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Abstract— Computer vision techniques always had played a
salient role in numerous medical fields, especially in image
diagnosis. Amidst a global pandemic situation, one of the
archetypal methods assisting healthcare professionals in
diagnosing various types of lung cancers, heart diseases, and
COVID-19 infection is the Computed Tomography (CT)
medical imaging technique. Segmentation of Lung and Infection
with high accuracy in COVID-19 CT scans can play a vital role
in the prognosis and diagnosis of a mass population of infected
patients. Most of the existing works are predominately based on
large private data sets that are practically impossible to obtain
during a pandemic situation. Moreover, it is difficult to compare
the segmentation methods as the data set are obtained in various
geographical areas and developed and implemented in different
environments. To help the current global pandemic situation,
we are proposing a highly data-efficient method that gets
trained on 20 expert annotated COVID-19 cases. To increase the
efficiency rate further, the proposed model has been
implemented on NVIDIA - Jetson Nano (System-on-Chip) to
completely exploit the GPU performance for a medical
application machine learning module. To compare the results,
we tested the performance with conventional U-Net architecture
and calculated the performance metrics. The proposed state-of-
art method proves better than the conventional architecture
delivering a Dice Similarity Coefficient of 99%.
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I. INTRODUCTION

The COVID-19 pandemic, otherwise called the
Coronavirus pandemic, is an existing global pandemic of
coronavirus disease 2019, which is caused due to extremely
intensive respiratory syndrome SARS-CoV-2. The first
recognition of the covid virus was in December 2019 in
Wuhan, China. The World Health Organization (WHO)
proclaimed it as an emergency health crisis Worldwide in Jan
2020 and later pronounced it a pandemic in Mar 2020.
Starting in Jun 2021 more than 181 million cases have been
affirmed, with more than 3.93 million affirmed deaths
ascribed to Coronavirus, making it probably the deadliest
pandemic ever.

Despite the release of vaccination against the disease,
most of the countries in the world are facing an increasing
number of daily cases. In some countries like India,
Bangladesh the COVID-19 virus got mutated into a much
stronger strain which led to the increasing number of affected
cases and deaths in a very short period worrying the entire
world.
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Over the last few decades, there have been various
improvements in the clinical tools used to aid medical
diagnosis, and one of the most important is the Computerized
Tomography (CT) scan which enables visualization of
internal organs, such as the lungs and their structures[1].
There is no computerized model available to delineate
COVID 19 virus in chest CT scans which can be used for
quantifiable assessment in predicting the severity [2]. The
first challenge for the clinical diagnosis of lung diseases using
CT scans is to demarcate the region of the lungs[1].To
support future diagnostic processes a radiological specialist
must mark the lung regions manually which is a tedious
process when handling a mass population of infected people.

In this work, we developed a Deep Learning Module
which uses Convolution Neural Networks to automatically
segment the areas of COVID-19 infection in a CT lung scan
to predict the severity of the infection. A Convolutional
Neural Network (CNN) is one of the artificial neural
networks that is used to extract useful information from an
image input. To achieve this process, it uses convolutional
layers where the original image is applied with various filters
to get a deep understanding of the image at the pixel level.
These filters can be customized based on parameters that can
be learned to extract the typical information for a particular
task. One of the major advantages of this proposed work is its
data efficiency in training the module as it only requires a
total of 20 experts annotated COVID CT Lung scans. The
proposed network architecture uses a deep partial U-net
architecture.

The module is implemented on a system-on-chip called
Jetson Nano manufactured by NVIDIA which is a small yet
powerful computer that supports the running of parallel
neural networks for image segmentation. The second
advantage is the computational power required to run a
machine learning module is minimized as less than 10 watts
for maximum performance. Moreover, the proposed model
proves in delivering the performance and accuracy compared
to the preexisting works without compromising its efficiency.

The rest of the paper is organized as follows. Section II
discusses the related works developed for segmentation tasks.
Section III debriefs the hardware used in this experiment.
Section IV explains the proposed work which includes a
description of the dataset. A result comparison of the
proposed work with conventional U-Net architecture is given



in section V and the paper ends with a conclusion and future
scope in section V1.

II.  RELATED WORKS

A wide variety of Computer Vision Techniques such as
region growing [3], active contours [4], watershed [5], etc. are
available in the literature that performs segmentation tasks.

Supervised and unsupervised[6] are the two broad
categories for implementing segmentation tasks. Apart from
these another method called semi-supervised models are
available. the semi-supervised model utilizes mixed
intervention of humans and software to perform segmentation
tasks. These methods are used in different areas such as
predicting the defects in software, sensor quality checks in
manufacturing industries, etc. Especially, in the field of
medicine, these artificial intelligence methods are used to
perform segmentation tasks like Brain tumor segmentation
[7], identification of white matter lesions [8], lung cancer
segmentation [9], etc. All these segmentation tasks require
complete or partial human contact to implement the models.

Current studies show that the U-net architecture can
deliver promising results if a good quantity of labeled training
cases is available [10]. In a model developed by Shan et al,
their V-net structure achieved 91.6 dice with 249 CT scans
[11]. The model proposed by Huang et al using U-Net [12] for
segmentation of lung and infection on 774 experts annotated
CT scans showed that the model can monitor the disease
progression and reduce the burden of disease. These experts
annotated CT scans require a professional diagnosis from
radiologists which is merely impossible as it consumes a lot
of manpower and time which the world doesn't have in the
present-day scenario.

The main goal of this paper is to perform lung and
infection mask prediction with limited training data. The
major problems solved on this work are:

1) Although there are not many experts annotated CT scan
data available on open source, this proposed model delivers a
high-quality segmentation mask with a limited number of
training cases.

2) A comparison between conventional U-net[14] and the
proposed work in terms of accuracy and performance metrics
has been given for readers to understand and deploy in their
research areas since there is no proper works are available
which provide a clear benchmark of these models.

Figure 1 represents the conventional U-Net architecture
for biomedical image segmentation.

3) Power consumption is a major problem in running these
machine learning models and this proposed work is
implemented on the CUDA core of Jetson Nano which
consumes only 10 watts of power to deliver high-quality
results.

III. HARDWARE

A. Hardware Setup

To utilize the power of artificial intelligence from a low-
cost device NVIDIA Jetson Nano developer kit is used. It is
supported by Jetpack SDK and can handle the performance
capabilities of modern artificial intelligence workloads. The
software development kit (SDK) Jetpack includes the
following,

1) NVIDIA drivers supporting full desktop Linux
environment.

2) Libraries and APIs for computer vision and artificial
intelligence.

3) Tools and documentation for researchers and
developers.

Input

i output
Image | :
t%e i r"_,“’ segmentation

7 map

= conv 3x3, ReLU
copy and crop
§ max pool 22
4 up-conv 2x2
= con 1x1

Fig. 1. Conventional U-Net Architecture [14]

The developer kit can be set up by flashing a microSD card
with Jetpack components and operating systems by following
the instruction in reference [16].

Figure 2 and 3 [15] shows the front view, rear view, top
view and bottom view of the Nano board respectively. The
configuration of the NVIDIA Jetson nano is described in
Table I [16].

B. Power Consumption

One of the main advantages of implementing this module
on Jetson nano is its power consumption is as less as 5 watts
for less energy use and 10 watts for maximum performance
[15]. The developer environment demands
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Fig. 2. Front view of Jetson nano
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power usage only for the module, peripherals, and the carrier
board. This allows us to deploy the model in low economic
countries where power barrier is a major concern.

C. GPU

The data-parallel architecture of NVIDIA Jetson nano is an
added advantage in handling the segmentation task. Since the
device is contrived of 128 CUDA cores that are capable 0f 472
GFLOPS, the device can process each thread parallelly. These
thread processors inside the GPU core performs similar
instructions monitored by a shared controlled unit. These
thread processors are called CUDA cores. This allows the
device to accomplish calculation on individual pixels
effectively thereby delivering high-quality segmentation
masks.

TABLE L. JETSON NANO CONFIGRATION

S.No Component Description

1 GPU 128-core NVIDIA Maxwell™

2 CPU Quad-core ARM® A57 @ 1.43 GHz

3 Memory 2 GB 64-bit LPDDR4 25.6 GB/s

4 Storage microSD (64 GB)

5 Video Encode 4Kp30 | 4x 1080p30 | 9x 720p30
(H.264/H.265)

6 Video Decode 4Kp60 | 2x 4Kp30 | 8x 1080p30 | 18x
720p30 (H.264/H.265)

7 Connectivity Gigabit Ethernet, 802.11ac wireless

8 Camera 1x MIPI CSI-2 connector

9 Display HDMI

10 USB 1x USB 3.0 Type A,2x USB 2.0 Type A,
USB 2.0 Micro-B

11 Others 40-pin header (GPIO, I2C, I2S, SPI,
UART)
12-pin header (Power and related signals,
UART)
4-pin Fan header

12 Mechanical 100 mm x 80 mm x 29 mm

IV.  PROPOSED WORK
A. Data Set
The data set consists of COVID-19 CT scans of 20
patients obtained from Coronacases Initiative and

Radiopaedia [1] from an open-source [13] with CC BY-NC-
SA license [1]. The COVID-19 infection is present in all the
20 CT scans with infection proportions varying from 0.01%
to 59%. The data set is verified by radiologists in three
different faces. Initially, it has been refined by 1 to 5 years of
experience followed by cross verification of radiologists with
5 to 10 years of experience, and finally, annotation results
were finetuned by senior radiologists experienced in chest
radiology with almost 10 years of experience. Both
pathological and normal regions are included in the whole

lung masks. ITK-SNAP performed the annotations manually
slice-by-slice manner axially [1]. A total of around 300
infections with above 1800 slices are available with this
dataset which on average takes 400 to 445 minutes for
delineating each CT scan.

B. Proposed Architecture

Most of the classification tasks result in a class label for an
input image. In medical image processing, the module should
output the class label as well as localize the individual pixels
present in the input image. As mentioned earlier it is difficult
to obtain a medical image dataset containing a mass volume
of training cases. In this method, we modified the U-Net [14]
architecture to make it trainable with fewer training cases at
the same time maintain the segmentation performance.

The architecture is designed in such a way the resolution
of the image output is increased to get the most precision. The
up-sampling operators replace the pooling layers in the
contraction path of the succeeding layers. Once the resolution
of the output is increased, the localization of the pixel takes
place. This is implemented by combining the output from the
up-sampling layer with the enhanced resolution features.
Now, the succeeding convolution layers learn to arrange a
more precise output. In this model, the number of convolution
layers has been increased to enable the model to get the most
accurate output.

The number of feature channels has also increased with the
successive convolution layers, thus the growth path of the
layers with high resolution gets the information without any
loss in context. Ultimately, the architecture becomes
symmetrical in contracting as well as the expansive path
exhibiting a U-net shape but deeper in the architectural level
with modified pooling layers which has never been done
before.

Since the size of the image is larger, to prevent the
model from losing the resolution due to GPU memory
limitations, a tiling strategy [17] is used. The tiling strategy is
used in predicting the pixels in the corner regions by mirroring
the input image.

Figure 4 illustrates the network architecture of the
proposed work. The left side represents the contracting paths,
and the right side represents the expanding path. CNN is
implemented on the contracting path. It consists of two 3x3
convolutions that are repeated twice with the same padding.
The activation function used is “ReLU” which is abbreviated
as a rectified linear unit. For downsampling, a max-pooling
operation of 2x2 with stride 2 is performed. The feature
channels are doubled in the downsampling step.
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Fig. 4. Proposed deep U-Net architecture

In the expanding path, the feature map is upsampled
before a 2x2 up-convolution. The number of feature channels
is cut in half with this convolution layer, which includes two
3x3 convolutions, concatenation of featured map cropped
from left part, and 2 ‘ReLU’. Since the border pixels get lost
in every convolution layer, the cropping process is carried out.
At last, a 1x1 convolution layer is used to extract and map the
feature vector to and label the infection mask precisely.

C. Training

The training process consists of three tasks namely lung
segmentation, infection segmentation, and both lung and
infection segmentation. The fivefold cross-validation results
are described for each of the tasks in the dataset [13]. Table II
[1] represents the number of training cases available for each
fold in the dataset.

TABLE II. TRAINING CASES
S.No Task Training and Validation
1 Fivefold cross | Fivefold cross validation
validation
2 Lung 4 cases (20% for training)
3 Lung and infection 16 cases (80% for validation)

D. Implementation

As mentioned earlier, the model has been implemented on
Jetson Nano, a system on a chip manufactured by NVIDIA.
The Linux environment of the system helps in better
navigation of the resources with ease of use. The libraries
used for the design include the following :

1) os — standard library for python 3

2) glob — to import and export data trade information

3) Pandas — mainly used for data analysis

4) numpy — to create an array which is then passed to
pandas

5) nibabel — to support operations on neuroimaging file
formats [18]

6) matplotlib — to plot the performance metrics [19]

7) tensorflow — to support numerical computation and
large-scale machine learning

8) cv2 — used to resolve computer vision-related
computations

Initially, the data is read and explored by reading the
metadata file to gain a better understanding of the dataset. All
the four different types of images, for instance, original CT
lung, lung mask, covid virus mask, lung, and covid infection
mask are available in this case. To read these images which
are in ‘NifTi’ [19] format a separate function can be used.
Since the image is rotated by 90 degrees, data reorientation is
executed in the process. The above-mentioned ‘nibabel’
library is used to assist this. Once the volumetric CT scans
with COVID / non-COVID infected original CT, COVID
masks, lung masks as well as lung and infection masks are
obtained the image slices from the sample CT are read. Figure
5 represents one of such images in the dataset.

In Figure 5 the first image is the original CT lung followed
by the lung mask being marked in white and green color in
the second image. The infection masks are represented in
white color in the third image followed by the combination of
both lung and infection masks which are visible on the fourth
image.

The original CT lung and infections masks are considered
for further analysis in this segmentation task. It is observable
that each CT image has several slices and they are of different
sizes.

Regardless of the CT scan's ability to give improvised
resolution output of the tissue volume, the air and density
volume are the two main quantities to get the region of
interest. The Hounsfield unit [21] is the scale used to measure
this. It varies from 1,000 HU to 0 HU approximately for air
and water. The HU is 1,000 for bone.

The lung is composed of air density at 1000 HU and blood,
water, and cells at 0 HU respectively. Figure 6 represents the
HU scale plotted for one of the CT lungs images. This HU is
converted into tissue and air content for the Region of Interest
(ROI). Extracting only the ROI will helps in increasing the
processing speed.
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Fig. 5. Original CT, COVID masks, lung masks as well s lung and infection
masks
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V. RESULT AND COMPARISON

The most common and widely used performance
metrics for machine learning algorithms are the training loss
and the validation loss over time. The compatibility of the
model in fitting the training data is measured by training loss
whereas the compatibility of the model in fitting the new data
is measured using validation loss. In this work, we calculated
the validation loss over the number of epochs.

In machine learning, the term epoch represents the
total number of passes the model takes for the training dataset
to run the algorithm. The number of epochs is the number of
iterations when the batch size is equal to the entire training
dataset.

One of the other performance metrics calculated in this work
is validation accuracy. This is also known as testing accuracy
which represents the precision calculated on the dataset not
been used for training rather been used for testing. This often
helps in the ‘early stopping’. This denotes that the model
reaching its highest accuracy level.

The proposed model took a training time of 12,960
seconds in total. The graph for validation accuracy was
maximum in epoch 9 with a value around 0.9942. An early
stopping at epoch 9 can be performed to reduce the timing. In
this work, a total of 10 epochs has been run to understand how
the accuracy changes over time. Figure 7 represents the graph
plot for Accuracy variation with the number of training
epochs. The validation loss metrics obtained in this model are
around 0.085. Figure 8 represents the validation loss with
several training epochs.
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Fig. 7. Accuracy variation vs number epochs

Figure 9 represents the final output of the original COVID CT
lung, infection mask, and predicted mask.
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Fig. 8. validation loss vs number of epochs

The performance metrics were compared with the
conventional U-net architecture and the network took around
16,000 seconds in total to accomplish the same task with an
accuracy of around 0.95. The comparison results are
tabulated in Table III. It is clear that the proposed model
works the best for the segmentation task undertaken in this
work and delivers better performance and accuracy. On top
of' that, the power consumed for the entire network is 10 watts
without compromising the performance, thus making the
model more reliable.

TABLE IIL PERFORMANCE METRICS COMPARISON
S.No Performance U-Net DP-U-Net
metrics
1 Validation loss 0.12 0.08
Validation 0.95 0.99
accuracy
3 Training period | 16,000 12,960
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Fig. 9. Final predicted mask output

In Figure 9, the left image represents the original lung
CT image which has the COVID 19 infection. The middle
image contains the infection mask mapped based on the
Hounsfield unit. The image on the right represents the
predicted infection mask. The dark red circle in the image
represents the core infection tissue and the blue and violet tint
represents the presence of tissue in the developing phase.



VI. CONCLUSION

This work was focused mainly on implementing a machine
learning module in a system on a chip. This work proves that
the training models can be deployed on low-cost hardware
without compromising performance. Moreover, the new
architecture introduced in this paper can be used as a start for
researchers to explore the possibilities of bringing machine
learning models to low-cost devices.

Also, it is possible to implement different architecture
to reduce the training time. Combining the possibilities of the
low-cost device and increased performance proves the
ultimate efficiency of the machine learning model.
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