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Abstract

The application of deep neural networks to the task of acoustic
modeling for automatic speech recognition has resulted in dra-
matic decreases in ASR word error rates, enabling the use of
this technology for interacting with smart phones and personal
home assistants in high-resource languages. Developing ASR
models of this caliber, however, requires hundreds or thousands
of hours of transcribed speech recordings, which presents chal-
lenges for the vast majority of the world’s languages. In this
paper, we investigate the utility of three distinct architectures that
have previously been used for ASR in languages with limited
training resources. We train and test these systems on publicly
available ASR datasets for several typologically and orthographi-
cally diverse languages, which were produced under a variety of
conditions using different speech collection strategies, practices,
and equipment. Although these corpora are comparable in size,
we find that no single ASR architecture outperforms all others.
In addition, word error rates vary significantly, in some cases
within the range of those typically reported for high-resource
languages. Our results point to the importance of considering
language-specific and corpus-specific factors and experimenting
with multiple approaches when developing ASR systems for
languages with limited training resources.

Index Terms: automatic speech recognition, low-resource ASR,
under-resourced languages

1. Introduction

Automatic speech recognition (ASR) technology is widely used
in many modern technologies, particularly in smartphones and
personal assistants. Although an active area of research for over
60 years, ASR has only recently achieved accuracy levels high
enough to enable these technologies and to change the way speak-
ers of high-resource languages interact with their devices. These
improvements in accuracy are largely due to the application of
deep neural architectures trained on large volumes of labeled
audio and textual training data. These new ASR pipelines re-
quire hundreds, if not thousands, of hours of data [1, 2, 3, 4].
Unfortunately, corpora of this size simply do not exist for the
vast majority of the world’s 7,000 languages, effectively denying
access to these technologies and devices for millions of people
around the world.

Existing ASR architectures can be modified to require less
data. In addition, large models trained on high-resource lan-
guages can be applied to a low-resource language through trans-
fer learning, and existing data can be augmented in a variety
of ways in order to create additional synthetic data on a scale
appropriate for existing architectures. It is not well recognized,
however, that each of these approaches requires careful tuning
and adaptation to the target language and to the characteristics of
the available corpora; it is not the case that every approach works
equally well for every language or corpus. One confounding
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factor is the great variability in how speech corpora are collected.
Speech can be spontaneous or read; recordings can be made
professionally in a studio or with a smartphone in a café; the
number of speakers and their demographics can be restricted or
diverse. In addition, languages themselves vary on a large num-
ber of typological, linguistic, and orthographic dimensions that
can respond in different ways under different training conditions.

In this paper, we explore the impact of this variability on
the accuracy of three ASR architectures previously reported to
perform well on small speech datasets. We apply these models to
corpora for five languages representing a diversity of morphologi-
cal properties, sound systems, writing systems, speech collection
strategies, speaker pools, and recording settings. We find that
one of the three architectures typically outperforms the others
though not always and sometimes by only very small margins.
Furthermore, we note that there is substantial variability in word
error rates across languages, even when corpus size, recording
quality, and number of speakers is comparable. Together these
results suggest that there may not be a single optimal architecture
to use for all low-resource settings, but it remains to be deter-
mined what factors contribute to the variability in performance.
These findings can help inform future work on designing an
appropriate ASR architecture for a target speech corpus given its
individual recording and linguistic characteristics, particularly
for languages that are both low-resource and endangered, where
additional data is difficult or impossible to obtain.

2. Prior work

In their work on Senegalese Wolof, Gauthier et al. [5] use Kaldi
[6] to train two ASR models: a subspace Gaussian mixture
model (SGMM) with maximum mutual information (MMI) and
a DNN with state-level minimum Bayes risk (sMBR) criterion.
The SGMM+MMI combination [7] allows for the formation of
numerous generative models with efficient training of the sub-
states. The inclusion of sMBR into the DNN approach was found
to be most effective [8] at determining sequence-discriminative
criteria. Both approaches use the feature-space maximum like-
lihood regression speaker adaptation method [9] as a means of
producing speaker-independent results. In a subsequent paper,
the authors found that modeling vowel length contrasts improved
word error rate [10]. Previous work on ASR Iban [11, 12] fo-
cused on data augmentation via leveraging similarities between
Iban and Malay, a closely related language with more abundant
data. Using Kaldi with feature enhancements similar to those
used for Wolof above, the authors trained GMM, SGMM, and
DNN ASR systems, yielding the lowest error rates with the
former two architectures.

The prior work on ASR for Amharic was carried out using a
corpus originally collected for this purpose a number of years
before the development of a working ASR system [13]. The
focus of much of the subsequent ASR work was on improving
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Table 1: Characteristics of the train and test sets, including number of male speakers, number of female speakers, duration in hours and

minutes, NIST speech signal-to-noise ratio, and WADA signal-to-noise ratio.

Language Model #Male # Female duration NIST SNR WADA SNR
Seneca train 7 4 9h47m 2496+ 1285 23.51+21.07
test 7 4 0l h40m 25.19+13.14 25.72£24.02
Wolof train 8 6 16h49m 3592+559 45.03+34.99
test 1 1 Oh55m  3539+3.77 38.08 +14.59
Bemba train 5 3 14h20m 3246+ 12.01 50.65+33.92
test 1 1 1h18 m 2747 +£9.75 36.27 £22.52
Iban train 7 10 6h48 m 24.51 £8.43 18.54 £5.28
test 2 4 IThllm  22.65+8.79 17.23 £4.32
Amharic train 56 44 20h0lm  4.19+3.83 18.80 £ 5.69
test 14 10 0Oh43m 4.85+3.37 17.978 +7.24

output by exploring the use of acoustic, lexical, and language
models units of varying sizes (e.g., syllables rather than phones,
morphemes rather than words) [14, 15, 16]. This work relied
on traditional HMM/GMM ASR models, primarily within the
CMU Sphinx ASR toolkit [17]. Previous work on Bemba [18]
used the DeepSpeech architecture [3], which required an initial
round of training on a large corpus of English followed by tuning
via transfer learning to the small Bemba corpus.

WireNet [19], a novel fully-convolutional ASR architecture
distinct from the various Kaldi approaches and from deep neural
toolkits designed for high-resource languages (e.g., DeepSpeech
[3], wav2letter++ [20]), was developed for Seneca, an under-
resourced and endangered language indigenous to the United
States and Canada. The WireNet architecture and associated
training pipeline produced substantially lower word error rates
for a 10-hour Seneca corpus than both DeepSpeech, trained
using a transfer learning and data augmentation pipeline, and
the most widely used architectures available in Kaldi. The main
architectural feature is a stack of Inception [21] and ResNet [22]
styled blocks, with wide filter widths to emulate the temporal
nature of audio. A multi-staged pipeline was employed with
transfer learning from a high-resource language, transitioning
into heavily augmented training data, before fine-tuning on the
unaugmented data. This learning strategy allows for the neural
network’s weights to be better initialized as the network can
use the larger datasets to converge more quickly, before being
refined on the original, smaller dataset.

3. Data

We will be comparing three ASR architectures applied to five
corpora for resource-constrained languages: the Native Ameri-
can language, Seneca (50-100 speakers); Senegalese Wolof (10
million speakers); Bemba (5 million speakers); Iban (1.5 million
speakers); and Ambharic (25 million speakers). Each of these cor-
pora was collected in different settings under different conditions.
In order to provide an objective measure of recording quality, we
calculated two different signal-to-noise ratios averaged over the
full training and test sets of each corpus: the NIST Speech Signal
to Noise Ratio (STNR) and the WADA Signal to Noise Ratio
(SNR). The results are shown the right-most columns in Table 1.
We see that Wolof and Iban have comparable SNR under both
methods of calculation, as do Iban and Bemba, while the SNR
for Ambharic is substantially lower than the others under the NIST
method but comprable to Iban under the WADA method. We
also observe much less variation in SNR for Iban and Amharic
than for the other languages.
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Seneca (ISO 639-3 see) is a member of the Iroquoian lan-
guage family. Highly endangered, it is spoken as a first language
by around 50 elders and 100 or more second language learners
in parts of what is now western New York State in the U.S. and
Ontario, Canada. Seneca’s current orthography uses the Roman
alphabet with diacritics indicating nasality, with a mostly one-
to-one grapheme-to-phoneme mapping. Seneca is described as
polysynthetic, combining both agglutinative and fusional ele-
ments in its morphology and allowing the incorporation of nouns
into the verbal morphology. Unlike most of the other corpora,
the Seneca audio data consists of spontaneous speech recorded
primarily in casual settings over several years from 11 speakers,
7 male and 4 female. The duration and speaker information
for the training and test sets are shown in Table 1. The trigram
language model was constructed using a combination of tran-
scripts from the training set and all other available written texts
collected by linguists, missionaries, and anthropologists for a
total of 49,051 (7,625 unique) words.

Wolof (ISO 639-3 wol) is a member of the Niger-Congo
language family spoken by approximately 10 million people in
Senegal, the Gambia, and Mauritania. The orthography used in
this corpus uses the Roman alphabet with diacritics, for a total of
29 characters with a mostly one-to-one character-to-phone map-
ping. Since the language has phonemically contrastive vowel
length, consonant gemination, and prenasalization, the actual
phonetic inventory is somewhat larger than the number of char-
acters used to write the language. Wolof is agglutinative, with
a rich inflectional and derivational morphology. Unlike many
Niger-Congo languages, Wolof is not tonal [23]. The Wolof
audio data used here was recorded in a controlled environment
using read speech from 18 speakers, 10 male and § female, and
consists of 18,000 utterances between 6 and 12 words long [5].
The duration and speaker information about the training and test
sets are shown in Table 1. No speaker occurs in both the training
and the test set. The trigram language model accompanying
this corpus was trained on the transcripts of the audio, as well
as a combination of physical books and data scraped from the
internet, for a total of 601,609 (29,148 unique) words.

Bemba (ISO 693-3 bem) is also a member of the Niger-
Congo language family spoken by approximately 5 million peo-
ple primarily in Zambia. The orthography uses 23 characters or
character combinations of the Roman alphabet to represent its
24 phonemes in a fairly regular 1-to-1 mapping. It has two tones,
one of which is marked with an acute accent on the associated
vowel, resulting in an addition 5 characters. Like Wolof, it is ag-
glutinative, with a rich derivational and inflectional morphology.
The audio data consists of 14,438 utterances ranging from one to
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Figure 1: Left: The overall WireNet architecture. Right: A bottleneck block consisting of 9 paths, each with bottleneck filters centered by
filters of different width to capture different temporal dependencies. Each layer shows (# input channels, filter width, # output channels).

twenty words of read speech recorded in an uncontrolled setting
to allow for the presence of background noise and more natural
modes of speech [18] from 6 men and 4 women all students
in their 20s. The duration and speaker information about the
training and test sets are shown in Table 1. No speaker occurs in
both the training and the test set. The trigram language model
accompanying this corpus was built using the transcripts of the
audio, as well as a combination of other web and text sources,
for a total of 5.8 million (189,000 unique) words.

Iban (ISO 693-3 iba) is a member of the Malayo-Polynesian
branch of the Austronesian language family spoken by approxi-
mately 1.5 million people primarily in Borneo. The orthography
used in this corpus consists of 27 characters from the Roman
alphabet with a regular 1-to-1 character-to-phoneme mapping. It
is an agglutinative language with a fairly rich morphology. The
audio data consists of both read news and spontaneous speech
from Malaysian television and radio [11]. This is the smallest
of the five corpora with just under 7 hours of speech consisting
of more than 3,000 utterances. The duration and speaker infor-
mation about the training and test sets are shown in Table 1. No
speaker occurs in both the training and the test set. The trigram
language model accompanying this corpus was building using
the transcripts of the audio, as well as web news articles, for a
total of 2,082,452 (36,310 unique) words.

Ambharic (ISO 639-3 amh) is a member of the Semitic
branch of the Afro-Asiatic language family spoken by around
25 million people, primarily in Ethiopia. In the Amharic writing
system, each of the 240 characters represents a CV syllable with
a reliable one-to-one character-to-syllable mapping. The conso-
nant inventory is somewhat large, with a notable three-way stop
contrast (voiced, voiceless, ejective). Amharic combines mor-
phological affixation with a root-pattern morphology, in which
vowels are inserted or changed within a stable consonant tem-
plate. The Amharic audio data was recorded in a controlled
environment using read speech from 124 speakers, 70 male and
54 female, for a total of 10,850 sentences [13]. The duration and
speaker information for the training and test sets are shown in Ta-
ble 1. No speaker occurs in both partitions. The trigram language
model was constructed using the transcriptions of the audio in
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addition to other text corpora resulting in 120,262 sentences and
2.5 million words.

4. Methodology

4.1. Speech feature extraction

The acoustic models were built utilizing the 13 Mel-frequency
cepstral coefficients (MFCCs) and their delta- and delta-delta fea-
tures using a 25 ms window with 10 ms stride. These features al-
low for the modeling of the time-dependent audio signal through
the inclusion of the derivative approximations. In the Kaldi
environment, linear discriminant analysis (LDA) transforma-
tion, maximum likelihood transform (MLLT), and feature-space
maximum likelihood linear regression (fMLLR) are applied for
dimensionality reduction, better robustness when applying to
test data, and speaker normalization, respectively.

4.2. Architectures

The original WireNet architecture, Figure 1, included 5 bottle-
neck blocks, each with 9 paths of varying filter width, stacked
upon one another with skip connections between each. A linear
sweep was performed to explore the potential optimisations that
may occur with varying the number of stacked blocks and their
path depths. Through this, we determined that 4 blocks with
a width of 21 produced lower word error rate (WER) results
than the original 5+9 combination. Additionally, measurements
were taken after each stage of the learning pipelines (transfer,
augmentation) described in Thai et al. [19] in order to determine
the effectiveness of each stage. We found that after applying the
transfer learning from the 960-hour LibriSpeech English corpus,
the initial epochs of the next stage were spent un-learning these
initialized weights and that merely introducing the augmented
data as the first stage was sufficient. Decoding was carried out
using CTC decoding with a trigram language model.

We experimented with several neural and non-neural archi-
tectures available within the Kaldi toolkit. We report here on
the best-performing of each: the SGMM [7], which was used
previously for Wolof [5] and Iban [11, 24]; and a simple, fully



Table 2: Word error rate (WER) for each language under the
three architectures and two train/test split settings: the original,
in which no speaker has utterances in both the train and test sets
(Disjoint), and a new split in which each speaker’s utterances
are split between the training and test sets (Overlap).

Language Model WER
Disjoint  Overlap
SGMM - 33.9
Seneca Kaldi DNN+sMBR - 30.6
WireNet - 24.3
SGMM 25.1 28.3
Wolof Kaldi DNN+sMBR 24.9 27.4
Modified WireNet 29.8 14.3
SGMM 8.4 4.8
Ambharic Kaldi DNN+sMBR 7.5 4.1
Modified WireNet 174 15.0
SGMM 16.4 13.0
Iban Kaldi DNN+sMBR 15.1 12.9
Modified WireNet 34.3 19.8
SGMM 58.4 139
Bemba Kaldi DNN+sMBR 53.4 12.3
Modified WireNet 64.4 48.8

connected DNN model with 6 hidden layers, each with 1024
units. The weights were initialized using Restricted Boltzmann
Machines, whose small size with quick training methodologies
[25] allow for faster convergence. Sequence training was per-
formed using sSMBR criterion and a per-utterance Stochastic
Gradient Descent weight update. Decoding was again carried
out using CTC decoding with a trigram language model.

4.3. Data re-partitioning

The Seneca corpus was deliberately partitioned in order to have
each of the speakers represented in both the training and test sets,
and the composition of the speakers makes it nearly impossible
to have disjoint partitions while maintaining an adequately sized
training corpus. An a critically endangered language, Seneca has
a very limited and finite set of speakers, which makes the ability
to customize models to specific speakers desirable. This kind of
partitioning, however, is rare in most ASR corpora where speaker
independence is preferred [20, 26, 27]. In order to compare the
three architectures for all five corpora under different train-test
split strategies, experiments were conducted on the other four
corpora with two datasets: one with the original partitioning
containing disjoint speakers, and one where the train and test set
were combined, shuffled, and then split into train and test sets
of sizes equivalent to the original partitioning but where each
speaker is represented in both training and testing.

5. Results

Table 2 shows the word error rates (or in the case of Amharic,
morpheme error rates) for the three architectures (Kaldi SGMM,
Kaldi DNN, and WireNet) under the two train-test splits for each
of the four corpora for which the two splits are available and
under the available overlapping split for Seneca. We note that
the results reported here are either on par with or superior to the
prior results for these languages (Section 2).

For all four corpora with available disjoint train-test splits,
both Kaldi models yield a lower WER than WireNet with the
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DNN outperforming the SGMM. In three of the four languages,
the difference between the neural and non-neural Kaldi models
is modest, while in Bemba this difference is quite large. We note
that the difference in WER between Kaldi and WireNet is much
smaller for Wolof and Bemba, whose WER overall are relatively
high.

However, when trained and tested on overlapping train-test
splits, in which each speaker is represented in both the testing
and the training data, results were more variable. In particular,
WireNet outperforms the Kaldi DNN+sMBR architecture for
both Seneca and Wolof. In fact, the DNN+sMBR model for
Wolof saw an 11.85% increase in WER when trained on overlap-
ping data, while the modified WireNet saw a 52.02% decrease
in WER. WER for the overlapping train-test splits for the re-
maining three languages saw reductions in WER for all three
architectures, with both Kaldi models continuing to outperform
the WireNet model, sometimes substantially (Bemba) and other
times by a smaller margin (Iban).

Overall, there is a very wide variance in WER across the
corpora. Even after excluding Amharic, which is technically
evaluated at the morpheme level rather than the word level, we
see WER as low as 15.1 and as high as 64.4. This variability
does not appear to be tied directly to the size of the acoustic
training corpus, the number of speakers in the corpus, or any
specific linguistic or typological feature. The great disparity in
the overlap setting between Bemba and Wolof is particularly
puzzling, given the similar characteristics of the two languages,
the speaker distribution, and the corpora in terms of their size
and recording quality.

6. Discussion

The experiments described here are insufficient to determine
which features of the languages, the corpora, the speakers, or
the recordings themselves, might account for the differences in
performance between WireNet and the two Kaldi architectures
for these languages in the two train-test partitionings. In our
future work, we will continue to experiment with these architec-
tures and others (e.g., Kaldi’s TDNN, which outperformed the
SGMM and DNN, though not WireNet, for Seneca) with addi-
tional freely available small corpora, with the goal of identifying
the source of the variability observed here.

We note that four of these five languages, while having
few acoustic training resources, are widely spoken and have
established written traditions adequate to support the training
of large language models and the collection of additional data.
Any ASR system built for these languages should be robust to
speaker variation. A substantial majority of the world’s 7000
languages, however, are endangered and in need of documenta-
tion and preservation, much like Seneca. Architectures designed
specifically to be speaker independent may not be the best option
for the documentation of languages with very few speakers.
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