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Abstract— Computer vision techniques always had played a 

salient role in numerous medical fields, especially in image 

diagnosis. Amidst a global pandemic situation, one of the 

archetypal methods assisting healthcare professionals in 

diagnosing various types of lung cancers, heart diseases, and 

COVID-19 infection is the Computed Tomography (CT) 

medical imaging technique. Segmentation of Lung and Infection 

with high accuracy in COVID-19 CT scans can play a vital role 

in the prognosis and diagnosis of a mass population of infected 

patients. Most of the existing works are predominately based on 

large private data sets that are practically impossible to obtain 

during a pandemic situation. Moreover, it is difficult to compare 

the segmentation methods as the data set are obtained in various 

geographical areas and developed and implemented in different 

environments. To help the current global pandemic situation, 

we are proposing a highly data-efficient method that gets 

trained on 20 expert annotated COVID-19 cases. To increase the 

efficiency rate further, the proposed model has been 

implemented on NVIDIA - Jetson Nano (System-on-Chip) to 

completely exploit the GPU performance for a medical 

application machine learning module. To compare the results, 

we tested the performance with conventional U-Net architecture 

and calculated the performance metrics. The proposed state-of-

art method proves better than the conventional architecture 

delivering a Dice Similarity Coefficient of 99%.  
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I. INTRODUCTION 

The COVID-19 pandemic, otherwise called the 

Coronavirus pandemic, is an existing global pandemic of 

coronavirus disease 2019, which is caused due to extremely 

intensive respiratory syndrome SARS-CoV-2. The first 

recognition of the covid virus was in December 2019 in 

Wuhan, China. The World Health Organization (WHO) 

proclaimed it as an emergency health crisis Worldwide in Jan 

2020 and later pronounced it a pandemic in Mar 2020. 

Starting in Jun 2021 more than 181 million cases have been 

affirmed, with more than 3.93 million affirmed deaths 

ascribed to Coronavirus, making it probably the deadliest 

pandemic ever. 

 

Despite the release of vaccination against the disease,  

most of the countries in the world are facing an increasing 

number of daily cases. In some countries like India, 

Bangladesh the COVID-19 virus got mutated into a much 

stronger strain which led to the increasing number of affected 

cases and deaths in a very short period worrying the entire 

world. 

Over the last few decades, there have been various 

improvements in the clinical tools used to aid medical 

diagnosis, and one of the most important is the Computerized 

Tomography (CT) scan which enables visualization of 

internal organs, such as the lungs and their structures[1]. 

There is no computerized model available to delineate 

COVID 19 virus in chest CT scans which can be used for 

quantifiable assessment in predicting the severity [2]. The 

first challenge for the clinical diagnosis of lung diseases using 

CT scans is to demarcate the region of the lungs[1].To 

support future diagnostic processes a radiological specialist 

must mark the lung regions manually which is a tedious 

process when handling a mass population of infected people. 

 

In this work, we developed a Deep Learning Module 

which uses Convolution Neural Networks to automatically 

segment the areas of COVID-19 infection in a CT lung scan 

to predict the severity of the infection. A Convolutional 

Neural Network (CNN) is one of the artificial neural 

networks that is used to extract useful information from an 

image input. To achieve this process, it uses convolutional 

layers where the original image is applied with various filters 

to get a deep understanding of the image at the pixel level. 

These filters can be customized based on parameters that can 

be learned to extract the typical information for a particular 

task. One of the major advantages of this proposed work is its 

data efficiency in training the module as it only requires a 

total of 20 experts annotated COVID CT Lung scans. The 

proposed network architecture uses a  deep partial U-net 

architecture. 

 

The module is implemented on a system-on-chip called 

Jetson Nano manufactured by NVIDIA which is a small yet 

powerful computer that supports the running of parallel 

neural networks for image segmentation. The second 

advantage is the computational power required to run a 

machine learning module is minimized as less than 10 watts 

for maximum performance. Moreover, the proposed model 

proves in delivering the performance and accuracy compared 

to the preexisting works without compromising its efficiency.  

 

The rest of the paper is organized as follows. Section II 

discusses the related works developed for segmentation tasks. 

Section III debriefs the hardware used in this experiment. 

Section IV explains the proposed work which includes a 

description of the dataset. A result comparison of the 

proposed work with conventional U-Net architecture is given 



in section V and the paper ends with a conclusion and future 

scope in section VI. 

II. RELATED WORKS  

A wide variety of Computer Vision Techniques such as 
region growing [3], active contours [4], watershed [5], etc. are 
available in the literature that performs segmentation tasks. 

 Supervised and unsupervised[6] are the two broad 
categories for implementing segmentation tasks. Apart from 
these another method called semi-supervised models are 
available. the semi-supervised model utilizes mixed 
intervention of humans and software to perform segmentation 
tasks. These methods are used in different areas such as 
predicting the defects in software, sensor quality checks in 
manufacturing industries, etc. Especially, in the field of 
medicine, these artificial intelligence methods are used to 
perform segmentation tasks like Brain tumor segmentation 
[7], identification of white matter lesions [8], lung cancer 
segmentation [9], etc. All these segmentation tasks require 
complete or partial human contact to implement the models.  

Current studies show that the U-net architecture can 
deliver promising results if a good quantity of labeled training 
cases is available [10]. In a model developed by Shan et al, 
their V-net structure achieved 91.6 dice with 249 CT scans 
[11]. The model proposed by Huang et al using U-Net [12] for 
segmentation of lung and infection on 774 experts annotated 
CT scans showed that the model can monitor the disease 
progression and reduce the burden of disease. These experts 
annotated CT scans require a professional diagnosis from 
radiologists which is merely impossible as it consumes a lot 
of manpower and time which the world doesn't have in the 
present-day scenario. 

The main goal of this paper is to perform lung and 
infection mask prediction with limited training data. The 
major problems solved on this work are: 

1) Although there are not many experts annotated CT scan 
data available on open source, this proposed model delivers a 
high-quality segmentation mask with a limited number of 
training cases. 

2) A comparison between conventional U-net[14] and the 
proposed work in terms of accuracy and performance metrics 
has been given for readers to understand and deploy in their 
research areas since there is no proper works are available 
which provide a clear benchmark of these models.  

Figure 1 represents the conventional U-Net architecture 
for biomedical image segmentation.  

3) Power consumption is a major problem in running these 
machine learning models and this proposed work is 
implemented on the CUDA core of Jetson Nano which 
consumes only 10 watts of power to deliver high-quality 
results. 

III. HARDWARE 

A. Hardware Setup  

To utilize the power of artificial intelligence from a low-
cost device NVIDIA Jetson Nano developer kit is used. It is 
supported by Jetpack SDK and can handle the performance 
capabilities of modern artificial intelligence workloads. The 
software development kit (SDK) Jetpack includes the 
following,  

1) NVIDIA drivers supporting full desktop Linux 
environment. 

2) Libraries and APIs for computer vision and artificial 
intelligence. 

3) Tools and documentation for researchers and 
developers. 

 

Fig. 1. Conventional U-Net Architecture [14] 

The developer kit can be set up by flashing a microSD card 
with Jetpack components and operating systems by following 
the instruction in reference [16].  

Figure 2  and 3 [15] shows the front view, rear view, top 
view and bottom view of the Nano board respectively. The 
configuration of the NVIDIA Jetson nano is described in 
Table I [16]. 

B. Power Consumption 

One of the main advantages of implementing this module 
on Jetson nano is its power consumption is as less as 5 watts 
for less energy use and 10 watts for maximum performance 
[15]. The developer environment demands  

 

 

Fig. 2. Front view of Jetson nano 



 

Fig. 3. Top view of Jetson nano carrier board 

power usage only for the module, peripherals, and the carrier 
board. This allows us to deploy the model in low economic 
countries where power barrier is a major concern.  

C. GPU   

    The data-parallel architecture of NVIDIA Jetson nano is an 
added advantage in handling the segmentation task. Since the 
device is contrived of 128 CUDA cores that are capable of 472 
GFLOPS, the device can process each thread parallelly. These 
thread processors inside the GPU core performs similar 
instructions monitored by a shared controlled unit. These 
thread processors are called CUDA cores. This allows the 
device to accomplish calculation on individual pixels 
effectively thereby delivering high-quality segmentation 
masks. 

TABLE I.  JETSON NANO CONFIGRATION 

S.No Component Description 

1 GPU 128-core NVIDIA Maxwell™ 

2 CPU Quad-core ARM® A57 @ 1.43 GHz 

3 Memory 2 GB 64-bit LPDDR4 25.6 GB/s 

4 Storage  microSD (64 GB) 

5 Video Encode 4Kp30 | 4x 1080p30 | 9x 720p30 

(H.264/H.265) 

6 Video Decode 4Kp60 | 2x 4Kp30 | 8x 1080p30 | 18x 

720p30 (H.264/H.265) 

7 Connectivity Gigabit Ethernet, 802.11ac wireless 

8 Camera 1x MIPI CSI-2 connector 

9 Display HDMI 

10 USB 1x USB 3.0 Type A,2x USB 2.0 Type A, 

USB 2.0 Micro-B 

11 Others 40-pin header (GPIO, I2C, I2S, SPI, 

UART) 

12-pin header (Power and related signals, 
UART) 

4-pin Fan header 

12 Mechanical 100 mm x 80 mm x 29 mm 

IV. PROPOSED WORK 

A. Data Set  

 The data set consists of COVID-19 CT scans of 20 

patients obtained from Coronacases Initiative and 

Radiopaedia [1] from an open-source [13] with CC BY-NC-

SA license [1]. The COVID-19 infection is present in all the 

20 CT scans with infection proportions varying from 0.01% 

to 59%. The data set is verified by radiologists in three 

different faces. Initially, it has been refined by 1 to 5 years of 

experience followed by cross verification of radiologists with 

5 to 10 years of experience, and finally, annotation results 

were finetuned by senior radiologists experienced in chest 

radiology with almost 10 years of experience. Both 

pathological and normal regions are included in the whole 

lung masks. ITK-SNAP performed the annotations manually 

slice-by-slice manner axially [1]. A total of around 300 

infections with above 1800 slices are available with this 

dataset which on average takes 400 to 445 minutes for 

delineating each CT scan. 

B. Proposed Architecture  

Most of the classification tasks result in a class label for an 
input image. In medical image processing, the module should 
output the class label as well as localize the individual pixels 
present in the input image. As mentioned earlier it is difficult 
to obtain a medical image dataset containing a mass volume 
of training cases. In this method, we modified the U-Net [14] 
architecture to make it trainable with fewer training cases at 
the same time maintain the segmentation performance. 

The architecture is designed in such a way the resolution 
of the image output is increased to get the most precision. The 
up-sampling operators replace the pooling layers in the 
contraction path of the succeeding layers. Once the resolution 
of the output is increased, the localization of the pixel takes 
place. This is implemented by combining the output from the 
up-sampling layer with the enhanced resolution features. 
Now, the succeeding convolution layers learn to arrange a 
more precise output. In this model, the number of convolution 
layers has been increased to enable the model to get the most 
accurate output. 

The number of feature channels has also increased with the 
successive convolution layers, thus the growth path of the 
layers with high resolution gets the information without any 
loss in context. Ultimately, the architecture becomes 
symmetrical in contracting as well as the expansive path 
exhibiting a U-net shape but deeper in the architectural level 
with modified pooling layers which has never been done 
before. 

 Since the size of the image is larger, to prevent the 

model from losing the resolution due to GPU memory 

limitations, a tiling strategy [17] is used. The tiling strategy is 

used in predicting the pixels in the corner regions by mirroring 

the input image. 

  Figure 4 illustrates the network architecture of the 

proposed work. The left side represents the contracting paths, 

and the right side represents the expanding path. CNN is 

implemented on the contracting path.  It consists of two 3x3 

convolutions that are repeated twice with the same padding. 

The activation function used is “ReLU” which is abbreviated 

as a rectified linear unit. For downsampling, a max-pooling 

operation of 2x2 with stride 2 is performed. The feature 

channels are doubled in the downsampling step.  



 

Fig. 4. Proposed deep U-Net architecture  

 In the expanding path, the feature map is upsampled 

before a 2x2 up-convolution. The number of feature channels 

is cut in half with this convolution layer, which includes two 

3x3 convolutions, concatenation of featured map cropped 

from left part, and 2 ‘ReLU’. Since the border pixels get lost 

in every convolution layer, the cropping process is carried out. 

At last, a 1x1 convolution layer is used to extract and map the 

feature vector to and label the infection mask precisely.  

C. Training 

The training process consists of three tasks namely lung 

segmentation, infection segmentation, and both lung and 

infection segmentation. The fivefold cross-validation results 

are described for each of the tasks in the dataset [13]. Table II 

[1] represents the number of training cases available for each 

fold in the dataset. 

TABLE II.  TRAINING CASES 

S.No Task  Training and Validation  

1 Fivefold cross 
validation  

Fivefold cross validation 

2 Lung 4 cases (20% for training) 

3 Lung and infection 16 cases (80% for validation) 

D. Implementation  

As mentioned earlier, the model has been implemented on 

Jetson Nano, a system on a chip manufactured by NVIDIA. 

The Linux environment of the system helps in better 

navigation of the resources with ease of use. The libraries 

used for the design include the following : 

1) os – standard library for python 3 

2) glob – to import and export data trade information  

3) Pandas – mainly used for data analysis 

4) numpy – to create an array which is then passed to  

pandas  

5) nibabel – to support operations on neuroimaging file 

formats [18] 

6) matplotlib – to plot the performance metrics [19] 

7) tensorflow – to support numerical computation and 

large-scale machine learning  

8) cv2 – used to resolve computer vision-related 

computations 

 

Initially, the data is read and explored by reading the 

metadata file to gain a better understanding of the dataset. All 

the four different types of images, for instance, original CT 

lung, lung mask, covid virus mask, lung, and covid infection 

mask are available in this case. To read these images which 

are in ‘NifTi’ [19] format a separate function can be used.  

Since the image is rotated by 90 degrees, data reorientation is 

executed in the process. The above-mentioned ‘nibabel’ 

library is used to assist this. Once the volumetric CT scans 

with COVID / non-COVID infected original CT, COVID 

masks, lung masks as well as lung and infection masks are 

obtained the image slices from the sample CT are read. Figure 

5 represents one of such images in the dataset. 

 

In Figure 5 the first image is the original CT lung followed 

by the lung mask being marked in white and green color in 

the second image. The infection masks are represented in 

white color in the third image followed by the combination of 

both lung and infection masks which are visible on the fourth 

image.  

The original CT lung and infections masks are considered 

for further analysis in this segmentation task. It is observable 

that each CT image has several slices and they are of different 

sizes. 

Regardless of the CT scan's ability to give improvised 

resolution output of the tissue volume, the air and density 

volume are the two main quantities to get the region of 

interest. The Hounsfield unit [21] is the scale used to measure 

this. It varies from 1,000 HU to 0 HU approximately for air 

and water. The HU is 1,000 for bone. 

The lung is composed of air density at 1000 HU and blood, 

water, and cells at 0 HU respectively. Figure 6 represents the 

HU scale plotted for one of the CT lungs images. This HU is 

converted into tissue and air content for the Region of Interest 

(ROI).  Extracting only the ROI will helps in increasing the 

processing speed. 

 

Fig. 5. Original CT, COVID masks, lung masks as well s lung and infection 

masks 



 

Fig. 6. HU vs Frequency plot of the lung content in CT scan 

V. RESULT AND COMPARISON  

 The most common and widely used performance 

metrics for machine learning algorithms are the training loss 

and the validation loss over time. The compatibility of the 

model in fitting the training data is measured by training loss 

whereas the compatibility of the model in fitting the new data 

is measured using validation loss. In this work, we calculated 

the validation loss over the number of epochs. 

 In machine learning, the term epoch represents the 

total number of passes the model takes for the training dataset 

to run the algorithm. The number of epochs is the number of 

iterations when the batch size is equal to the entire training 

dataset. 

One of the other performance metrics calculated in this work 

is validation accuracy. This is also known as testing accuracy 

which represents the precision calculated on the dataset not 

been used for training rather been used for testing. This often 

helps in the ‘early stopping’. This denotes that the model 

reaching its highest accuracy level. 

 The proposed model took a training time of  12,960 

seconds in total. The graph for validation accuracy was 

maximum in epoch 9 with a value around 0.9942. An early 

stopping at epoch 9 can be performed to reduce the timing. In 

this work, a total of 10 epochs has been run to understand how 

the accuracy changes over time. Figure 7 represents the graph 

plot for Accuracy variation with the number of training 

epochs. The validation loss metrics obtained in this model are 

around 0.085. Figure 8 represents the validation loss with 

several training epochs.   

 

Fig. 7. Accuracy variation vs number epochs 

 

Figure 9 represents the final output of the original COVID CT 

lung, infection mask, and predicted mask.  

 

Fig. 8.   validation loss vs number of epochs 

The performance metrics were compared with the 

conventional U-net architecture and the network took around 

16,000 seconds in total to accomplish the same task with an 

accuracy of around 0.95. The comparison results are 

tabulated in Table III. It is clear that the proposed model 

works the best for the segmentation task undertaken in this 

work and delivers better performance and accuracy. On top 

of that, the power consumed for the entire network is 10 watts 

without compromising the performance, thus making the 

model more reliable. 

TABLE III.  PERFORMANCE METRICS COMPARISON 

S.No Performance 

metrics 

U-Net  DP-U-Net 

1 Validation loss 0.12 0.08 

2 Validation 

accuracy 

0.95 0.99 

3 Training period 16,000 12,960 

 

 

Fig. 9. Final predicted mask output 

 In Figure 9, the left image represents the original lung 

CT image which has the COVID 19 infection. The middle 

image contains the infection mask mapped based on the 

Hounsfield unit. The image on the right represents the 

predicted infection mask. The dark red circle in the image 

represents the core infection tissue and the blue and violet tint 

represents the presence of tissue in the developing phase.   



VI. CONCLUSION 

This work was focused mainly on implementing a machine 

learning module in a system on a chip. This work proves that 

the training models can be deployed on low-cost hardware 

without compromising performance. Moreover, the new 

architecture introduced in this paper can be used as a start for 

researchers to explore the possibilities of bringing machine 

learning models to low-cost devices. 

 Also, it is possible to implement different architecture 

to reduce the training time. Combining the possibilities of the 

low-cost device and increased performance proves the 

ultimate efficiency of the machine learning model. 
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