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Abstract—Traditional recursive least squares (RLS) adaptive
filtering is widely used to estimate the impulse responses (IR)
of an unknown system. Nevertheless, the RLS estimator shows
poor performance when tracking rapidly time-varying systems. In
this paper, we propose a multi-layered RLS (m-RLS) estimator
to address this concern. The m-RLS estimator is composed of
multiple RLS estimators, each of which is employed to estimate
and eliminate the misadjustment of the previous layer. It is shown
that the mean squared error (MSE) of the m-RLS estimate can
be minimized by selecting the optimum number of layers. We
provide a method to determine the optimum number of layers.
A low-complexity implementation of m-RLS is discussed and it
is indicated that the complexity order of the proposed estimator
can be reduced to O(M), where M is the IR length. Through
simulations, we show that m-RLS outperforms the classic RLS and
the RLS methods with a variable forgetting factor.

Index Terms—Echo cancellation, mean square error, recursive
least squares, system identification, time-varying systems.

I. INTRODUCTION

ECURSIVE least squares (RLS) adaptive filtering is one
R of the most appealing frameworks for applications, such
as system identification, inverse modeling, channel equalization,
etc. [1]. The RLS algorithm, by using the Newton search, leads
to a faster convergence than the steepest-decent based algo-
rithms, e.g. least mean squares (LMS) [2]. It has been shown
that low-complexity versions of the RLS algorithm, including
the fast transversal RLS (FTRLS) [3]-[5], and the RLS lattice
(RLSL) [6], [7] algorithms have almost the same convergence
ability as the classic RLS, when tracking a time-varying system.
It is noteworthy that the adaptability of RLS filtering is based on
the fact that the estimation error is a zero-mean white Gaussian
variable and, thus, the algorithm recursively minimizes a max-
imum likelihood objective function. Accordingly, a regularized

Manuscript received October 21, 2021; revised March 8, 2022 and April 16,
2022; accepted April 20, 2022. Date of publication April 29, 2022; date of
current version May 16, 2022. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Ketan Rajawat. This
work was supported in part by National Science Foundation under Grants CNS-
1704097 and CNS-1704076. (Corresponding author: Mohammad Towliat.)

Mohammad Towliat, Leonard J. Cimini, and Xiang-Gen Xia are with the
Department of Electrical and Computer Engineering, University of Delaware,
Newark, DE 19716 USA (e-mail: mtowliat@udel.edu; cimini@udel.edu; xi-
anggen@udel.edu).

Zheng Guo and Aijun Song are with the Department of Electrical and
Computer Engineering, University of Alabama, Tuscaloosa, AL 35487 USA
(e-mail: zguol8 @crimson.ua.edu; song@eng.ua.edu).

Digital Object Identifier 10.1109/TSP.2022.3170708

, Leonard J. Cimini, Life Fellow, IEEE, Xiang-Gen Xia

, Fellow, IEEE,
, Member, IEEE

objective function can be introduced to preserve the tracking
ability of RLS in a non-Gaussian environment [8]—[11].

In system identification, RLS is used to estimate the impulse
response (IR) of an unknown system, given the input and the
output of the system as the desired signal. Speaking of the
convergence behavior of the RLS system identifiers, it has been
shown in [12] that the estimation error is caused by two types
of factors, including the lag error (LE) and the estimation noise
(EN). The LE is due to the time-variation of the system. Since
the RLS estimation is based on the statistical averages, it inherits
a latency when tracking a time-varying IR. Thus, the LE can be
problematic when estimating a fast time-varying system. On the
other hand, the EN is caused by the exponentially windowing
nature of RLS. Using a forgetting factor limits the actual obser-
vation window size and, even under steady-state conditions, the
IR estimate is contaminated by a misadjustment.

Regarding the forgetting factor, there is a trade-off between
the LE and the EN. A small forgetting factor raises the RLS
tracking agility (i.e., a lower LE) but also develops a higher
steady-state misadjustment (i.e., a higher EN). Contrarily, a
larger forgetting factor leads to poor adaptability, but a better
steady-state performance [13]. As a result, numerous studies in
this field are dedicated to infer an RLS algorithm with a variable
forgetting factor (RLS-VFF). For instance, see [14]-[19]. The
main idea in these works is to recognize the changes of the
system’s IR by measuring the changes in the error and desired
signal’s statistics, then setting a small forgetting factor during the
IR changes, and a large forgetting factor during the steady-state
periods.

In this paper, we look at the problem of low error system
identification from another point of view. We propose the multi-
layered RLS (m-RLS) algorithm that minimizes the sum of
the LE and the EN, instead of minimizing either of the errors
alone (what is performed in RLS-VFF approaches). The m-RLS
approach is composed of multiple connected RLS estimators.
At each time instance, the a posteriori error of the previous RLS
is considered as the desired signal in the next RLS. From this
perspective, m-RLS falls in the category of data-reuse adaptive
algorithms [20].

Data-reusing idea was firstly introduced by Shaffer and
Williams to improve the LMS convergence [21]. In data-reuse
LMS (DR-LMS), multiple LMS blocks are cascaded. The filter
weights of all blocks are updated over the same present data
sample. However, it can be shown that the convergence im-
provement of DR-LMS method in [21] is not significant and
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the performance lies between that of LMS and normalized LMS
(NLMS) [22]. Therefore, modified DR-LMS algorithms are
proposed to improve the performance of the original DR-LMS
by engaging the present and the past data samples [23]-[27].
Nevertheless, all of these studies only cover data-reusing with
LMS and, to the best of our knowledge, the proposed m-RLS
method in this paper is the first attempt for implementing data-
reusing idea with RLS.

We show that, in m-RLS, the total estimation error (sum of the
LE and the EN) is a function of the number of layers. Therefore,
by using the optimum number of layers, the estimation error of
m-RLS can be less than that of RLS. The optimum number of
layers tightly depends on the coherence length of the system’s IR
(the time range in which the IR approximately remains invariant)
and signal to noise ratio (SNR). We provide a solution for
determining the optimal number of layers. It must be mentioned
that in all previous DR-LMS methods, the number of layers is
fixed and there is no existing effort to determine the optimal one.

Next, the complexity of m-RLS is discussed by comparing the
number of multiplications, additions, and divisions of two types
of implementations, including the classic and the transversal
dichotomous coordinate descent (DCD) [28] techniques. We
show that using transversal DCD implementation significantly
reduces the complexity of m-RLS and makes the proposed
method a promising approach for the applications where su-
perior adaptability is desired with the expense of a reasonable
higher complexity.

In our simulations, we evaluate the performance of m-RLS
and show that, in a rapidly time-varying system, the proposed
estimator leads to a lower estimation error compared to that of
the classic RLS and two different RLS-VFF techniques.

The rest of this paper is organized as follows. In Section II,
we investigate the RLS system identification and the associated
error when tracking a time-varying system. In Section III, we
propose the m-RLS algorithm and discuss how its performance is
dominated by the coherence length of the system. Then, we pro-
vide a solution for the optimum number of layers that minimizes
the estimation error. Section IV discusses the implementation
and complexity of m-RLS. The simulation results are brought
in Section V. Finally, Section VI concludes this paper.

Notations: Matrices are denoted by boldface uppercase letters
(e.g. A), vectors are indicated by boldface lowercase letters (e.g.
a), and scalar quantities are presented by normal letters (e.g. a or
A).Ipsisthe M x M identity matrix, and [E is the mathematical
expectation. ||a|| indicates the I norm of vector a. Finally, the
superscripts (.)7, (.), and (.)* indicate transpose, conjugate
transpose, and conjugate operators, respectively.

II. RLS SYSTEM IDENTIFICATION

A. RLS Algorithm

Consider x[n] as the input sequence to an un-
known time-varying system with the IR vector h[n| =
[ho[n], ..., har_1[n]], where M is the length of the IR.
The system’s output is given as

d[n] = b [n]x[n] + wln], (D
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in which x[n] = [z[n],...,z[n — M +1]]" is the input signal
vector, and w[n] is an AWGN noise with variance o2 . Given the
input and the output signals, the system’s IR can be estimated
by using the well-known RLS algorithm as below [2]

e[n] = d[n] — h¥ [n — 1]x[n] (2a)
k[n] = (A + x[n]P[n — 1]x[n]) 'P[n — 1]x[n]  (2b)
h[n] = hln — 1] + e*[n)k[n) (2¢)
Pln] = 27" (In — k[n)x" [n]) P[n — 1], (2d)

where h[n] is the estimate of the IR, d[n] is so called the desired
signal, 0 < A < 1 is the forgetting factor, e[n] denotes the a
priori error, and k[n] is the gain vector. It can be shown that
in this algorithm, k[n] = P[n]x[n], where P[n] = R~![n], and
Rin] = > j_o "kl k] [1]

B. Estimation Error in RLS

In this section, we inquire about the accuracy of the RLS
estimate, h[n], by comparing it to the varying IR vector, h[n]. For
this evaluation, we use the mean squared error (MSE) measure.
By assuming that E | h[n]||?> = 1, the normalized MSE is defined
as

{iRLs = IEHh[n] - ﬁ[n]Hg. 3)

To facilitate analyzing jirr s, we hold the following assumptions:
1) the input signal is a zero-mean uncorrelated sequence, with a
normalized power; 2) the IR estimate is independent of the input
signal [12].

Since E{x[n|x[n]} = I, for a sufficiently large n, we
have R[n] = ") _ A" % = 11/, where e =1 — 1. As a re-
sult, P[n] = eIy and k[n] = ex[n]. On the other hand, by
replacing (1) in (2a), the a priori error is given as e[n| =
(h[n] — hn — 1))7x[n] + w[n]. Nesting k[n] and e[n] in (2¢),
the IR estimate at time 7 becomes

~

Bn] = bfn] — ©[n] (bln] — Bfn — 1]) + [l @)

where ©[n] = I — ex[n]x[n] and y[n] = ew*[n]x[n]. Sim-
ilar to (4), the IR estimate at the past times can

be written as h[n — k] =h[n — k] — ©[n — k|(h[n — k] —

hjn — k —1]) + v[n — k]. By using this recursion, for k =
0,...,N — 1, one can expand (4) as

h[n] = A[n]h[n] + B[n]h[n — N] + c[n], 3)

where

Bn] = 1__[ On — kl;
. N-1 [k-1
cln] =~[n] + (H 9[71—1])7[”—/6]’ ©)
k=1 =0
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and N is the coherence length of the IR (the time range for
which the IR remains invariant), so that h[n — k] = h[n], for
k=10,..., N — 1. Note that, for a relatively slow time-varying
IR, N is large while, for a fast time-varying IR, N can be small.

By doing some algebra, it can be shown that I, — A[n] =
B[n]. As aresult, the difference between the true IR and its RLS
estimate in (5) becomes

h[n] — h[n] = B[n](h[n] — hln — N]) —c[n].  (7)
On the right-hand side of (7), c[n] is the effect of the noise sam-
ples w[n — k| for k =0,..., N — 1 while, h[n — N] depends
on w[n — k| for k > N. Since c[n] is uncorrelated with both
h[n — N] and h[n], replacing (7) in (3) leads to

pres = E|[Blnl(hfn] — B~ N[+ Efeln)l®. @)
We have shown in Appendix A that (8) can be simplified to
pres = pVE|[h[n]|* + (1 - p") do,
=p" + (1-p") vo, ©)

where p =1 — 2¢ +&?M, and o) = fff . It is noteworthy that,
when the IR is time-invariant, (9) coincides with the known
results in [1] and [12].

According to (9), the RLS estimation error is contributed by
two terms [12], [29]. The first term is the LE caused by the RLS
lag of tracking a time-varying IR. The second term is the EN,
which is the effect of exponentially windowing nature of RLS,
so that by letting A = 1, this term is zero.

Speaking of the LE, we should mention that it originates from
the fact that the RLS estimation is performed based on statistical
averages which take several time samples to converge. In a
time-varying system, the averaging process can be inadequate
because of rapid variations. As mentioned in [3] and [13], for an
stable convergence, the forgetting factor falls within the range
1-—- % < A < 1. In this range, one can see that 0 < p < 1.
Accordingly, when the IR is relatively slow time-varying with a
large N, the contribution of the LE in (9) is small and the MSE
is mainly governed by the EN. On the other hand, for a rapidly
time-varying IR with a small V, the LE is not negligible and can
potentially be higher than that of the EN.

Addressing the problem of minimizing the MSE in tracking a
rapidly time-varying system, we propose the m-RLS algorithm
in the next section.

III. MULTI-LAYERED RLS SYSTEM IDENTIFICATION

In this section, we propose the m-RLS estimator to minimize
the sum of the LE and the EN. The proposed m-RLS estimator

The m-RLS system identifier structure.

is composed of multiple layers. At each layer, the effective IR
(which is the estimation error of the previous layer) is estimated
and eliminated from the desired signal by utilizing a separate
RLS estimator. We show that, by using the optimum number of
layers, the m-RLS strategy can lead to a lower MSE error than
RLS.

A. Multi-Layered RLS Algorithm

Fig. 1 shows the m-RLS structure with L layers. Similar to
the RLS estimator, m-RLS is used to estimate the IR given d[n]
and x[n].

In the first layer, the desired signal is d[n], thus, we represent
itwith d(qy[n] = d[n], where the subscription denotes the layer’s
index. Accordingly, we can rewrite (1) as

deny[n] = hily[nfx[n] + wn], (10)
where h(;)[n] = h[n]is the effective IR at the first layer. RLS #1
estimates h(y)[n] given d(1)[n] and x[n]. We denote this estimate
as fl(l) [n]. Then, the a posteriori error [1] in RLS #1 is given as

d(2)[n] = d(y[n] — hf], [n)x[n]

= (h(l)[n] — h(l)[n])Hx[n] + win]

= h{} [n]x[n] + w(n]. a1

where hy)[n] = h(;)[n] —hy[n], is the error vector of es-
timating h(;)[n] by using RLS #1. Due to the LE in RLS
#1, h(y)[n] is not a pure noise vector and, thus, d(s)[n] has a
correlation with the input signal x[n].

At the second layer, RLS #2 is employed to provide an
estimate of the effective IR h ) [n]. To thisend, d(2)[n] is taken as

~

the desired signal. We denote the estimate of h4)[n] by h(y)[n].
Similar to the first layer, the a posteriori error in RLS #2 becomes
d(s)[n] = d(z)[n] -} [n]x[n]

= hg) [n]x[n] + w[n], (12)

where h(3) [n} = h(2) [n] — fl(Q) [TL]
The same process is performed for all layers such that, at the
lthlayer (forl = 1,..., L), the a posteriori error is

dasny[n] = dgyn] - ﬁg) [n]x[n]

= h(l,y[n]x[n] + wln], (13)
where d)[n] = h{j) [n]x[n] + w(n], and
h(41)[n] = hyln] — b [n]. (14)

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 18,2022 at 14:58:35 UTC from IEEE Xplore. Restrictions apply.



TOWLIAT et al.: MULTI-LAYERED RECURSIVE LEAST SQUARES FOR TIME-VARYING SYSTEM IDENTIFICATION

Finally, the overall IR estimation by m-RLS is given as the sum
of the estimates at all layers, that is

Zﬁw

B. Estimation Error in Multi-Layered RLS

15)

In this section, we evaluate the accuracy of the proposed m-
RLS estimator. To facilitate the derivations, we hold the same
assumptions as those in Section II-B.

The overall IR estimate by m-RLS is given in (15). The
normalized MSE of this estimate is obtained as

(L) = E||nfn] — ]| (16)

In (16), we represent the MSE as a function of L because,
according to (15), fl[n] is introduced based on the number of
layers, L. By considering the recursions in (14), substituting
(15) in (16) results in

Hm—RLS

pm-ris(L) = E|hezp[n]])”. a7

Eq. (17) indicates that the MSE of m-RLS is equivalent to the

average power of the last effective IR, h L+1)[ n|. Thus, let us

first evaluate the general case E||h41)[n]||?,forl = 1,... L.In

the proposed estimator, each RLS operates separately; therefore,

similar to (7), we can represent the difference between the
effective IR and its estimate at the [th layer as

h41)[n] = hg[n] — hgy[n]
= By [n](hyy[n] — hgy[n — Ngy)) — ey nl], (18)
where
N(],)fl
Byln = [[ ©n— k]
k=0

coln 19)

Ngy—1
Z <H Oln—1 ) — K],
and N(;) is the coherence length of h(;[n)].

In (18), c(;)[n] is based on the noise samples w[n — k] for k =
0,...,Nqy — 1, whereas ﬁ(l)[n — N(;)] depends on w[n — k]
for k > N(;y. Thus, c(;)[n] is uncorrelated with ﬁ(l) [n — Nyl
On the other hand, c;)[n] has a correlation with h;)[n], except
for I = 1 (see (8)). The correlation between c;)[n] and h;)[n]
forl > 1, leads to

. 2
+ e n]||* + (@), (20)
where u(l) = —2ReE{cg) [(n|By[nJhgy[n]} is the cross-

correlation term. Following the same steps as those in Appendix
A, the average power of h(;1)[n] can be represented as
2 2
E[[bginn]|” = p"OE[h )" + (1 = o) oy,
+ u(l). (21)
Eq. (21) exhibits the recursive relation between the aver-

age powers of two consecutive effective IR vectors h;1)[n]
and h(;[n], for I = 1,..., L. By using this recursion, one can
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expand E b 1)[n]||* based on E|[h)[n]||* = 1 and obtain
tm-rrs(L) in (17) as

L
= HpN“’ +v(L).

(1= pNw Yo +u(L) s a
(1 - pN)yor, and

pim—rrs (L) = E||h(11)[n] (22)
where v(L) = pNwu(L — 1) +
recursive function initiated as v(1) =
u(1l) =0.

According to (22), pm-rrs(L) is the sum of two terms.
Hle pNw is the LE, originating from the system time-
variations, and v(L) is the EN, representing the noise effect. The
values of the LE and the EN tightly depend on the coherence
lengths of the effective IRs, N(;y, for/ = 1,..., L. Thus, prior
to discussing jur, - rrs (L), let us first investigate N(;) in the next
section.

C. Coherence Lengths of Effective IRs

In this section, we investigate the coherence lengths of the
effective IRs when SNR is high. Let ¢(;41)[m], for m >0,
be the normalized autocorrelation function (ACF) of h;1)[n]
calculated as

paenm] = E{h{], [n]hgy1)[n —m]}

= 2
E|hg (7]

In (23),itis assumed that all tap-weights in the effective IR vector

share the same ACF. When the SNR is high (i.e., 02, is small

and negligible), replacing (18) in (23) gives us (see Appendlx
B)

(23)

<P(l+1)[m] =
(200 [m] = ey [m — Nyl — ey [m + Noyl) quy[m], (24)
where
2 m
(%) 5 for 0 <m < N(l)
qulm] = (25)

( 22 ) Nay
P
and ;) [m] is the normalized ACF of h;[n].

Given the normalized ACF of a random variable, the coher-
ence length of the variable is defined as the interval for which,
the normalized ACF is greater than 0.5 [30]. By using this fact,
we show in Appendix C that, if ¢(;)[m] has an exponential
shape as o(;)[m] = exp(—am), with a > 0, then (24) leads
to the conclusion that ¢ 1y[m] also inherits an exponential
form expressed as ¢ (;4.1)[m] ~ exp(—Bm), for 0 < m < Ny,
where = 3o+ g and g = log(%).

By letting ¢ ;)[N(;y] = 0.5 and ¢ ;1) [N(;41)] = 0.5, the ex2-

; for Ny <m,

ponential shapes of o ;)[m] and ¢4 1y[m] lead to N(;) = loa
ILQ __ log2

and Ny ~ 3otg’ respectively. Combining the last

two achlevements gives

N nvlog2
L"gw 26)

N, =
() [N(l)g + 3log2

where [-] denotes the ceiling operator.

Eq. (26) highlights two important points about the coherence
lengths. First, it shows N(;qy < N(;) indicating that h; 1)[n]
is more time-varying than h;[n]. To physically explain this
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achievement, consider (14), which demonstrates that the varia-
tions in h;1)[n] is the superposition the variations in h;[n]
and ﬁ(l) [n]. Because of the lag in fl(l) [n], its variation can be
considered almost noncoherent with that of h;)[n] in a specific
sample time. As a result, h(;1)[n] becomes faster fluctuating
than h(l) [TL]

The second point from (26) is that, by using this recursion, all
coherence lengths can be approximately expressed based on the
coherence lengths of the effective IR at the first layer, Ny = N
(note that the effective IR at the first layer, hy)[n], is equivalent
to the system’s IR, h[n], with the coherence length V).

D. Optimal Number of Layers

Eq. (22) shows that both the LE and the EN in m-RLS are
functions of the number of layers, L. The optimum number of
layers, Lqpt, is where the sum of the LE and the EN (i.e., the

total MSE in (22)) is minimized, that is

Lops = argmjn [l

s.t. 1 <1< Lpax, 27)

where Ly ax 1s the maximum allowed number of layers to keep
the complexity of m-RLS bounded. L. should be selected so
that Ny ~ N(z,...+1)- To do so, we can use the approxi-
mation in (26). This criterion implies that increasing the number
of layers more than L, has a trivial effect on the performance.

Note that by comparing (22) and (9), it is seen that
tm-rrs(1l) = prrs. This indicates that m-RLS with one layer
is identical to an RLS estimator. With this respect, one can see
that L, in (27) leads to

HRLS 2 Han-RLS (Lopt )- (28)
According to (28), by setting the number of layers to L, m-
RLS has a more accurate estimate than RLS, if Lope > 1. The
equality holds only for the case where Loy = 1.

As mentioned in Section I1I-C, N(;) in (22) can be introduced
based on IV. As aresult, one can realize that L in (27) mainly
depends on two parameters, including the coherence length of
the system’s IR, NV, and the noise power, 0'3}. Later, in Section V,
we infer that the solution of (27) ends to a larger Loy, for either
a smaller IV or a smaller afﬂ. Alternatively stated, for either a
relatively faster time-varying systems or a higher SNR, L
becomes larger.

Nevertheless, it is difficult to provide a closed-form solution
for (27). Instead, we propose a numerical method to deter-
mine Lope. To this purpose, in Appendix D, we show that
E|/h(41)[n]||* can be rewritten based on the average power of
the corresponding a posteriori error as

2 2
E|[hgyn[n]||” = Eldgiy[n]|” + (1 - 2(1 — M)y,

(29)

Given the noise power, the (1 — 2(1 — eM)!)o2 term is known.

The E|d(;11)[n]|* term is the average power of the a posteriori
error at the /th layer and can be numerically estimated as

2
Tyl = (1= 2)magn =1+ 2ldeyy ]|, G0)

where 7(;1)[n] is the real-time estimate of E|d(;1)[n] 1%,z =
1/(KM) is a small weighting factor, and K is an integer [14].

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

By substituting (29) and (30) into (27), the problem of finding

the optimum number of layers, at time n, can be reduced to
Loy = argmin  Jy41y[n],
op k (I+1) 31)

st. 1 <1< Lpax

where J(;11)[n] = m(41)[n] — 2(1 —eM)'o2. According to
(31), at any time sample n, .J;41)[n] needs to be calculated
for I =1,..., Lyax. Then, Loy corresponds to the smallest

Jasny[n].

IV. IMPLEMENTATION AND COMPLEXITY ANALYSIS

Each layer of m-RLS is equipped with a separate RLS estima-
tor as described in (2a)—(2d). However, since k[n] and P[n] only
depend on the forgetting factor and the input signal, all layers in
m-RLS share the same k[n] and P[n], which results in a simpler
structure.

Similar to (2a), the a priori error of the RLS #[ is given
as e()[n] = dgyn] — ﬁg) [n — 1]x[n] and, similar to (2c), the
effective IR is updated as fl(l) [n] = ﬁ(l) [n — 1] + €{;) [n]k[n].
After that, the a posteriori error is calculated as

dasny[n] = dgy[n] - fl(l_ll) [n]x[n]

— (dqyln] — B [n — 11x[n])
~ N H
— (B[] = gyl = 1]) " xln] = eq ol T,
(32)

where T'[n] = 1 — k*[n]x[n]. As aresult, the m-RLS algorithm
can be summarized as shown in Algorithm 1, where 0 < § < 1
is for initializing P[n].!

The time complexity is the number of operations (multipli-
cations, additions, and divisions) that an adaptive algorithm
performs to update the IR estimation for each time sample [31].
According to (2a)—(2d), the classic implementation of RLS
algorithm requires 4 M2 + 3M + 1 multiplications, 4 M? — M
additions, and M divisions at each sample time [13]. In this
regard, Table I represents the complexity of different steps of
m-RLS algorithm in Algorithm 1 by using the classic implemen-
tation of each RLS. As shown in this table, the total complexity
of m-RLS is of order O(M?) and higher than that of RLS.

It is worth mentioning that we can use low-complexity ver-
sions of RLS to implement m-RLS. For instance, by using
the transversal DCD algorithm [28], the RLS complexity can
be reduced to only 3 M multiplications and 2M Ny, + 6 M
additions, where N;i, is the number of iterations of the DCD
algorithm. This approach can be used to implement Algorithm
1 for reducing the total complexity of steps 3, 4, and 10. In
addition, when z = 27 and a is an integer, the multiplication
by z in step 12 is only a shift in a bit register. Table II shows the
complexity of m-RLS by using the transversal DCD algorithm.
Accordingly, the m-RLS complexity in Table ITis of order O (M)
and significantly lower than that of the classic implementation
in Table I.

I'The effect of P[—1] on the convergence behavior can be minimized by
choosing a very small 6 [1].
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Algorithm 1: m-RLS Algorithm.

1

2

=T I B Y ]

10
11
12
13
14
15
16

17

Initialization: P[-1] = 6 I, k[-1] =0,
z=1/(MK), h[-1] = 0, hy[-1] = 0,
Tasn—1] =0, r(l) =2(1 — eM)'o?2, for
l=1,..., Lyax

for n=1,2,3,... do

k[n] = (A +x []P[n—l [n] Pn—l] [n]
P[n} =)\! (I]\,{ )Pn—l
T = 1= ]
Jmin = Inf
Lopt =1
for l=1,..., Ly do
ewln] = dgy[n] = hfy[n — 1)x[n]
by [n] = hyyln — 1] + ef [n]k[n]

da+1)[n] = ey [n]T'[n] ,
Ty [n] = (1= 2)mapn[n — 1+ 2|dgy [0
J =mg)n] = r(l)

if J < Jnin then

Jmin =J
Lopt =1

binl = 5% b

TABLE I
COMPLEXITY OF THE PROPOSED ESTIMATOR IN ALGORITHM 1, BY USING
CLASSIC IMPLEMENTATION

Step Mult Add Div
3 2M? + M 2M% — M M
4 AM?2 +3M +1 | AM? - M -
5 M M
9 Lnax M LnaxM
10 LmaxM LmaxM
11 Lmax -
12 4Lmax Lmax
13 - Lmax
14-16 - Liax
17 (Lopt — 1)M
Total: 6 M2 + (2Lmax +5)M + 5Lmax + 1 Mult
6M? + (2Lmax + Lopt — 2)M + 3Lmax Add
M Div

TABLE I
COMPLEXITY OF THE PROPOSED ESTIMATOR IN ALGORITHM 1, BY USING
TRANSVERSAL DCD IMPLEMENTATION

Step Mult Add

3-4 M 2M

5 M M

9 LmaxM LmaxM

10 LmaxM Lmax(SM + QMNitr)

11 Lmax -

12 Lmax Lmax

13 - Lmax
14-16 - Lmax

17 (Lopt — 1) M
Total: (2Lde + 2)M + Lmax Mult
([2N1(7r + 4]Lmax + Lopl + 2)M + 3Lmax Add
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il Ujﬂﬂﬂﬂj il I W
Fig. 2. The PDP of the unljnown system’s IR [33].

V. SIMULATION RESULTS

Digital self-interference cancellation in a full-duplex com-
munication is one of the applications which requires accurate
real-time tracking of the self-interference channel [32]. In this
regard, for simulations, we consider that the unknown system is
a self-interference channel, with length M = 50 and the power-
delay-profile (PDP) shown in Fig. 2 [33]. The time-varying
IR is simulated based on the simulator discussed in [34]. The
input signal is an uncorrelated binary sequence x[n] € {£1}
with length 3000. The forgetting factor in the RLS and m-RLS
algorithms issettoA =1 — 5 M In m-RLS, we take L. = 5,
K =1, and § = 0.001. The reported results are the averages on
2000 Monte Carlo trials.

For a better explanation, we split the simulations into three
parts. In the first part, the performance of m-RLS is assessed
during the time. In the second part, we compare the simulation
results for different coherence lengths and SNRs. Finally, in the
third part, we evaluate the performances in a situation where the
IR impulsively changes.

A. Performance Evaluation During the Time

In the first part of the simulations, we perform the simulation
for the case where the coherence length of the IR taps is N =
200, and SNR is 20 dB. Fig. 3-a compares the IR estimation error
||lh[n] — h[n]||? for m-RLS and RLS for one trial; and Fig. 3-b
shows the corresponding optimal number of layers, L, in m-
RLS. As it can be observed from Fig. 3-a, the estimation error
in m-RLS is generally lower than that of RLS. This result shows
that how the multi-layered idea can reduce the error of tracking
a time-varying system. Fig. 3-b illustrates that, after the initial
transience, L,y mostly takes 3 and 4.

Fig. 4 shows the average of these results over 2000 Monte
Carlo trials, where MSE is the average of ||h[n] — h[n]||?, and
f,opt is the average of Lop¢. As seen, the MSE of m-RLS is
around 1.5 dB lower than that of RLS. Based on Fig. 4-b, this
supremacy is achieved by using Eopt ~ 3.5.

To confirm our derivation about the ACFs of the effective
IRs in m-RLS, Fig. 5 compares the theoretical ¢(;41)[m] in
(24) with that inferred from simulation. Based on this figure,
the theoretical ACFs roughly match the simulation results for
©a+1)[m] > 0.5. The slight mismatch, for [ = 4, 5, comes from
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Fig.3.  When N = 200 and SNR is 20 dB, (a) the estimation errors of m-RLS

and RLS in one trial, (b) the corresponding optimum number of layers in m-RLS.
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Fig.4.  When N = 200 and SNR is 20 dB, (a) MSE performances of m-RLS
and RLS, (b) the average of the corresponding optimum number of layers in
m-RLS.

the assumptions that we hold to simplify our derivation in
Section III-C. It should be mentioned that, according to Fig. 5,
the ACF of the effective IR at each layer is narrower than that
of the previous layer bringing up this fact that each effective IR
varies faster than the previous one.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

ACF

100

Fig. 5. The simulation and theoretical ACF of effective IRs in m-RLS, when
N = 200 and SNR is 20 dB.

TABLE III
THE SIMULATION AND THEORETICAL COHERENCE LENGTHS OF EFFECTIVE
IRS, WHEN N = 200

l Sim. N<l+1) Theo. N(l+1)
1 53 53
2 33 33
3 26 26
4 23 22
5 23 19

Furthermore, based on the plots in Fig. 5, we compare the sim-
ulation and theoretical coherence lengths N(; 1) in Table IIL. Itis
noteworthy that the simulated and theoretical coherence lengths
are mutually close and justify the derivations in Section III-C.

B. Performance Evaluation for Different SNRs and Different
Coherence Lengths

In the second part of the simulations, we inquire about the per-
formance of m-RLS in different SNRs when the time-variation
of the system is relatively fast, and slow with the coherence
length N = 200, and 2000, respectively. In addition to the
classic RLS, we also compare m-RLS with two types of RLS-
VFF algorithms. We title these algorithms as RLS-VFF1 and
RLS-VFF2 which are proposed in [15] and [14], respectively.
The required parameters for RLS-VFF1 and RLS-VFF?2 are set
based on the original works.

Fig. 6-a shows the MSE results for N' = 200. Fig. 6-b shows
the corresponding Eopt in m-RLS. As seen, when the system
is relatively fast time-varying, for the SNRs less than 10 dB,
Eopt = 1 and m-RLS is equivalent to RLS. However, for SNRs
greater than 10 dB, Ly is larger than one, and the perfor-
mance of m-RLS becomes better than that of RLS. As the
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Fig. 6. When N = 200, (a) the MSE performances for different SNRs, (b)
the average of the corresponding optimum number of layers in m-RLS.

SNR increases, Eopt grows larger and the MSE performance of
m-RLS becomes better than that of RLS. These results establish
the fact that a higher SNR leads to a larger L,,;. The MSE
of RLS-VFF1, for SNRs below 14 dB, is worst than that of
m-RLS; however, for SNRs above 14 dB, it merges to the MSE
of m-RLS. The performance of RLS-VFF2 does not remarkably
change with SNR. This estimator has the highest MSE among the
tested methods, except for very low SNRs, where it outperforms
RLS-VFF1.

Fig. 7 shows the results when N = 2000. As seen, when
the system is relatively slow time-varying, for SNR equal to
20 dB and higher, Eopt becomes larger than one and m-RLS
outperforms RLS. Comparing Fig. 7-b to Fig. 6-b, one can see
that Lo is generally larger for the relatively faster time-varying
IR.

We repeat the same simulation as that in Fig. 6 for the case
where the input signal is a normalized and uncorrelated complex-
valued Gaussian sequence. The results are represented in Fig. 8,
which are fairly identical to those in Fig. 6. This shows that
m-RLS is useful for any uncorrelated input signal.

It is worth noting that, for determining the optimal number
of layers based on (31), the noise power must be known in
the m-RLS algorithm. However, via numerical evaluations, we
show that a moderate uncertainty about the noise power does
not significantly affect the performance. To this purpose, Fig. 9
shows the performance of m-RLS with the same simulation
parameters used in Fig. 6, exceptitis assumed the uncertain noise
power is given to the algorithm as (1 + u x randn)o?, where
randn is a zero-mean normalized Gaussian random variable
and u is a parameter to control the extension of the uncertainty.
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Fig. 7. When N = 2000, (a) the MSE performances for different SNRs, (b)

the average of the corresponding optimum number of layers in m-RLS.

As it can be seen from Fig. 9-a and Fig. 9-b, for « = 0.1 and
0.2, the MSE performance and Zopt are the same as those for
u = 0 (no uncertainty). On the other hand, for u = 0.5, the MSE
performance for SNRs lower than 14 dB becomes slightly worst
than that of v = 0. In this SNR range, Eopt is higher than one.
These results indicate that even up to 50% uncertainty on the
noise power does not significantly affect the performance of
m-RLS.

C. Performance Evaluation When an Impulsive Change
Occurs

In this part of simulations, we investigate how an impulsive
change, besides the continuous time-variations of the system, is
handled in m-RLS. To simulate this scenario, we consider that
the IR is time-varying with the coherence time N; in addition to
this continuous variation, a significant impulsive change is also
imposed to the IR at time n = 1000 by multiplying all taps of
the IR vector by —1. When SNR is 10 dB, Fig. 10 and Fig. 11
show the results for N' = 200 and 2000, respectively.

According to Fig. 10-a, when N = 200 and the IR is relatively
fast time-varying, the MSE levels of m-RLS and RLS are almost
the same, before the impulsive change at n = 1000. Within this
period, the MSE of RLS-VFF1 is slightly higher than that of
m-RLS and the MSE of RLS-VFF2 has the worst performance
confirming the achievement observed in Fig. 6-a at SNR 10 dB.
Nevertheless, once the impulsive change occurs, m-RLS has the
fastest convergence in tracking this change. The MSE of RLS-
VFF1, RLS, and RLS-VFF2 drop slower, respectively. After the
transience interval (caused by the impulsive change), the MSE
levels turn back to the same order as before the impulsive change.
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Fig. 8. When the input signal is uncorrelated complex-valued Gaussian and

N = 200, (a) the MSE performances for different SNRs, (b) the average of the
corresponding optimum number of layers in m-RLS.

Itisinteresting to notice that, based on Fig. 10-b, Eopt =~ 1 be-
fore the impulsive change. Once the IR is impulsively changed,
Eopt raises up 3.7 and leads to the supremacy of m-RLS versus
the other methods. Within the transience interval, the average of
the optimum number of layers settles down to Lo, &~ 1 again.

Fig. 11 shows the results when the IR is relatively slow time-
varying with N = 2000. Based on Fig. 11-a, before and after
the transient interval, m-RLS and RLS have the lowest MSE.
The RLS-VFF2 and RLS-VFF1 methods have respectively the
higher MSE levels verifying the results of Fig. 7-aat SNR 10 dB.
Once the impulsive change happens, RLS-VFF2 and m-RLS
attain the fastest convergence. RLS and RLS-VFF1 show slower
drops, respectively. According to Fig. 11-b, Eopt jumps up to
3.6 once the impulsive change takes place and settles down to
Eopt = 1 when the transience interval ends.

Based on Fig. 10-b and Fig. 11-b, the optimum number of
layers in m-RLS not only depends on the coherence length of the
continuously time-variations of the IR but also can be affected
by impulsive changes.

VI. CONCLUSION

In this paper, we propose the m-RLS adaptive filtering to
enhance the accuracy of tracking rapidly time-varying systems.
We show that in m-RLS, the power of the lag error and the noise
effect are functions of the number of layers. We provide a method
to determine the optimum number of layers minimizing the sum
of the lag error and the noise effect. The coherence length of
the effective IRs in m-RLS are evaluated, and it is derived that
each effective IR varies faster than that in the previous layer.
The implementation complexity of m-RLS is studied and it is
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Fig. 9. When N = 200, and the noise power is uncertain in the m-RLS
algorithm as (1 + u x randn)o?,, (a) the MSE performances of m-RLS for
different SNRs, (b) the average of the corresponding optimum number of layers
in m-RLS.
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Fig. 10. When N = 200, SNR = 10 dB, and the impulsive change occurs
at n = 1000, a) the MSE performances, (b) the average of the corresponding
optimum number of layers in m-RLS.

shown that m-RLS is more complex than RLS; however, the
complexity order of the proposed approach can be reduced to
O(M) by employing the transversal DCD algorithm, where M
indicates the IR length.
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Fig. 11.  When N = 2000, SNR = 10 dB, and the impulsive change occurs
at n = 1000, a) the MSE performances, (b) the average of the corresponding
optimum number of layers in m-RLS.

Based on the simulation results, we attain that, for either
a relatively faster time-varying system or a higher SNR, the
optimum number layers becomes larger. With the optimum
number of layers, m-RLS outperforms the classic RLS and
the investigated RLS methods with a variable forgetting factor
especially when the system is rapidly time-varying. In addition,
it is demonstrated that an uncertain knowledge about the noise
power does not significantly deteriorate the performance of the
proposed method.

APPENDIX A
PROOF OF (9)

We split this proof into three sub-proofs:

A. Proof of E||B[n](H[n] — H[n —
Hfn - N]||?
Let us define a = h[n] — h{n — N], which is assumed to be

uncorrelated with x[n] (the second assumption in Section II-B).
According to the definition of ®[n], one can see that

NI = pVE|[H[n] —

M-1 M-1
E|®[nal* = Z E|a;|* — 2eRe Z E {z;[n]z}[nlaja; }
=0 7=0
M-1 2
e’E Z zi[n|zin]a;| |, (33)
j=0
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where x;[n] and a; are the ith entries of x[n]
and a, respectively Since x;[n)’s and a;’s are un-
correlated, Z o E{zi[n]z}[n]aia;} = Ela;|?, and
E|ZJ Lot min)zs[n ]a1|2 MIEJ|aZ| . As aresult,
M-1
E||®[n]a|” = p Y Elail” = pElla|*, 34
i=0

in which p = 1 — 2¢ + £2M. In the next step, we define b =
©[n]a. In the same way, since ©[n — 1] and b are uncorrelated,
E|®[n — 1]b||> = pE||b||?> = p?||a||>. Continuing this proce-
dure and recalling the definition of B[n] in (6), it is concluded

that
2

N-1
E|B[nja||* =E| [ ®[n - Kla| = p"E[al
k=0
- pN]EHh[n] Bl - N]HQ. (35)
B. Proof of E|[H[n] — H[n — N]||* = E||Hn]||?
We can write
~ 2 N 2
EHh[n]_h[n_N]H :IE||h[n]H2—|—]EHh[n—N]H
— 2ReE{h[n]h[n — N}. (36)

Assuming that the noise is insignificant, we can consider

E{h" [n]h[n — m]} = E{h”[n]h[n — m]} for m € Z. As a
result, we have
E[[aln — N]|* = Elbf - N2 = Ebpl), 67)
and
M-
E{h"[n]h] Z E{h;[nlhiln — N1}
i=0
M-1
N] Y Elhi[n))?
i=0
= 0.5E|[h[n]|%, (38)

where h;[n] is the ith entry of h[n], and ¢[n] is the normalized
ACF (i.e., ¢[0] = 1) of h;[n], fori =0,..., M — 1 (note that
it is assumed that all h;[n]’s have the same ACF). In (38), we
let o[ N] = 0.5 due to the fact that the ACF meets 0.5 at the
coherence length [30]. Then, by considering (37) and (38) into
(36), we have
E|bfn] ~ Bf — V]|

= E|h[n]|. (39)

C. Proof of E||C[n]||?> = €2 M (

_ N
o,

The definition of c[n] is brought in (6). Since the noise samples
are uncorrelated,

N-1 2

+) E

k=1

E|c[n]|*

=E[~v[]? — K]

(40)
On the other hand, from the first sub-section in Ap-
pendix A, we know that E||([T*=) ©[n —i])y[n — K]||? =
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P*E||y[n — K]||? = pFe2 M2 . Replacing this in (40), we con-
clude that
2 2772 — k A
]EHC[TL]H = Mawzp = M l—p Ow
k=0
Finally, considering the results in (35), (39), and (41) together
leads to (9).

(41)

APPENDIX B
PROOF OF (24)

Since we assume the IRs and their estimates are uncorrelated
with the input signal, discarding the noise in (18) leads to

E{h{], [n]hg41)[n —m]}
M—-1M-1

= ¥ L E{QuIE{(hayaln] ~ hyaln — No))' @2
i=0 j=

(hwln = m] = byl —m = N |
where (), ; is the (¢, j)th entry of matrix Q = Bg) [n|B[n —
m]. Also, h;) ;[n] and ﬁ(l)yi[n] are the ith entry of h;[n] and
ﬁ(l)[n], respectively. Considering that the tap-weights in an

effective IR are mutually uncorrelated variables, we can rewrite
(42) as

]E{h(l+1 [nJh1)[n —m]}
ZEWAEU il -
(hay,iln —m] = by iln —m — N(z)])}-

Based on the definition of B(;[n] in (19), and holding the
assumption that the IR estimation is independent of the input
signal, one can realize that

;L(l),i[n - N(Z)D* (43)

m—1
E{Q} = H E(Iy — ex[n — k]x" [n — k])
k=0
Ngy—1
H E(Iy + ex[n —m — k|x[n —m — kj])2
k=m
m+Ny—1
[l E@u-exin—kx"n-k), @)
k=N
when m < N(l), and
Ngy—1
E{Q} = [] E@w —efxln —kx"[n —k]})
m+N(l)71
I[I E@u-—exin—kx"n-k), @5
k=m

when m > N(;. Since the input signal x[n] is normalized (i.e.,
E|z[n]|> = 1), by using (44) and (45), the ith diagonal entry of
E{Q} becomes

)»2 mpN(l)—m :

E{Qi} = {AQN(”;

for OgmgN(l)

for N(l) < m. (46)
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As seen, E{Q; ;} is independent of i, thus, replacing (46) in
(43) results in

E{h{], ;) [n]hg1y[n —m]}

= E{ (b)) = By [n = N))
(hgy[n —m] —hgy[n —m - Nz)])} E{Qii}

= E|[hgyn ]|

(20 m] —

H

L)O(l)[Tn + N, l)]) E{Qz ’L}
(47)

Then, substituting (47) and (21) in (23), when the noise is
discarded, results in (24).

ewlm— Nl -

APPENDIX C
PROOF OF ¢ ;41y[m] = exp(—(M)
From (24), we have ¢4 1)[m] = (f'[m] + f"[m])qu[m],
where  f'[m] = oy [m] —@q[m — Ny, and  f"[m] =
oy m] — o m + Ngyl. Since ¢)[m] = exp(—am), and

o [N = 0.5, one can see that f'[m] = 0.5 exp(—am), and
f’[m] =0.5 - @m, for 0 <m < N(;). As a result, we can
approximate that f'[m] + f”[m] = exp(—3am).

On the other hand, from (25), we have g(;)[m] = exp(—gm),
for 0 < m < Ny, where g = log(f%). Putting these results
together, it is concluded that ¢ 1)[m] ~ exp(—Bm), where
B =3a+g.

APPENDIX D
PROOF OF (29)
Since the input signal is normalized, based on (13), we have
Eldinln

nl|* = E[bgenmll” + o3

+ 2ReIE{h(H_1)[n]x[n]w*[n]}. (48)

Let us first investigate IE{h(lJr1 [n]x[n)
to (4), for [th layer, we can write

w*[n]} in (48). Similar

by [n] = hoy ] — O[] (B [n] = by ln = 1]) + [,
(49)
Replacing (14) in (49) results in
B ln] = O[] (hyn] = Byl = 11) = ln]. (50)
By using (50), one can expand h; 1)[n] as
!
h(1)[n] = ©'[n]h)[n Z (1—j+1)[n — 1]
-1
—>_©’[ny[n] 1)
3=0

On the right-hand side of (51), the first and the second terms are
uncorrelated with w[n]. The only correlated part is the third term
because y[n] = ex[n|w*[n]. Thus, since [n] is a Hermitian
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matrix, we have

E{h{l,y[n]x[n]w"[n]}

-1
= —eo2E{x"[n] Z ©7[n)x[n]}.
j=0

(52)

Based on the definition of ©[n], and assuming that M is large
enough so that x”[n]x[n] = ME|z[n]|> = M, it is easy to
follow that x [n]@®7 [n]x[n] = M (1 — eM)’ is independent of
n. As a result,

E{hgﬂ)[n]x[n]w*[n]} =— [1 - (1- eM)l] o2, (53)

Replacing (53) in (48) results in (29).
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