactions of $(^R\text{ap})_2\text{OsO}$ with R_3P , presumably due to rapid displacement of the weakly binding phosphorus(V) compound by phosphine or phosphite, all other experimental data are in agreement with this mechanism. For example, reactions are uniformly first order in osmium and first order in PR_3 , with increases in the steric bulk of the phosphine or phosphite resulting in significant decreases in the reaction rate. DFT calculations find a transition state for the addition of PMe_3 to $(\text{ap})_2\text{OsO}$ (Figure 9) with $\Delta G^\ddagger = 22.4 \text{ kcal mol}^{-1}$, in qualitative agreement with the observed $\Delta G^\ddagger = 17.7 \text{ kcal mol}^{-1}$ for the reaction of PPh_3 with $(^H\text{ap})_2\text{OsO}$. Reaction to form the phosphine oxide adduct is calculated to be exoergic by 8.5 kcal mol^{-1} (calculated $\Delta H^\circ = -20.2 \text{ kcal mol}^{-1}$), and the displacement of OPMe_3 by PMe_3 is calculated to be exoergic by 14.9 kcal mol^{-1} .

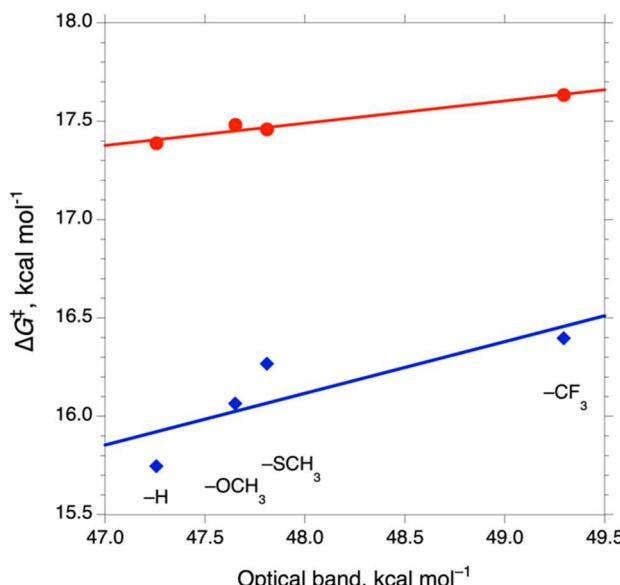
The phosphine is calculated to approach the oxo group almost directly over the osmium–iminoxolene oxygen bond ($\text{O}_2\text{–Os–O–P}$ dihedral angle of 0.6°). This is well aligned with the complex's LUMO (Figure 1), consistent with a reaction that, at least computationally, involves some degree of donation of the phosphorus lone pair to the osmium–oxo π^* orbital. This result suggests that the iminoxolene-induced anisotropy in the metal–oxo bond, previously observed spectroscopically,¹⁷ may have consequences in chemical reactions.

The geometry at phosphorus in the transition state resembles a sawhorse much more than a tetrahedron (e.g., $\text{O–P–C}32$ angle of 150.2°). This geometry has been observed in calculations on the addition of phosphines to a terminal iron nitride, where it was interpreted as evidence of the nucleophilic character of the nitride in the atom-transfer reaction, consistent with Hammett studies indicating faster reactions of electron-poor triarylphosphines.²⁵ However, sawhorse-like geometry has also been seen in calculations on reactions of phosphines with dioxomolybdenum(VI) compounds,² which are experimentally electrophilic at oxygen,^{11,14,15} so this phenomenon may be an artifact of the generally early transition states of these highly exothermic reactions.


Experimentally, the rate of reaction of $(^R\text{ap})_2\text{OsO}$ with phosphorus(III) reagents is remarkably insensitive to substituent effects on either the metal complex or on the phosphine, with no trend in the reaction rate with the Hammett substituent constant (Figure 10). Both electron-donating and electron-withdrawing substituents (on either the ligand or the phosphine) increase the reaction rate relative to hydrogen, but the effects are universally small. All second-order rate constants for reactions with triarylphosphines, for example, are within a factor of 3.6 of the rate constant for the reaction of $(^H\text{ap})_2\text{OsO}$ with PPh_3 . The observed lack of correlation of OAT rates with substituents on triarylphosphines is unprecedented; all previous reactions have shown faster reactions with more electron-donating substituents, though previously observed effects have often been modest.^{5–10} Since phosphites are more electron-poor than phosphines, one might have expected them to behave more electrophilically toward a nucleophilic metal oxo complex, but if anything, the reverse is

Scheme 1. Proposed Reaction Mechanism of $(^{\text{H}}\text{ap})_2\text{OsO}$ with $\text{P}(\text{OAr})_3$

Figure 9. Transition state for oxygen atom transfer from $(\text{ap})_2\text{OsO}$ to PMe_3 as calculated by DFT (B3LYP, SDD basis for Os, 6-31G* for all other atoms). Selected bond distances (Å): Os–O, 1.786; Os–O1, 2.035; Os–O2, 2.039; Os–N1, 1.919; Os–N2, 1.926; P–O, 2.149. Selected bond angles (deg): N1–Os–N2, 125.7; O1–Os–O2, 166.5; Os–O–P, 119.6; O–P–C32, 150.2. MOS: ring 1, $-1.80(6)$; ring 2, $-1.87(4)$.


observed here, with the Hammett plot for the reaction of $\text{P}(\text{O}-\text{o-Tol})_3$ with $(^{\text{X}}\text{ap})_2\text{OsO}$ showing the steepest positive slope (though still very small, $\rho = 0.26(12)$).

Apparently, oxygen atom transfer from osmium to phosphorus involves similar amounts of (back)-donation from oxygen to phosphorus as it does donation from phosphorus to oxygen. Consistent with this, the rates of oxygen atom transfer correlate inversely with the HOMO–LUMO gaps in the oxo complexes (Figure 11), as gauged by the energy of the longest-wavelength optical transition, though the effect is again small, as it must be given the modest total spread in reaction rates. It has been observed that optical transitions in amidophenoxy complexes are not well correlated with the electron-donating or -accepting character of the *N*-aryl substituents.²⁶ The fact that OAT reaction rates correlate better with the optical bands than the Hammett constants suggests that the combination of the ability to accept electrons from the phosphorus (associated with a low-lying HOMO, Figure 1b) with the ability to donate electrons from oxygen to phosphorus (associated with a high-lying HOMO, Figure 1a) is what governs the rate rather than one effect dominating the other.

Figure 10. Hammett plot for the reaction of $(^{\text{X}}\text{ap})_2\text{OsO}$ with PPh_3 ($\log k$ vs $2\sigma_p$, red ●), the reaction of $(^{\text{H}}\text{ap})_2\text{OsO}$ with $\text{P}(\text{C}_6\text{H}_4\text{X})_3$ ($\log k$ vs $3\sigma_p$, ■), and the reaction of $(^{\text{X}}\text{ap})_2\text{OsO}$ with $\text{P}(\text{O}-\text{o-Tol})_3$ ($\log k$ vs $2\sigma_p$, blue ♦).

Why do bis-iminolene complexes $(^{\text{X}}\text{ap})_2\text{OsO}$ show a balance between electrophilic and nucleophilic character in their reactions with phosphines, where previously studied metal–oxo complexes have acted predominantly as electrophiles? A plausible explanation arises from the increasing degree of π donation from the iminolenes as the atom transfer proceeds, as witnessed by the striking increase in the apparent oxidation state of the iminolenes in the deoxygenated products compared to the reactants. This trend is partially realized in the transition state (calculated average MOS = $-1.84(5)$). The increase in π donation from the iminolenes as the reaction proceeds means that the transition state is expected to be better stabilized by more electron-rich ligands, which predicts an atypically rate-accelerating effect of electron-donating substituents on the metal complex. Since the iminolene–osmium π -donor interaction has metal–oxo π^* character (Figure 1a), the oxo group is expected to develop more electron density in the

Figure 11. Correlation of the barrier to OAT with the energy of the long-wavelength optical band in reactions of $(^X\text{ap})_2\text{OsO}$ with PPh_3 (red ●) and with $\text{P}(\text{O}-\text{o-Tol})_3$ (blue ♦).

transition state compared to reactions of complexes with less electronically flexible ancillary ligands. This would enhance the importance of any back-donation to phosphorus in the transition state. Thus, in addition to the stereodirecting effects of the π -donor iminoxolene ligands, steering the substrate toward the LUMO located between the iminoxolene ligands, the iminoxolene π donation also appears to affect the polarization of the transition state, rendering the oxo group amphiphilic.

CONCLUSIONS

Bis-iminoxolene osmium–oxo compounds $(^R\text{ap})_2\text{OsO}$ undergo rapid oxygen atom transfer reactions with phosphines and phosphites to form deoxygenated species $(^R\text{ap})_2\text{OsL}_n$. Compounds with weaker bonds to oxygen than in R_3PO , such as sulfoxides and triphenylarsine oxide, are deoxygenated by $(^R\text{ap})_2\text{OsL}_n$. In the reduced osmium complexes, one combination of π orbitals on the iminoxolene ligands can engage in strong π bonding with the osmium, resulting in the counterintuitive result that this two-electron reduction of the complexes results in an apparent oxidation of the ligands due to their enhanced ability to donate to the metal center. In *trans*- $(^R\text{ap})_2\text{OsL}_2$, one ligand π combination is strictly nonbonding by symmetry, while in *cis*- $(^R\text{ap})_2\text{OsL}_2$, one ligand π combination is rendered essentially nonbonding by twisting of the iminoxolene ligands. The electronic effects of substituents either on the iminoxolene ligand or on triarylphosphines on the kinetics of oxygen atom transfer are extremely small, contrasting with the more common observation of the electrophilic behavior of metal oxo complexes in their reactions with phosphines. The amphiphilic behavior of $(^R\text{ap})_2\text{OsO}$ is consistent with the unusual ability of the iminoxolenes to π donate to osmium.

EXPERIMENTAL SECTION

Unless otherwise noted, procedures were carried out in an inert-atmosphere glovebox. Deuterated solvents were obtained from Cambridge Isotope Laboratories and were vacuum transferred from appropriate drying agents and then stored in the glovebox before use.

CD_2Cl_2 was dried over molecular sieves and then CaH_2 . Benzene- d_6 and toluene- d_8 were dried over sodium. Protio solvents were purchased as anhydrous grades from Acros, except for methanol, which was dried over 4 Å molecular sieves. Dry solvents were stored in the glovebox prior to use. NMR spectra were recorded on a Bruker Avance DPX 400 or 500 spectrometer. Chemical shifts for ^1H and $^{13}\text{C}\{^1\text{H}\}$ spectra are reported in ppm downfield from TMS, with spectra referenced using the known chemical shifts of the solvent residuals. $^{31}\text{P}\{^1\text{H}\}$ NMR spectra are reported in ppm downfield of external 85% H_3PO_4 . Infrared spectra were measured on a Jasco-6300 FT-IR spectrometer as Nujol mulls pressed between NaCl plates. UV-visible–NIR spectra were recorded in 1 cm quartz cells on a Jasco V-670 spectrophotometer. Elemental analyses were performed by Robertson Microlit Laboratories (Leweswood, NJ).

Oxobis(iminoxolene) complexes $(^R\text{ap})_2\text{OsO}$ ($R = \text{H}$, CH_3O , CH_3S , and CF_3) were synthesized as described previously.¹⁷ All other reagents were commercially available and were used as received.

$(^H\text{ap})_2\text{Os}(\text{PPh}_3)$. In a 50 mL round-bottomed flask were combined 0.5047 g of $(^H\text{ap})_2\text{OsO}$ (0.633 mmol), 0.3821 g of PPh_3 (1.45 mmol, 2.29 equiv), and 25 mL of CH_2Cl_2 . The flask was stoppered and allowed to stir overnight. The dark-green solution was filtered on a glass frit, and the solid was washed with 2×2 mL Et_2O followed by 1×1 mL CH_2Cl_2 to give 0.5957 g of (90%) $(^H\text{ap})_2\text{Os}(\text{PPh}_3)$ as a dark-green solid, which was stored at -30°C . ^1H NMR spectroscopy showed that the isolated material was contaminated with $\sim 2\%$ $(^H\text{ap})_2\text{OsO}$ and $\sim 2\%$ OPPh_3 , precluding satisfactory elemental analysis. ^1H NMR (CD_2Cl_2): δ 7.46 (t, 7.5 Hz, 4H, *m*-Ph of ^Hap), 7.20 (t, 7.5 Hz, 3H, *p*- PPh_3), 7.12 (t, 7.5 Hz, 2H, *p*-Ph of ^Hap), 7.06 (t, 7 Hz, 6H, *p*- PPh_3), 6.78 (d, 7 Hz, 6H, *o*-Ph of ^Hap), 6.66 (dd, 12, 8 Hz, 6H, *o*- PPh_3), 6.63 (s, 4H, 3,5-H of ^Hap), 1.40 (s, 18H, *t*_{Bu}), 1.30 (s, 18H, *t*_{Bu}). $^{13}\text{C}\{^1\text{H}\}$ NMR (CD_2Cl_2): δ 182.96 (^Hap CO), 155.11, 154.93, 137.60 (d, $J_{\text{PC}} = 62$ Hz, PC), 136.06, 133.77, 133.49 (d, $J_{\text{PC}} = 10$ Hz), 131.57, 130.16, 128.23 (d, $J_{\text{PC}} = 11$ Hz), 127.99, 126.72, 120.27, 112.88, 35.30 ($\text{C}(\text{CH}_3)_3$), 34.24 ($\text{C}(\text{CH}_3)_3$), 31.90 ($\text{C}(\text{CH}_3)_3$), 30.01 ($\text{C}(\text{CH}_3)_3$). $^{31}\text{P}\{^1\text{H}\}$ NMR (toluene- d_8): δ -47.50 . IR (nujol mull, cm^{-1}): 3063 (w), 1588 (s), 1548 (m), 1484 (s), 1435 (s), 1301 (s), 1254 (s), 1232 (m), 1204 (s), 1165 (m), 1095 (s), 1073 (w), 1026 (m), 1001 (m). UV-vis–NIR (CH_2Cl_2): $\lambda_{\text{max}} = 359$ nm ($\epsilon = 14\,000$ L mol $^{-1}$ cm^{-1}), 471 nm (10 000), 654 nm (22 000), 975 nm (1200), 1220 nm (800).

$(^H\text{ap})_2\text{Os}(\text{PPh}_3)_2$. A mixture of 0.1140 g of $(^H\text{ap})_2\text{OsO}$ (0.143 mmol) and 0.1930 g of PPh_3 (0.736 mmol, 5.15 equiv) was stirred overnight in 2.5 mL of CH_2Cl_2 . The dark-green solution was filtered through a glass frit, and the solid was washed with 3×3 mL Et_2O and dried for 20 min to give 0.1640 g of *trans*- $(^H\text{ap})_2\text{Os}(\text{PPh}_3)_2$ (88%). ^1H NMR (CD_2Cl_2): δ 7.40 (t, 7 Hz, 4H, *m*-Ph of ^Hap), 7.25 (t, 7 Hz, 6H, *p*- PPh_3), 7.17 (t, 6.7 Hz, 12H, *m*- PPh_3), 7.06 (t, 7 Hz, 2H, *p*-Ph of ^Hap), 6.95 (t, 8 Hz, 12H, *o*- PPh_3), 6.74 (d, 7 Hz, 4H, *o*-Ph of ^Hap), 6.58 (s, 4H, 3,5-H of ^Hap), 1.35 (s, 18H, *t*_{Bu}), 1.25 (s, 18H, *t*_{Bu}). $^{13}\text{C}\{^1\text{H}\}$ NMR (CD_2Cl_2): δ 183.25 (^Hap CO), 155.36, 155.22, 137.67 (m, PC), 136.23, 133.95 (m), 131.74, 129.60 (m), 128.70 (m), 128.17, 126.87, 120.52, 113.17, 35.50 ($\text{C}(\text{CH}_3)_3$), 34.44 ($\text{C}(\text{CH}_3)_3$), 32.10 ($\text{C}(\text{CH}_3)_3$), 30.27 ($\text{C}(\text{CH}_3)_3$). $^{31}\text{P}\{^1\text{H}\}$ NMR (CD_2Cl_2): δ -28.77 (v br). IR (Nujol mull, cm^{-1}): 3054 (w), 1585 (m), 1571 (w), 1538 (m), 1395 (m), 1389 (m), 1378 (m), 1365 (m), 1293 (s), 1270 (w), 1256 (w), 1239 (s), 1200 (s), 1168 (m), 1088 (m), 1076 (w), 1024 (m), 1001 (m). Anal. Calcd for $\text{C}_{76}\text{H}_{80}\text{N}_2\text{O}_2\text{OsP}_2$: C, 69.91; H, 6.18; N, 2.15. Found: C, 69.76; H, 6.15; N, 2.23.

$(^H\text{ap})_2\text{Os}(\text{PCy}_3)$. To a 20 mL scintillation vial was added 0.3563 g of $(^H\text{ap})_2\text{OsO}$ (0.447 mmol), 0.2780 g of PCy_3 (0.991 mmol, 2.22 equiv), 7 mL of C_6H_6 , and a stir bar. The vial was sealed with a Teflon-lined cap, taken out of the drybox, and stirred for 1.5 h in a 70°C oil bath. The solution was cooled to room temperature and taken into the drybox, where the solution was filtered through a frit. The filtrate was collected, and the solvent was removed on a vacuum line. In the drybox, the residue was dissolved in 10 mL of methanol and the solution was placed in a clean scintillation vial. After standing for 3 days at room temperature, the mixture was filtered through a glass frit and the solid was washed with 2×3 mL of MeOH, furnishing 0.3983

g of $(^{\text{H}}\text{ap})_2\text{Os}(\text{PCy}_3)_2$ (84%). ^1H NMR (C_6D_6): δ 7.35 (s, 2H, $^{\text{H}}\text{ap}$ H-3 or -5), 7.13 (s, 2H, $^{\text{H}}\text{ap}$ H-3 or -5), 7.12 (br s, 4H, *o*- or *m*-Ph), 7.01 (t, 7.2 Hz, 2H, *p*-Ph), 6.79 (v br, 4H, *o*- or *m*-Ph), 2.18 (q, 11.5 Hz, 3H, PCy_3), 1.90 (d, 11 Hz, 3H, PCy_3), 1.72 (obscured by $^{\text{Bu}}$ peak, 3H, PCy_3), 1.71 (s, 18H, $^{\text{Bu}}$), 1.51 (d, 12 Hz, 3H, PCy_3), 1.46 (q, 12.5 Hz, 3H, PCy_3), 1.33 (m, 9H, PCy_3), 1.27 (s, 18H, $^{\text{Bu}}$), 1.10 (q, 13 Hz, 3H, PCy_3), 1.02 (q, 12.5 Hz, 3H, PCy_3), 0.76 (q, 12.5 Hz, 3H, PCy_3). $^{13}\text{C}\{^1\text{H}\}$ NMR (C_6D_6): δ 177.88 ($^{\text{H}}\text{ap}$ CO), 160.32, 159.96, 136.45, 134.41, 128.83 (br), 128.35, 126.32, 118.28, 109.84, 40.95 (d, $^1\text{J}_{\text{PC}} = 26$ Hz, PC), 35.88 ($\text{C}(\text{CH}_3)_3$), 34.40 ($\text{C}(\text{CH}_3)_3$), 32.24 ($\text{C}(\text{CH}_3)_3$), 31.22, 31.10 ($\text{C}(\text{CH}_3)_3$), 29.18, 27.54 (d, $J_{\text{PC}} = 11$ Hz), 27.40 (d, $J_{\text{PC}} = 11$ Hz), 26.68. $^{31}\text{P}\{^1\text{H}\}$ NMR (C_6D_6): δ -14.44. IR (Nujol mull, cm^{-1}): 1589 (s), 1555 (w), 1404 (w), 1379 (s), 1360 (s), 1328 (m), 1307 (m), 1294 (m), 1278 (m), 1258 (s), 1246 (s), 1232 (s), 1193 (m), 1175 (s), 1129 (w), 1105 (w), 1075 (w), 1039 (w), 1025 (m), 1002 (m). UV-vis-NIR (CH_2Cl_2): $\lambda_{\text{max}} = 356$ nm ($\epsilon = 16\,000\, \text{L mol}^{-1} \text{cm}^{-1}$), 501 nm (11 000), 591 nm (12 000), 910 nm (2200), 1305 nm (1600). Anal. Calcd for $\text{C}_{58}\text{H}_{65}\text{N}_2\text{O}_2\text{OsP}$: C, 65.63; H, 7.88; N, 2.64. Found: C, 65.51; H, 7.31; N, 2.64.

cis- β -($^{\text{H}}\text{ap}$) $_2\text{Os}(\text{P}[\text{OPh}]_3)_2$. To a 20 mL glass vial in the drybox was added 0.3914 g of $(^{\text{H}}\text{ap})_2\text{OsO}$ (0.491 mmol), 10 mL of CH_2Cl_2 , 387 μL of triphenylphosphite (1.48 mmol, 3.01 equiv), and a stir bar. The solution changed from dark brown to dark purple upon addition of the phosphite. The vial was capped, and the reaction mixture was stirred for 24 h. The solution was filtered through a fritted glass funnel in the drybox, and the solvent was evaporated from the filtrate on the vacuum line. To the dark residue was added 2 mL of CH_3CN . After standing for 3 days under nitrogen, the precipitated solid was isolated by suction filtration and the dark crystals were washed with 2 \times 1 mL of CH_3CN and dried for 20 min, furnishing 0.2208 g of (32%) *cis*- β -($^{\text{H}}\text{ap}$) $_2\text{Os}(\text{P}[\text{OPh}]_3)_2$. ^1H NMR (400 MHz, toluene- d_8 , 21 $^{\circ}\text{C}$): δ 8.20 (br, 1H), 7.49 (br, 1H), 7.39 (s, 1H), 7.22 (br, 2H), 7.11 (t, 8 Hz, 3H), 7.05 (t, 7 Hz, 2H), 6.94 (s, 2H), 6.91 (s, 1H), 6.87 (s, 1H), 6.80–6.58 (m, 30H), 1.60 (s, 9H, $^{\text{Bu}}$), 1.32 (s, 9H, $^{\text{Bu}}$), 1.20 (s, 9H, $^{\text{Bu}}$), 1.08 (s, 9H, $^{\text{Bu}}$). ^1H NMR (400 MHz, CD_2Cl_2 , -58 $^{\circ}\text{C}$): δ 8.32 (d, 8 Hz, 1H), 7.64 (t, 8 Hz, 1H), 7.37 (t, 8 Hz, 1H), 7.22 (m, 2H), 7.14–6.94 (m, 6H), 6.92–6.65 (m, 22H), 6.41 (d, 7 Hz, 6H), 6.23 (d, 8 Hz, 6H), 1.20 (s, 9H, $^{\text{Bu}}$), 1.17 (s, 9H, $^{\text{Bu}}$), 1.13 (s, 9H, $^{\text{Bu}}$), 0.55 (s, 9H, $^{\text{Bu}}$). $^{13}\text{C}\{^1\text{H}\}$ NMR (CD_2Cl_2 , -58 $^{\circ}\text{C}$): δ 177.66 ($^{\text{H}}\text{ap}$ CO), 166.51 ($^{\text{H}}\text{ap}$ CO), 160.14, 158.15, 154.28, 152.48 (d, 14 Hz, POC), 151.53 (d, 14 Hz, POC), 150.43, 142.21, 139.39, 137.08, 136.44, 131.05, 129.06, 128.70, 128.37, 128.11, 127.87, 127.74, 126.97, 125.52, 125.05, 124.00, 123.73, 123.05, 120.43, 119.48, 118.35, 112.44, 111.67, 34.60 ($\text{C}(\text{CH}_3)_3$), 34.56 ($\text{C}(\text{CH}_3)_3$), 34.13 ($\text{C}(\text{CH}_3)_3$), 33.96 ($\text{C}(\text{CH}_3)_3$), 30.85 (2C, $\text{C}(\text{CH}_3)_3$), 29.12 ($\text{C}(\text{CH}_3)_3$), 27.51 ($\text{C}(\text{CH}_3)_3$). $^{31}\text{P}\{^1\text{H}\}$ NMR (toluene- d_8 , 21 $^{\circ}\text{C}$): δ 57.96 (d, 64 Hz), 50.82 (d, 64 Hz). IR (cm^{-1}): 3062 (w), 3041 (w), 3027 (w), 3013 (w), 2999 (w), 2952 (w), 2904 (w), 2866 (w), 1937 (w), 1729 (w), 1590 (m), 1537 (w), 1489 (m), 1455 (w), 1431 (w), 1397 (w), 1382 (w), 1361 (w), 1327 (w), 1304 (w), 1286 (w), 1252 (w), 1226 (m), 1196 (s), 1183 (m), 1160 (m), 1118 (w), 1071 (w), 1024 (m), 1006 (w), 1000 (w), 993 (w), 961 (w), 924 (m), 911 (s), 901 (s), 865 (m), 829 (w), 766 (m), 754 (s), 737 (m), 727 (m), 714 (m), 704 (m), 687 (s), 667 (w), 661 (w). UV-vis (CH_2Cl_2): $\lambda_{\text{max}} = 362$ nm ($\epsilon = 6400\, \text{L mol}^{-1} \text{cm}^{-1}$), 444 (2400), 522 (3400), 668 (2300), 950 (8400). Anal. Calcd for $\text{C}_{76}\text{H}_{80}\text{N}_2\text{O}_8\text{OsP}_2$: C, 65.13; H, 5.75; N, 2.00. Found: C, 64.85; H, 5.82; N, 1.98.

Kinetics of Oxygen Atom Transfer. In the glovebox, a solution of the desired concentration of the oxygen atom acceptor in dichloromethane was prepared. This solution (2.0 mL) was loaded into the large (cuvette) compartment of an angled-reservoir Teflon-sealed (ARTS) cuvette.²⁷ Into the reservoir of the cuvette was loaded 50–100 μL of an \sim 1 mM solution of the oxo complex, and the cuvette was sealed with a Teflon plug and removed from the glovebox. The reaction was initiated by mixing the two compartments, and spectra were recorded on a ThermoFisher Evolution Array or an Agilent 8453 spectrophotometer at 23 $^{\circ}\text{C}$. For reactions of triarylphosphines, pseudo-first-order rate constants for individual runs were obtained by nonlinear least-squares fitting of the absorbance vs time plots at a single wavelength (typically λ_{max} of

$(^{\text{R}}\text{ap})_2\text{Os}(\text{PAr}_3)$) to the expression $A(t) = A_f + (A_0 - A_f) \exp(-k_{\text{obs}}t)$ over at least four half-lives. Second-order rate constants were obtained from the slopes of plots of k_{obs} vs PAr_3 (Figures S4 and S5). Absorbance vs time data for reactions of tri-*o*-tolylphosphite were fit by nonlinear least squares to the expression characteristic of successive irreversible pseudo-first-order reactions,²⁸ with $k_{1(\text{obs})}$, $k_{2(\text{obs})}$, and the extinction coefficients of the three species being allowed to vary. In each case, it was found that $k_{1(\text{obs})}$ was greater than $k_{2(\text{obs})}$, as the alternative solution gave rise to unreasonably large extinction coefficients for the equilibrium mixture of monophosphite and *trans*-bis(phosphite) complexes (as judged by comparison to the analogous phosphine complexes). Values of second-order rate constants k_1 were determined from the slopes of the linear plots of k_1 vs $[\text{P}(\text{O}-\text{o-Tol})_3]$ (Figure S6).

X-ray Crystallography. Crystals of *trans*-($^{\text{H}}\text{ap}$) $_2\text{Os}(\text{PPh}_3)_2$ were deposited from the reaction mixture of $(^{\text{H}}\text{ap})_2\text{OsO}$ with excess PPh_3 in benzene, while crystals of *trans*-($^{\text{H}}\text{ap}$) $_2\text{Os}(\text{CNC}_6\text{H}_3-2,6\text{-Me}_2)_2\cdot 2\text{CD}_2\text{Cl}_2$ were deposited from the reaction mixture of *trans*-($^{\text{H}}\text{ap}$) $_2\text{Os}(\text{PPh}_3)_2$ with xylol isonitrile in CD_2Cl_2 . Crystals of *cis*- β -($^{\text{H}}\text{ap}$) $_2\text{Os}(\text{P}[\text{OPh}]_3)_2\cdot \text{CH}_3\text{CN}$ were deposited from the CH_3CN solution of the crude material, while crystals of *cis*- β -($^{\text{H}}\text{ap}$) $_2\text{Os}(\text{P}[\text{O}-\text{o-Tol}]_3)(\text{NCCH}_3)\cdot \text{CD}_2\text{Cl}_2$ were formed when a solution of the reaction mixture between $(^{\text{H}}\text{ap})_2\text{OsO}$ and excess $\text{P}(\text{O}-\text{o-Tol})_3$ in CD_2Cl_2 was layered with acetonitrile. Crystals were coated in hydrocarbon oil before being transferred to the cold N_2 stream of the diffractometer ($T = 120\, \text{K}$). Data were reduced and corrected for absorption using the SADABS program. After structure solution using Patterson or dual-space methods, non-hydrogen atoms not apparent from the initial solutions were found on difference Fourier maps, and all heavy atoms were refined anisotropically (except for the carbon atom of disordered lattice CD_2Cl_2 in *cis*- β -($^{\text{H}}\text{ap}$) $_2\text{Os}(\text{P}[\text{O}-\text{o-Tol}]_3)(\text{NCCH}_3)\cdot \text{CD}_2\text{Cl}_2$, which was refined isotropically).

Hydrogen atoms were found on difference Fourier maps and refined isotropically, except for those in *cis*- β -($^{\text{H}}\text{ap}$) $_2\text{Os}(\text{P}[\text{O}-\text{o-Tol}]_3)(\text{NCCH}_3)\cdot \text{CD}_2\text{Cl}_2$, which were placed in calculated positions. Calculations used SHELXTL (Bruker AXS),²⁹ with scattering factors and anomalous dispersion terms taken from the literature.³⁰ Further details about the structures are given in Table 1.

Computational Methods. Computationally, complexes contained “ap” ligands consisting of $^{\text{H}}\text{ap}$ ligands with *tert*-butyl groups and *N*-phenyl substituents replaced with hydrogen atoms. Geometry optimizations were carried out with gas-phase molecules using an SDD basis set for osmium, a 6-31G* basis set for all other atoms, and a B3LYP functional using the Gaussian 16 suite of programs.³¹ Geometries were optimized by minimizing the energies of the compounds, and optimized geometries of stable molecules were confirmed to be minima by the lack of imaginary frequencies in the vibrational analysis or were confirmed to be transition states by the presence of a single imaginary frequency corresponding to a vibration along the reaction coordinate. Calculations on Me_3P and Me_3PO have been reported previously.³² Plots of calculated Kohn–Sham orbitals were generated using Gaussview (v. 6.0) with an isovalue of 0.04.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00068>.

Additional ^{31}P NMR spectra, thermal ellipsoid plots, kinetic data, and computational data (PDF)

Accession Codes

CCDC 2050453–2050456 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Seth N. Brown — Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States; orcid.org/0000-0001-8414-2396; Email: Seth.N.Brown.114@nd.edu

Authors

Alexander N. Erickson — Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States

Jacqueline Gianino — Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States

Sean J. Markovitz — Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acs.inorgchem.1c00068>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. Allen G. Oliver for his assistance with the X-ray crystallography. This work was supported by the U.S. National Science Foundation (CHE-1465104). J.G. acknowledges fellowship support from the U.S. Department of Education (GAANN grant P200A1320203-14).

REFERENCES

- (1) (a) Holm, R. H. Metal-Centered Oxygen Atom Transfer Reactions. *Chem. Rev.* **1987**, *87*, 1401–1449. (b) Holm, R. H.; Donahue, J. P. A Thermodynamic Scale for Oxygen Atom Transfer Reactions. *Polyhedron* **1993**, *12*, 571–589.
- (2) (a) Pietsch, M. A.; Hall, M. B. Theoretical Studies on Models for the Oxo-Transfer Reaction of Dioxomolybdenum Enzymes. *Inorg. Chem.* **1996**, *35*, 1273–1278. (b) Thomson, L. M.; Hall, M. B. A Theoretical Study of the Primary Oxo Transfer Reaction of a Dioxo Molybdenum(VI) Compound with Imine Thiolate Chelating Ligands: A Molybdenum Oxotransferase Analogue. *J. Am. Chem. Soc.* **2001**, *123*, 3995–4002. (c) Heinze, K.; Marano, G.; Fischer, A. Experimental and theoretical study of a truly functional biomimetic molybdenum oxotransferase analogue system. *J. Inorg. Biochem.* **2008**, *102*, 1199–1211.
- (3) Kail, B. W.; Pérez, L. M.; Zarić, S.; Millar, A. J.; Young, C. G.; Hall, M. B.; Basu, P. Mechanistic Investigation of the Oxygen-Atom-Transfer Reactivity of Dioxo-molybdenum(VI) Complexes. *Chem. - Eur. J.* **2006**, *12*, 7501–7509.
- (4) Marmion, M. E.; Takeuchi, K. J. Preparation and Characterization of Stable Ruthenium(IV)-Oxo Complexes That Contain Tertiary Phosphine Ligands. *J. Am. Chem. Soc.* **1986**, *108*, 510–511.
- (5) Seymore, S. B.; Brown, S. N. Charge Effects on Oxygen Atom Transfer. *Inorg. Chem.* **2000**, *39*, 325–332.
- (6) Dixon, J.; Espenson, J. H. Kinetics and Mechanism of Oxygen Atom Abstraction from a Dioxo-Rhenium(VII) Complex. *Inorg. Chem.* **2002**, *41*, 4727–4731.
- (7) Jacobi, B. G.; Laitar, D. S.; Pu, L.; Wargocki, M. F.; DiPasquale, A. G.; Fortner, K. C.; Schuck, S. M.; Brown, S. N. Stoichiometric and Catalytic Oxygen Activation by Trimesityliridium(III). *Inorg. Chem.* **2002**, *41*, 4815–4823.
- (8) Feng, Y.; Aponte, J.; Houseworth, P. J.; Boyle, P. D.; Ison, E. A. Synthesis of Oxorhenium(V) Complexes with Diamido Amine Ancillary Ligands and Their Role in Oxygen Atom Transfer Catalysis. *Inorg. Chem.* **2009**, *48*, 11058–11066.
- (9) Joslin, E. E.; Zaragoza, J. P. T.; Baglia, R. A.; Siegler, M. A.; Goldberg, D. P. The Influence of Peripheral Substituent Modification on P^V, Mn^{III}, and Mn^V(O) Corrolazines: X-ray Crystallography, Electrochemical and Spectroscopic Properties, and HAT and OAT Reactivities. *Inorg. Chem.* **2016**, *55*, 8646–8660.
- (10) Lee, Y.-M.; Yoo, M.; Yoon, H.; Li, X.-X.; Nam, W.; Fukuzumi, S. Direct oxygen atom transfer *versus* electron transfer mechanisms in the phosphine oxidation by nonheme Mn(IV)-oxo complexes. *Chem. Commun.* **2017**, *53*, 9352–9355.
- (11) Topich, J.; Lyon, J. T. Ligand Control of *cis*-Dioxomolybdenum(VI) Redox Chemistry: Kinetic and Activation Parameter Data for Oxygen Atom Transfer. *Inorg. Chem.* **1984**, *23*, 3202–3206.
- (12) Dirghangi, B. K.; Menon, M.; Pramanik, A.; Chakravorty, A. A Triad of Variable-Valent Rhenium Aldimine and Amide Systems Interrelated by Successive Oxygen Atom Transfer. *Inorg. Chem.* **1997**, *36*, 1095–1101.
- (13) Ison, E. A.; Cessarich, J. E.; Travia, N. E.; Fanwick, P. E.; Abu-Omar, M. M. Synthesis of Cationic Rhenium(VII) Oxo Imido Complexes and Their Tunability Towards Oxygen Atom Transfer. *J. Am. Chem. Soc.* **2007**, *129*, 1167–1178.
- (14) Whiteoak, C. J.; Britovsek, G. J. P.; Gibson, V. C.; White, A. J. P. Electronic effects in oxo transfer reactions catalysed by salan molybdenum(VI) *cis*-dioxo complexes. *Dalton Trans.* **2009**, 2337–2344.
- (15) Basu, P.; Nemykin, V. N.; Sengar, R. S. Substituent Effect on Oxygen Atom Transfer Reactivity from Oxomolybdenum Centers: Synthesis, Structure, Electrochemistry, and Mechanism. *Inorg. Chem.* **2009**, *48*, 6303–6313.
- (16) Smeltz, J. L.; Lilly, C. P.; Boyle, P. D.; Ison, E. A. The Electronic Nature of Terminal Oxo Ligands in Transition-Metal Complexes: Ambiphilic Reactivity of Oxorhenium Species. *J. Am. Chem. Soc.* **2013**, *135*, 9433–9441.
- (17) Gianino, J.; Erickson, A. N.; Markovitz, S. J.; Brown, S. N. High-valent osmium iminoxolene complexes. *Dalton Trans.* **2020**, *49*, 8504–8515.
- (18) Brown, S. N. Metrical Oxidation States of 2-Amidophenoxy and Catecholate Ligands: Structural Signatures of Metal–Ligand π Bonding in Potentially Noninnocent Ligands. *Inorg. Chem.* **2012**, *51*, 1251–1260.
- (19) Gianino, J.; Brown, S. N. Highly covalent metal-ligand π bonding in chelated bis- and tris(iminoxolene) complexes of osmium and ruthenium. *Dalton Trans.* **2020**, *49*, 7015–7027.
- (20) Hübner, R.; Sarkar, B.; Fiedler, J.; Záliš, S.; Kaim, W. Metal(IV) Complexes $[M(L_{N,O,S})_2]^{n-}$ ($M = Ru, Os$) of a Redox-Active *o*-Amidophenoxy Ligand ($L_{N,O,S}$)²⁻ with Coordinating Thioether Appendix. *Eur. J. Inorg. Chem.* **2012**, *2012*, 3569–3576.
- (21) Das, D.; Mondal, T. K.; Chowdhury, A. D.; Weisser, F.; Schweinfurth, D.; Sarkar, B.; Mobin, S. M.; Urbanos, F. A.; Jiménez-Aparicio, R.; Lahiri, G. K. Valence and spin situations in isomeric $[(bpy)Ru(Q')]^n$ ($Q' = 3,5\text{-}di\text{-}tert\text{-}butyl\text{-}N\text{-}aryl\text{-}1,2\text{-}benzoquinonemonoimine}$). An experimental and DFT analysis. *Dalton Trans.* **2011**, *40*, 8377–8390.
- (22) Das, D.; Agarwala, H.; Chowdhury, A. D.; Patra, T.; Mobin, S. M.; Sarkar, B.; Kaim, W.; Lahiri, G. K. Four-Center Oxidation State Combinations and Near-Infrared Absorption in $[\text{Ru}(\text{pap})(Q')]^n$ ($Q = 3,5\text{-}di\text{-}tert\text{-}butyl\text{-}N\text{-}aryl\text{-}1,2\text{-}benzoquinonemonoimine}$, pap = 2-Phenylazopyridine). *Chem. - Eur. J.* **2013**, *19*, 7384–7394.
- (23) (a) Brown, S. N.; Chu, E. T.; Hull, M. W.; Noll, B. C. Electronic Dissymmetry in Chiral Recognition. *J. Am. Chem. Soc.* **2005**, *127*, 16010–16011. (b) Kongprakaiwoot, N.; Quiroz-Guzman, M.; Oliver, A. G.; Brown, S. N. Gauging electronic dissymmetry in bis-chelates of titanium(IV) using sterically and electronically variable 2,2'-biphenoxides. *Chem. Sci.* **2011**, *2*, 331–336.
- (24) Mitra, K. N.; Peng, S.-M.; Goswami, S. Two novel reactions of ruthenium aniline. Structure and bonding in bis-chelated ruthenium complexes of quinone related ligands. *Chem. Commun.* **1998**, 1685–1686.

(25) Scepaniak, J. J.; Margarit, C. G.; Harvey, J. N.; Smith, J. M. Nitrogen Atom Transfer from Iron(IV) Nitrido Complexes: A Dual-Nature Transition State for Atom Transfer. *Inorg. Chem.* **2011**, *50*, 9508–9517.

(26) Erickson, A. N.; Brown, S. N. Molybdenum(VI) tris(amidophenoxy) complexes. *Dalton Trans.* **2018**, *47*, 15583–15595.

(27) Conner, K. M.; Arostegui, A. C.; Swanson, D. D.; Brown, S. N. When Do Strongly Coupled Diradicals Show Strongly Coupled Reactivity? Thermodynamics and Kinetics of Hydrogen Atom Transfer Reactions of Palladium and Platinum Bis(iminosemiquinone) Complexes. *Inorg. Chem.* **2018**, *57*, 9696–9707.

(28) Jackson, W. G.; Harrowfield, J. M.; Vowles, P. D. Consecutive, Irreversible First-Order Reactions. Ambiguities and Practical Aspects of Kinetic Analyses. *Int. J. Chem. Kinet.* **1977**, *9*, 535–548.

(29) Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, *A64*, 112–122.

(30) Wilson, A. J. C., Ed. *International Tables for Crystallography*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Vol C.

(31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16*, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.

(32) Hoffman, J. M.; Oliver, A. G.; Brown, S. N. The Metal or the Ligand? The Preferred Locus for Redox Changes in Oxygen Atom Transfer Reactions of Rhenium Amidodiphenoxides. *J. Am. Chem. Soc.* **2017**, *139*, 4521–4531.