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Hydrogen bonds and dispersion forces serving as
molecular locks for tailored Group 11 bis(amidine)
complexes†

Janet Arras, a Omar Ugarte Trejo,a Nattamai Bhuvanesh, b Colin D. McMillen c

and Michael Stollenz *a

A flexible polydentate bis(amidine) ligand LH2, LH2 = {CH2NH(tBu)CvN-2-(6-MePy)}2, operates as a mole-

cular lock for various coinage metal fragments and forms the dinuclear complexes [LH2(MCl)2], M = Cu (1),

Au (2), the coordination polymer [{(LH2)2(py)2(AgCl)3}(py)3]n (3), and the dimesityl-digold complex

[LH2(AuMes)2] (4) by formal insertion of MR fragments (M = Cu, Ag, Au; R = Cl, Mes) into the N–H⋯N hydro-

gen bonds of LH2 in yields of 43–95%. Complexes 1, 2, and 4 adopt C2-symmetrical structures in the solid

state featuring two interconnected 11-membered rings that are locked by two intramolecular N–H⋯R–M

hydrogen bonds. QTAIM analyses of the computational geometry-optimized structures 1a, 2a, and 4a reveal

13, 11, and 22 additional bond critical points, respectively, all of which are related to weak intramolecular

attractive interactions, predominantly representing dispersion forces, contributing to the conformational

stabilization of the C2-symmetrical stereoisomers in the solid state. Variable-temperature 1H NMR spec-

troscopy in combination with DFT calculations indicate a dynamic conformational interconversion between

two C2-symmetrical ground state structures in solution (ΔG‡
c = 11.1–13.8 kcal mol−1), which is accompanied

by the formation of an intermediate possessing Ci symmetry that retains the hydrogen bonds.

Introduction

Hydrogen bonding represents a fundamental secondary
bonding interaction in condensed phases.1 Its essential impor-
tance for aqueous media and biological systems as well as a
broad application range in catalysis, crystal engineering and
the design of supramolecular structures has initially empha-
sized “classical” hydrogen bonds that are usually constituted
by strong electronegative donor and acceptor atoms such as N
and O, or halogenides. Comparably less attention has been
devoted to the influence of metal centers on hydrogen
bonding interactions in the ligand domain.1c,e,2 The enhanced

effect on Brønsted–Lowry acidity of water molecules through
metal-ion coordination represents a well-known example for
increasing the strength of a hydrogen bond donor. Less
obvious but equally important is the effect of metal centers on
coordinating ligands serving as hydrogen bond acceptors.
These examples range from ubiquitous D–H⋯X–M (D = donor
= N, O; X = F, Cl, Br, I) hydrogen bonds to those involving
more unusual hydrogen bond acceptors such as CO or
hydride.2d Comparative studies on D–H⋯X–M, D–H⋯X−, and
D–H⋯X–C (halocarbon) interactions in solid-state structures
by Brammer et al. demonstrated that X–M acceptor groups
form significantly stronger hydrogen bonds than their X–C
counterparts.2c,d This is attributed to the increased Mδ+–Xδ−

bond polarity in comparison to the C–X bond. It was also
found that the relative strength of D–H⋯X–M bonds decreases
from F to I as follows: D–H⋯F–M ≫ D–H⋯Cl–M > D–H⋯Br–M
> D–H⋯I–M. Combined NMR-spectroscopic and compu-
tational investigations by Crabtree, Eisenstein et al. on the
complex series IrH2X(PPh3)2(pyNH2) featuring intramolecular
N–H⋯X–Ir hydrogen bonds that are incorporated into a
chelate ring confirmed this order also for the solution state
(Fig. 1, left).3

Examination of H⋯X–M bond angles in crystal structures
showed predominantly small angles of ca. 90°–130° for Cl, Br,
and I, which is consistent with a preference for halide ligands
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to accept protons at the more basic p-type lone pairs (Fig. 1,
right).2b–d In agreement with a larger charge density but less
well-defined minima of the electrostatic potential map of
several examples, fluorine shows a more isotropic behavior
and consequently favors larger H⋯X–M bond angles of about
120°–160°.2b–d

N–H⋯X–M hydrogen bonding has received particular atten-
tion in CuI coordination chemistry4 in which it has been uti-
lized as a toolset for controlling coordination behavior4b,e–g

and redox properties4b,g of CuI ions through chelate ligand
design. Similar examples of AuI complexes are limited5 and AgI

typically shows bridging coordination modes of ligand donor
atoms or halides,6 oftentimes resulting in polymeric
arrangements6a,c,d (Fig. 2).

Significantly less common are examples of D–H⋯R–M
bonds with strong hydrogen donors in which carbon acts as
acceptor atom. Generally, N–H⋯C and O–H⋯C interactions
fall in the category of non-conventional (or non-traditional)
hydrogen bonds that are usually weak and have been recog-
nized in only a limited number of experimental reports as dis-
tinct bonding interactions.7–11 Examples include infrared

laser/microwave spectroscopic investigations on the methane-
water complex,7 the role of N–H⋯C bonds in organolithium
chemistry,8 solution-state and gas phase studies on carbanion9

as well as isonitrile10 hydrogen bonds. More current reports
emphasize the role of N–H⋯C hydrogen bonds as modulators
in luminescent N-heterocyclic carbene/fluorophore adducts.11

Very recently, we have described a dimesityl-digold bis
(amidine) complex [LH2(AuMes)2] that features two rarely
observed non-conventional N–H⋯Cipso–Au hydrogen bonds,12

which indicate an onset of an incipient proton transfer reac-
tion, an important criterion for the definition of a hydrogen
bond (Fig. 3).1e These weak hydrogen bonding interactions are
supported by an ensemble of additional cooperative weak C–
H⋯Au,13 C–H⋯N, C–H⋯C, and C–H⋯H–C14 dispersive inter-
actions. Oftentimes being underestimated, combined dis-
persion forces play a key role in the stabilization of molecular
structures, particularly in examples in which bulky groups
have exclusively been related to steric effects.15 Therefore, the
N–H⋯Cipso hydrogen bonds in [LH2(AuMes)2] are retained in
solution and instead of unfolding the double-macrocyclic
double-ring structure, a conformational double-ring inversion
is observed, as revealed by variable-temperature 1H NMR
studies and DFT calculations.

Originally, we became interested in alkylene-, arylene-, and
dialkylsilanediyl-bridged bis(amidines) as extremely versatile
ligands,16 which have predominantly been employed in Group
1–4,17–20 13,21 and 1422 coordination chemistry, together with
related catalytic studies. Applications have also included late
transition metals of Groups 8–1123–26 and the formation of
multinuclear complex assemblies with more than two metal
centers.17c,25,26 Our findings revealed that these bis(amidine)
ligands represent a convenient scaffold for defined linear CuI

cluster arrays27,28 that were obtained from a tetradentate bis
(amidine)29 and mesitylcopper.30

We have earlier demonstrated that N,N′-disubstituted ethyl-
ene-bridged bis(amidines) with additional terminal N-donor
sites exhibit unprecedented networks of weak to moderately
strong inter- and intramolecular hydrogen bonds.31 Out of this
series, the hexadentate bis(amidine) LH2 shows a C2 symmetri-
cal structure with two intramolecular N–H⋯N′ hydrogen
bonds that represents a tailored synthon for structurally

Fig. 1 Intramolecular N–H⋯X–M hydrogen bonds in IrH2X
(PPh3)2(pyNH2)

3 and anisotropic preference of halides as hydrogen bond
acceptors3 at the more basic p-type lone pairs.

Fig. 2 Examples of N–H⋯Cl–M hydrogen bonds in Group 11 metal
coordination spheres.4f,5,6d

Fig. 3 Complex [LH2(AuMes)2].
12
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related dinuclear complexes such as [LH2(AuMes)2]. This
complex was obtained by a formal insertion of 2/5 [AuMes]5
into the two N–H⋯N′ hydrogen bonds of LH2.

Herein, we report our findings that also coinage metal
chlorides formally insert into the intramolecular NH⋯N
hydrogen bonds of LH2 and produce the dichloro-dicopper
and -digold bis(amidine) complexes 1 and 2, as well as the
coordination polymer {[(LH2)2(py)2(AgCl)3](py)3}n (3). We
describe the synthesis and molecular structures of 1–3 that all
feature assemblies of 11-membered rings constituted by intra-
molecular NH⋯Cl–M hydrogen bonds in the solid state.
Moreover, an alternative synthesis of the dimesityl-digold
complex [LH2(AuMes)2] (4) is presented by the reaction of 2
with 2 equiv. of MesMgBr. QTAIM analyses of 1, 2, and 4
confirm that additional cooperative weak intramolecular forces
stabilize the 11-membered ring systems. Variable-temperature
(VT) 1H NMR spectroscopy, accompanied by a comparative
computational study, reveals a concerted double-ring inversion
of 1, 2, and 4 while retaining hydrogen bonding in solution.

Results and discussion
Synthesis, properties, and molecular structures of 1–4 in the
solid state

Complexes 1 and 2 were obtained from LH2 and the corres-
ponding metal chloride precursors in THF at room tempera-
ture as colorless microcrystalline solids in excellent yields
(85–95%, Scheme 1). Elemental analysis disclosed a stoichio-
metric composition of LH2 to MCl of 1 : 2. This was evidenced

by the characteristic [M − Cl]+ fragments found in the MALDI
MS spectra (see Fig. S60, S62, and S63 in the ESI†). The solubi-
lity of 1 in CDCl3 is decent, but poor in aromatic solvents
(C6D6 and toluene-d8). Although both 1 and 2 are reasonably
air-stable in the solid state, solutions of 1 in CDCl3, C6D6, and
toluene-d8 turn greenish within several hours under non-inert
conditions. Complex 2 tends to degrade in CDCl3 and C6D6

over the course of several days by forming purple solutions
that are indicative of the formation of gold nanoparticles. As
solids, complexes 1 and 2 are thermally stable up to 170 °C (1)
and 180 °C (2) before they decompose into black oils.

Single crystals of 1 suitable for an X-ray structure determi-
nation were obtained from a saturated THF solution at −35 °C.
This complex crystallized in the monoclinic space group P21/c
and shows four molecules occupying the unit cell (Table S1
and Fig. S3, ESI†). The molecular structure of 1 shows a selec-
tive linear coordination of two CuCl fragments (N–Cu–Cl
angles: 175.87(5)° and 174.37(6)°) at the terminal pyridyl moi-
eties of the bis(amidine) ligand by formal insertion into the
intramolecular N–H⋯N hydrogen bonds of LH2 which leads to
two 11-membered rings (Scheme 1). The Cu–N and Cu–Cl
bonding distances (1.8934(16)/1.8932(17) Å and 2.0961(6)/
2.1001(6) Å, respectively, see Fig. S1, ESI†) are within the range
of comparable CuCl complexes with coordination number
two.32 The resulting formation of two weak to moderately
strong33 N–H⋯Cl–Cu hydrogen bonds is evidenced by donor–
acceptor distances of 3.34–3.36 Å (Table 1), which are similar
in literature examples such as a CuCl complex with a tris
(pyridyl-2-methyl)amine-based ligand (3.342(2) Å, 3.366(2) Å,
and 3.418(2) Å)4b or the example shown in Fig. 2 (3.26 and
3.353 Å, no e.s.d. given).4f The N–H⋯Cl angles of 156–157° are
clearly larger than the expected range around 90°,2c which is
consistent with the constraints caused by the 11-membered
rings consisting of the bis(amidine) ligand and the embedded
CuCl fragments (Fig. S1 and Table S5, ESI†). The IR N–H
stretching frequency of 1 is blue-shifted by 70 cm−1 relative to
LH2 and thus indicating a weaker intramolecular hydrogen
bonding strength than in the free ligand (Fig. 4 and Table S4,
ESI†).31

Although the amidine binding pockets remain protonated
and unoccupied, there are smaller ΔCN values34 observed for 1
(0.053/0.059 Å, Table S3, ESI†) in comparison to LH2 (0.056/
0.069 Å),31 which indicate a slightly increased degree of deloca-
lization within the CN2 amidine units.

Scheme 1 Synthesis of complexes 1 and 2. Solid-state molecular struc-
ture of 1, determined by X-ray crystallography. Hydrogen atoms except
for NH functionalities and hydrogen bonds have been omitted for
clarity. Selected interatomic distances (Å), bond angles (deg), and
torsion angles (deg): Cu1–Cl1 2.0961(6), Cu2–Cl2 2.1001(6), Cu1–N1
1.8934(16), Cu2–N6 1.8932(17), C12–C13 1.533(3), N3–C7 1.347(2), N2–
C7 1.294(2), N4–C14 1.348(3), N5–C14 1.289(3), N1–Cu1–Cl1 175.87(5),
N6–Cu2–Cl2 174.37(6), N3–C12–C13–N4 51.1(2), N1–C5–N2–C7 100.1
(2), C14–N4–C13–C12 74.4(2), N6–C19–N5–C14 106.6(3). For hydro-
gen bonds and associated angles see Table 1 and Fig. S1, ESI.†

Table 1 Hydrogen bonding parameters of LH2 and 1–4

LH2
31 1 238 3 412,38

Bond/angle [Å]/[°]

NNH⋯Xa 2.9461(12) 3.3583(17) 3.389(4) 3.24(2) 3.647(4)
2.9299(12) 3.3449(17) 3.247(16) 3.525(4)

NH⋯Xa 2.1819(9) 2.53 2.614(1) 2.44 3.04(4)
2.2143(9) 2.52 2.46 2.86(4)

N–H⋯Xa 140.20(7) 156.6 147.4(3) 151.3 153(4)
138.20(7) 156.1 148.6 151(4)

a X = Cl (2–4), X = C (5).

Inorganic Chemistry Frontiers Research Article

This journal is © the Partner Organisations 2022 Inorg. Chem. Front.

Pu
bl

is
he

d 
on

 1
3 

M
ay

 2
02

2.
 D

ow
nl

oa
de

d 
by

 T
uf

ts
 U

ni
ve

rs
ity

 o
n 

6/
3/

20
22

 3
:0

9:
07

 P
M

. 
View Article Online



As opposed to the free ligand LH2, the bis(amidine) back-
bone of 1 features an EE (syn/syn) isomeric configuration. The
(6-methyl)-pyridyl(CuCl) fragments are significantly tilted rela-
tive to the CN2 amidine planes (by about −100 to −106°).
Complex 1 has an overall C2 symmetry and appears as a
racemic mixture in the crystalline state (Fig. S3, ESI†). One
enantiomer is shown in Scheme 1.

Single crystals of complex 2 were grown from a THF solu-
tion layered with diethyl ether at −35 °C and found to crystal-
lize in the monoclinic space group C2/c with again four mole-
cules being present in the unit cell that overall represent two
pairs of C2-symmetric enantiomers (Table S1 and Fig. S6, ESI†).
The molecular structure of 2 (Fig. S4, ESI†) is essentially iso-
structural to 1, with a notable deviation of a 4.8° larger central
N–C–C–N dihedral angle and approximately 9° larger angles of
the NH⋯Cl hydrogen bonds, which are also longer than in 1
(donor–acceptor distance: 3.389(4) Å, Table 1) and consistent
with a slight blue shift of the IR N–H stretching frequency of
13 cm−1 relative to 1 (Fig. 4 and Table S4, ESI†). This is attribu-
ted to the larger van der Waals radius of gold by 0.52 Å (ref. 35)
and consequently enlarged M–Cl and M–N distances of 0.16 Å
and 0.13 Å, respectively (compare Fig. S2 and S5, ESI†). Similar
to 1, there is a slight deviation of the N–M–Cl angles of 2 from
linearity by about 3.3° (1: 4.9°). The degree of delocalization in
the CN2 amidine units of 2 is about the same as in LH2 (ΔCN =
0.063 Å, Table S3, ESI†). The Au–N (2.028(4) Å) and Au–Cl
bonding distances (2.2573(11) Å, Fig. S4†) are similar to those of
(2-MePy)AuCl (Au–N: 2.044(4) Å; Au–Cl: 2.2590(13) Å)36a and [(2-
(NH2)Py)AuCl] in [(2-(NH2)Py)2Au][(2-(NH2)Py)AuCl][(AuCl2] (Au–
N: 2.053(5) Å; Au–Cl: 2.2631(9) Å).36b

Due to the poor solubility of AgCl in common organic sol-
vents such as THF or acetonitrile, attempts to synthesize an
analogous complex [LH2(AgCl)2] complex have remained
unsuccessful. However, pyridine was found as a convenient
solvent to generate a homogeneous solution of AgCl and LH2

which allowed the isolation of complex 3 as a colorless micro-
crystalline solid (Scheme 2). Complex 3 is light-sensitive and
starts to decompose as a dried solid at 139 °C. Single crystals
of 3 were obtained by slow diffusion of diethyl ether into the

clear reaction mixture. X-ray crystallography revealed the struc-
ture of an unusual coordination polymer [{(LH2)2(py)2(AgCl)3}
(py)3]n that crystallized as pyridine solvate with three non-coor-
dinating solvent molecules per monomeric unit (Scheme 2,
Table S1, and Fig. S7–S9, ESI†). As opposed to the linear coordi-
nation geometry in 1 and 2, complex 3 features two distinct
coordination modes for the MCl fragments. One AgCl unit
opens an additional coordination site and interconnects two
LH2 ligands through formal insertion into one N–H⋯N hydro-
gen bond each. In contrast to 1 and 2, both LH2 bis(amidine)
ligands in 3 remain in their original ZZ(syn/syn) isomeric con-
figuration.31 This gives rise to a trigonal-planar coordination
environment of AgCl (N–Ag–N angle: 118.7(10)°) that is
embedded in an 11-membered double ring. The terminal
binding pockets of [(LH2)2AgCl] are occupied with tetrahedrally
coordinated AgCl fragments which are constituted by accepting
one pyridine donor molecule and dimerization to the next
neighbored AgCl unit. The resulting polymeric chain is chiral
and exists in only one enantiomeric form in the crystal lattice,
as indicated by the monoclinic spacegroup C2. All coordinate
bond lengths of 3 (Ag–N: 2.259(17)–2.39(3) Å; Ag–Cl: 2.494(6)–
2.662(5) Å, Fig. S7, ESI†) lie in the range of comparable pyridyl-
and quinolyl AgCl complexes.37 This polymeric arrangement in
3 is likely responsible for the smallest wavenumber for the IR
N–H stretching modes within the series 1–3 and therefore its
most stable N–H⋯ Cl–M hydrogen bonds (Table S4, ESI†).

Fig. 4 NH stretching frequency region of the IR spectra of 1, 2, 4,12

LH2,
31 and {CH2NH(

tBu)CvN–Mes}2.
29

Scheme 2 Synthesis and solid-state molecular structure of complex 3,
determined by X-ray crystallography. Non-coordinating pyridine solvate
molecules are not shown. Hydrogen atoms except for NH functionalities
and hydrogen bonds have been omitted for clarity. Selected interatomic
distances (Å), bond angles (deg), and torsion angles (deg): Ag1–Cl1
2.494(6), Ag1–N1 2.259(17), Ag2–Cl2 2.570(5), Ag2–Cl2’’ 2.662(5), Ag2–
N6 2.27(2), Ag2–N7 2.39(3), C12–C13 1.47(3), N3–C7 1.38(3), N2–C7
1.28(3), N4–C14 1.38(2), N5–C14 1.25(3), N1–Ag1–C11 120.6(5), N1–
Ag1–N1’ 118.7(10), N6–Ag2–Cl2 125.0(5), N6–Ag2–Cl2’’ 118.4(7), N6–
Ag2–N7 103.9(9), N7–Ag2–Cl2 114.3(7), N7–Ag2–Cl2’’ 89.1(7), Cl2–
Ag2–Cl2’’ 100.69(17), N3–C12–C13–N4 60(3),38 N1–C5–N2–C7 131
(2),38 N6–C19–N5–C14 128(3).38 For hydrogen bonds and associated
angles see Table 1 and Fig. S7, ESI.†
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Next, we probed the feasibility of introducing organic
groups as coligands for the coinage metal ions by employing
salt metathesis strategies using organolithium or Grignard
reagents. This was limited to the digold complex 2, since σ-
organocopper and -silver bonds are more prone to protolysis
by the NH functions of the amidine moieties than σ-aryl- and
alkylgold bonds. By contrast, σ-organogold complexes are con-
siderably more stable – for example, the synthesis of
[Ph3PAuMe] even involves an aqueous workup step in the syn-
thetic protocol.39 Thus, we focused on a simple metathesis
reaction of complex 2 and four equiv. of MeLi, followed by
hydrolysis to reestablish the NH functionalities of the bis
(amidine) backbone. Since only decomposition into a purple
solid (gold nanoparticles) was observed, we felt using an elec-
tronically more stabilizing and sterically encumbered group
than methyl more applicable.

We have recently reported that LH2 and the pentameric
cluster [AuMes]5 cleanly convert into the dimesityl-digold
complex 4, in 95% yield (Scheme 3).12

This synthesis was inspired by the kinetic and thermo-
dynamic stability of mesitylgold, its excellent solubility in less
polar solvents and easy identification by only three diagnostic
1H NMR signals.40 Moreover, it has been demonstrated that
mesitylgold forms mixed coinage metal clusters41 and mono-
nuclear mesitylgold(I) complexes with additional co-ligands42

by rearrangements of [AuMes] fragments. We were curious
about an alternative synthesis for 4, using the dichloro-digold
complex 2 and MesMgBr, because the latter is commercially
available.

The reaction of 2 with four equiv. of MesMgBr in THF at
−78 °C, subsequent hydrolytic workup, and crystallization
from CH2Cl2 afforded complex 4 in 80% yield (Scheme 3). The
colorless microcrystals are remarkably stable and decompose
around 135 °C into a dark purple oil. Complex 4 is well soluble
both in CDCl3 and C6D6. Similar to 2, it slowly degrades in
these solutions, although to a lesser extent. The stoichiometric
composition of [LH2(AuMes)2] was confirmed by elemental
analysis and the characteristic [M − Mes]+ fragment in the
MALDI MS spectrum. Single crystals of 4 suitable for an XRD
analysis were grown as colorless blocks from a slowly concen-
trating diethyl ether solution at room temperature and found
to crystallize in the triclinic spacegroup P1̄. The unit cell con-
tains one pair of C2-symmetric enantiomers resembling the
structural motif of 1 and 2 (Scheme 3 and ref. 12). The two
Au(I) centers show linear coordination geometries, although
there is a larger deviation from linearity at Au2 (N6–Au2–C34
angle: 173.35(10)°) than at Au1 (N1–Au1–C1 angle: 177.4(1)°).
This is likely due to packing effects. The Au–N bonding dis-
tances of 4 (2.102(2) Å and 2.111(2) Å) are significantly longer
(by about 0.07–0.08 Å) than in 2, which is attributed to the
stronger trans influence of the mesityl ligands. Conversely, the
Au–C bonds of 4 (2.010(3) Å and 2.014(3) Å) are shorter in com-
parison to linear gold(I)mesityl complexes with stronger trans-
stabilizing co-ligands than pyridyl in LH2. Those examples
include phosphines in [MesAuP(Ph2)(CH2)2(Ph2)PAuMes]
(2.067(6) Å),40b [MesAuP((3-Py)2)(CH2)2((3-Py)2)PAuMes] (2.067
(4) Å),41f or [Ph3PAuMes] (2.061(5) Å).42a

The most remarkable feature of complex 4 is its isostruc-
tural relation to 1 and 2 and the orientation of the mesityl
ligands to the linking –NH(CH2)2NH– diamine bridge. This
orientation initially suggested hydrogen bonding between the
NH donors and the π-system of the mesityl ligands. However, a
closer inspection of the structure reveals significantly shorter
N⋯Cipso distances (3.525(4) Å and 3.647(4) Å) than to the next
neighbored ortho-carbon atoms (by 0.25/0.41 Å and 0.09/
0.80 Å), which indicates the existence of two discrete N–
H⋯Cipso hydrogen bonds.

Although the donor–acceptor distances of 4 are signifi-
cantly longer (by 0.14–0.26 Å) than in 2, the corresponding N–
H⋯acceptor angles of 1 and 2 are within a similar range
(Table 1). These parameters for 4 are consistent with a classifi-
cation as weak hydrogen bonds,33 – weaker than in 2 – which
is supported by a slight blue shift of the IR N–H stretching fre-
quency of 4 by 22 cm−1 in comparison to 2 (Fig. 4 and
Table S4, ESI†).

Scheme 3 Synthesis and solid-state molecular structure of complex
4, determined by X-ray crystallography.12 Hydrogen atoms except for
NH functionalities and hydrogen bonds have been omitted for clarity.
Selected interatomic distances (Å), bond angles (deg), and torsion
angles (deg): Au1–C1 2.010(3), Au2–C34 2.014(3), Au1–N1 2.102(2),
Au2–N6 2.111(2), C21–C22 1.518(4), N3–C16 1.350(3), N2–C16 1.289
(4), N4–C23 1.354(3), N5–C23 1.290(3), N1–Au1–C1 177.4(1), N6–Au2–
C34 173.35(10), N3–C21–C22–N4 56.4(3), N1–C14–N2–C16 94.0(3),
N6–C28–N5–C23 84.5(4). For hydrogen bonds and associated angles
see Table 1.
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Quantum theory of atoms in molecules (QTAIM) calculations
on 1a, 2a, and 4a12

In the next step, we conducted quantum theory of atoms in
molecules (QTAIM) analyses43 of the computational geometry-
optimized structures of 1a and 2a to compare the results with
4a, focusing on the bond paths for hydrogen bonds and dis-
persive interactions (Table 2, Fig. 5, Tables S15, S16 and
Fig. S24–S29, ESI†).

Both 1a and 2a show bond critical points (BCPs) of the N–
H⋯Cl hydrogen bonds with larger electronic charge densities
than in 4a (ρ(rBCP) = 0.0192/0.0194 e Å−3 for 1a, 0.0150 e Å−3

for 2a, and 0.0081/0.0070 e Å−3 for 4a), which is expected from
stronger hydrogen bonding interactions in 1a and 2a. This is
also confirmed by larger positive Laplacians for 1a and 2a
(∇2ρ(rBCP) = 0.0620/0.0626 e Å−5 for 1a and 0.0499 e Å−5 for 2a)
relative to 4a (∇2ρ(rBCP) = 0.0234/0.0203 e Å−5) and conclusive,
because the N–H⋯Cipso hydrogen bonding interactions in 4a
have only dispersive character, consistent with electron den-
sities found for BCPs of CuC–H⋯C(π) hydrogen bonds that
are in a similar range as in 4a.44 Consequently, the Bader
charges at N (1a: −1.1504; 2a: −1.1439/–1.1444) Cl (1a:
−0.6182/−0.6176; 2a: −0.4978/−0.4977) indicate a significantly
larger polarization of the N–H⋯Cl bonds in 1a and 2a than in
the N–H⋯Cipso bonds in 4a (N: −1.1392/−1.1416 and Cipso:
−0.1632/−0.1618). In addition to the hydrogen bonds, there
are 13 non-covalent bond related BCPs found in 1a, 11 BCPs in
2a, and 22 BCPs in 4a. These BCPs represent distinct support-
ing C–H⋯Cu, C–H⋯Au, C–H⋯Cl, C–H⋯N, C–H⋯C, and C–
H⋯H–C dispersive interactions as indicated by their magni-
tudes of the electronic charge densities and Laplacians (Tables
S15 and S16, ESI†). The combination of hydrogen bonding
and dispersion forces result in the extraordinary conformation-
al stability of 1, 2, and 4 not only in the solid state but also in
solution (vide infra).

NMR spectra of 1–4 and dynamic behavior of 1, 2, and 412 in
solution

To compare the influence of the solvent polarity on the NMR
signal shifts, 1H and 13C{1H} NMR spectra of 1, 2, and 4 were
recorded both in CDCl3 and C6D6 (Fig. 6, 7, and Fig. S30–S49,
ESI†). Due to its limited solubility in common organic sol-
vents, pyridine-d5 was used for complex 3.

All 1H NMR spectra show only one set of sharp resonances
for all C–H protons and thus indicate the presence of one sym-
metrical stereoisomer, which implies that the unsymmetrical
structure of complex 3 is not retained in solution (Table S9,
ESI†).

The aliphatic proton signals in 1, 2, and 4 are upfield-
shifted by up to 1.78 ppm with respect to the free ligand LH2.
Notable exceptions are the 6-Py methyl group signals of 1 and
2 in C6D6 as well as the tBu singlet of 4 in CDCl3 and C6D6. A
consistent trend is seen in the aromatic region for 1, 2, and 4,

Table 2 QTAIM topological parameters of selected N–H⋯X–M hydrogen bonds (X = Cl, C) in 1a, 2a, and 4a.12 See ESI† for details

Complex
Bond Path Charge A Charge B dBP(AB) ρ(rBCP) ∇2ρ(rBCP) DIa H G V
A⋯B [Å] [e Å−3] [e Å−5] [Hr Å−3]

1a N11–H12 −1.1504 0.4223 1.0134 0.3325 −1.6713 0.7110 −0.4633 0.0455 −0.5088
H12⋯Cl3 0.4223 −0.6182 2.3332 0.0192 0.0620 0.0851 0.0017 0.0138 −0.0120

2a N10⋯H33 −1.1439 0.4168 1.0110 0.3350 −1.6807 0.7255 −0.4657 0.0455 −0.5112
H33⋯Cl3 0.4168 −0.4978 2.4454 0.0150 0.0499 0.0690 0.0019 0.0105 −0.0086

4a N7–H8 −1.1392 0.4070 1.0075 0.3381 −1.6835 0.7462 −0.4673 0.0464 −0.5137
H8⋯C11 0.4070 −0.1632 2.6359 0.0081 0.0234 0.0237 0.0011 0.0048 −0.0037

aDelocalization index.

Fig. 5 Top: Atoms-in-molecules (AIM) molecular graph of 1a. Bottom:
N–H⋯Cl–Cu hydrogen bond region of the AIM molecular graph of 1a.
Contour map of the Laplacian of the electron density (∇2ρ(r)) isosurfaces
through the N(7)–H(8)–Cl(4) plane. Red contours show negative
Laplacian (∇2ρ(r) < 0) and blue contours show positive Laplacian (∇2ρ(r) >
0) values. Bond critical points are denoted in green, ring critical points in
red, and cage critical points in blue. See also Table 2 and ESI† for more
information. Geometry optimizations were performed with
TURBOMOLE at the level of theory of RIDFT-D3/B3LYP/def2-TZVP.
Wave functions were calculated using Gaussian at the B3LYP-D3(BJ)/6-
311G(d) (for all other atoms) and the B3LYP-D3(BJ)/ECP10MDF/cc-
pVTZ-PP (for Cu) level of theory. See ESI for details.
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which is electronically most affected by metal coordination. All
proton signals are downfield-shifted in CDCl3 (|Δδ| =
0.12–0.24 ppm, Py H3; 0.11–0.16 ppm, Py H4; and
0.08–0.15 ppm, Py H5) and upfield-shifted in C6D6 (|Δδ| =
0.43–0.50 ppm, Py H3; 0.37–0.45 ppm, Py H4; and
0.20–0.49 ppm, Py H5), relative to LH2 (Table S8, ESI†). The 13C
{1H} NMR spectra of 1–4 are very similar and show the diag-
nostic peaks of the common bisamidine backbone essentially
unchanged or with only minor relative shifts (compare Tables
S10 and S11, ESI†). All peaks were completely assigned by
HSQC and HMBC 2D NMR experiments, with the exception of
very broad or overlaid 1H/13C signals (Fig. S36, S37, S40, S41,
S44, and S45†).

The N–H resonances of 1, 2, and 4 deserve particular atten-
tion, because their shifts indicate whether hydrogen bonding
is retained or disrupted in the solution state. Since LH2 pre-
serves its intramolecular hydrogen bonds in solution, it does
not serve as a reliable reference alone. In addition, the N–H
signal in C6D6 is broad.31 However, the more bulky bis
(amidine) {CH2NH(tBu)CvN–Mes}2 featuring the common

{CH2NH(tBu)CvN}– backbone of LH2 has been demonstrated
to lack hydrogen bonds both in solid state and solution.29

Although the influence of the metal fragments on the chemi-
cal shifts have to be taken into account, relative to the N–H
signal of this bis(amidine), complexes 1, 2, and 4 show signifi-
cant downfield shifts of |Δδ| = 0.90–2.59 ppm in CDCl3 and
|Δδ| = 1.35–2.19 ppm in C6D6 and thus providing strong evi-
dence for hydrogen bonding being present in solution, which
is further confirmed by VT 1H NMR (vide infra). Generally, the
deshielding effect of hydrogen bonds is more distinct in less
polar C6D6 than in CDCl3, because the latter also serves as a
weak hydrogen bond donor/acceptor and therefore competes
with the intramolecular N–H⋯acceptor bonds in 1, 2, and 4
(Tables S8 and S9, ESI†). The slightly weaker downfield shifts
of complex 2 compared to 1 are consistent with the structural
parameters, IR data, and QTAIM computational results found
for the solid state. As expected, complex 4 has the most
upfield-shifted N–H resonance signals within this series,
which substantiate the weak nature of the N–H⋯Cipso hydro-
gen bonding interactions, although even these fragile bonds
remain intact in CDCl3 and C6D6 solutions, likely due to the
additional conformational stabilization of 4 through dis-
persion forces.

We finally employed variable-temperature (VT) 1H NMR
spectroscopy to investigate the extraordinary conformational
stability and the concerted molecular dynamics of 1, 2, and 4
(Fig. S50–S54, S56, and S57, ESI†). While almost the entire
proton signals of all three complexes remain unchanged
across a wide temperature range and regardless of the solvent
polarity (CDCl3, C6D6 for 2 and 4 or CD2Cl2, toluene-d

7 in case
of 1), there is a remarkable change in the CH2 region.
Decreasing temperature results in increasing line broadening,
followed by decoalescence, and then separation into two sing-
lets (Fig. 8 and Fig. S50–S54, ESI†).45 Low-temperature NOESY
experiments for 1 and 2 allowed the identification of two
proton signals Ha and Hb through the different intensity of the
Ha/NH and Hb/NH crosspeaks (Fig. S56 and S57†).

Fig. 6 Aromatic (left) and aliphatic regions (right) of 1H NMR spectra of
LH2, 1, 2, and 4 in CDCl3 (400 MHz, * H2O in CDCl3).

Fig. 7 Aromatic (left) and aliphatic regions (right) of 1H NMR spectra of
LH2, 1, 2, and 4 in C6D6 (400 MHz, * residual CH2Cl2).

Fig. 8 Aromatic/NH region and CH2 signals of variable-temperature 1H
NMR spectra of 1 in CDCl3 (400 MHz).
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In all three examples 1, 2, and 4 there is no significant shift
of the N–H resonance associated with this dynamic process.
Disruption of hydrogen bonding would be expected to result
in an upfield-shifted N–H resonance signal.46 This observation
suggests a concerted conformational inversion of the double
11-membered ring system that retains the two N–H⋯acceptor
hydrogen bonds and leads to a reversible interconversion from
one C2-symmetrical enantiomer into the other through the for-
mation of a transient intermediate possessing Ci symmetry
(Scheme 4).

DFT gas phase calculations suggest that the observed free
energies of activation for 1, 2, and 4 (ΔG‡

c = 11.1–13.8 kcal
mol−1), see also Tables 3 and S12, ESI† are in agreement with
this dynamic behavior rather than a mechanism involving dis-
ruption of hydrogen bonding. This is because the proposed Ci-
symmetrical intermediates 1b, 2b, and 4b are higher in free
energy by ΔG = +8.0 kcal mol−1 (1b), +13.9 kcal mol−1 (2b),
and +11.2 kcal mol−1 (4b) than the corresponding DFT-geome-
try-optimized molecular structures 1a, 2a, and 4a (Table 3 and
Scheme 5).

Feasible alternative isomers that lack hydrogen bonds have
substantially higher ΔG values, ranging from 17.2 to 23.4 kcal
mol−1: 1c, 2c, and 4c correspond to the C2-symmetrical
groundstate symmetry of 1a, 2a, and 4a, whereas 1d, 2d, and
4d have the Ci symmetry of the intermediates 1b, 2b, and 4b in
common. The combined VT 1H NMR-spectroscopic and com-
putational results clearly rule out an interconversion mecha-
nism that involves separation of hydrogen bonds.

Conclusions

We have demonstrated that the polydentate N,N′-disubstituted
ethylene-bridged bis(amidine) LH2 is capable of incorporating
distinct CuCl, AuCl, AgCl or AuMes fragments of the [AuMes]5
cluster into its pyridyl/amidine binding pockets through
formal insertions of the N–H⋯N hydrogen bonds in LH2. This
results in the formation of the isostructural dinuclear com-
plexes [LH2(MCl)2], M = Cu (1), Au (2), and [LH2(AuMes)2] (4).
AgCl forms the coordination polymer [{(LH2)2(py)2(AgCl)3}
(py)3]n (3) in pyridine. All four examples feature N–H⋯acceptor
hydrogen bonds, which are embedded in two flexible 11-mem-
bered interconnected rings, either found in discrete dinuclear
complexes (1, 2, and 4) or arrayed in a polymeric chain (3). The
two non-conventional N–H⋯Cipso hydrogen bonds in 4 rep-
resent rarely observed primal onsets of proton transfers in an
organometallic complex. QTAIM calculations on 1, 2, and 4

Scheme 4 Conformational double-ring inversion of 1, 2, and 4 in solu-
tion.47 Computational structure of the Ci-symmetrical intermediate of 1.
Geometry optimizations were performed with TURBOMOLE at the level
of theory of RIDFT-D3/B3LYP/def2-TZVP. Thermochemical corrections
were calculated using Gaussian at the DFT-D3/BP-86/def2-SVP level of
theory. See ESI† for details.

Table 3 Experimental activation barrier ΔG‡
c of the conformational ring

inversion for 1, 2, and 412 in solution. Calculated relative free energy ΔG
of 1b, 2b, and 3b in the gas phase (thermochemical corrections were
calculated using Gaussian at the DFT-D3/BP-86/def2-SVP level of
theory)

1 2 4 1b 2b 4b
[kcal mol−1]

CDCl3 11.1 12.9 13.0 8.0 13.9 11.2
C6D6 11.9a 13.5 13.8

a C7D8.

Scheme 5 Relative free energies of computationally determined
isomers of 1, 2, and 412 (a: geometry-optimized ground state, b: inter-
mediate of the conformational ring inversion, c and d: alternative
isomers without hydrogen bonds). Geometry optimizations were per-
formed with TURBOMOLE at the level of theory of RIDFT-D3/B3LYP/
def2-TZVP. Thermochemical corrections were calculated using
Gaussian at the DFT-D3/BP-86/def2-SVP level of theory. See ESI† for
details.
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support the existence of additional intramolecular attractive
forces that predominantly include London dispersion inter-
actions, which are altogether contribute to the overall
stabilization of the C2-symmetrical conformations of the
dinuclear complexes. VT-1H NMR studies of 1, 2, and 4 in con-
junction with DFT-gas phase calculations clearly support a
dynamic conformational interconversion between two C2-sym-
metrical ground states rather than a mechanism that unfolds
the compact complex ensemble through hydrogen bond
rupture.

These findings emphasize the importance of London dis-
persion forces in molecular structures also showing hydrogen
bonding interactions. The combination of multiple weak
forces has a tremendous effect on the stabilization of energe-
tically preferred conformations. Our example of a bulky bis
(amidine) ligand framework clearly demonstrates that steric
effects should always be regarded as an ensemble of steric
hindrance leading to repulsion and also attraction through
combined dispersion forces and hydrogen bonding.
Controlling the balance of these forces by designing the
molecular structure represents a new approach to manipulate
supramolecular structures or reaction mechanisms, in par-
ticular those involving organometallic species in catalytic
transformations.
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