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Abstract: Annual river discharge is a critical variable for water resources planning and management.
Tree rings are widely used to reconstruct annual discharge, but errors can be large when tree
growth fails to respond commensurately to hydrologically important seasonal components of
climate. This paper contrasts direct and indirect reconstruction as statistical approaches to discharge
reconstruction for the Chemora River, in semi-arid northeastern Algeria, and explores indirect
reconstruction as a diagnostic tool in reconstruction error analysis. We define direct reconstruction
as predictions from regression of annual discharge on tree ring data, and indirect reconstruction as
predictions from a four-stage process: (1) regression of precipitation on tree rings, (2) application of
the regression model to get reconstructed precipitation for grid cells over the basin, (3) routing of
reconstructed precipitation through a climatological water balance (WB) model, and (4) summing
model runoff over cells to get the reconstructed discharge at a gage location. For comparative
purposes, the potential predictors in both modeling approaches are the same principal components
of tree ring width chronologies from a network of drought-sensitive sites of Pinus halepensis and
Cedrus atlantica in northern Algeria. Results suggest that both modeling approaches can yield
statistically significant reconstructions for the Chemora River. Greater accuracy and simplicity of
the direct method are countered by conceptual physical advantages of the indirect method. The WB
modeling inherent to the indirect method is useful as a diagnostic tool in error analysis of discharge
reconstruction, points out the low and declining importance of snowmelt to the river discharge,
and gives clues to the cause of severe underestimation of discharge in the outlier high-discharge
year 1996. Results show that indirect reconstruction would benefit most in this basin from tree ring
resolution of seasonal precipitation.

Keywords: reconstruction; river discharge; streamflow; tree rings; water balance; Chemora River;
Algeria; Thornthwaite

1. Introduction

Tree ring reconstructions of river discharge have long been used to place recent and projected
hydroclimatic variability in a multi-century context [1,2]. Hydrologic models have proved useful for
improved understanding of the variability. For example, tree ring reconstructions of river discharge
routed through a lake water-balance (WB) model helped corroborate multi-century droughts in
the Sierra Nevada of California inferred from radiocarbon-dated stumps exposed in rivers and
lakes [3]. Hydrologic models have recently been incorporated into the statistical models for discharge
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reconstruction. The central idea is to statistically reconstruct climatic variables, such as precipitation
(P) and temperature (T), that directly impact tree growth, and then use the reconstructed variables as
inputs to a physically based hydrologic model whose output includes runoff or river discharge [4-7].
We call such reconstruction of discharge through the intermediary of a hydrologic model “indirect”
reconstruction, and the alternative more straightforward approach of regressing the target observed
discharge time series on tree ring time series [8-11] “direct” reconstruction.

An advantage of indirect over direct reconstruction is the possibility of reconstructing discharge
for rivers with very short or no existing gaged discharge records. Another is the investigation of
alternative past P and T scenarios to explain low-growth or high-growth episodes in the tree ring record.
A disadvantage of indirect reconstruction is the data requirement. The hydrologic model for indirect
reconstruction requires seasonal [5] or monthly [7] time series inputs of observed and reconstructed
climate variables. Representative climatic data may not be available for some basins. Tree ring data
capable of resolving P and T signals at seasonal resolution may also be lacking. Some basins may also
lack a suitable gaged discharge record for calibrating the water-balance model, although application of
uncalibrated WB models has also been shown to yield insights to hydroclimatic variability [12].

Comparative studies of direct and indirect reconstruction are lacking. In this paper, we address
the strengths and weaknesses of direct versus indirect reconstruction of annual discharge of the
Chemora River, northeastern Algeria. The basin was selected specifically because it is relatively
small, semi-arid, and yet well sampled with a network of P stations covering more than 40 years.
Moreover, field collections over the past few decades have yielded a network of drought-sensitive
tree ring chronologies—several close to the basin—in northeastern Algeria [13]. The direct and
indirect reconstructions compared here draw their predictors from the same network of tree ring
sites: total-width chronologies of Pinus halepensis and Cedrus atlantica. Results show that consistent
reconstructions for the Chemora River can be derived both directly and indirectly. The direct
reconstruction is more accurate and less biased than the indirect reconstruction, but the indirect
approach offers valuable insight into past hydrologic conditions.

2. Study Basin

The study basin is the semi-arid Chemora River Basin in northeastern Algeria (Figure 1a).
The basin has an area of 759 km?, and includes rugged terrain ranging in elevation from 2311 m
on Djebel El Mahmel to 890 m on the salt flats at the river outlet [14]. The Chemora River is formed by
the confluence of the Reboa and Soultez Rivers, which drain from the south and west, respectively
(Figure 1b). The climate is Mediterranean, with cold wet winters and dry summers. Mean annual
P in most of the basin is 300 mm to 450 mm, but exceeds 600 mm at the highest elevations [15].
The estimated equivalent average annual depth of P over the basin is 370 mm [14].

Cultivated cropland, mainly for grain farming, occupies most of the watershed [14]. The native
forest cover has been severely degraded; dense forest, mainly Pinus halepensis and Quercus ilex,
is now localized to the elevation zone 1200 m to 1800 m in the southwestern part of the basin [14].
The piedmonts, as well as those parts of the mountains where forests have disappeared, are occupied
by rangeland and barren ground [14].

Low average P and a highly variable climate make water a scarce resource in the basin. In response,
the National Agency for Dams and Transfer (NADT) of Algeria built the Koudiet Lamdaouar Dam
in the early 2000s. The reservoir capacity of 74 x 10° m?® [16] provides storage equivalent to more
than three years of annual average discharge of the Chemora River. Storage behind this dam severely
distorts gaged flows downstream starting with water year 2003.
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Figure 1. Data locations and study basin. (a) Small scale map with tree ring sites, climate stations,
and Chemora River Basin (gray patch). Tree ring sites are green triangles (15 Cedrus atlantica) and green
circles (8 Pinus halepensis). Climate stations are squares: black for 15 P stations and red for 6 T stations.
Population centers Algiers and Batna are asterisks. Inset map at lower right shows location of study
region within Mediterranean Basin. (b) Digital elevation model (DEM) for 2’ x 2’ grid including the
Chemora Basin (solid red outline). The water-balance modeling domain includes 154 cells, 91 of which
are at least partly in the Chemora Basin.

3. Materials and Methods

3.1. Hydrologic, Climatic, and Tree Ring Data

Monthly mean gaged discharge (Q) of the Chemora River at Tkabaout for water years 1971-2005
was obtained from the National Agency of Water Resources, Algeria. Discharge data used in this
study were restricted to 1971-2002 in view of the aforementioned influence of Koudiet Lamdaouar
Dam. Gaged Q even before 2003 likely departs considerably from natural flows because of unrecorded
diversion of river water for irrigation and other purposes in the heavily agricultural basin. Mean annual
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Q at Tkabaout is 0.69 m®s~!, with the monthly maximum and minimum typically occurring in early
spring and late summer, respectively (Figure 2).
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Figure 2. Monthly hydrographs for key Chemora River stations. (a) Mean monthly precipitation at
station Ain Tinn. (b) Gaged discharge of Chemora River at Tkabaout. Ain Tinn (35.378° N, 6.439° E,
1650 m) is the highest elevation precipitation station in the 15-station network used to develop the
water-balance model input. Analysis period for hydrographs is 1970-2002.

Climatological data for the study consist of monthly station total P and average T. Monthly P
data for 15 stations in or near the Chemora Basin (Figure 1a) were obtained from the National Agency
of Water Resources, Algeria. These records cover water years 1969-2012 with no more than five years
of data missing at any station for any month of the year. Station elevations range from 1000 m to
1650 m with a median of 1180 m. The similar shapes of the monthly distributions of Q at Tkabaout and
P at the highest elevation station suggest that a delay of runoff (RO) by snowpack storage of P is not
a major factor in the water balance of this basin (Figure 2). Adjusted Global Historical Climate Network
(GHCN) monthly T for six stations, including one at Batna (from here on, Batnal) with much missing
data, was downloaded from KNMI Explorer [17]. An additional Batna monthly T series (from here
on, Batna2), serially complete for 1950-2015, was obtained from the National Office of Meteorology,
Algeria, for the purpose of filling in missing data at Batnal.

A digital elevation model (DEM) was needed for adjustment of monthly station P and T to
elevations of the grid cells of the WB model. From results of a study in Australia [18], we decided that
a 5-10 km resolution is sufficient for assessing elevation dependence of monthly P in the Chemora
Basin. Accordingly, we downloaded the ETOPO2v2 dataset from the website of the NOAA National
Centers for Environmental Information [19] for this purpose (Figure 1b).

Tree ring data used consist of 23 standard site chronologies [20] whose locations are mapped
in Figure 1a. The eight Pinus halepensis and fifteen Cedrus atlantica chronologies in this network are
listed along with chronology statistics in Table Al. Chronologies were standardized using program
ARSTAN [21] by conventional methods designed to emphasize the common growth signal and retain
lower frequency climate information [22,23]. Development of the chronologies and assessment of their
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signal for P and T have been described elsewhere [13,24,25], and key details of standardization are
repeated in Appendix A.1. The common period of coverage by the 23 chronologies is 1853-2005 CE.

To reduce redundancy in the tree ring network and emphasize major spatial modes of growth
in preparation for reconstruction of discharge, a principal components analysis (PCA) was run on
the 23 chronologies for the period 1853-2005. The PCA was run on the correlation matrix of the
chronologies, and the important principal components (PCs) were identified with guidance from the
“eigenvalue of 1” criterion and a scree plot of eigenvalues [26]. The important PCs comprised the pool
of potential predictors for reconstruction models described in Section 3.3.

3.2. Water-Balance Model

The water-balance (WB) model used in this study is the Thornthwaite [27,28] monthly WB model,
as adapted for numerous hydrologic studies on the scale of basins to continents [12,29,30]. This model
has previously been applied in dendrochronology to enhance the interpretation of past droughts
and wet periods [6], and as a tool for indirect reconstruction of runoff and river discharge [5,7].
The Thornthwaite model has a history of application in dendroclimatology as the framework for
computation of the Palmer Drought Severity Index [31-33]. In this model, the monthly water balance
for a soil column is

RO =P —AET - AS (1)

where RO is total runoff, P is precipitation, AET is actual evapotranspiration, and AS is the change in
water storage in the soil and overlying snowpack. The RO term is assumed to include surface
and subsurface runoff. Over a sufficiently long time step the summation of RO over an area
(e.g., watershed) should approximate river discharge. The approximation could be degraded by
surface storage upstream of the gage, delayed groundwater contribution to river flow, capture of
runoff by closed basins, or storage of runoff in aquifers not draining to the river above the gage.

Time series inputs required by the WB model are monthly P and monthly mean T (Figure A2).
A fraction of the monthly P is assigned to direct runoff, and the remainder enters the soil-moisture
balance, where it is subject to evapotranspiration. T influences several key water-balance components:
potential evapotranspiration (PET), which is estimated by the Hamon equation [34]; the fraction of
P assigned as snowfall; and melting of the snowpack. AET depends on both PET and the soil moisture.
Excess soil moisture (above a specified capacity) becomes surplus runoff. The total of direct and
surplus runoff eventually contributes to river discharge.

Other inputs to the WB model include the latitude, which is used in the computation of day
length and PET, and the soil water capacity, which is related to the depth of the soil column.
The user specifies settings for a small number of parameters controlling snow accumulation, snowmelt,
and runoff. The WB-model equations are described in detail elsewhere [35] and are not repeated here.
Parameter settings specific to our study are given in Appendix A.2.

The geographical domain for the WB modeling is the 154-cell rectangular 2’ x 2’ grid including the
Chemora River Basin (Figure 1b). The necessary grid-cell input of monthly P and T was derived from
station climate data. Monthly P at the 154 cells was interpolated by inverse distance weighting [36]
of station P for 15 stations in or near the basin (Figure 1a). Simple linear regression models [37] of
long-term monthly means and coefficients of variation of station P against station elevation were used
to convert the interpolated standardized anomalies to original P units.

For monthly T, which is generally more spatially correlated than P, we assumed that the
interannual variability of standardized T anomalies is sufficiently represented by the record from
Batnal. The monthly grid-cell means of T were specified as equal the monthly means at Batnal scaled
using a seasonally varying lapse rate [38] to account for the elevation difference between Batna and the
grid-cell centers. It was also necessary to consider the elevation dependence of the monthly standard
deviation of T. We did this using linear regression [37] equations of station monthly coefficient of
variation of T on station elevation for the six GHCN stations (Figure 1a). Steps for converting station
monthly P and T to the grid-cell inputs for WB modeling are described in more detail in Appendix A.3.
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The WB model was run on monthly input P and T, 1969-2012. Runoff summed over the 91 cells in
the basin was defined as model discharge for comparison with gaged discharge at the Tkabaout gage.
Because of aforementioned shortness of records and possible departure of the Tkabaout gaged record
from natural flows, we did not attempt to optimize model parameters by calibrating the WB model to
force model Q to approach gaged Q. We did, however, use the Tkabaout gaged Q to broadly judge the
performance of the model using default parameter settings. To evaluate the importance of interannual
T variation to discharge, the WB model was repeated on the 19692012 observed P, but with T held
constant from year to year at the 1969-2012 long-term monthly means. The WB model was also run on
two alternative paleoclimatic scenarios for indirect reconstruction as discussed in the next section.

3.3. Reconstruction

Direct and indirect reconstruction are contrasted in the schematic in Figure 3. The first approach
is “direct” in that a regression equation directly links the predictand Q with tree ring predictors.
The second approach is “indirect” in that the regression predictand is not Q itself, but is instead
some climatic variable, assumed to be more directly sensed by tree growth, that can be input into
a hydrologic model to generate reconstructed Q.

Disaggregate

Water
@ Balance
Model

Figure 3. Schematic contrasting direct and indirect reconstruction methods. At the start, Q; is gaged

discharge, X is a time series matrix of principal components (PCs) of tree ring chronologies, F; is the
first PC of annual (water year) P at a network of stations, and Tj,k is long-term monthly mean T for
month j, grid-cell k. Regression and reconstruction yield predicted quantities (). For the indirect
method, a reconstruction, F;, of the first PC of annual P is disagreggated spatially to grid cells and
then temporally to months to get the required P input for the WB model. Model output runoff is
summed over cells in the river basin to get Q. For the direct method, Q; is estimated by the more
straightforward process of regression of gaged Q on tree ring PCs (see text).

The statistical model for both reconstruction approaches in this study is the same:

K
ye=bo+ Y bix;;+e 2)
i=1

where y; is the regression predictand in year ¢, x;; are predictors, e; is the error term, and by, by, . . ., bx
are the regression constant and coefficients, which are to be estimated by regression such that the sum
of squares of residuals (estimated error term) is minimized. The predictors for the model are selected
by stepwise regression [39] using a p-to-enter of 0.05 and p-to-remove of 0.10. To facilitate comparison
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of methods, the calibration period and pool of potential predictors is kept the same for RecD and
Recl. The key difference in the approaches is the predictand, y. For RecD, y is annual (water-year) Q;
for Recl, y is PC1 of annual P at the 15 basin stations.

Once the regression parameters are estimated, the full reconstruction is generated by substituting
available time series of tree ring predictors into the fitted equation ; = EO + 21K=1 Eixt/l-. The calibration
residuals are defined by & = y — 7, the difference of observed and predicted y for the period
used to fit the model. An analysis of residuals was done to check that ¢ satisfied regression
assumptions on normality, lack of autocorrelation, and constancy of variance [39]. Models were
then cross-validated [40], and skill of validation was assessed by the reduction of error statistic, RE [41].
(=1)
measure of accuracy of prediction when the regression model is applied outside the calibration
period [39]. We used RMSE, along with an assumption of normality to place an approximate 95%
confidence interval on 7.

The calibration period for both RecD and Recl was 1971-2002; this period was dictated by
the time coverage of the annual Q at Tkabaout before distortion by the dam. The reconstruction
period, 1853-2005, the common period of coverage by the 23 tree ring chronologies, is the
same for both versions of reconstruction. Direct reconstruction has been widely applied in
dendrohydrology [9,11,42,43], and so is not expanded on here. One non-standard aspect of our RecD is
that we used the square root of annual Q instead of Q itself as the predictand, y. Exploratory analysis
showed that this transformation was sufficient to avoid violation of regression assumptions about the

Cross-validation yields a set of “deleted” residuals, é; */, whose root mean square, RMSE,, is a sensible

residuals. Because indirect reconstruction is much less common than direct reconstruction, and can be
done in many different ways, the next section briefly outlines our steps for Recl. More details can be
found in Appendix A 4.

3.3.1. Indirect Reconstruction

A preliminary step in the indirect reconstruction was a PCA of the time series matrix, 1969-2012,
of total water-year annual P at the 91 grid cells in the Chemora River Basin. The scores F; of the first
principal component, of that matrix were then used as the predictand in a stepwise regression on tree
ring data to get estimates F; covering the full tree ring record. The calibration period, pool of potential
predictors, and stepwise selection rules were the same as for RecD. The vector F; was next spatially and
temporally disaggregated to get the time series matrices of reconstructed monthly grid-cell P needed
as input to the WB model. The monthly reconstructed P, along with an input monthly T, assumed
not to vary from year to year, were then routed through the WB model to get output monthly water
balance variables, including soil moisture content, snowfall, snowmelt, and runoff (RO). Finally, model
RO was summed over the 91 contributing grid cells and months to get the indirect reconstruction of
annual water year Q at the Tkabaout gage.

Spatial disaggregation of Fy into annual estimates of grid-cell annual P was done by the linear
algebra operation of post-multiplying F; by a row vector of the loadings of PC1 [26], followed
by restoring the 1969-2012 means and standard deviations of the grid-cell P (Appendix A.4).
The subsequent step of temporal disaggregation of annual reconstructed grid-cell P into monthly
P at the grid cells was done in two alternative ways. In one version, Recll, annual P for each year
of the reconstruction was assumed to be distributed over months according the ratios of long-term
mean monthly observed P to annual P for water years 1970-2012. With this assumption, the monthly
proportion of annual P is invariable from year to year. In the other version, Recl2, the proportion
of annual P in any reconstruction year, was distributed over months according to the monthly
proportions in an identified “analog” year within the 1971-2005 overlap of F; and F;. The analog year
for a reconstruction year k was defined as the year in the interval 1971-2005 with 1?1 closest to 1?1 in year
k (Figure A3). The performance of this analog method relative to the simple use of long-term-mean
proportions of monthly P was checked by a cross-validation exercise using the observed monthly P
(Appendix A .4).
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We assumed that the input monthly T for both Recll and RecI2 was constant at the 1969-2012
grid-cell monthly means. The reasoning behind the assumption is that we have no reliable tree ring
information on the interannual variability of T. As mentioned in Section 3.2, exploratory WB-model
runs were made over the instrumental period with constant and variable T to check the sensitivity of
model output runoff to this assumption.

3.4. Model Comparisons

We attempted to answer four questions with the WB modeling and Q reconstructions. First,
how well does the WB model reproduce the observed annual Q at Tkabaout? Second, how similar are
the reconstructed Q by the direct method (RecD) and indirect method (Recl)? Third, how sensitive
is Recl to the monthly distribution of annual P? Fourth, how important to Recl is the interannual
variation of T, for which we have no tree ring information? We addressed these questions with time
series plots, the Pearson correlation coefficient [44], and empirical cumulative distribution functions
(CDFs [37]).

4. Results and Discussion

4.1. Water-Balance Modeling

Performance of the WB model on observed climate input, 1969-2012 was checked using gaged Q
at Tkabaout, 1971-2002. We allowed two years for the model to stabilize after arbitrary setting of the
initial soil-water content for January, 1969, and converted gaged Q to an equivalent average annual
depth of runoff, RO*, over the basin for comparison with RO output from the WB model. Modeled RO
tracks RO* remarkably well (r = 0.81, N = 32,p < 0.001) considering the uncertain quality of the
gaged discharge, the estimation of P and T inputs from a sparse network of climate stations, and the
use of the default (no tuning) values for parameters of the WB model (Figure 4). The model slightly
underestimates median RO*, but the bias is only 5%. The low annual RO* reflects the aridity of the
basin: the median annual RO* of 20.1 mm compares with an average grid-cell P of about 367 mm,
for an annual RO* /P ratio of 0.055. Neither runoff series plotted in Figure 4 is significantly (« = 0.05)
autocorrelated at a lag of one year.

Standard, or default, WB-model parameters [35], as used here, have been found to yield
model-output runoff highly correlated with river discharge for basins in diverse climate regimes
on several continents [7,12,30]. On the other hand, for basins with long gaged discharge records
representative of natural flow, and with corresponding high-quality spatially representative
precipitation and temperature time records, it may be advantageous to optimize WB-model parameters
to obtain a close match of model-output and gaged runoff. Such an approach has been taken,
for example, in WB modeling of the Yellowstone River [6] and Walker River [5] in the western
United States.

Water year 1996 is an outlier of high discharge at Tkabaout: RO* in 1996 is more than four times
the median for 1971-2002. The WB model strongly corroborates this outlier year of high discharge
(Figure 4). Because input P extends through 2012, model-output RO gives some indication of discharge
conditions after the record becomes distorted by Koudiet Lamdaouar Dam. Subsequent years of model
output show the period 2003-2012 as relatively wet in the basin with a sequence of years, 2003-2005,
of high RO and no years of exceptionally low RO.
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Figure 4. Time plots of annual runoff as gaged and as output by WB model. The two series correlate
highly (r = 0.81) over their 1971-2002 common period. Median annual runoff (horizontal lines) for
that common period is 20.1 mm (gage) and 19.1 mm (model).

The WB-model output is consistent with the hydrographs in Figure 2 in pointing to a minor
importance of snowmelt to the water balance of the basin. WB-model snowmelt summed for the water
year ranges from 3 mm to 64 mm over 1971-2002, and is just 6.4% of the annual P. Local observations
also point to snow as an uncommon phenomenon in the study area. Meharzi [45] (translated from
French) states that

“Snowfall is extremely variable and irregular from one year to another such that high
mountain tops are quite often free of snow during almost all of the winter season—as in
the winter of 1989-1990, which did not record any days of snow. Quézel [46] reported
that the snow season starts by the end of November and continues, depending on the year,
until March or April, whenever polar and tropical masses meet during cold periods.”

A short snow record (1979-1988) for Batna indicates that the snowy months there are
November—April, with average maximum depth of snow ranging from 2.0 cm in November to 7.8 cm
in January. From information in [47], two tree ring fire-history sites near elevation 1900 m located
4 km southeast of the Chemora Basin on Mt. Chélia are characterized by Slimani et al. [48] as having
10-15 snowy days per year and a frost period from November to April with an average of 38 frost days
per year.

The model-output percentage of P falling as snow declined significantly over 1971-2012 (Figure 5).
This decline is likely due to severe warming in the region [49]. The declining snowfall and snowmelt
may have a deleterious impact on survival of forests, which are generally at higher elevations, and in
this part of North Africa depend strongly on winter and spring moisture [13]. Two episodes of cedar
forest decline have been reported in the Aurés and Belezma in the 20th and 21st centuries: the first
episode occurred in the late 1970s [50] and affected even the holm oak, which is one of the hardiest
species in the region. The second episode was generated by severe droughts that occurred between the
end of the 20th and the beginning of the 21st centuries [51,52]. In Belezma, Kherchouche [53] reported
that this last episode of dieback started in 2001-2002. These episodes are low points in gage-derived
and model-output RO (Figure 4). Declining snowmelt could exacerbate an array of climatic and
non-climatic [54] stresses contributing to forest decline here and elsewhere in North Africa.
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Figure 5. Declining ratio of water-year snowmelt to P. The negative-slope straight line is from a linear
regression of Ratio against year, where Ratio is the ratio of water-year (October-September) WB-model
output snowmelt to water-year total P averaged over the 91 model grid cells in the Chemora River
Basin. The estimated regression equation is Ratio = 2.2083 — 0.00108t, where ¢ is the year and Ratio is
the estimated ratio. The regression, fit to years 1971-2012, explains 17% of the variance of Ratio and is
statistically significant (F = 8.2801, p = 0.0.0064).

4.2. Reconstruction Modeling

Principal component analysis (PCA) of the 1853-2005 matrix of 23 standard tree ring chronologies
reveals several physically reasonable spatial modes of tree ring variability. Strong common growth
patterns over such a widely spaced tree ring network (Figure 1a) are most likely driven by climate.
Allloadings on PC1 are same-sign, indicating that the primary mode of variation is all chronologies
with above normal or below normal growth (Table Al). PC1 explains 41% of the tree ring variance
(Table 1). Five PCs have eigenvalues greater than 1, but explained variance drops below 10% after PC3.
Accordingly, we retained only PCs 1-3 as potential predictors in subsequent reconstruction modeling.

Table 1. Principal component analysis ? of tree ring chronologies.

PC A Pctg Interpretation
1 9.337 40.6 Common growth signal; all loadings positive
2 3303 144 Species contrast or north-south contrast
3 2.321  10.1 East-west contrast
4 1.691 74  Remaining components have no clear interpretation
5 1.005 44 —

6 0879 38 —

@ Component number followed by eigenvalue, percentage of variance explained, and interpretation.

The loadings on tree ring PC1 and PC2 are mapped in Figure A1, and the loadings for the first
three PCs are listed in the last columns of Table A1. We interpret PC1, representing high or low growth
across the tree ring network, as a signature of broadly dry or wet conditions over all of northeastern
Algeria. PC2 is a north—south contrast, which could reflect a regional gradient in moisture related to
storm track location. The loadings could also be interpreted as a species contrast in climate signal,
but attribution is conflated by the general north-south stratification of the two tree species (Figure Al).
A north-south moisture contrast should be important to Chemora River climate, given the southerly
location of the basin within the geographic domain of the tree ring network.

PC3 (not mapped) appears to represent an east-west contrast: negative loadings to the east and
positive or near zero loadings to the west (Table Al). An east-west moisture contrast could also be
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important to Chemora River climate because the basin is toward the eastern part of the tree ring
domain. Meharzi [55] highlights the main role of orography in the spatial distribution of rainfall in the
Aures massif and confirms an east-west decreasing gradient. He attributes the wetter conditions in
the eastern sector to both elevation, as it is the highest zone of the Aures, and relief, as the massif is
oriented NE-SW, perpendicular to the disturbed northwest flow. Higher order PCs listed in Table 1
become increasingly difficult to interpret in terms of climate because of the orthogonality constraint on
PC loadings combined with the decreasing percentage of variance explained.

The regression models described in Section 3.3 for RecD and Recl both use tree ring PCs 1-3 as
the pool of potential predictors. The fitted regression equation for the RecD is

1 = 0.8326 + 0.0427x; — 0.0721x;, @)

where 1, is the predicted square root of water-year discharge at Tkabaout (untransformed units m3s~1),
and x; is the score of the ith PC of the 23 standard tree ring chronologies. The fitted regression equation
for the Recl reconstruction is

= —0.9507 + 1.4350x; — 1.4569x; + 1.0867x3 @)

where 1), is the predicted score of PC1 of annual (water year) P at the 15 precipitation stations in or
near the Chemora Basin, and x; is defined as in Equation (3).

The two regression models have roughly similar calibration accuracy and validation skill (Table 2).
The adjusted percentage of variance explained by each model for the 1971-2002 calibration period
exceeds 65%, and for each model validation RE is only slightly lower than calibration R2. Results are
consistent with a study of a large network of tree ring chronologies in the western Mediterranean
Basin, including our chronologies, that showed a significant positive winter, spring, and summer P
signal in P. halepensis and C. atlantica in Algeria, as well as a negative relationship between tree growth
and April-August air temperature [13]. The regression coefficient is positive on x; and negative on
xp for both regression models. This is logical considering that a positive loading on tree ring PC1
goes with high growth over the tree ring network and a positive loading on tree ring PC2 goes with
a contrast of higher growth in the north of the tree ring network domain and lower growth in the
south, where the Chemora Basin is located (Figure 1a). The positive regression coefficient on x3 in
Equation (4) is also physically logical: higher growth (wetter conditions) to the east associated with
higher reconstructed Chemora Basin annual P.

Table 2. Reconstruction model statistics 2.

Predictand  Steps PCsEntered R?> RE

Discharge P 2 1,2 0.65 0.59
Precipitation © 3 1,3,2 0.68 0.63
2 Number of regression steps, tree ring PCs in model, adjusted R2, and reduction of error statistic; PCs entered

listed in order of entry in stepwise regression; calibration period 1971-2002. P Discharge (water year) of
Chemora River at Tkabaout. © PC1 of time series matrix of annual P for the 91 Chemora Basin grid cells.

The statistics listed in Table 2 for the discharge regression model apply to transformed (square root)
annual discharge. In minimizing the sum of squares of transformed discharge, parameter estimates
are influenced more by low flows than high flows. The statistics can be misleading as practical
measures of reconstruction accuracy because water managers and other users of the data are concerned
with accuracy in terms of original units (e.g., m3s~1). The high R? for the annual P reconstruction,
while encouraging, does not guarantee that the reconstructed P routed through the WB model will give
an accurate reconstruction of Q at the Tkabaout gage. A fair comparison of reconstruction accuracy
of RecD and Recl requires additional steps. Back-transforming the predictions from Equation (3)

3

yields RecD, the direct reconstruction of annual Q at Tkabaout in m3s~!. Spatially and temporally
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disaggregating the predictions from Equation (4) and routing the resulting monthly grid-cell tree ring
estimates of P through the WB model yield RecIl and Recl2, the indirect reconstructions of Q by the
alternative methods of temporal disaggregation described in Section 3.3.1. We first discus Recl1, whose
temporal disaggregation of reconstructed annual P to monthly P is most straightforward.

Annual Q at Tkabaout, 1971-2002, is tracked more closely by RecD than by Recl1 (Figure 6a).
Neither reconstruction preserves the calibration-period mean of observed discharge: the gaged mean
for 1971-2001 is 0.68 m®s~! and the reconstructed means for RecD and Recl1 are 0.65 m®>s~! and
0.45 m®s~1, respectively. The slight bias in mean for RecD arises because of transformation of
the discharge. Preservation of the calibration-period mean of square-root-transformed Q is indeed
guaranteed by regression, but this does not hold for Q back-transformed to original units. The larger
bias in the mean of Recll comes from imperfection in the WB modeling. The interpolation and
elevation adjustment of grid-cell P may have resulted in underestimation of grid-cell P. Such an error
would transfer to the precipitation PCs and the reconstruction. Moreover, the WB model itself is
a simplification of physical processes that operate at finer than grid-cell spatial resolution and shorter
than monthly time scales. No WB model can perfectly reproduce discharge from observed P and T,
and indeed our model has a slight negative bias with observed P as input (Figure 4). Aside their offset
levels, RecD and Recl1 are similar in their interannual variations, and are highly correlated (r = 0.90)
over the 1971-2002 calibration period.

The largest error for both RecD and RecI1 occurs in 1996, which was highlighted earlier as
an outlier year of high discharge at Tkabaout. Because the WB Model itself is able to reproduce the
high discharge in 1996 from observed monthly P input (Figure 4), the huge RecI1 error in that year is
likely due to (1) failure of the tree ring network to capture the magnitude of the annual P anomaly
in 1996, or (2) failure of the simplified temporal disaggregation method used in Recl1 to properly
apportion the reconstructed annual P to individual months.

WB-model runs on the observed climate input give insight into the unusual hydrology of 1996
and clues to the lack of a commensurate tree ring signal. In the winter of 1996 (DJE, 1995-1996), P was
high over the basin, and the greatest P anomalies were at lower elevations toward the northern part of
the basin (Figure 7a). Local tree ring sites (those nearest the basin) are at higher elevations, toward
the southern end of the basin (Figure 1a). Moreover, despite the high P in 1996, snowfall in DJF was
below normal, indicating precipitation as rain rather than snow (Figure 7b). This condition would
also oppose a strong tree ring signal, because the P would tend to run off quickly, rather than build
a snowpack that gradually melts and reduces drought stress on the trees when they begin growing
in spring.

The strong correlation of RecD and RecI1 in the calibration period carries over to common period,
1854-2004, of the long-term reconstructions (Figure 6b,c). Reconstructions are strongly synchronous
annually (r = 0.91) and as five-year running means (r = 0.90). The annual time series plots suggest
an increase in variability at high frequencies starting about 1960, and a sharp recent trend toward
low discharge from 1990 to 2003. Recl1 reaches its lowest annual value in 2001, and lowest five-year
moving average in 1999-2003 (Figure 6b,c). This unmatched recent severity of drought is consistent
with a regional tree ring reconstruction, 1456-2002 CE, of Palmer Drought Severity Index over Northern
Tunisia and Algeria that reaches its lowest five-year moving average in 1998-2002 [24]: the sequence
1998-2002 was the second lowest reconstructed Q in Recl1.

RecD and Recl1 are so similar that they are sometimes indistinguishable on the time series plots
(e.g., 1905-1960 in the five-year running mean). The reconstructions occasionally diverge—most
notably near 1860 and in the late 1970s—but agree on the timing of most periods of drought and
wetness (Figure 6¢). It should be noted that series in Figure 6b,c are plotted as z-scores to adjust for the
considerably different means and variances of the two reconstructions.
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Figure 6. Discharge reconstructed directly and indirectly. (a) Annual (Oct-Sept) discharge of Chemora
River as measured at Tkabaout gage and as reconstructed directly (RecD) and indirectly (RecI1) from
tree rings. Series plotted for 1971-2002 calibration period of the reconstructions. Horizontal line at
gaged mean. Correlation matrix annotated. (b) Annual reconstructions, 1854-2004, of discharge by
models RecD and Recl1. (c) Five-year running mean of annual reconstructions, plotted at fifth year.
Reconstructed series in panels (b,c) converted to zero mean and unit standard deviation before plotting.
Correlation coefficients are 0.91 for the two reconstructed annual series in panel (b) and 0.90 for the

smoothed series in panel (c).

Some similarity in the reconstructions is unavoidable, as both depend, through Equations (3) and
(4), on PCs 1 and 2 of the same 23 tree ring chronologies. RecD has the advantage of being “tuned”
to observed discharge by regression such that the variance of residuals (observed-reconstructed) of
discharge is minimized, though the minimizing is in terms of the square root of discharge rather than
of discharge itself. Recl1 is not tuned at all in the calibration process to the gaged discharge. The result
is RecI1’s greater bias and lower correlation with observed Q (Figure 6a).

The advantage of Recll over RecD is conceptual. Internal water stress in the trees logically
responds more directly to precipitation, evaporative stress, and related factors [20] where the trees
are growing than to the volume of water passing a stream gage many kilometers away. However,
the conceptual advantage in the Chemora Basin is offset by practical limitations. First, our tree ring
sites are not distributed over the basin. Unlike a network of rain gages placed strategically to sample
P over the important runoff regions of the watershed, our tree ring network is opportunistic: a few
sites are on the fringe of the Chemora Basin, and others are hundreds of km away (Figure 1a). Second,
disaggregation of annual reconstructed P by constant monthly proportions, as in Recl1, neglects
the possible importance to river discharge of variability in the seasonal timing of P. This limitation
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is addressed with Recl2 later. Third, we assume with the Thornthwaite WB model that a monthly
accounting is sufficient for representing the important nonlinear physical processes by which P
becomes RO and river discharge. The smaller the basin and the less important snow is to the water
balance, the more problematic this assumption.
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Figure 7. Water-balance model precipitation and snowfall over Chemora Basin in winter of 1995-1996.
(a) Precipitation. (b) Snowfall. The mapped quantity is percentage of normal, defined as the grid-cell
mean for 1971-2002. Winter is DJF.

A fourth limitation of our Recl1 approach is that for this basin we lack tree ring information on the
T component of the WB-model input. Tree ring information on interannual variation of T is possible
from tree ring wood density in other climate regions [56], but the potential for the Chemora Basin is
unknown. On the other hand, the annual P reconstruction (Equation (4)) disaggregated into Recl1 is
not strictly “precipitation”: drought-sensitive tree ring chronologies respond to internal water stress in
the trees, and this internal water stress is correlated with T. The reconstructed “P” input to the WB
model for Recl1 therefore may implicitly include some signal for interannual variation of T. Unalloyed
separate reconstructions of P and T may not be attainable with ring widths of drought-sensitive trees.
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4.3. Comparative Statistics of RecD and Recl1

Bias in the reconstructions can be summarized by comparing descriptive statistics of observed
and reconstructed discharge for the calibration period (Table 3, rows 1-3). The underestimation of
median (and mean), more severe in Recl1 than in RecD, has already been discussed. The compression
of variance inherent in regression leads to bias toward low standard deviation in both models.
Compression of variance in tree ring reconstructions from regression models is a recognized challenge
in dendrohydrology that complicates direct comparison of magnitude of events such as droughts in
the instrumental and reconstructed record (see, e.g., in [57]).

Like Q for many small streams in semi-arid regions, Q for the Chemora River at Tkabaout is
significantly positively skewed. Neither reconstruction effectively captures the skew during the
calibration period; skew is positive for both, but not significant. The inability of reconstructions to
capture high skew is related to tree ring chronologies being close to normally distributed, and to the
tendency for regression-based discharge reconstructions to underestimate the magnitude of discharge
in wettest years, as in 1996.

Autocorrelation is an important property of annual discharge because it is associated with
duration of droughts and wet periods. The positive and non-significant lag-1 autocorrelation (r1) of
observed Q is close to that of ReclI1, but is less than the significant 1 of RecD (Table 3, rows 1-3, last
column). While this could be interpreted as RecD “overstating” the persistence in observed flows,
we note that just one year, the outlier high-discharge year 1996, because it is flanked by below-average
discharge in 1995 and 1997, has a huge influence on r1 of observed Q. For example, if observed Q in
1996 were lowered to just 1.22 m®s~!, which is equal to the reconstructed 1996 discharge by RecD
(Figure 6a) , r1 would increase from r1 = 0.14 to r1 = 0.27 and become significant at « = 0.05.

Table 3. Descriptive statistics # of gaged discharge and reconstructions for different intervals.

Years Statistics

Segment P Series First Last Mean Median Std¢ Skew rl

Calib. Period Gaged 1971 2002 0.676 0.497 0488 139* 0.14
RecD 1971 2002 0.651 0.566 0360 058 033*
RecIl 1971 2002 0.450 0.434 0120 0.23 0.13

Earlier RecD 1854 1970 0.726 0.685 0290 059* 0.44*
Recll 1854 1970 0.470 0.468 0077 001 029*
Full RecD 1854 2004 0.712 0.680 0309 053* 039*

RecIl 1854 2004 0.467 0.460 0.090 013 020*

# Mean, median, standard deviation (std), skewness coefficient (skew), and lag-1 autocorrelation (rl1); units for
first three are m3 s 1. P Period for statistics, defined by first and last year. ¢ Asterisk for std and r1 indicated
significance at & = 0.05.

A long-term context for calibration-period statistics of RecD and Recl1 is given by the statistics
for the years prior to the calibration period and for the full-length reconstructions (Table 3, rows 4-7).
Reconstructed Q by both RecD and Recl1 was lower, more variable and less autocorrelated in 1971-2002
than in the long-term. RecD, the least biased of the two reconstruction in terms of skew, suggests that
the skew of Q for 1971-2002 is representative of long-term skew.

Empirical cumulative distribution functions (CDFs) of reconstructions RecD and Recl1 highlight
the large differences in statistical properties of the two reconstructions (Figure 8). To allow assessment
of time-dependence of distributions, CDFs are plotted for both the model calibration period (1971-2002)
and the full common period of the two reconstructions (1854-2004). CDFs are shown for the annual
reconstructions and for three different levels of smoothing. The much greater bias (too low) in median
of Recl1 is reflected by the leftward horizontal offset of its CDFs from those of RecD. The compressed
x-axis spread of the CDF for Recl1 relative to that of RecD reflects RecI1’s lower explained variance in
regression and resulting greater compression of variance. Comparison of the dashed and solid lines for
a given model places the distributions for the 1971-2002 calibration period in a long-term perspective.
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For the unsmoothed reconstructions (Figure 8a), this comparison suggests that the calibration period
has been characterized by unusually low and more variable Q. With smoothing, the relatively high
variability of reconstructed Q during 1971-2002 disappears (Figure 8b—d). The time series plots of
reconstructed Q support the idea that the increased variance or standard deviation of flow during the

calibration period is a high-frequency phenomenon (Figure 6b).
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Figure 8. Empirical cumulative distribution functions (CDFs) of reconstructed discharge. Probability of
non-exceedance is plotted against reconstructed discharge. Panels (a-d) show for CDFs different levels
of smoothing of the annual series, as annotated at upper left. Curves for RecD (blue) and RecI1 (red)
are shown for the 1971-2002 calibration period (dashed) and the full-length (1854-2004) reconstruction

(solid). Smoothing is by running means.

4.4. Sensitivity of Reconstruction to Temporal Disaggregation of Annual P

The alternative indirect reconstruction Recl2 was done to check the sensitivity of reconstructed
Q to temporal disaggregation—the conversion of reconstructed annual grid-cell P to monthly P.
Recll keeps the monthly proportions of P constant from year to year, while Recl2 allows the
proportions to vary according to the observed proportions in an analog year selected from the
1971-2005 overlap period of the tree ring reconstruction and observed P (Section 3.3.1). For the
calibration period, RecIl and Recl2 are nearly identical, except that RecI2 much more closely tracks the
outlier high-discharge year 1996 (Figure 9a). By definition the analog year for reconstruction year 1996
is 1996 itself, so that Recl2 temporally disaggregates reconstructed P according to the actual monthly
P proportions in 1996. Clearly the correct specification of the monthly distribution of P is critical for
model-output Q to track gaged Q in 1996.

The full-length reconstructions Recll and Recl2 agree in most years, but depart radically on
average about once a decade, when Recl2 jumps to an extremely high discharge not mirrored by Recl1
(Figure 9b). Because these two reconstructions start with the same reconstructed annual grid-cell P,
the only possible source of the huge departures is the apportionment of annual P over months before
routing P through the WB Model. The outlier high-Q years result in the long-term mean annual Q
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from RecI2 being 6% higher than from ReclI1. The differences in the two reconstructions underscore
the sensitivity of reconstructed Q to the seasonal distribution of annual P.
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Figure 9. Sensitivity of indirect reconstruction to monthly distribution of annual P. (a) Calibration-
period discharge as gaged, and as reconstructed indirectly with alternative assumptions about the
monthly distribution of P. Recl1 assumes a constant distribution equal to the average monthly mean
proportions for 1971-2002. RecI2 uses the observed monthly proportion of P, which varies from year to
year. Horizontal line is gaged mean for 1971-2002. Series RecI1 and RecI2 have been shifted before
plotting such that means for 1971-2002 identical to that of gaged flow. Before shift, the means of
series A, B, and C are 0.675, 0.450, and 0.501 m3s~1, respectively. Correlations between time series for
1971-2002 are annotated. (b) Long-term reconstructions by RecIl and ReclI2. For Recl2, the annual
reconstructed P in any year is assumed to be distributed over months the same as in an identified
“analog” year in the interval 1971-2002 (see text).

Could those outlier high-Q years in RecI2 be pre-instrumental analogs to 1996? Moreover,
as Recl2 is better than Recl1 at capturing the high discharge in 1996, why not prefer Recl2 to RecI1
as a representation of the long-term discharge history of the Chemora River? We do not argue for
accepting reconstruction Recl2 as an accurate representation of the past because the analog-year
method used for Recl2 gives hypothetical examples only of possible monthly P proportions over the
full reconstruction period. The analog method of temporal disaggregation was found to be inferior
to the simple assumption of constant proportions (Recll) when the two methods were tested in
a cross-validation exercise (Appendix A.4; Figure A4). We present Recl2 only to illustrate the possible
risk of missing high-discharge years because of the lack of sub-annual resolution of P in the tree rings.
A disaggregation approach such as Recl2 might be useful for identifying high-discharge years in
reconstructions for other basins if some association between annual P and monthly distribution of P
can be demonstrated. Even more useful would be tree ring data with the ability to seasonally resolve
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precipitation, as has been done in the North American Monsoon region with sub-annual ring-width
measurements [58,59] and in other regions with minimum wood density [60]. Both conifer species
used here have reasonable color contrast between earlywood and latewood, and would be amenable
to partial-width identification and measurement.

4.5. Temporally Variable T

A limitation in our study was the lack of a tree ring proxy for monthly mean T. We dealt with this
by assuming that for every year of reconstructions RecI1 and RecI2 monthly mean T was constant at
the grid-cell long-term monthly means for the instrumental period. In reality, T varies from year to
year and in the Mediterranean Region has been increasing sharply in recent decades [61]. We checked
the importance of our T assumption using runs of the WB model on observed monthly P and two
alternative settings of monthly T. In one scenario, the input was the observed monthly T. In the other
scenario, monthly T was set constant each year at the long-term means for 1971-2002. Results show
very little difference in model-output Q for the two T scenarios (Figure A5). Discharge varies much
more between the observed gaged Q and model-output Q than between the two versions of model
output. The model-output Q by the two assumptions can barely be distinguished in time series
plots, and are almost perfectly correlated (r = 0.99). Discharge is probably insensitive to interannual
variations in T in the Chemora Basin because the P that contributes most to runoff and discharge
comes mainly in the winter, when T, PET and AET are low. We conclude that the lack of a tree ring T
proxy is not critical to indirect reconstruction of Q in the Chemora Basin, and is less important than
the lack of seasonally resolved P.

5. Conclusions

This study demonstrates the value of WB modeling and the potential of indirect reconstruction
for unraveling the pre-instrumental history of river discharge from total-width tree ring chronologies
in a small semi-arid watershed. The direct and indirect reconstruction methods both give statistically
significant reconstructions of discharge of the Chemora River that correlate strongly at high and
low frequencies. Accuracy is greater for the direct reconstruction, but the WB modeling associated
with the indirect reconstruction helps explain large reconstruction errors in both reconstructions.
Results suggest that severe underestimation of discharge in the high-flow year 1996 could stem from
a combination of circumstances: mismatch of locations of tree ring sites and P anomalies, monthly
timing of P that cannot be deciphered with the tree ring data, and unusually low snow /precipitation
ratio in that particular year.

The WB-model run on observed monthly P and T input indicates that the snow fraction of P in
the basin is decreasing over time. Despite the typically small contribution of snowmelt to the water
balance of this basin, forest sustainability could suffer from this trend because forests are primarily
located at the higher elevations, where snowpack is deepest.

The two versions of indirect reconstruction (ReclIl and ReclI2) explored here both relied on
temporal disaggregation of reconstructed annual P to provide the monthly P input to a WB model.
Our results strongly suggest that proper apportioning of reconstructed annual P to months is critical to
capturing the magnitude of extreme high-discharge years on the Chemora River. Recl1, with constant
monthly proportions, likely misses occasional high-discharge years such as 1996 in the long-term tree
ring record. Recl2, with analog-year proportions, gives occasional occurrences of high-discharge years.
Despite deficiencies in our particular analog method, it highlights the need for tree ring estimates of P
at higher than annual resolution for improved indirect discharge reconstruction.

WB modeling with observed T and invariable (year-to-year) T suggests that runoff and river
discharge in the Chemora Basin are relatively insensitive to interannual variability of T. This is
probably due to the aridity of the basin, the winter dominance of P and the relatively low importance
of snowmelt to the water balance. Accordingly, the potential gain in accuracy of reconstruction of
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discharge from a tree ring proxy for T is probably much less than the gain from improved tree ring
resolution of seasonal P.

Small river basins, such as the Chemora Basin, are especially challenging for discharge
reconstruction from tree rings because high flows, especially, can be generated by localized storm
systems that might not be sampled by a widely dispersed tree ring network. The challenge is magnified
when large P events are rain rather than snow, as P can run off quickly and generate huge flows without
leaving a commensurate footprint in the soil moisture sensed by trees. Although we point out some
severe shortcomings of the indirect reconstruction method for this particular basin, we underscore the
value of the WB modeling itself as diagnostic tool in error analysis and in assessing amenability of
a small basin to discharge reconstruction for tree rings.
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Abbreviations

The following abbreviations are used in this manuscript.

AET Actual evapotranspiration

CDF Cumulative distribution function

GHCN Global Historical Climate Network

p Precipitation

pC Principal component

PCA Principal component analysis

PET Potential evapotranspiration

Q River discharge (e.g., in m3s~1)

RecD Direct reconstruction

RecI Indirect reconstruction ( in general)

Recll Indirect reconstruction with constant (year-to-year) monthly proportion of annual P
RecI2 Indirect reconstruction with variable (year-to-year) monthly proportion of annual P
RO Runoff

S Soil water storage

AS Change in soil water storage

T Air temperature

WB model Water-balance model

Appendix A

Appendix A.1. Statistics of Tree Ring Site Chronologies

This appendix includes additional information on the tree ring data. Tree ring chronologies,
tree species, site coordinates, and descriptive statistics for the 23 standard tree ring chronologies used
in this study are listed in Table A1. The measured ring widths are available from Dr. Ramzi Touchan.
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The loading patterns for the first two principal components of the chronologies are mapped in

Figure Al.

Chronology development was not part of this paper. The following quote from [25] summarizes

salient points of standardization, which was accomplished with program ARSTAN [21]:

A uniform and systematic procedure was applied in chronology development. Each series of
tree ring width measurements was fit with a cubic smoothing spline with a 50% frequency
response at 67% of the series length to remove non-climatic trends due to age, size, and the
effects of stand dynamics [62]. The detrended series were then prewhitened with low-order
autoregressive models to remove persistence not related to climatic variations. The individual
indices were combined into a single master chronology for each combination of site and
species using a bi-weight robust estimate of the mean [63]. The adequacy of sample
replication was judged by the expressed population signal (EPS), computed from pooled
interseries correlations and the time-varying sample size [23].

Table Al. Tree ring chronology statistics 2.

N ID Species? Lat Long Elev(m) Years ¢ pC14 PC2 PC3

1 AEH CEAT 3533 6.90 1756 1607-2012 (1607) 0.2185  0.0007 0.3258
2  BOR CEAT 3559 6.04 1876 1148-2011 (1733)  0.2308  0.0204  —0.0185
3 DJT CEAT 3645 4.10 1460 1534-2011 (1725) 0.1206  0.3934 0.0031
4 FER CEAT 3538 6.96 1522 1384-2011 (1672) 0.2554  0.0107 0.2045
5 IGI CEAT 36.47  4.00 1443 1621-2005 (1845) 0.1893  0.3090  —0.0959
6 KER CEAT 3642  2.89 1398 1849-2011 (1913) 0.0851  0.2862  —0.0257
7 KES CEAT 3585  2.00 1560 1717-2006 (1819) 0.1641  0.1698  —0.2941
8§ LMO CEAT 3645 4.11 1518 1697-2005 (1894) 0.1242  0.3974 0.0564
9 OuUT CEAT 3531 6.63 2073 1002-2011 (1480) 0.2157  0.0142 0.2283
10 PIP CEAT 3585 1.98 1452 1533-2012 (1854) 0.1817  0.0376  —0.3265
11  TAG CEAT 35.17 6.5 1704 1814-2012 (1821) 0.2340 —0.1280  0.0799
12 THT CEAT 3647  4.02 1550 1747-2005 (1878) 0.1192  0.3801 0.0024
13 TIG CEAT 3645 4.10 1697 1552-2011 (1741) 0.0974  0.4037  —0.0157
14 TIZ CEAT 3530 6.63 1970 1344-2011 (1445) 0.2111 —0.0503  0.2809
15 TUG CEAT 3557  6.04 1674 1732-2009 (1737) 0.2722 —0.0731  0.1346
16 AKS PIHA 3528  6.66 1413 1851-2011 (1857) 0.2337 —0.1282  0.2514
17 ALK PIHA 3455 280 1357 1853-2011 (1866) 0.2464 —0.1007 —0.2572
18 BOC PIHA 3513 6.62 1273 1695-2011 (1756) 0.2196 —0.0799  0.2016
19 DJE PIHA 3521 647 1303 1834-2011 (1850) 0.2183 —0.1102  0.2404
20 FEB PIHA 3456 278 1334 1794-2011 (1833) 0.2419 —0.1561 —0.2601
21 THN PIHA 3461 3.09 1386 1830-2011 (1861) 0.2542 —0.1100 —0.2613
22 TOB PIHA 3462 3.13 1331 1851-2011 (1855) 0.2365 —0.2144 —0.2583
23 ZEB PIHA 3453 3.01 1415 1835-2011 (1848) 0.2586 —0.1403 —0.2435

2 Site number, site code, species code, latitude, longitude, elevation (m), time coverage, and loadings of first
three principal components (PCs). ® Species code: CEAT = Cedrus atlantica, PIHA = Pinus halepensis. © First and
last year of chronology, followed by (in parentheses) first year the expressed population signal [23] exceeds
0.85. 4 PC1, PC2, and PC3 are loadings of first three PCs from PCA of the 1853-2005 time series matrix of
standard chronologies. Note: Ramzi Touchan has subsequently incorporated additional samples into seven
site chronologies, resulting in the following current start and end years for those sites: AEH 1070-2012;
BOR 1147-2011]; KES 1717-2011; LMO 1697-2011; OUT 1002-2014; TAG 1814-2014; TIZ 912-2011. Moreover,
three-character codes have changed for four sites in Touchan'’s current database (new codes in parentheses):
FER (TIA); PIP (PEP); TIZ (THZ); TUG (AIK).



Forests 2020, 11, 986 21 of 29

37 (a) Algiers
s B

Basin Box

w
]

A

Latitude
&

> >
‘ V% ‘

®@ =100 km

34 -

Longitude

37 (b) Algiers
A @ Basin Box

w
]

A

Latitude

> >
S|
D>

w
a

34 L

Longitude

Figure A1. Tree ring chronology loading patterns on first two principal components of site chronologies.
(a) First principal component, or PC1. (b) Second principal component, or PC2. The principal
component analysis (PCA) was run on the 1853-2005 matrix of 23 standard chronologies using the
correlation matrix. Pinus halepensis are circles, Cedrus atlantica are triangles. Negative weights are blue
and positive weights are red. Largest and smallest symbols on each map correspond to highest and
lowest absolute loadings. Size of symbol is proportional to size of loading. Plotting coordinates have
been dithered slightly on the map to enable distinguishing sites located very close to one another.

Appendix A.2. Water-Balance Modeling

This appendix includes additional details on the WB modeling and a sketch of the WB model
(Figure A2). Fortran code for the WB model was obtained from Greg McCabe (U.S. Geological Survey;
personal communication), and was adapted to run on a laptop under a Linux (Ubuntu) operating
system using the gfortran-4.9.1 Fortran compiler. The model, represented by the sketch in Figure A2,
runs at a monthly time step and requires as time series input monthly total precipitation (P) and
monthly mean temperature (T). These inputs had to be estimated for the grid cells of the model from
station climate data, as described in the main paper and expanded on in Appendix A.3. The model
equations are presented elsewhere [35] and are not repeated here. We used the default program settings
of model parameters. In the interest of reproducibility, we list below our specific settings of model
parameters. For ease of reference, we use the same abbreviations for water balance terms as in [35].

1. whc =150 mm; water holding capacity of the soil (soil moisture storage capacity).
Any excess of soil moisture storage, S, above whc in the monthly accounting is allocated to runoff
(RO). In running the model, it is necessary to assume an S at the beginning of the first month
of available P and T. Because this initial value is unknown, the WB output for some time can
be distorted by incorrect specification of initial S. This is typically handled by disregarding the
first year or two of model outputs. Our modeling, for example, on observed data, begins with
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January of 1969. We assume initial saturation (S = 150 mm), and we do not start interpreting the
WB-model outputs until water year 1971 (defined as October 1970 to September 1971). If whc is
exceeded, the excess is “surplus.”

2. tsnow = —4.0 °C; T threshold for snow. Below this threshold of monthly mean T all P is snow,
or Psjoq.

3. train = 7.0 °C T threshold for rain. Above this threshold of monthly mean T all P is rain,
or Py, Between a monthly mean T of train and tsnow, the fraction of P as Py,;, varies linearly in
proportion to the fraction (T — tsnow) / (train — tsnow).

4. directfac = 0.05; decimal fraction of P,;;, to direct runoff. This small fraction of total Py, is
assumed to immediately (same month) contribute to direct RO rather than to enter into the water
balance of the soil column, no matter how dry that soil is.

5. rfactor = 0.50; runoff factor. The decimal fraction of surplus assigned to RO. This surplus,
as defined above, is not all assigned to RO in the same month, but is gradually released according
to this rule.

6. xmeltcoeff = 0.47; daily melt coefficient. This coefficient along with the difference T — Ts;0w
determines what fracton of the snow water storage is assigned to snowmelt runoff in the month.
(Notation here is taken from the Fortran program rather than [35].) The snowmelt is computed as
xmelt = xmeltcoef f(T — Tsnow )N, where N is the number of days in the month. This equation can
yield an xmelt greater than the actual snow water storage, and in that case the entire snowpack is
assumed to melt (i.e., xmelt cannot exceed the existing snow water storage).

Temperature Precipitation

Potentlal
Evapotranspirati
Snow v
Rain

Actual Snow Melt Direct Runoff
Evapotranspiratlon

H
Surplus Runoff
Soil-Moisture Storage Capacity —_—>

Soil-Moisture Storage

Figure A2. Simplified sketch of water balance model. Figure adapted from [35].
Appendix A.3. Grid-Cell Monthly P and T from Station Data

This appendix gives additional details on the conversion of observed station monthly P and T to
the grid-cell observed monthly P and T required as input to the WB model.

Precipitation. Station P with almost complete coverage for 1969-2012 at 15 stations in or near the basin
was first converted to standardized monthly anomalies using the station monthly means and standard
deviations for 1969-2012. The standardized anomalies were then interpolated to the 154 grid-cell
centers by inverse distance weighting [36] using the five stations nearest the center of the grid cell.
To avoid excessively high weights on stations that happen to be near the centers of the grid cells,
any station-cell distance less than 3 km was set to 3 km before the weighting.

To convert interpolated standardized anomalies to units of P (mm), it was necessary to multiply
each standardized anomaly for year i and month j by an appropriate monthly standard deviation
and then add an appropriate monthly mean. Because of the strong importance of elevation to mean
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P in the region, and a positive relationship of standard deviation and mean, we used regression
of 1969-2012 station monthly means and coefficients of variation of P on elevation to estimate the
appropriate grid-cell monthly means and standard deviations. Steps, repeated for each month of year,
are: (1) regress station long-term (1969-2012) mean monthly P on station elevation and substitute
grid-cell central elevation into the regression to get the estimated grid-cell mean, (2) repeat the
regression using the coefficient of variation instead of the mean as the predictand to get an estimated
grid-cell coefficient of variation of P, (3) compute the grid-cell standard deviation as the product of the
grid-cell monthly mean and the monthly coefficient of variation, and (4) multiply the standardized
anomaly in each year by the standard deviation and add back the mean to get grid-cell P in mm.
This procedure, repeated for all months of the year and grid cells, yields a continuous time series
matrix of “observed” monthly P, 19692012, at each of the 154 grid cells.

Temperature. The procedure to generate the 1969-2012 input of monthly observed T for the
water-balance modeling differed from the procedure for P in two main ways. It was first necessary
to estimate some missing monthly T at Batnal, and for this we used linear regression of the monthly
T at Batnal on the monthly T at nearby station Batna2, which is serially complete for 1950-2012.
Because anomalies of monthly T are generally highly spatially coherent, and because we had just one
reasonably long monthly adjusted Global Historical Climate Network (GHCN) T series (Batnal) near
the study basin (Figure 1a), we assumed that apart from scaling of mean and variance to deal with
elevation differences the Batnal inter-annual T variations are representative of the entire Chemora
Basin. Accordingly we assumed the monthly standardized T anomaly at Batnal applies to each of the
154 grid cells.

The resulting standardized anomalies of monthly T at the 154 grid cells—identical for each
cell—were then converted to units of °C using monthly means and standard deviations appropriate for
the grid cells. Monthly means for grid cells were estimated by adjusting the Batnal monthly means for
elevation using a seasonally varying lapse rate and the elevation difference at Batnal and the grid-cell
center. Following [38], we assumed the following seasonally varying lapse rate (°C km~!) for months
January-December: 4.5, 5.0, 6.0, 6.3, 6.4, 6.5,6.5,6.5,6.2,5.5, 5.0, 4.5.

The standard deviation of monthly grid-cell T for a given grid cell and month was estimated as
as the product of the long-term monthly mean T estimated from the lapse rate, and the long-term
monthly coefficient of variation of T estimated by regression of coefficients of variation of T against
station elevation for the six Algeria GHCN stations on the map in Figure 1a. The analysis period for
the regressions was 1969-2015. The GHCN stations had considerable missing data; the regression
model for a given month was estimated using only those years with data for the month at all stations;
this sample size varied from 30 to 34 years.

Appendix A.4. Indirect Reconstruction Modeling

This appendix gives additional details on indirect reconstruction as implemented in the paper.
Supplemental figures are also presented to illustrate the identification of analog years for the temporal
disaggregation for Recl2 (Figure A3), to summarize results of a cross-validation check of the analog
method of temporal disaggregation (Figure A4), and to demonstrate the low sensitivity of annual
discharge in this basin to the inter-annual variation of T (Figure A5).

The starting point for the steps outlined here is the 11 X p matrix P of annual (water-year) P
for ny = 43 years 1970-2012 at the p = 91 Chemora Basin grid cells. As described in the paper,
the grid-cell P was interpolated from station P. Our indirect reconstruction procedure has a series
of sequential objectives. A first objective is grid-cell reconstructed annual P for the ny = 153 years
1853-2005, the common period of the 23 available tree ring chronologies. A second objective is to
convert the reconstructed grid-cell P into calendar-year monthly grid-cell P to be input into the WB
model. The approach to these objectives is broadly to reconstruct the first principal component (PC1) of
annual P using tree rings, and to disaggregate that reconstructed time series spatially to grid cells and
temporally to the 12 months of the water year. The statistical part of the reconstruction is regression
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of the precipitation PC1 on principal components (PCs) of tree ring chronologies using a calibration
period of n3 = 32 years, 1971-2002. This period was selected because it is the same calibration period,
dictated by the usable gaged Q record, used for the direct reconstruction.

Steps in Indirect Reconstruction. The procedure is described here with matrix algebra, beginning with P,
the n1 x p time series matrix of annual (water year) P for the n; = 43 water years 1970-2012 at p = 91
Chemora Basin grid cells.

1.  Convert P to standardized anomalies, Z, using the 1970-2012 column means and standard
deviations, and store the column-wise statistics in column vectors x and s.

2. PCAonZtoget: V,ap X p matrix of principal component (PC) loadings and F, a 17 x p time
series matrix of PC scores.

3.  Regress first column of F (scores of first precipitation PC) on tree ring variables in stepwise
regression using a calibration period of n3 = 32 years, 1971-2002; this calibration period was
selected to match the calibration period for direct reconstruction, and so is limited by the usable
part of the discharge record at Tkabaout.

4. Apply the estimated regression equation to get reconstructed F; for the 1, = 153 years 1853-2005,
where the " refers to “predicted”, and the subscript “1” refers to the first component.

5. Spatially disaggregate F; to get reconstruction annual z-scores of P at the 91 grid cells: Z = F; VT,
where T denotes transpose and V7 is the first column of the principal components matrix, V.

6.  Restore grid-cell means and standard deviations to convert Z to annual (water year) reconstructed
grid-cell P in units of mm: P = ZD + 1%, where D is a diagonal matrix with elements of s along
the diagonal, and 1 is a column vector of ones of length ;.

7.  Temporally disaggregate the 1y x p time series matrix P, as described in the main paper, to derive
the reconstructed monthly grid-cell P needed as input to the WB model.

8. Route the resulting monthly P, and assumed monthly time series of grid-cell T through the WB
model to come up with estimated monthly grid-cell runoff (RO), 1854-2004. For the indirect
reconstructions in this study we used long-term monthly mean observed T, invariable from year
to year. Water balance modeling was applied to roughly assess how sensitive discharge in this
basin is to the interannual variability of T (see main paper, and Figure A5). The different spans,
1853-2005 vs 1854-2004, of the tree ring coverage and the WB-model output water year totals
(e.g., RO) are due to (1) loss of leading year to allow spin-up of WB model from initial conditions
and (2) loss of trailing year in reorganizing water-year (October-September) monthly data from
the temporal disaggregation into water-year monthly input required by the WB model.

9.  Convert grid-cell estimated RO to monthly, seasonal or annual discharge at the Tkabaout gage by
multiplying RO (a depth of water) by grid-cell area, and integrating over cells and months.

Identifying Analog Years. Analog years were used in reconstruction version Recl2 (see main paper) to
specify how reconstructed grid-cell annual (water year) P is apportioned to individual months of the
water year. This procedure is called temporal disaggregation. Let F; be the reconstructed scores of
the first principal component (PC) of Chemora Basin (91 grid cells) annual (water year) P, 1853-2005.
As described in the paper the reconstruction was done by regression using a calibration period of
water years 1971-2002. The analog year for a reconstructed Fy in year t = 0 was defined as the year
in the interval 1971-2005 with reconstructed F; closest to Fyy. The monthly proportions of observed
P in that analog year were then assigned to the reconstructed annual grid-cell P in year t0. By this
method, each reconstruction year maps to an analog year in 1971-2005. The mapping is illustrated
in Figure A3, where reconstruction year 1867 maps to 1978. A reconstructed water year P in 1867
would then be apportioned over months in the same proportions as the observed P in 1978. By this
algorithm, the reconstruction £ for any year in the interval 1971 < t < 2002 maps to the year t0
(e.g., reconstruction year 1975 maps to 1975). In other words, for any year of the 1971-2002 calibration
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period, reconstructed annual P is allocated to months in exactly the same proportions as observed P
for that same year.

Cross-validation of Analog Years An ad-hoc cross-validation method was used to check whether the
analog method just described is better than the long-term-mean proportions as an estimator of the
proportion of P in the 12 months (Oct-Sept) of the water year. The cross-validation test uses observed
grid-cell monthly P for the 43 water years 1970-2012. For each of the 91 grid cells, there is a time series
vector, p, of annual (water year) P, 1970-2012, and a corresponding matrix of monthly values, P.

Choose one of the 91 grid cells.
Drop 1970 (first year) from the vector of annual values and matrix of monthly values.
Assign as the analog year the year in the interval 1971-2012 with closest annual P to that in 1970.

Ll

Compute Spearman correlation coefficient between the 12-element vector of monthly P

proportions in 1970 and in the analog year.

5.  Compute Spearman correlation coefficient between the 12-element vector of monthly P
proportions in 1970 and the vector of long-term-mean proportions for 1971-2012.

6. The method giving the highest correlation is judged “best” for that year (1970).
Repeat steps 26 for all years 1970-2012, each time leaving out one year and using the remaining
42 years for getting the “predicted” proportions. This process results in two sets of 43 Spearman
correlations—one set with the monthly proportions in the analog-year as the predictor, the other
set with the long-term-mean monthly proportions as the predictor.

8.  Plot the histograms of the correlations for this grid cell (e.g.,, Figure A4, for grid cell
#84—a representative higher-elevation gridpoint).

9.  Repeat 1-8 for all gridpoints. This gives 91 pairs of distributions of correlation cofficients for

each of the two disaggregation methods being compared. Results are summarized in the caption

to Figure A4.
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Figure A3. Time plot of precipitation reconstruction illustrating assignment of analog year.
Plotted variable is the dimensionless reconstructed score of the first principal component of z-score
transformed P, 1853-2005. Analog year is defined as the reconstructed value in the interval 1970-2005
(the overlap of observed and reconstructed P) closest to that in the reconstruction year. For example,
reconstruction year 1867 maps to calibration-period year 1978.
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Figure A4. Analog-year cross-validation for gridpoint #84. Histograms of Spearman rank correlations
of predicted with observed 12-element vectors of monthly proportions of annual water-year P in target
years by two alternative predictions. Each histogram represents 43 correlations—one for each year in
the interval 1970-2012. (a) Analog year as predictor. (b) Long-term-mean proportions as predictor.
Similar plots can be made for each of the 91 grid cells in the Chemora Basin. For all cells, the median of
the 43 correlations was higher for long-term-means predictor than for the analog predictor. We conclude
that the total annual P is inferior to the long-term-mean proportions as a predictor of the proportion of
P in the 12 months of the water year.

Sensitivity of Model-Output Discharge to Inter-Annual Variability of Temperature. As described in the main
paper, the importance of variable (year-to-year) T to discharge (Q) was checked by running the WB
model twice, both times using the observed monthly grid-cell P but with alternative assumptions
about monthly grid-cell T: (1) using observed grid-cell monthly T, and (2) setting grid-cell monthly
T each year at the 1971-2002 long-term grid-cell monthly means. Resulting WB-model output Q for
those two assumptions is compared to the observed Q in Figure A5.
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Figure A5. Time series plots of gaged Q and model-output Q from WB model using variable and
constant T. For series B, monthly T is set to the observed grid-cell T, which varies from year to year.
For series C, monthly T is set at the long-term monthly means for 1971-2002, and is the same each
year. Model runs for (B) and (C) used the same monthly P input, set to the observed grid-cell P.
Correlation matrix of the three series annotated.
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