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Several studies have identified negative relationships between 
air temperature and crop yields in observations, signalling the 
potential for global warming to reduce agricultural output1–3. 

Extreme heat can steeply reduce crop yields both directly through 
heat stress and indirectly by raising atmospheric vapour demand 
and contributing to moisture stress2,4–8. Because of this dual effect, 
the impacts of extreme heat are typically amplified by drought and 
can be minimized with sufficient soil moisture from either pre-
cipitation or irrigation7,9–16. Jointly hot and dry conditions thus  
pose a particular climate risk to global crops, especially under  
global warming17.

In many regions, such jointly hot and dry conditions during crop-
ping seasons tend to occur due to physical couplings between tem-
perature and moisture in the climate system18–20. These couplings 
can be conceptualized in two ways: first as a connection between 
temperature (T) and precipitation (p), and second as a connection 
between T and evapotranspiration (ET). We refer to the former 
connection as the atmospheric circulation coupling and the latter 
as the land–atmosphere interaction coupling. While the separabil-
ity and relative importance of these two couplings is debated18,21,22 
(Methods), they generally reflect two critical sets of processes that 
vary in magnitude over global croplands and strongly influence the 
local risk of joint heat and drought.

Where the atmospheric circulation coupling is strong, clear skies 
tend to accompany dry cropping seasons, boosting temperatures 
at the surface due to increased penetration of solar radiation and 

delivery of warm compressed air by descending winds18,20,21,23. The 
strength of this coupling is reflected by the magnitude of the nega-
tive correlation between temperature and precipitation across years 
(rT,p < 0). Where the land–atmosphere coupling is strong, ET tends 
to decline during a warmer cropping season, reflected by a negative 
correlation between T and ET (rT,ET < 0). The resulting enhanced 
sensible heating can further raise air temperatures and atmospheric 
vapour demand, generating a positive feedback19,22,24,25. By contrast, 
enhanced ET from warmth (rT,ET > 0) limits the feedback between 
warming and drying. The couplings characterized by negative cor-
relations of T with ET and p thus drive concurrent and mutually 
reinforcing hot and dry conditions during the cropping season in 
many regions.

Despite the importance of these couplings in controlling the 
concurrent heat and moisture stresses that so strongly damage crop 
yields, their effect on global crop responses to current and future 
temperatures remains a gap in understanding present and future 
climate impacts on crops. Here, we demonstrate the global influ-
ence of temperature–moisture couplings on crop yield sensitivity to 
temperature over 1970–2013 and project future impacts on crops 
from changing couplings. We combine historical global yield obser-
vations26,27 with observed and modelled meteorological data to show 
that during warmer growing seasons, maize and soybean yields 
drop more steeply where precipitation and ET tend to also decrease. 
Using simulations from a suite of climate models, we then identify 
how these couplings are likely to change by the late twenty-first 
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century. Combining these projections with the historical results, we 
demonstrate that the modified couplings will probably worsen the 
impacts of warming on some of the world’s most important crops.

Results and discussion
Historical influence of temperature–moisture couplings on crop 
heat sensitivity. Over the historical period, we find significant 
correlations between crop yields and mean seasonal temperature 
over 20–32% of global maize, soybean, rice and wheat croplands 
(P < 0.1, Fig. 1). While maize and soybean yields generally decline 
with increasing temperature (by 0.3–0.4 standard deviations (σ) 
per σ of temperature), they benefit from heat over around a quar-
ter of croplands with significant temperature impacts, primarily at 
higher latitudes and elevations as well as in pockets of the tropics 
(Fig. 1a,b). Yield benefits from warmer seasons in some locations 
probably reflect crop limitations by cold and short growing seasons. 
By contrast, wheat yields are almost universally reduced by higher 

temperatures in North America and Eurasia (Fig. 1c), probably 
reflecting the lower physiological heat tolerance of wheat compared 
with maize28,29. While seasonal heat benefits rice yields in parts 
of Europe and damages them slightly in India, rice yields show a 
generally weaker connection to temperature (Fig. 1d), as reported 
elsewhere1,30. This may relate to the prevalence of irrigation in rice 
cropping, which may partially decouple yields from temperature. 
We also note weak maize yield dependence on temperature where it 
is mainly irrigated such as in northern India, central France and the 
western United States (Fig. 1a).

Large portions of the global croplands also experience sig-
nificant temperature–moisture coupling during the local growing 
season. Seasonal total precipitation is significantly correlated with 
mean temperature over 62–89% of cropland (P < 0.1, Fig. 1e and 
Supplementary Fig. 1), with exceptions mainly concentrated in 
the tropics. These significant interannual correlations are almost 
entirely negative (>98%), with a mean magnitude of −0.5. ET  
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Fig. 1 | Crop yield sensitivity to temperature and temperature–moisture couplings across global croplands. a–d, Standardized yield sensitivity to mean 
growing season maximum air temperature estimated as the linear slope coefficient (βT), with units of σ of yield per σ of temperature, for maize (a), 
soybean (b), wheat (c) and rice (d). The yield and temperature observational data are detrended to remove long-term warming and yield trends. Stippling 
denotes significant slope coefficients (two-tailed P < 0.1, t-test). Land area without crops is shown in grey. e, Circulation coupling strength, measured as 
the interannual correlation between detrended observed growing season mean temperature and total precipitation (rT,p). f, Land–atmosphere coupling, 
measured as the interannual correlation between detrended modelled growing season mean temperature and ET (rT,ET). The couplings in e and f are shown 
for the maize growing season and over the full global cropland where data are available to ease the interpretation of global patterns. Couplings for other 
growing seasons are shown in Supplementary Fig. 1.
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further correlates with temperature over 36-65% of global croplands 
(P < 0.1, Fig. 1f and Supplementary Fig. 1). These correlations are 
predominantly negative over global croplands but are positive at 
higher latitudes as well as in southern China (Fig. 1f), a pattern cor-
responding broadly to moisture-limited versus energy-limited soil 
moisture regimes19, respectively. The majority of global cropland 
area thus experiences climate couplings whereby lower-moisture 
conditions coincide with higher heat and moisture demand.

We find a global tendency for increasingly negative impacts 
of temperature on maize and soybean yields with the increas-
ing strength of these temperature–moisture couplings histori-
cally. Figure 2 situates the grid-cell yield sensitivity to temperature 
(presented as the colouring of the points) with respect to the local 
strength of the two temperature–moisture couplings (presented as 
the position in the plane of the points). The lower-left quadrant of 
each panel includes grid cells with both circulation and land–atmo-
sphere couplings (rT,p and rT,ET < 0). For maize and soy (Fig. 2a,b), we 
note that this quadrant contains the bulk of grid cells where yields 
decline with temperature, with the greatest negative yield sensitivi-
ties where the couplings are strongest. Meanwhile, yields tend to 
benefit from warmer temperatures where the couplings are weakest 
(rT,p ≈ 0 and rT,ET > 0).

To quantify these relationships, we regress crop yield sensitivity 
to temperature on the two couplings and find meaningful global 
dependence for maize and soy (r2 = 0.26 for maize and 0.43 for 
soybean, Fig. 2a,b). The regression also affords slope coefficient 

estimates, αT,p and αT,ET, that quantify the steepness of the depen-
dence of yield sensitivity to temperature on each of the two cou-
plings. On average, yields decline more steeply per σ of temperature 
(αT,ET ± standard error is 0.45 ± 0.02 for maize and 0.57 ± 0.02 for 
soybean, P < 0.001) in areas with the most negative rT,ET. In other 
words, crops are around 40% more sensitive to temperature (34% 
for maize and 43% for soybean) in regions with strong land–atmo-
sphere coupling, compared with regions where temperature and ET 
are uncorrelated. The influence of the land–atmosphere coupling 
on yield sensitivity to temperature is somewhat larger than the 
influence of circulation coupling on yield sensitivity to tempera-
ture (αT,p ± standard error is 0.37 ± 0.03 for maize and 0.25 ± 0.04 for 
soybean, P < 0.001). We found no spatial correlation between recent 
ten-year mean yields (2004–2013) and the two couplings (r2 < 0.02), 
suggesting that the observed effects are independent of mean crop 
productivity. Overall, these patterns of higher crop heat sensitivity 
where couplings are strong is consistent with the compounding of 
heat impacts on crops by moisture effects where these couplings are 
strong, and alleviation where they are weak.

By contrast, we find little such dependence on temperature–
moisture couplings among the temperature sensitivities of wheat 
and rice (Fig. 2c,d, r2 ≤ 0.1). This may be due in part to the low 
thermal tolerance of wheat, whose optimal growth temperature is 
about 10 °C cooler than that of the other crops28,29. Due to its expo-
nential dependence on temperature, atmospheric vapour demand 
and its impact on crops increase most strongly at relatively high 
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Fig. 2 | Global dependence of yield sensitivity to temperature on two temperature–moisture couplings. a–d, Estimated standardized yield sensitivity to 
mean growing season maximum air temperature (colouring of the points) plotted in relation to correlations of temperature with ET (land–atmosphere 
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The slope coefficients relating yield sensitivity to each coupling (αT,p and αT,ET) are annotated on their respective axes, with arrows showing the direction in 
the plot plane to which the slopes apply. The reported multiple r2 values are for the multiple regression model relating yield sensitivity to the two couplings.
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temperatures. However, heat impacts on wheat may be severe at 
relatively low temperatures, at which atmospheric vapour demand 
remains relatively low, limiting the scope for the compounding 
of heat impacts by moisture31. For rice, lower heat sensitivity and 
widespread irrigation may effectively decouple the crop from tem-
perature and moisture (Fig. 1d), similarly precluding compound-
ing impacts30.

These results suggest that local crop responses to temperature 
depend not only on crop physiology and temperature stressors but 
also on climatological couplings between temperature and mois-
ture. These couplings tend to align heat and moisture stress in time, 
exposing crops to heat and high atmospheric moisture demand 
while precipitation and soil moisture are low (Fig. 3). Where the 
couplings are strong, yields are probably more sensitive to tem-
perature due to antagonistic feedbacks between physiological heat 
and drought acclimation and stress mechanisms8,32, notably the 
impact of stomatal closure on canopy temperature and photosyn-
thesis8,16,33–37 (Fig. 3). By contrast, where the couplings are weak, heat 
and high atmospheric moisture demand are more likely to coincide 
with periods of normal or abundant precipitation and soil moisture, 
mitigating the impact of heat on crops.

Importantly, these results indicate that the ultimate impact of 
global warming on some crops will depend not only on the mount-
ing heat hazard itself but also on the impact of warming on the 
physical coupling between temperature and moisture. Specifically, 
they raise the possibility that climate change will affect the sensi-
tivity of crop yields to heat by altering temperature–moisture cou-
plings throughout the world. This potential impact is currently 
omitted from climate risk projections using statistical models3,4,6, 
which assume constant temperature sensitivity into the future, and 
mechanistic crop models, whose climate projection inputs are typi-
cally adjusted to match the historical correlation structure between 
temperature and moisture3,38, excluding the potential influence of 
changes in temperature–moisture couplings.

Impacts of projected changes in couplings on global crop yields. 
To examine the implications of these effects for maize and soy 
under future climate change, we combine the historical dependence  

of yield sensitivity to temperature on the two couplings (Fig. 2) with 
simulated future changes in couplings from a suite of 12 Coupled 
Model Intercomparison Project 6 (CMIP6) global climate models39. 
By 2051–2100 under moderate greenhouse gas emissions (Shared 
Socio-economic Pathway (SSP) 2-4.5), we project substantial 
changes in rT,ET and smaller changes in rT,p (Fig. 4a,b) over much of 
global croplands in the ensemble median. These changes indicate 
amplified couplings between temperature and moisture in response 
to climate warming over croplands in the United States, Europe and 
southeastern Africa, but reduced couplings across southern to east-
ern Asia. On the basis of the historical relationships in Fig. 2a,b, 
these changes in couplings will probably exacerbate yield sensitivity 
to temperature over a preponderance of croplands but alleviate it in 
much of Asia (Fig. 4c).

We project that such heightened crop heat sensitivities due to 
changing temperature–moisture couplings will worsen the impacts 
of warming on maize and soy yields across most of the globe (Fig. 5a 
and Supplementary Fig. 2). In the multimodel median, these addi-
tional yield impacts (ΔΔY) amount to regional maize (soy) losses 
of 7% (9%) in the United States, 7% (16%) in western Europe, 12% 
(24%) in eastern Europe, 9% (5%) in southeastern Africa and 3% 
(6%) in southeastern South America, with more modest yield gains 
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with insignificant yield dependence on temperature.
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of 1% (3%) in eastern Asia (Fig. 5a,d and Supplementary Fig. 2). We 
note important model uncertainty in these regional figures, which 
we discuss further below and in Fig. 6d. More severe localized yield 
impacts at subregional scales reach ~20% in the United States and 
~40% in eastern Europe and southeastern Africa.

These projected additional yield impacts due to changing temper-
ature–moisture couplings (ΔΔY) would add to projected yield losses 
from warming alone (Fig. 5b), worsening them in some regions (for 
example, in the central United States) but slightly ameliorating them 
in others (for example, in eastern Asia, Fig. 5c). In some cool cli-
mates such as in the northern United States, Canada and Ukraine, 
changing couplings may also curtail projected yield gains from 
warming. Globally, we project that changing couplings will aggravate 
the impact of warming on maize and soy yields by ~5% relative to 
recent yields (Fig. 5d and Supplementary Fig. 2), evincing an impor-
tant but underappreciated risk to agriculture under climate change.

Considerable intermodel variation underlies these multimodel 
median projections20. Over much of global maize croplands, fewer 
than two-thirds of models agree on the sign of additional yield 
changes due to coupling responses to warming (ΔΔY, Fig. 6a), espe-
cially in the tropics and subtropics. Even in areas with high model 
agreement on sign (mainly in Europe, the United States and eastern 
Asia), the magnitude of change can vary substantially across mod-
els (Fig. 6d and Supplementary Fig. 3). This intermodel variability 
introduces uncertainty in the projected global mean impacts for the 
moderate-emissions scenario, with model-specific yield impacts 
ranging from −17 to 11% (Fig. 6b, blue bars).

Alternate emissions scenarios add a further dimension of 
uncertainty to the projected yield impacts of changing tem-
perature–moisture couplings. Under a high-emissions scenario 

(SSP5-8.5), maize yield losses in the Americas and southeastern 
Africa are reduced and gains in Asia are increased compared with 
the moderate-emissions scenario (Fig. 6c,d). Surprisingly, these 
regional responses amount to a global mean additional yield gain 
(ΔΔY) of 1.6% in the ensemble median (‘additional’ in that they 
only slightly offset large yield loss from warming itself). The coun-
terintuitive non-monotonicity of the global mean response to 
emissions is ultimately driven by regional coupling changes that 
alleviate yield sensitivity to temperature, most notably the wide-
spread relative decoupling between T and p under higher emis-
sions (Supplementary Fig. 4). However, we also note large model 
disagreement in the high-emissions scenario, with global mean 
impacts ranging from −18 to 32% (Fig. 6b, red bars).

The uncertainties in these projections highlight unresolved chal-
lenges in simulating temperature–moisture couplings using climate 
models and their importance to predicting the impact of climate 
change on global crop production. Specifically, the responses of ET 
(largely mediated by soil and vegetation dynamics and land–atmo-
sphere interaction) and precipitation (largely mediated by regional 
circulation) to interannual variability in temperature in future cli-
mates are both active areas of research33,40–42. While some regions 
with model consensus may reflect predictions with strong physi-
cal foundations, such as the enhanced land–atmosphere coupling 
in Europe with warming22,43, they may also arise from stronger 
observational constraints and model validation effort across the 
northern midlatitudes20,44. Some regions lacking model consensus 
include important breadbaskets in southeast South America and 
chronically food-insecure and drought-vulnerable southeastern 
Africa, where weather observations are comparatively sparse and 
couplings are not well constrained by observations20 (Fig. 6 and 
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Supplementary Fig. 3). These regions also tend to have the largest 
differences in estimated historic couplings between CMIP6 and 
observation-based data (Supplementary Fig. 5). Our results show 
how these uncertainties and potential model inaccuracies presently 
impede a complete understanding of the risks of climate change to 
crop production.

Several limitations of our study reflect important challenges and 
open questions. First, while we assess seasonal-scale yield responses 
and temperature–moisture couplings, future studies may consider 
subseasonal timescales, particularly the role of the couplings in 
short-duration heat extremes and flash droughts43,45, and the differ-
ential vulnerability of crop growth stages. Second, we treat crops as 
passively affected by these couplings, but in some densely cropped 
regions, they actively influence climate by modifying regional 
ET46,47. While this occurrence is limited to certain high-yielding 
regions at present, it may become increasingly common with 
continued crop intensification and thus merits further attention. 
Third, while we treat circulation and land–atmosphere couplings 
as distinct, the influence of their overlap and interaction on past 

and future crop yield sensitivity to temperature should be investi-
gated18,41. Fourth, future work should consider the uncertain impact 
of increased atmospheric CO2 on future crop responses to com-
bined heat and moisture stresses48,49, which may weaken or amplify 
the relationships in Fig. 2 by increasing the water use efficiency of 
crops (yield per unit water transpired). Finally, further attention to 
the role of natural vegetation, aerosols and climate modes such as 
the El Niño/Southern Oscillation in temperature–moisture cou-
plings is also merited33,34.

Conclusion
Limitations and uncertainties in the climate models notwithstand-
ing, we draw the following main conclusions from our results. Local 
heat sensitivity of crop yields depends on the strength of coupling 
between temperature and moisture for maize and soy, but not for 
rice and wheat. We propose that this dependence, and its absence 
for rice and wheat, is consistent with the compounding of heat 
impacts by moisture stress where couplings are strong, and mitiga-
tion where they are weak. By 2051–2100, enhanced couplings over 
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Fig. 6 | Uncertainty in projected additional maize yield impact due to changing temperature–moisture couplings. a, Model agreement on the local 
sign of projected additional yield impact due to changing temperature–moisture couplings (ΔΔY) under a moderate-emissions scenario by 2051–2100. 
The colouring denotes areas where at least two-thirds (8 of 12) of the models in the ensemble agree on positive (blue), negative (brown) or no 
substantial change (within +/−10%, beige). Grey denotes areas with less than two-thirds model agreement on the direction of change. b, Distribution 
of model-specific global mean ΔΔY for the moderate emissions (SSP2-4.5, blue) and high emissions (SSP5-8.5, red) scenarios. The vertical red and 
blue lines denote multimodel median global mean impacts. Additional yield impacts are expressed as percentages of 2004–2013 mean yields, averaged 
over areas with significant temperature effects on yield (Fig. 1a). Overlap between moderate- and high-emissions scenario outcome distributions (that 
is, where blue and red bars overlap) are shown as brown shading. c, Ensemble median additional impact of warming on maize yields due to changes in 
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(SSP5-8.5, red) scenarios. In each box plot, the centre line denotes the multimodel median, the whiskers indicate tail projections within 1.5× the 
interquartile range and the points indicate outlier projections.
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a majority of global cropland will most likely make crops more vul-
nerable to warming temperatures, with notable exceptions across 
Asia, where couplings weaken. These climate impacts on crops are 
widely omitted from climate risk assessments.

Our projections of a mounting threat to crop yields from chang-
ing temperature–moisture couplings in a warming climate under-
score the need to adapt global crop management and genetics to 
concurrent heat and moisture stresses. Cropping adaptations 
(such as breeding for drought and heat tolerance) should thus 
avoid antagonisms between stress mechanisms where couplings 
strengthen in the future8,50, but may leverage them where couplings 
weaken. For instance, irrigation may disrupt the antagonistic feed-
backs that lead to compounding heat and moisture stresses, so its 
effectiveness as a crop adaptation to heat may be enhanced where 
couplings get stronger in the future. However, the reliability of irri-
gation may simultaneously decline with strengthening couplings, 
as drought increasingly limits the availability of water for irrigation 
during extreme heat (that is, when it is needed most). As another 
example, breeding crops for drought tolerance based on stomatal 
regulation35,37 or sowing density51 may exacerbate heat impacts by 
reducing canopy evaporative cooling or raising crop water demand, 
respectively, a risk that would be less important where couplings 
weaken (as in much of Asia). Finally, our results may help further 
calibrate joint temperature–moisture impacts in crop models to 
assure their usefulness in developing climate-adaptive cropping 
strategies14,52.

Efforts to adapt cropping to climates with increasingly strong 
temperature–moisture couplings may prioritize subsistence crop-
ping areas that are already prone to drought and heat, and where we 
project that enhanced couplings will worsen crop vulnerability in 
the future. Even with robust adaptations, changes in crop sensitivity 
to heat under climate change will probably necessitate greater inter-
national cooperation in equitable food trade and emergency relief as 
climate shocks increase.

Methods
Data and processing. For the historical climate analyses, we combine monthly 
0.5° gridded mean temperature and total precipitation observations from the 
Hadley Center Climate Research Unit (CRU TS4.02)53 with 0.25° modelled mean 
temperature and ET data from Global Land Data Assimilation System (GLDAS) 
Noah land surface model L4, version 2.0 (ref. 54). We coarsen the ET data from 
0.25° to 0.5° to match the resolution of the temperature and precipitation data. To 
represent growing season mean conditions, we average temperature and ET and 
sum precipitation during the average crop-specific growing periods based on a 
global crop calendar55. For wheat, we define the growing season as three months 
before harvest to exclude the vernalization period for winter wheat. Because 
ET is the input data with the greatest observational limitations, we verified the 
robustness of key parameters estimated via the regression model in equation (2) to 
three alternative historical ET datasets: (1) GLDAS v.2.0 Catchment Land System 
Model L4 over 1961–2010 (ref. 54), (2) GLDAS v.2.0 Variable Infiltration Capacity 
L4 over 1961–2010 (ref. 54) and (3) ERA5 Reanalysis over 1980–2010 (ref. 56).

The crop yield data are based on statistics from ~20,000 subnational political 
units over 1970–2013, harmonized for consistency with United Nations Food 
and Agriculture Organization national statistics and gridded to 0.5° resolution26. 
Harmonizing the subnational statistics with national Food and Agriculture 
Organization data ensures comparability between nations, but it may introduce 
discontinuities in the data along certain national boundaries, notably Ukraine. We 
focus on maize, wheat, rice and soy as crops that are globally dominant in calorie 
consumption and distributed across the world. For both the climate and crop data, 
we isolate interannual variability from longer-term trends using singular spectrum 
analysis, a non-parametric method that avoids assumptions about the functional 
form of the climate and yield trends5,57.

Historical temperature–moisture couplings. To characterize the couplings 
between temperature and moisture, we compute grid-cell interannual Pearson’s 
correlation coefficients between the detrended temperature and ET from 
GLDAS for the land–atmosphere coupling (rT,ET), and between temperature and 
precipitation from the Hadley Center Climate Research Unit for the circulation 
coupling (rT,p). This approach leverages the strengths of observation-based data for 
rT,p but employs model-based data for ET, which is comparatively sparsely observed 
over global croplands20,44. To improve the robustness of interannual correlations 
with respect to important modes of climate variability such as the El Nino/

Southern Oscillation, we use a somewhat longer 50-year period of 1961–2010 than 
the study period constrained by the yield data. We define the statistical significance 
of the couplings for each grid cell using a two-tailed t-test with a threshold of 
P < 0.1.

For clarity, our nomenclature contrasts these two couplings on the basis of 
the dominant locus of their occurrence either in atmosphere dynamics or land–
atmosphere interactions18,19,21. However, the two couplings interact physically in 
some regions and should not be considered strictly distinct18,21,22. For instance, 
global correlations between grid-cell rT,ET and rT,p (r2 = 0.21 for maize and 0.29 for 
soybean) may reflect links among p, ET and T in the coupled surface–atmosphere 
system that are not easily disentangled. Despite this, the magnitude of these 
correlations and the broadly divergent spatial pattern in their historic and 
projected future magnitude both suggest a prevailing differentiation of the two 
couplings. For brevity, we present the couplings only for maize in Fig. 1 and for the 
other crops in Supplementary Fig. 1, because their spatial patterns do not differ 
substantially across the different crops.

Historical crop yield sensitivity to heat. We estimate the historical yield 
sensitivity to temperature as the slope coefficient (βT) in a simple linear regression 
model relating detrended yields to temperature for each grid cell:

y = β0 + βTT + ε (1)

where y denotes estimated yields, β0 the intercept, T the mean seasonal temperature 
and ε the residual errors. Repeating this analysis for the four crops generates four 
maps of yield sensitivity to temperature. We standardize yield and temperature 
data such that βT has units of standard deviations of yield per standard deviation 
of temperature (that is, it is dimensionless). This standardization eases the 
comparison of yield sensitivity across crop regions with different means and 
variances of yield and temperature.

The simplicity of this linear model of temperature impacts on yields eases 
the interpretation of the spatial patterns of impacts and the results of subsequent 
analyses, at the cost of reduced specificity between the impacts of beneficial 
and detrimental subseasonal temperatures that comprise the seasonal mean 
temperature. Despite this limitation, the spatial pattern and magnitude of 
estimated yield sensitivity largely agree with past studies using more complex 
models. For instance, we compare our unstandardized yield sensitivities aggregated 
to the national scale with those in the multimodel comparison of Zhao et al.3 in 
Supplementary Fig. 8, and we find broadly consistent signs and magnitudes for 
top-producing countries for the four crops.

We define the statistical significance of the yield sensitivities for each grid 
cell using a two-tailed t-test with a threshold of P < 0.1. Importantly, we do not 
interpret this yield sensitivity to reflect the response to heat stress alone; rather, it 
also reflects the response of crops to temperature via its impact on vapour pressure 
deficit, a key variable in moisture stress2,7,13. We conduct this analysis for all grid 
cells with non-zero crop area to leverage the largest possible diversity of climates 
and crop systems, regardless of their areal intensiveness.

Historical impact of temperature–moisture couplings on yield. Next, we 
assess the dependence of standardized yield sensitivity to temperature on the two 
historical coupling measures using a multiple linear regression model of the form

βT = α0 + αT,ETrT,ET + αT,prT,p + ε (2)

where αT,ET and αT,p reflect the response of yield sensitivity to each coupling (rT,ET 
and rT,p), α0 is the intercept, and ε is the residual errors. This method aggregates 
local yield sensitivities and coupling strengths into a dataset for each crop, and 
the regression results in two global estimates of the yield sensitivity response 
to each coupling (αT,ET and αT,p) for each crop. Because they represent change 
in a standardized coefficient per unit change in correlation, αT,ET and αT,p are 
dimensionless. We include all grid cells with non-zero crop area and significant 
yield sensitivities to temperature (P < 0.1) in this analysis, and we note that the 
regression results are highly robust to a stricter significance threshold of P < 0.05 
(Supplementary Fig. 9). On the basis of a minimum threshold for the coefficient 
of determination (r2) of 0.2, we judge whether the couplings are substantially 
predictive of yield sensitivities for each crop, and we proceed with future 
projections only for crops that meet this criterion. Variance inflation factors 
for the models in equation (2) were 1.2–1.3, indicating low susceptibility of the 
coefficient estimates to the moderate collinearity between rT,ET and rT,p (r2 ≈ 0.2–0.3). 
The estimated model parameters were broadly robust to alternative historical ET 
datasets, including Variable Infiltration Capacity and Catchment Land System 
Model land models from GLDAS and the ERA5 reanalysis (Supplementary Fig. 6).

Projecting future changes in couplings. To assess future changes in the couplings, 
we employ projected monthly mean temperature and ET and monthly total 
precipitation from a suite of CMIP6 general circulation models, run under the 
SSP2-4.5 moderate-emissions scenario39. We use all 12 models for which ET data 
are complete and available. The projected climate data are aggregated to the local 
growing season. We detrend the seasonal time series using singular spectrum 
analysis to remove the large influence of long-term forced trends in the climate 
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variables, and we regrid the data to a common 0.5° resolution. Despite the lower 
native resolution of many climate models, we proceed with this higher resolution 
to conserve the spatial detail of historical mean yields and yield sensitivities to 
temperature, which are based on higher-resolution data. However, we avoid 
introducing non-physical results to our downscaled climate projections by 
using nearest-neighbour approximation rather than interpolating. This method 
essentially conserves the original model resolution in the climate component of our 
projections without sacrificing the higher resolution of the observed variables.

To project future changes in the temperature–moisture couplings, we compute 
rT,ET and rT,p in the climate model data for both the historical period 1961–2010 
and a future period of 2051–2100. We select the latter period to be distant 
enough in the future for climate signals to clearly emerge, but close enough to 
be useful for adaptation planning. We then compute a multimodel ensemble of 
correlation change factors by differencing the correlations between the historical 
and future periods. This differencing approach eliminates extraneous influence 
of historical mean model biases compared with observations (Supplementary 
Fig. 5), isolating the relative change in couplings projected by each model relative 
to its own historical period. Despite this, we note that historical biases probably 
reflect incomplete model simulation of the processes relevant to changes in the 
couplings. To represent the central tendency of the projection ensemble, we use the 
multimodel medians of projected change factors in the couplings (∆rT,ET and ∆rT,p).

Projecting the crop yield impacts of changing couplings. We use the historical 
estimated coefficients relating yield sensitivity to temperature with each coupling 
(αT,ET and αT,p in equation (2)) to project future changes in yield sensitivity to 
temperature (ΔβT) resulting from changes in the couplings, following

ΔβT = αT,ETΔrT,ET + αT,pΔrT,p (3)

This equation employs the regression relation estimated in equation (2) but 
allows the coupling strength at each grid cell to change on the basis of the climate 
model projections. The central assumption in this approach is that the future 
yield sensitivity of each grid cell responds to future changes in the couplings at the 
global rates dictated by αT,ET and αT,p. We note that successful crop adaptation may 
challenge this assumption (Conclusion).

To ease the physical interpretation of the projected yield impacts, we convert 
the projected change in yield sensitivity to dimensional terms using

ΔBT = ΔβT
σY

σT
(4)

where ΔBT coefficients have units of tons per ha per °C. We then project additional 
yield impacts of warming for each grid cell due to changes in coupling (ΔΔY) 
by multiplying this coefficient by the multimodel median of the mean seasonal 
warming by 2051–2100 (ΔT, computed by differencing modelled mean seasonal 
temperatures between the future and historical periods):

ΔΔY = ΔBTΔT (5)

We present this additional yield impact as a percentage of recent local yields 
averaged over 2004–2013, the ten most recent years in our dataset, to contextualize 
the changes relative to local baseline yields. Finally, we average the percent yield 
changes across all grid cells with significant historical yield sensitivities to estimate 
net global additional yield impacts due to future changes in temperature–moisture 
couplings. Note that we map ∆rT,ET, and ∆rT,p over the full global cropland, 
regardless of the significance of historical yield sensitivities, to enable the 
interpretation of wider global patterns of change. However, we map ΔΔY and ΔβT 
only where historical yield sensitivity to temperature (βT) is significant (P < 0.1). 
We also show projected yield change from warming alone to contextualize ΔΔY; 
however, we do not consider these projections themselves to be a methodological 
improvement on past statistical yield projections using more complex models.

To assess uncertainty across the ensemble of climate models, we recompute 
equations (3)–(5) using model-specific changes in the couplings, rather than the 
ensemble median. We use a consistent multimodel median warming to compute 
additional yield impact so that the uncertainty analysis isolates differences between 
model-specific projected changes in couplings, rather than model differences in 
mean warming. This approach assumes that, at the seasonal scale, the influence of 
coupling changes on mean warming in each model is small relative to the radiative 
effect of greenhouse gases and dominant climate feedbacks (for example, ocean 
and cloud responses to warming)43.

We then assess model agreement on the sign of the yield change for each 
grid cell. To do so, we classify whether at least eight models (two-thirds of the 
ensemble) project positive change (>10% yield gain), negative change (>10% yield 
loss) or little change (<10% yield gain or loss). Grid cells where fewer than eight 
models agree on the direction of change are classified as areas with substantial 
model disagreement. We also present histograms of model-specific projected 
net mean global yield change to reflect the distribution of plausible future global 
impacts. To account for uncertainty over future emissions, we include in this 
histogram equivalent results for a high-emissions scenario, SSP5-8.5 (ref. 39). We 
also present ΔΔY for this scenario to understand the spatial pattern of changes. 

Finally, we present ΔΔY for the two emissions scenarios averaged over several 
regions with noteworthy vulnerability or global importance. The data and methods 
used in this study are summarized visually in Supplementary Fig. 7. The base maps 
in Figs. 1 and 4–6 were developed by Generic Mapping Tools and used under a 
creative commons license.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets supporting the results of this paper are freely available from the 
references and links listed in Supplementary Table 1. The crop yield data are 
available from D.R. upon request. The intermediate datasets are available at https://
github.com/clesk/couplings-heat-crops. Source data are provided with this paper.

Code availability
The processing and analysis codes are available at https://github.com/clesk/
couplings-heat-crops.
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