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Abstract: Sucrose is a commonly used energetic material simulant for f-HMX. However, its behavior under extreme
loading conditions remains poorly understood. Pressure-Shear Plate Impact (PSPI) experiments have been conducted to
provide an experimental foundation for developing a suitable constitutive model for sucrose. Experiments have been
performed at two different nominal normal stress values, 3 and 9.5 GPa, with nominal shear strain-rates of the order of
108 s™1. Sucrose exhibits a shear strength of ~400-500 MPa in this pressure range, with a relatively small pressure
sensitivity. However, pronounced strain softening is observed in sucrose at sufficiently large shear strains - even a
dramatic drop in shearing resistance in some cases. A thermodynamically-consistent constitutive theory is presented to
model the thermoelastic, thermo-viscoplastic response of sucrose. The use of the logarithmic strain and an appropriate set
of invariants allows for separation of the Cauchy stress into pressure and deviatoric terms. A complete Mie-Gruneisen
equation of state is presented to model the volumetric behavior while the deviatoric response is captured through the
Johnson-Cook Model. The material model is able to capture experimental observations and predicts localization in the
form of adiabatic shear bands, which explains the catastrophic drop in shearing resistance of sucrose observed in the
experiments. Such localization events carry important implications for energetic materials in the context of hot-spot
formation and underline the importance of dynamic shearing strength measurements.
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1 Introduction

An energetic crystal is one with a large amount of stored chemical energy that can be released over a very short duration
of time. Energetic crystals such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), cyclotrimethylene trinitramine
(RDX), 2,4,6-Trinitrobenzene-1,3,5-triamine (TATB), etc. play important roles in military and space applications,
construction and mining. Energetic crystals are routinely employed as a solid fuel in rocket propellants and in mining and
construction. One of the important classes of energetic materials is polymer-bonded explosives (PBXs), which are
composites of energetic crystals held together by a small fraction (typically ~2-10%) of a polymeric binder. The presence
of the binder in these granular composites imparts reduced shock sensitivity, which allows safer transportation and storage
and minimizes accidental events like sympathetic detonations. There has been a great deal of interest in developing
“insensitive munitions” in recent years, which motivates a systematic study of ignition mechanisms in energetic materials
under controlled conditions. It is generally accepted that ignition in energetic materials begins in localized regions of high
temperature known as ‘hot-spots’ (Bowden and Yoffe, 1958, 1952), which are formed when localized mechanical energy
is converted into heat. Since the mechanical behavior, microstructure and composition of PBXs affect their impact
sensitivity and propensity for ignition, it is imperative to study their mechanical response and that of their constituents
under high pressure and high strain-rate loading conditions of relevance.

In the study of PBXs, energetic crystals like HMX and RDX are often replaced by simulant crystals such as
sucrose, melamine and acetaminophen. A simulant crystal is a molecular crystal that closely resembles an energetic
crystal in terms of one or more relevant attributes such as crystal structure, density and mechanical properties. For
example, sucrose and acetaminophen are simulants for HMX due to their similar monoclinic crystal structure. f-HMX
crystals have P2, /c (P2, /n) symmetry with unit cell dimensions of a = 6.54 A,b = 11.054,c = 8.70 A, § = 124.3°
(Miller and Garroway, 2001). Sucrose also belongs to the P2; space group with cell dimensions of a = 10.89 A, b =
8.69A,c =7.77 &, B = 103° (Beevers et al., 1952). Sucrose has also been shown to have mechanical behavior similar to
that of HMX, RDX and pentaerythritol tetranitrate (PETN) under drop-weight impact (Heavens and Field, 1974) and a
similar shock Hugoniot as HMX (Sheffield et al., 1998). These similarities have resulted in sucrose being a commonly
used energetic material simulant. Sucrose has not only been used as a mock energetic crystal in the energetic materials
industry but has also found an important application in the pharmaceutical industry as a model material to study
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compaction processes (Duncan-Hewitt and Weatherly, 1990), where the use of sucrose offers insights into fracture in
chipping, capping and delamination in such compaction processes. Due to their inert nature, energetic simulants provide a
safe and cost-effective way to infer the mechanical behavior of real energetic crystals, which makes them suitable for
many laboratory settings. Another advantage of studying energetic simulants is that they allow decoupling of mechanical
and chemical behaviors of energetic crystals so that one can understand the mechanical signatures of phenomena such as
pore collapse, adiabatic shear localization, fracture and granular friction independent of the effects of the accompanying
chemical reaction in an actual energetic material (Sheffield et al., 1998). Moreover, it should be noted that several
properties of energetic crystals are not adequately characterized, including: (a) the melt curve as a function of pressure, (b)
the thermal conductivity of the solid phase as a function of pressure and temperature, (c) the specific heat capacity of the
liquid phase as a function of pressure and temperature, (d) viscosity in the liquid phase as a function of pressure and
temperature, and (e) the anisotropy of yield surface. Some of these properties are difficult to measure experimentally
because of the onset of chemical decomposition and a subsequent reaction under extreme conditions. However, all the
above properties are important for accurate modeling of the mechanical behavior of energetic crystals under large
deformations and accurate prediction of ignition from hot-spot formation. Simulant crystals like sucrose offer an
opportunity to provide reference values and trends for the relevant material properties of real energetic crystals.

Due to their mechanical and chemical fragility, characterization of molecular crystals using traditional testing
methods is challenging. Brittle molecular crystals, such as RDX, HMX, PETN, sucrose, etc., fracture readily because they
cannot be subjected to large strains or plastic deformation. Moreover, characterization methods such as electron
microscopy are difficult to use on these materials for quantitative assessment as they chemically dissociate under an
electron beam. Hence, not much is known about the deformation behavior of molecular crystals and the underlying
deformation mechanisms. As a result, researchers have been left with only a handful of experimental methods to
characterize these materials in the quasi-static limit. Nano-indentation and atomic force microscopy (AFM) have been
used to extract the elastic moduli and hardness of sucrose (Duncan-Hewitt and Weatherly, 1989; Masterson and Cao,
2008; Ramos and Bahr, 2007). Apart from mechanical and chemical fragility, molecular crystals are difficult to analyze
and characterize experimentally because of other complex features such as anisotropy and phase transformations. For
example, f-HMX has a monoclinic crystal structure with 13 elastic constants (Stevens and Eckhardt, 2005; Zaug, 1998).
Similar measurements of the elastic constants of RDX (Haussiihl, 2001; Haycraft et al., 2006; Schwarz et al., 2005)
showed large anisotropy of elastic properties along different orientations. Anisotropy in crystallographic slip results in a
varying mechanical response when shocked in different orientations. Dick et al. (2004) demonstrated the anisotropy in
strength and elastic precursor decay of f-HMX single crystals when shocked in different orientations. The inelastic
mechanisms of deformation have also been shown to vary with orientation. Similarly, Hooks et al. (2006) showed that
elastic wave speeds, Hugoniots and plastic wave relaxation rates are highly anisotropic for shocked RDX single crystals.
Such a large anisotropy in the elastic and plastic properties of energetic crystals requires extensive experimental
characterization for reliable constitutive models.

A great deal of work has been done over the past few decades to understand the compressive response of PBXs
(Funk et al., 1996; Gray IlI et al., 1998; Idar et al., 1998) and their polymer-bonded simulants (PBSs) (Funk et al., 1996;
Hu et al., 2015; Idar et al., 1998; Kendall and Siviour, 2015; Liu et al., 2011; Siviour et al., 2008; Williamson et al., 2006).
While mechanical testing of PBSs under extreme conditions has received substantial attention, modeling of the
phenomena leading to hot-spot formation in PBXs and PBSs requires accurate constitutive modeling of the constituents,
which is lacking. The mechanical response of energetic crystals such as HMX and RDX has been studied in detail under
uniaxial strain through normal compression impact experiments (Dick et al., 2004; Hooks et al., 2006). However, a
systematic characterization of the shear strength of energetic crystals and their simulants has not been done so far. Despite
being the most widely used simulant, sucrose has not been sufficiently characterized to inform constitutive models
adequately. Trott et al. (2007) investigated the response of granular sugar under shock compression for different sample
thicknesses, impact velocities and particle size distributions. A shock Hugoniot has also been reported by Sheffield et al.
(1998). However, these studies are insufficient to model the strength response of sucrose as a function of pressure and
strain-rate. At present, there is insufficient experimental data to develop an accurate anisotropic elastic-viscoplastic model
of sucrose. It is difficult to develop even a sufficiently robust isotropic model for polycrystalline sucrose or a sufficiently
large aggregate of sucrose grains, which can adequately model large deformations under high pressures and high strain
rates. The absence of any shear strength measurements makes it difficult to perform realistic simulations of deformation
and phenomena such as pore-collapse, shear localization and friction that lead to hot-spot formation. Granularity of the
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specimen further hinders the ability to probe the bulk material response of sucrose. The effect of the granular nature of the
specimen is evidenced by the very different normal velocity profiles for the same impact velocities observed by Trott et
al. (2007). For these reasons, we employ the Pressure-Shear Plate Impact (PSPI) technique in the present work to measure
the material response of a uniform sucrose layer to normal and shear loading.

Adding to the complexity of the mechanical behavior of molecular solids, it has been reported that under high
pressures, temperatures and shear strains, molecular solids can undergo phase transformations. Ciezak-Jenkins and
Jenkins (2018) and Patyk et al. (2012) reported an isostructural phase transformation in sucrose at a pressure of ~5 GPa,
using a diamond anvil cell. Ciezak-Jenkins and Jenkins (2018) subjected sucrose samples to large shear strains at high
pressures using a rotational diamond anvil cell and showed that amorphization occurs under such loading conditions.
However, the diamond anvil cell studies do not quantify the shear strains and rates of loading and hence do not provide
the necessary quantitative information to develop material models. Therefore, in the present work, we lay an experimental
foundation using the PSPI experiments for the constitutive modeling of sucrose. In addition to being the first undertaking
to study the high pressure and high strain-rate strength of sucrose, the experimental results also reveal the propensity of
sucrose to undergo shear localization. Such findings beg for more experimental effort on real energetic crystals such as
HMX and RDX under PSPI loading.

Since the response of molecular crystals to mechanical loading is inherently complex, constitutive models for
energetic crystals and simulants are complex as well. In general, in order to model the material response and capture the
physics behind phenomena such as pore collapse and subsequent chemical reactions, it is imperative to retain a
sufficiently general model, albeit at the expense of complexity and computational resources expended. A general material
model for such molecular crystals should incorporate: (a) a finite deformation framework, (b) non-linear anisotropic
thermo-elasticity, i.e., have anisotropic elastic moduli which are dependent on pressure and temperature in general and be
able to handle finite non-linear elastic deformations under large pressures through a complete equation of state, (c) plastic
anisotropy, typically modeled using a crystal plasticity approach, and (d) thermo-elastic heat generation and plastic
dissipation. Multiple researchers have taken up the task of including one or more of the above-mentioned features into the
constitutive modeling of materials subject to extreme dynamic environments. Since the applications of interest involve
large deformations, only finite deformation models are reviewed here. Barton et al. (2009) employed an anisotropic
thermo-elastic model coupled with crystal plasticity to model pore collapse in HMX, although pressure and temperature-
dependent moduli were not used and a constant specific heat capacity was assumed. Austin et al. (2015) extended the
model by Barton et al. (2009) to incorporate a temperature-dependent specific heat and coupled chemical kinetics to
simulate pore-collapse and consequent shear band formation. The effects of including crystal anisotropy and rate-
dependent viscoplasticity on shear band formation were analyzed, and it was shown that a rate-independent model does
not lead to shear band formation during the pore-collapse process, thus altering the mechanical signatures and subsequent
chemical decomposition reactions. Use of pressure-dependent elastic moduli (Becker, 2004; Grunschel, 2009; Wang et al.,
2016) enables capturing large volumetric strains and the evolution of shocks from steep pressure gradients. All the above
references used crystal-plasticity to model the anisotropic plastic response. Clayton (2014) presented a thermodynamics-
driven approach to modeling large deformations in hard anisotropic materials such as sapphire, diamond and quartz that
incorporates all the aforementioned features of a general constitutive model. However, validating such a model requires a
large number of experimentally characterized material constants which may not be feasible to obtain for most materials.

In the present study, we present a thermodynamically-consistent framework for finite deformation modeling of
sucrose. The framework presented here is generic and can be used for any isotropic material subject to extreme dynamic
environments involving high pressures, high strain-rates and large strains, both in compressive and shear loading
scenarios. It enables the incorporation of a complete equation of state and a thermo-viscoplastic strength model in a
thermodynamically-consistent manner, thus allowing an accurate representation of thermoelastic and thermo-viscoplastic
work. Moreover, the use of logarithmic strains accompanied by an appropriate set of invariants (Criscione et al., 2000)
allows the separation of stress into pressure and deviatoric terms. This is particularly useful in validating the model using
experimental observations since the equation of state is measured through a separate set of experiments as compared to
strength measurements. Due to a lack of experiments on sucrose, there is a lack of experimentally verified material
constants. The present model uses a reasonable number of material parameters to address this problem.

The paper is organized into five sections. Section 2 details the experimental methods used and the results of PSPI
experiments on sucrose. The shear behavior of sucrose is characterized under high shear strain-rates and high pressures. In

3



section 3, we present the thermodynamic framework used to model sucrose, followed by a description of the constitutive
model and a derivation of a complete Mie-Gruneisen equation of state. Analytic expressions for different types of loading,
such as isentropic, isothermal and shock loadings, are derived without any strength considerations, and the behavior of
sucrose is compared under such conditions. The importance of using a temperature-dependent specific heat is highlighted
for the case of shock loading. In section 4, we describe the numerical implementation of the material model and
demonstrate that the proposed constitutive model is able to fit the experimental data reasonably well under varied testing
conditions. Section 5 presents a summary of the dynamic shearing behavior of sucrose reported in the preceding sections
and discusses possible avenues of further improvement on the experimental and modeling fronts.

2 Experiments

2.1 Methods

Pressure Shear Plate Impact (PSPI) experiments have been used to study the dynamic response of sucrose under
extreme conditions. Pioneered by Kim et al. (1977), PSPI experiments allow investigation of the shearing response of
materials under high pressures, high shearing strain-rates and high shear strains. In these experiments, a flyer plate
impacts the target plate at an angle 8 generating both compressive longitudinal waves and shear waves. The angle 6 is
usually kept below 20° to ensure that no slip occurs at the impact face. A 2.5-inch gas gun at the plate impact facility at
Brown University is used for these experiments. The gun barrel has a keyway which facilitates oblique impacts. One of
the most common test configurations is a sandwich configuration as shown in Fig. 1. In this configuration, a thin sample
(typically 10-200 um in thickness) is sandwiched between two hard elastic plates, hereafter, referred to as the front target
plate and the rear target plate. The flyer and target plates are made from a hard material such as tungsten carbide or high
strength steel, that remains elastic (or nearly so) over the range of loading pressures and strain rates reported herein. Upon
impact a one-dimensional plane-wave loading is obtained. This loading allows for a comparatively straightforward
interpretation of the stress-state achieved inside the specimen.

Velocity Sensor

\ Specimen
________________________________ m— . TDI
NDI
Yo E <
************************* - TDI
iffraction
/ Grating
7777777777777777777777777777777777777777777 Flyer

Rear Target

Front Target
Aluminum Plate Plate

Front Plate

Fig. 1 PSPI Experimental Set-up. The projectile is typically a light-weight fiberglass tube. A flyer plate is glued to an aluminum plate bonded to the
front of the projectile. A flat step is made on the aluminum front plate perpendicular to the impact direction. This step is used to short the pins of the
velocity sensor that is used to measure the velocity of the projectile. The velocity sensor consists of five pins, placed at an angle of ~110° to the
impact direction. Rotation of the projectile is prevented by a key, attached to the projectile and sliding in a keyway in the gun barrel. The flyer plate
and the target assembly are aligned for impact of parallel plates with an angle, 6, between the normal direction to the impact plane and the direction
of approach. Plane compressive and shear waves are generated at the impact face. A thin specimen, sandwiched between two hard elastic plates
(target plates), is loaded by the forward propagating plane waves emanating from the impact plane. Particle velocities at the free surface are measured
using a combined normal and transverse displacement interferometer (NDI & TDI) (Kim et al., 1977). Transverse displacements are measured
interfering two beams diffracted symmetrically by a diffraction grating deposited on the free surface of the rear target plate. A diffraction grating
with 625 lines/mm is used in this study.

Projectile

The #-X plot for a typical PSPI experiment with a sandwich configuration is shown in Fig. 2. The impact occurs at
X=0 and =0, where X refers to the Lagrangian coordinate along the thickness direction (as shown in Fig. 1) in a reference
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configuration and ¢ represents time. On impact, longitudinal and shear waves are sent through the front target plate and the
flyer. Due to low acoustic impedance of the specimen, these waves reverberate through the specimen before the stress
state rings-up to a uniform value. Note that the thickness of the front target plate is chosen so that the compressive stress
in the specimen has rung-up to a uniform value before the arrival of the shear wave. Hence, the measurement of the shear
strength of the specimen is made at a state of nominally constant normal stress. The time window of shear loading at a
constant normal stress is cut short by the earliest arrival of the unloading wave from the free surface of the rear target
plate or the unloading wave reflected from the rear face of the flyer, as shown in Fig. 1. On impact, cylindrical unloading
waves are generated at the circumference of the plates due to traction-free boundary conditions. When these waves reach
the point being monitored on the free surface of the rear target plate, displacements can no longer be interpreted as caused
by one-dimensional plane waves. The record is discarded beyond this point. The thickness of the rear target plate and the
flyer are chosen to maximize the shear window. Typically, a shear window of 0.75-1 us is achieved, which allows large
shear strains of 1-10 for shear strain rates of 10%-107 s™!.

t Front Specimen Rear
Flyer A Target
Target 4/ © ~| 4.80 ps
L=" Lateral Release Wave ~ ~ " y e
~ %LOO Shear
8 Window

» X

0
«—— 6.92 mm »<— 298 mm—» <« 6.51 mm ————>»
Fig. 2 A typical t-X plot for a PSPI experiment (Shot! is depicted here. See Section 2.3 for details). Solid red lines represent the longitudinal wave
characteristics and dashed green lines represents the shear wave characteristics. The dashed red line represents the transients reflected from the rear
target/specimen interface. The horizontal black detted-dashed line represents the lateral release wave. The shear window in the scenario depicted here
is limited by the lateral release wave.

If the flyer and target plates respond elastically, velocities and tractions at the sample/rear target plate interface can
be inferred from the free surface velocity measurements made on the rear target plate. For such a case, normal and shear
stresses in the sample can be obtained using a characteristic analysis for one-dimensional elastic wave propagation. The
normal and shear stresses can be inferred from particle velocity measurements made at the free surface, as given through
the following expressions:

o = _pOCLufs
i 2, 2.1
PoCsVrs :
Tsp = —T.

Here, o and 7 represent normal and shear stresses respectively; u and v represent normal and transverse particle
velocities; c; and cg are the longitudinal and shear wave speeds in the target and flyer material; and p,, is the initial
density of the target plate and flyer material. The subscript ‘sp’ indicates specimen and ‘fs’ stands for free surface. After a
sufficient number of reverberations, a nominally uniform state of stress is obtained through the thickness of the sample as

—Bo%L%o where ug =V, cos(0) and Vj is the impact velocity. However, the shear stress may not ring up

given by: g, = >

to the peak value of 75, = — @ (where vy = Vysin(0)) if the sample deforms plastically in shear. Then, the velocity
difference between the front and back of the specimen leads to a shear strain rate given as:
Vo —V
y=—Js - Is (2.2)
S
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where hg is the specimen thickness. The expression for the strain rate in equation (2.2) is valid only after the specimen has
reached a state of constant shear stress. The shear strain-rate can then be integrated to yield the shear strain. In cases in
which the anvil material does not respond elastically, its constitutive response needs to be characterized beyond the elastic
limit and an inverse analysis used to infer velocities at the sample/rear target plate interface from the experimentally
measured free surface velocities at the rear target plate. Such an inverse analysis has been provided by Clifton et al.
(2020).

The above analysis assumes an ideal condition of perfectly parallel impacting surfaces. However, there is always a
finite amount of tilt between the flyer and the target plate. It is important to keep the tilt as low as possible, typically a
value below 2 mrad is desired. In order to achieve such low tilt angles, a high precision alignment technique was invented
by Kumar and Clifton (1977). Alignment of the flyer to the sandwich consists of two steps: a coarse alignment step and a
fine alignment step. In the coarse-alignment step, the flyer and the sandwich are brought in contact and the degrees of
freedom of the sandwich adjusted to ensure no gaps and a complete overlap of the impacting surfaces. This is followed by
a fine alignment step that uses a partially-mirrored, 90° precision-prism. The procedure is described in detail in Kumar and
Clifton (1977). An alignment precision as small as 0.02 mrad is achieved using this method. In order to confirm if a shot
is valid, the tilt is measured by recording times of contact of the flyer with tilt pins lapped flush with the target impact
surface (Klopp and Clifton, 1990).

2.2 Specimen Preparation

A uniform thin layer of crystalline sucrose is prepared on the front target plate by spin-coating a super-saturated
solution of sucrose in de-ionised water. Pure sucrose from Sigma Aldrich is used rather than a commercial variety of
sugar. An 80% w/w solution of sucrose in water is prepared and degassed. The solution is spin-coated on the substrate at
4000 rpm. The substrate is placed on a hot plate at ~60 °C for ~12-16 hours until all water has evaporated, and the
sucrose has crystallized. As shown in Fig. 3, it is important to stay above the metastability limit (in Zone III) for
crystallization to occur. A moist environment and a rough substrate are found to favor grain nucleation and growth. Once
the sucrose layer is prepared on the front target plate, the rear target plate is placed on top of the sucrose specimen and the
sandwich is glued on the periphery of the sample/target plate interface with an epoxy while gently pressing with a small
weight. During PSPI experiment, slip is prevented by the large compressive normal stress.
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Fig. 3 Sucrose concentration (% weight of solid) vs temperature (The data for the figure was taken from Shastry and Hartel (1996)). Zone I: Under-
saturated solution, Zone II: Meta-stable solution, Zone III: Labile solution, Zone IV: Amorphous state. Sucrose crystallization begins above the
metastability limit. So, for a solution heated at 60°C, a starting solution concentration of 80% is chosen.



@ _m

Fig. 4 (a) WC front target plate (diameter = 50 mm) with a 15 um thick uniform layer of sucrose spin-coated on top. (b), (c) Magnified views of a
spot on the sample and (d) a stitched version of microscope images indicating sucrose grain boundaries.

A sample obtained by following the above preparation process is shown in Fig. 4. The sample thickness is
measured using a Dektak profilometer. A sucrose layer of 10-20 um in thickness can be obtained by this method, which
facilitates large shear strain rates of the order of 10°s™!. Note that the specimens are not perfectly flat and have a surface
roughness of the order of a micron. On cooling, cracks are observed on the sample, as shown in Fig. 4(b) and (c), due to a
large mismatch between the coefficient of thermal expansion of the substrate and that of sucrose. However, the width of
these cracks is extremely small as indicated by the scale bar and are not significant in the PSPI experiments. Fig. 4(d)
depicts a polycrystalline layer of a sucrose specimen with a grain size of the order of a few microns. Another critical issue
of interest is the crystallinity of the sucrose layer. To ensure that the sucrose layer prepared by the spin-coating method is
crystalline, X-Ray Diffraction (XRD) studies are carried out on powdered crystalline sucrose and spin-coated sucrose
layers (see Fig. 5). An overlap of XRD peaks of the spin-coated specimen and that of crystalline powdered sugar shows
that the spin-coating method indeed yields a crystalline layer. Fig. 5(a) shows that XRD intensity peaks for different spin-
coated samples overlap, indicating consistency across different samples and different spots on the same sample. It is
evident from Fig. 5(b) that the spin-coated sample shows most of the peaks corresponding to powdered sucrose although
with lower relative intensities. So, it is reasonable to conclude that spin-coating gives a crystalline sample.
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2.3 Experimental Results

A total of seven PSPI shots have been conducted on sucrose. A summary of the shots is provided in Table 1. D2 steel
is used as the anvil material for the low normal stress (nominally 3 GPa) shots, while WC is used for the high normal
stress (nominally 9.5 GPa) shots. Shear strain rates of the order of 10° s™ are obtained as a result of using a small sample
thickness of 10-20 um.

Table 1 Summary of PSPI shots on sucrose

Shot No. | e | Zim) ?f;zm) ?f;{m) ?;:Zm) o (n'z/?s) (Tr;l:ad) ‘(76"1';’;1) Z&";xa) 7™
Shotl | D2Steel | 1205 | 6915 | 2978 | 6511 |18 | 13206 | 121 282 | 0382 | 1.95x10°
Shot2 | D2Steel | 12.63 | 694 | 2951 | 6522 |18 | 134 NA 29 0442 | 1.7x10°
Shot3 | D2Steel | 1697 | 6965 | 2944 | 6571 | 18 | 13346 | 1.02 293 | 0404 | 1.55x10°
Shot4 | WC 176 | 6443 | 2.88 | 5872 |18 | 187 0.5 9.1 0460 | 2.9x10°
Shots | wC 1691 | 6324 | 2.855 | 5986 |18 | 1945 |08 975 | 0288 | 3.1x10°
Shot6 | WC 1358 | 6369 | 2937 | 593 |18 | 1919 | 037 964 | 0580 | 3.98x10°
Shot7 | wC 1824 | 6335 | 2914 | 5940 | 18 | 18852 | 097 947 | 0530 | 2.95x10°

hg: sample thickness h: flyer thickness, hgr: front target plate thickness, hpy: rear target plate thickness, 8: angle of impact, V: impact velocity, 0,,,,: peak normal
Stress, T ,qx: peak shear stress, y: mean shear strain-rate

Fig. 6 shows the normal stress profiles, and the shear stress profiles are plotted in Fig. 7. Saturation normal stresses of ~3
GPa and ~9.5 GPa are nominally obtained for the low and high velocity shot categories. The normal stress profiles show
an elastic precursor as indicated by the initial step. Following the elastic precursor, the normal stress profiles for the low-
pressure shots rise steeply to the plateau with a rise time of approximately 86 ns. For the high-pressure shots, the initial
rise after the elastic precursor is steep but a bend is observed at a normal stress of ~6 GPa, which could be a result of the
anvil material (WC) reaching its Hugoniot elastic limit (HEL). No steps corresponding to the ring-up of normal stress are
observed despite the large acoustic impedance mismatch between the anvil material and sucrose because the sucrose
layers are extremely thin. Instead, the normal stress rises steeply to the saturation value.
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Fig. 6 Normal stress vs time profiles for all PSPI shots on sucrose. Solid lines show the high-pressure shots while dashed lines show the low-pressure
shots. Low and high-pressure shots are laid on top of each other for a better comparison and to demonstrate the consistency of normal behavior
across different shots. The arrival of the unloading wave is marked by a dot for each case.

The shear behavior offers more interesting insights into the mechanical behavior of sucrose under high pressures
and high shear strain-rates (>10° s!). The shear stress rises to a peak value followed by pronounced strain softening.
Under these loading conditions, sucrose loses its shearing resistance after accumulating a certain amount of shear strain.
For the low-pressure case (Fig. 7 (a)), the shear stress profiles are quite repeatable. For the high-pressure case (Fig. 7 (b)),
two shots (Shot4 and Shot7) show almost identical shear behavior. However, for Shot 5, the peak shear strength is much
lower than the other shots and shows a complete loss in shear strength, the reason for which is not fully understood. It is
possible that this particular specimen had pre-existing defects such as voids which collapse upon the arrival of the shear
wave, leading to more damage than would be expected in a nominally homogeneous defect-free specimen, and hence
leading to complete shear failure. The shear stress profile for Shot6 is not plotted since the data for that shot is very noisy
due to the low signal to noise ratio of the transverse displacement interferometer (TDI). Overall, the high-pressure shots
exhibit more variability in the shear stress data compared to the low-pressure shots. However, both cases show
qualitatively similar behavior. Also note that as the transverse velocity reduces to a very small value after shear strain-
softening, the shear-stress profiles become noisy due to the low signal to noise ratio of the TDI signal thereafter.
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Fig. 7 Shear stress vs time profiles for (a) low-pressure shots and (b) high-pressure shots on sucrose. Low and high-pressure shots are laid on top of
each other for a better comparison and to demonstrate the consistency of shear behavior across different shots. The arrival of the longitudinal
unloading wave occurs at times latter than depicted here for each case. Note that the high frequency oscillations at the end of the shear profiles are a
result of low signal to noise ratio of the TDI signal.

The dramatic drop in shear strength of sucrose can be attributed to a thermo-viscoplastic instability leading to
localized shearing deformation and possibly melting in the sucrose sample. Such behavior is modeled using the
constitutive model described in Section 3. A simple calculation of the amount of plastic work due to shear converted to
heat (= [ 8 7dy) suggests a significant increase in temperature. Here | 7dy is the amount of plastic work due to shearing
deformation, and f3 is the fraction of plastic work converted to heat. For example, assuming homogeneous deformation
across the specimen in Shot4 and taking = 0.9 and ambient values of the specific heat (1244 J/kgK) and density of
sucrose (1580.5 kg/m3), a temperature increase of approximately 286°C is expected. The thermal softening eventually
overtakes the strain and strain-rate hardening, leading to localized deformation. Such localized failure through the
formation of adiabatic shear bands has been observed in molecular solids such as RDX (Coffey and Sharma, 2001;
Sharma et al., 1996; Sharma and Coffey, 1996). Sharma et al. (1996) and Sharma and Coffey (1996) used Atomic Force
Microscopic (AFM) imaging to illustrate the lattice and molecular deformations in RDX resulting from drop-weight
loading. AFM images of an RDX single crystal subject to an aquarium shock of 12.9 GPa magnitude by Sandusky et al.,
(1993) were shown in Coffey and Sharma (2001). AFM images of recovered samples showed that shear bands with
widths of several tens of microns formed along crystal slip planes and extended for hundreds of microns. It was also
shown that RDX melted locally within the shear bands, flowed out of the bands and solidified on the crystal surface.
Molecular dynamics studies of shock-loaded HMX (Jaramillo et al., 2007) and RDX (Cawkwell et al., 2008) also showed
the formation of nano-shear bands at 45° to the direction of impact. However, quantitative measurements of the peak shear
stress at which shear bands formed were not made in any of the above studies.

Peak shear stresses in sucrose exhibit some variability for a given normal stress. The variability is low for the low

normal stress case. However, in general, the peak shearing resistance of sucrose seems to be very weakly dependent on
normal stress, as shown in Fig. 8.
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Fig. 8 Peak shear stress of sucrose vs normal stress at a nominally similar shear strain rate. The dashed line indicates a linear fit to the experimental
data. The equation of the linear fit is displayed above the trendline. Note that substantial temperature increase is expected due to normal compression
and therefore, the peak shear stress is expected to depend on temperature as well. Hence, the plot shows the coupled effect of normal stress and
temperature rather than normal stress alone.

Shear strain-rate curves are plotted for low and high-pressure shots on sucrose in Fig. 9 (a) and (b), respectively.
Mean shear strain-rate values for the low-pressure shots lie in the ~1.5 X 10% — 2 X 10° s~ range while the mean shear
strain-rates for high-pressure shots are slightly higher (~2.9 X 10® — 3.1 X 10° s™1). The shear strain-rate values
calculated here should be taken with caution as they assume that deformation in the specimen is homogeneous and the
shear stress has equilibrated. Due to the extremely small thickness of the specimen, shear stress equilibrium can be
attained fairly quickly. However, strain localization is suspected inside the specimen after the fall in shear strength. For
such inhomogeneous deformations, the shear strain-rate plots shown here do not represent the actual strain-rate inside the
specimen. So, the shear strain-rate and the consequent integrated shear strain values are only nominal proxies of actual
values. Shear stress versus nominal shear strain behavior is plotted in Fig. 10. It can be observed that the shear stress
begins to decrease around a nominal shear strain of ~0.2 for the low-pressure shots while the critical shear strain for high
pressure shots is ~0.5, signalling the role of pressure in suppressing the onset of instability.
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Fig. 9 Shear strain-rates for (a) low-pressure shots and (b) high-pressure shots. The mean shear strain-rate values for each shot are indicated by the
light-colored dashed lines.
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Fig. 10 Shear stress vs nominal shear strain for (a) low-pressure shots and (b) high-pressure shots.

This section presents an investigation of the shear strength of an energetic crystal simulant, i.e., sucrose, through
PSPI experiments. A brief introduction to the PSPI experiments has been provided and methods for preparation of thin
polycrystalline sucrose layers for PSPI experiments have been discussed in detail. PSPI experiments have been conducted
at two different normal stresses of approximately 3 and 9.5 GPa and shear strain rates of the order of 10° s!. Under such
loading conditions, sucrose loses its shear strength dramatically after reaching a peak value. Such softening of the shear
response of sucrose may be attributed to a thermo-viscoplastic localized instability, which is discussed in a subsequent
section. In the next section, we formulate a constitutive model for sucrose which not only captures the experimental
observations from this section but can also be extended to other experimental loading scenarios.
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3 Constitutive Model

This section focuses on developing a thermodynamically consistent framework for finite deformation modeling of
sucrose. In Section 3.1, a thermodynamic foundation is laid for constitutive modeling of a solid. This is followed by a
description of an isotropic thermoelastic, thermo-viscoplastic material model in Section 3.2. An isotropic model for
sucrose is presented for two main reasons, apart from its simplicity: (a) a lack of characterization data for the anisotropic
elastic constants of sucrose and (b) the use of polycrystalline samples in the PSPI experiments. The logarithmic strain is
employed in the constitutive model for the thermoelastic response because the consequent Cauchy stress additively
decomposes into volumetric and deviatoric parts even at finite strains, which is not possible when using the Green-
Lagrange strain tensor (Barton et al., 2009; Becker, 2004). Such a decomposition makes it easier to handle the volumetric
and deviatoric responses separately and to incorporate a complete equation of state into the framework. Since energetic
crystals and their simulants are routinely subject to shock conditions, it is imperative to develop a material model that is
able to faithfully represent the mechanical and thermal behavior under these conditions. As a result, a complete Mie-
Gruneisen equation of state, with a temperature-dependent specific heat capacity, is derived and implemented in Section
3.3, laying the foundation for modeling the temperature-coupled elastic behavior under large pressures. In Section 3.1.6, it
is shown that the temperature evolution equation involves two important terms, i.e., a rate of thermo-elastic heating and a
rate of plastic dissipation, apart from thermal conduction, and in Section 3.4, an analytic expression for thermo-elastic
heating is derived. Based on the complete equation of state, analytic expressions for different types of loading, namely,
isentropic, isothermal and shock loading, are derived without strength considerations in Sections 3.5, 3.6 and 3.7,
respectively and compared in Section 3.8. The complete Mie-Gruneisen equation of state uses an isothermal 3™-order
logarithmic equation of state as its reference curve. Appendix A presents a derivation for the 3"-order equation of state
using the logarithmic strain, consistent with our constitutive modeling approach (Note that the logarithmic equation of
state was first derived by Poirier and Tarantola (1998)). Using logarithmic strains also has advantages at high pressures
since a constitutive model based on logarithmic strains requires a smaller number of material constants to fit the
experimental data (Anand, 1986, 1979; Clayton, 2014; Poirier and Tarantola, 1998). Note that the constitutive model for
sucrose utilizes several material constants, not all of which are experimentally validated through PSPI experiments.
Therefore, it is important to justify their choice based on experimental and theoretical observations of other researchers.
The choice of material constants is discussed in detail in Appendix B.

In addition to the above, it must be noted that molecular crystals such as RDX, HMX and sucrose undergo
complicated transformations, such as phase change and chemical decomposition under extreme environments. Adequate
representation of such complex behaviors requires the consideration of additional physics and appropriate multi-phase
models, which are not the focus of present work.

3.1 Thermodynamics of a Solid

3.1.1 Kinematics

Consider a body occupying a region of space B, in the reference/undeformed configuration. The body is then
subjected to a motion x = y(X, t) so that it occupies a region of space B; at time t in the spatial/deformed configuration.
The deformation gradient is then given by F = Vy with ] = det(F) > 0, where V denotes the gradient with respect to the
material coordinate X in the undeformed body. We assume that the deformation gradient F is multiplicatively decomposed
into elastic and plastic parts, F¢ and FP, respectively (commonly referred to as the Kroner decomposition): F = FéFP. It
is assumed that J¢ = det(F¢) > 0 and that the plastic deformation is incompressible, i.c., JP = det(FP) = 1, so that only
the elastic deformation leads to a change in volume, i.e., J¢ = J. The right polar decomposition of F¢ is given as F¢ =
ReU¢®, where R€ is the elastic rotation tensor and U¥¢ is a symmetric positive-definite tensor, called the elastic right stretch
tensor. The spatial velocity gradient L defined as: L = grad v = FF~!, where grad represents the gradient with respect
to the spatial coordinate x in the deformed body. Using the Kroner decomposition of deformation, the velocity gradient
can be decomposed as: L = FEFe™ 4 FeFPFP~ Fe™! = [¢ 4 FeIPFe™" with L¢ = FeF®™" and LP = FPFP~". The
elastic and plastic rate of stretching and spin tensors are defined as:

D¢ = sym(L®),
We = skw(L®),
D? = sym(LP), (3.1
WP = skw(LP).

It is assumed that plastic flow is irrotational, i.e., WP = 0, so that LP = DP.
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3.1.2 First Law of Thermodynamics

The first law of thermodynamics states that the change in internal energy of an isolated system is equal to the
work done on the system plus the heat added to the system. In the reference configuration, the local form of the first law is
written as (Gurtin et al., 2010):

er = To:F — Div (qg) + 1z, (3.2)

where ey, is the internal energy per unit reference volume, qp, is the referential heat flux vector and ry is the heat supply
per unit reference volume. Throughout, we use the subscript ‘R’ to denote referential quantities. The tensor T is the
unsymmetric 1% Piola-Kirchhoff stress tensor, and T: F is the stress power per unit reference volume. The stress power
can also be expressed in terms of the symmetric Cauchy stress tensor, T = J" T FT, as: To: F = JT: L. Hence, the first
law can be re-written as:

er =JT:L — Div (qg) + 13- (3.3)

3.1.3 Second Law of Thermodynamics
The second law of thermodynamics states that the net entropy production of an isolated system is non-negative.
The local form of the second law in the reference configuration is written as (Gurtin et al., 2010):
T
Sg = Tig + Div (%R) - gR > 0, (3.4)
where 7y is the entropy per unit reference volume, 8 is the entropy production rate per unit reference volume, and 6 is
the absolute temperature.

3.1.4 Free-energy Imbalance

The Helmholtz free energy is related to the energy and entropy through Yp = ep — ng8, where Yy, is the
Helmholtz free energy per unit reference volume. Hence, the rate of change of free energy can be written as Y = €g —
1r0 — nrl. Combining with equation (3.3) and 7 from equation (3.4), we obtain the local free-energy imbalance
inequality:

. . 1

The quantity 86 represents dissipation rate per unit reference volume, and the free-energy imbalance requires that the
dissipation rate is non-negative.

Next, consider the stress power term JT: L, which can be decomposed into elastic and plastic terms:
JT:L =JT:L® + JT: FELPF¢™" = JT: D¢ + JF¢"TFe ™" LP (3.6)

Noting that D¢ can be expressed as D¢ = %F e~T¢eFe™ where C¢ = F¢ F¢ is the right Cauchy-Green tensor, the stress

power may be written as JT: L = (] Fe 'TF "_T): %e + (]F eTTpe _T): LP. Two additional stress measures are defined as:
T¢ = JFe 'TFe T, (3.7)
Me = JFe'TFe™" = ceTe, (3.8)
where T* is the symmetric elastic 2™ Piola-Kirchhoff stress, and M€ is the Mandel stress. Hence, the stress power can be
re-written as:
ce
JT: L =Te:7+M€:LP. (3.9)
Re-writing the first law from equation (3.3) in terms of the stress measures introduced above, we have:

e

C
er =Te:7+Me:LP—Dw (qr) + 1&. (3.10)

3.1.5 Thermoelastic Constitutive Equations and Thermodynamic Restrictions
The constitutive laws for 1, nr and T¢ are assumed to be functions of the same set of variables (C¢, 0,V8, §)
where § represents the list of internal state variables:
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lrbR = lz;R (Ce, 81 VG, f):
nr = Nr(C%,6,V6,5), (3.11)
T¢ = Te(C¢,0,V0,¥).

The constitutive equation for the internal energy follows as eg = éz(C¢,0,V8,&) = (€%, 0,V0,§) +Hr(C¢,0,V8,§)6.
Taking the time derivative of the free energy, one obtains

. _alf’R_ . OUr . 9 Or
Yr =

€+ —R0 422 V0 + —2 3.12

ace a6 +6V9 + 0& i (3-12)
where ‘*’ denotes the appropriate scalar product considering the order of §. Using equation (3.5), the rate of change of the
free energy can also be written as:

: ce |
1/)R:Te:7+Me:Lp_T]RQ_EqR'VQ_Qé‘R. (313)
From equations (3.12) and (3.13),
g 1 lPR 0P = (0Pr . 1
—=T¢|:Ce + 0 +—-V0+ +—qr-VO — M LP + 66, | = 0. 3.14
<ace 2 ) (ae TR 7T Gve PR LL R G149
Following the Coleman-Noll procedure, one can deduce the following state relations for stress and entropy:
g
3.15
T® =253 (3.15)
0y
NR = agR (3.16)
g
(3.17)
ave =0

From equation (3.17), it can be inferred that the free energy and hence the stress, entropy and internal energy are
independent of the temperature gradient. In view of the above relations, the second law reduces to the following reduced
dissipation inequality:

o, . 1
(;/;R *€+5qR- VO — M LP = —968; < 0. (3.18)

3.1.6 Temperature Evolution Equation

In this section, a partial differential equation that dictates the evolution of temperature during a thermally-coupled
mechanical deformation is derived. Consider the time derivative of the internal energy and use the thermodynamic
relations derived in equations (3.15) and (3.16):

: . T¢ . 60T° . YR 6 l,bR . leR
op = 01] g =—:0°——= 1 C® — 3.19
ek = Vr+ Onr +0r =5 2 06 +<af g3 ) ¢~ 902 (3.19)
Substituting € from the first law (equation (3.10)) and rearranging terms, one obtains
00T¢ . asz 621/)R

—Di : C® MEe: LP —

 (qr) +7r + (2 26 >+[ ( oz~ Y3z0 #§) = 092 o, (3.20)

qR qR

where g is referential rate of heating due to thermo-elasticity, g5 r represents the referential rate of inelastic heating and cg

is the referential heat capacity, defined at constant strain and constant internal variables. More specifically, cy is the

specific heat capacity ¢ multiplied by the referential mass density py, i.e., cg = poc. Equation (3.20) is the evolution

equation for temperature. The first term in the expression for qg, i.e., M®: LP, represents the rate of plastic work, while the
_ . .

remainder of c’[g represents the rate of change of internal energy of cold work ((% -0 %) * E) (Rosakis et al., 2000).

Following Rosakis et al. (2000) and Gurtin et al. (2010), the Taylor-Quinney parameter £ is defined as follows which
quantifies the fraction of plastic power converted to heat:
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qp
=R 3.21
B =1 (3.21)
In general, § is dependent on the evolution of internal variables that describe the density of defects such as dislocations.
Experiments on metals by Hodowany et al. (2000) showed that 8 increases with increasing plastic strain and becomes
constant after a saturation is achieved in the dislocation density. However, due to the difficulty of experimentally

characterizing [, a constant value is typically assumed in the literature, which is the approach adopted here.

The thermoelastic term in equation (3.20) can be written in a more convenient form using the referential
Gruneisen tensor I'g as follows (Gurtin et al., 2010):

IR = 1 (o1 3.22
R — CR 69 . ( . )
Substituting equations (3.21) and (3.22) into equation (3.20), one obtains
crl . .
—Div (qg) + 17 — RTI‘R: Ce + BMe: LP = cif. (3.23)

3.1.7 Dissipative Constitutive Equations
Assuming plastic irrotationality, we have LP = DP. Using a co-directional flow rule, the plastic stretch-rate DP
can be written as:
3 e
pr=2¢r 2 (3.24)
2 o

where M§ is the deviatoric portion of Mandel stress, €7 <= \E |DP |) is the effective plastic strain rate

and o <= \E |M§ |> is the effective stress. Hence, the rate of plastic work can be simplified as: M¢: LP = M®: DP =
GEP.

Under the assumption of isotropy, the spatial heat flux vector ¢ = ] 1Fqy and the spatial temperature gradient
grad® = F~TV0 are related through Fourier’s Law of Heat Conduction, i.e., ¢ = —k grad@, where k is the thermal
conductivity. In order to express the temperature evolution equation (3.23) spatially, the thermoelastic heat generation in
the deformed configuration can be expressed through the spatial Gruneisen tensor, as defined below using equation (3.7):

@ﬁ) per 00U FTFT) | v @

= = — 3.25
c 00 00 ( )

[ = FeIgFe’ = Fe( — -

R c 00 c
where vy = 1/p, is the referential specific volume, v = Jv, is the spatial specific volume and ¢ = v, cjy, is the specific
heat capacity at constant strain and constant internal variables with units of J/kg K. Finally, the temperature evolution
equation can be written in the spatial form as:

- B == ]
— ) — 5P =
div (k grad@) +r pCQF. D° + ] geP = pco. (3.26)

qe ‘,p_/
q
where r = J 11y is the heat supply per unit deformed volume, p = J~1p, is the spatial mass density, ¢ = /714§ is the
spatial rate of thermoelastic heating and ¢P = | _1('12 is the spatial rate of inelastic heating. The operator div represents the
divergence in the deformed configuration. In general, the thermal conductivity is dependent on temperature. However, we
neglect the dependence of thermal conductivity on temperature.

3.2 Specialized Constitutive Equations

3.2.1 Free Energy
The constitutive equation for the free energy is taken to depend on the logarithmic elastic strain in the
intermediate configuration, which is defined as follows in terms of the right stretch tensor, U®:
E¢ = In(U®). (3.27)
The logarithmic strain is used because it facilitates an additive decoupling of the volumetric and deviatoric strains, which
is not possible with the Green-Lagrange strain. Furthermore, with the use of an appropriate invariant basis, the consequent
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stress terms can also be decomposed into pressure and deviatoric response terms, as demonstrated by Criscione et al.
(2000). Such a decomposition is helpful in the direct incorporation of a complete equation of state, which is typically
measured through a separate set of experiments. Moreover, elastic constitutive equations using the logarithmic strains
typically require fewer higher order parameters to fit experimental data under moderate and high pressures (Clayton,
2014; Poirier and Tarantola, 1998).

The elastic response of sucrose is defined though the free energy per unit reference volume Y. In general, Yy, is a
function of the elastic right Cauchy-Green tensor C¢ and temperature 6, but idealizingL sucrose as an isotropic material, the
free energy can be represented in terms of the three elastic principal stretches (Yr = Yz (45,15, 15, 0)) or the three
principal invariants of C¢, (Yg = Pr(Iy, 15, 13,0)) where I; = trC®, I, = %[(trCe)2 + trCeZ] and I; = detC® = Je2.
Due to the insufficient experimental information on defects in molecular solids such as sucrose, for simplicity, the

dependence of the free energy on internal variables is not considered. With a free energy based on the principal invariants
(11, I, I3), it is not possible to isolate the effect of each invariant in the consequent constitutive equation for the stress due

’:é;:ace # 0fori,j =1,23andi # j. Therefore, the free
energy density is written in terms of a set of logarithmic strain invariants (K, K5, K3), as proposed by Criscione et al.
(2000). With each of these invariants, one can associate specific aspects of deformation and isolate the effect of each. The
first invariant, K; (= tr(E®) = In(J¢)), represents the volume change, where the superscript ‘e’ indicates elastic. The

second invariant, K, (= |E§|), represents the magnitude of the distortional response of the material under constant

to the non-orthogonality of different stress response terms, i.e.

volume, where subscript ‘0’ indicates the deviatoric part of a tensor. Since E¢ = —1 I + E§, a tensorial direction can be
. . . o o . oK, _ E§
associated with this deviatoric strain invariant: N = aEi = |Eg| where N is a unit tensor. Hence, the strain can be written
K e Y
as E¢ = ?11 + K, N. The third invariant K3 (= 3v6 det(N)) represents the mode of distortion. Note that K; > 0 for

dilatation and K; < 0 under compression. The magnitude of distortion is always positive, K, = 0, whereas K3 is confined
to the range —1 < K3 < 1. We have that K3 = 1 in simple tension, K3 = —1 in simple compression and K3 = 0 in simple
shear.

Let Y (K, K5, K3, 0) be the free energy density. It can be shown that, for an isotropic material, the Mandel stress
and the logarithmic strain in the intermediate configuration are work conjugates Hence,
OPn _ (90n 0K,  Obr 0Ky Or 0Ks\ _ (0%n 00r . 0%r,

J0E® 0K, 0E¢ 0K, 0E¢ O0K; OE® 0K, 0K, 0K; )
where Y = 3V6N2 —\6I — 3K;3N. Since, for an isotropic material, the tensors, C¢ and T¢ are coaxial, i.e., have the same
principal directions, the Cauchy stress can be found using the definition of Mandel stress in equation (3.8):

1 G )

T = —R°M¢ReT = wR ¢ N4+ r g ,

J ] 6K1 6K2 0K;
where N' = RENR®" and Y’ = RYR®" . Note that N': 1 = 0,Y":1 = 0 and N": Y’ = 0, i.e., the Cauchy stress is composed
of three mutually orthogonal terms, and each term is dependent on a derivative of a different strain invariant. This is
enabled by using the logarithmic strain measure and an appropriate set of invariants for the logarithmic strain. So, it is
possible to isolate the three response terms by contracting with I, N' and Y. Specifically, the first term in (3.29)
corresponds to the pressure term:

e = (3.28)

(3.29)

1 199y
nr_ ,_10v¥e (3.30)
3 J 0K,
while the other two terms sum to give the deviatoric stress. Therefore, the pressure term can be isolated from the
deviatoric response, while retaining its dependence on all three invariants and temperature, i.e., P(Kq, K,, K3, 8).

Furthermore, the free energy density, Y (Kq, K5, K3, 0) can, in general, be decomposed additively into three parts:
(a) a purely volumetric term, f; (K, 8), (b) a purely distortional term, f,(K,, K3, 6) and (c) a coupled
volumetric/distortional term, f3 (K, 0)f3(K,, K3,6), where the temperature dependence is retained in each portion of the
free energy density:

Vr(K1, Kz, K3,0) = f1(Ky,0) + fo(Ka, K3, 0) + f3(Ky,0)f3 (K2, K3, 6). (3.31)
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Such a general form for free energy density has been used by Landauer et al. (2019) to capture the isothermal nonlinear
response of elastomeric foams. For the purpose of modeling sucrose, we consider a specific form of equation (3.31) for
free energy that neglects the dependence on Kj:

Yr(Ky, Ko, K3,0) = f1(Ky,0) + G(Ky, 0)KZ, (3.32)

where G (K7, 6) is the temperature and volumetric strain-dependent shear modulus. The first term in the free-energy

. 19 196G .
expression leads to the pressure through P(K;,0) = — 7% 79K, KZ. The pressure is found through a complete

1 1
equation of state as described in Section 3.3. For the range of pressures considered in this investigation, the contribution

. 196G : 19 o .
of the shear-induced pressure (— 73K, KZZ) is much smaller than the first term (— 7%) due to small elastic distortional
1 1

strains (which are limited by the shear strength of the material) and can therefore be neglected for simplicity. The Mandel
stress and the Cauchy stress for such a free energy density function can then be calculated as:
Me(Kl,Kz,g) = _P(Kl,g)jl‘l' ZG(Kl,e)KzN, (333)

2
T(Ky Kz, 0) = =P(Ky, O +7 G(Ky, 0)K,N'. (3.34)

Some of the commonly used functional forms of the shear modulus are further discussed in Section 4.3.3.
However, the shear modulus for sucrose has not been experimentally measured as a function of volume and/or
temperature. So, in this study, a constant value of the shear modulus is assumed, i.e., G(Ky,0) = G,.

3.2.2 Flow Rule
Since LP = DP and LP = FPFP ™", the evolution of the plastic distortion F? is given through the relation: FP =

DPFP. The plastic stretch rate DP is given through a codirectional flow rule, DP = ; ér % (equation (3.24)), and the

effective plastic strain-rate and the effective stress are related through a strain-rate and temperature-dependent constitutive
law. The Johnson-Cook model (Johnson and Cook, 1985) is used here:

€p -
g =[A+ B(eP)"] [1 + Cln <T>] (1 - Bm), (3.35)

€o
where €P(t) = fot €P(0)d{ is the accumulated effective plastic strain, (4, B, n, C, €y, m) are material parameters,
~ 6-06, . . .
6 <= :9(}’)—2) is a function of temperature 6 and pressure P, 0, is the reference temperature (usually taken to be

m “Uref

room temperature) and 6, is the melt temperature. The parameter A is the yield strength of the material at the reference
strain-rate 50 and the reference temperature 6,., £ The parameters B and n depict the effect of strain-hardening where B is
the work hardening modulus and n is the work-hardening exponent. The parameter C is the strain-rate-sentivity
coefficient while m is the thermal softening exponent. Since high pressures are applied in our experiments, and
temperatures are expected to go beyond melting, the dependence of the melting temperature on pressure is taken into
account. Moreover, the melting point of large organic molecules, such as sucrose and HMX is expected to be highly
pressure-dependent (Kroonblawd and Austin, 2021; Menikoff and Sewell, 2002). Numerical simulations of the
deformation of energetic crystals widely use the Lindemann Law of melting or its linearized version, called the Kraut-
Kennedy relation. However, molecular dynamics simulations on HMX (Kroonblawd and Austin, 2021) indicate that the

Lindemann Law grossly underestimates the melting point as a function of temperature. An alternative empirical form

obtained by Simon and Glatzel (1929) is therefore used:
1/d

p—p
O = O (1 + T”’f) , (3.36)
i

where (Pref, P;, d) are fitting parameters, and 6,y is the melt temperature at the reference pressure Pror. The
consequences of the choice for the form of the melt curve are discussed in section 4.3.2.

To obtain a general, complete continuum model, two more issues should be addressed: (a) the phase transition
from solid to liquid and (b) a constitutive model for the liquid. One way to model the solid-liquid phase transition is by
introducing an order parameter, i.e., a phase-fiecld parameter, as done by Fried and Gurtin (1993). The stress response of
the liquid phase can be decomposed into pressure and deviatoric stress components. While the pressure of the liquid can
be described through an appropriate equation of state, the deviatoric stress depends on the strain-rate through a pre-factor,
called the shear viscosity of the liquid, which is generally a function of pressure and temperature. Both phase transitions
and a material model for the liquid phase are not accounted for in the current work but are, however, important for the
prediction of chemical reactions in the melt. Since the yield strength of the material model drops rapidly at melt, the
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strain-rates tend to increase exponentially and become unreasonably large. In the present framework, the shear strain-rates
after melt are set to reach an upper limit beyond which they are assumed to stay constant, as done by Grunschel (2009).
This point is discussed in further detail in Section 4. The focus of the present work remains on the solid phase and its
constitutive modelling. Next, the development of a complete equation of state for the solid is discussed.

3.3 Complete Equation of State

The Mie-Gruneisen equation of state is a commonly used form of the equation of state for a solid subjected to shock
loading. It is often encountered in hydrocodes for solids under pressures of up to a few Megabar. In this section, a
derivation of a complete equation of state is presented, i.e., with a temperature dependent specific heat capacity. Note that
the equation of state is derived in the deformed configuration as opposed to the intermediate configuration used in the
above discussion. We work with the following quantities: (a) the specific free energy Y = ¥ /py, (b) the specific entropy
1 = Ngr/pPo, (c) the pressure P = —1/3 tr(T), and (d) the spatial specific volume v = Jvy = vy exp(K;), where vy =
1/po. Under pure volumetric deformation, the thermoelastic constitutive equations are:

Y = l/J((v, 9)).
n=n,0),
P=P(v,0), (3.37)

e=e,0)=y0)+n0)6.
The state relations ng = —dr /00 and P = —(1/])0yr/dK;, which were defined in the intermediate configuration in
equations (3.16) and (3.30), respectively, now become
0y oy

__9% __ 9 3.38
N="5g G P =5 (3.38)

in the deformed configuration, which imply the following Maxwell relation:
dn 0P

U (3.39)
ov 00
The specific heat at constant volume is defined as:
de
=—, 3.40
c=5 (3.40)

Using the definition of the specific internal energy e(v, ) from equation (3.37) and that of the specific entropy from
equation (3.38), the above definition of the specific heat at constant volume can be expressed in the following form:

an
=0—. 3.41
c=055 (3.41)
The scalar Gruneisen parameter is defined as:
v dP
I'(v,0)=——. 3.42
@.6) c 06 (3.42)
Using equation (3.39), an alternate expression for the Gruneisen parameter is as follows:
v on
I,0) =——. 3.43
(0,0) =~ = (3.43)

Using equation (3.25), we note that the scalar Gruneisen parameter is simply T' = %tr(l‘).

To determine the state relations in terms of known/measurable thermodynamic quantities, c(v, 8) and I'(v, 8), we
determine the rate of change of specific entropy and pressure. Applying chain rule and combining the definitions of
c(v,8) and I'(v, 8) through equations (3.41), (3.42) and (3.43), we obtain:

._(077) .+<0n)é_FC.+cé
T=\ov)y" " \G0)," "% V"™

P_(GP) _+(6P> é_<c')P) -_|_ch'
—\av)y " " \a0),” " \av), VT

Since state relations do not depend on the thermodynamic path, the rate forms are integrated from an initial state
(vg, 89, Mo, Py) to the final state (v, 8,7, P), along the path shown in Fig. 11, to yield the following relations:

(3.44)
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n(w,0) =1 +f”F(v’,90)c(v’,90) dv'’ +fec(v’9’) de’
' ° Vo v’ 9, O’ ’
Lo (3.45)
P(v,0) =P(v,6,) + ;j r'(w',0p)c(v’,0)do’,
6o

where P (v, 6,) is the equation of state along an isotherm at a temperature of 6,, and Py = P (v, 8,). Therefore, to fully
specify the state relations, one needs (1) an isotherm at 6, i.e., P(v, 8,), (2) the Gruneisen parameter, ['(v, 8), and (3) the
specific heat capacity, c(v, 9).

A | |
: End !

of----- o -
. E
= i
2 :
Start !

o) °

0K : Cold Curve\ ] Y
v v,

Specific volume

Fig. 11 A thermodynamic path connecting the initial and final states.

To determine the Helmholtz free energy, we apply chain rule:
Y =—P(v,0)v—n(v,0)b, (3.46)
and integrate to obtain

Y(©,0) = o —1o(6 — 6p) — f [P(v', 6o) + (6 — 6o)

0

r(v',0y)c(v’,6 “(-¢
( 037/( 0)] av’ _f %C(U;H')del' (3.47)
9

0

where 1y = Y(vy, 0y). The internal energy can, therefore, be calculated as:

rv',e "0 o
@ ")f(v 0)] dv' + f c(v,0")d6’, (3.48)
‘]

0

e(,0) =¢v[,0)+nv,0)0 =e¢y, — fu [P(v’,eo) -6,

0
where €g = l/)o + 7]000.
3.3.1 Specialization for a Temperature Independent Gruneisen Parameter

First, note that the Gruneisen parameter I and the specific heat ¢ are not independent but related through the
following thermodynamic compatibility equation (Menikoff, 2016; Sheffield and Duvall, 1983):

d (0? a (02
9 (% =— Ld . (3.49)
ov\ 062 00\ 000v
2
Combining equations (3.38) and (3.41), it can be shown that c = —6 (%). Similarly, combining equations, (3.38) and
2
(3.43), one obtains I'c = —v ;e_all;' Therefore, the compatibility relation in equation (3.49) takes the following form:
dc d(Tc)
— = 3.50
Yov =" a0 (-50)
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Next, we assume that the Gruneisen parameter is a function of specific volume only, I' = I'(v). As mentioned by Grady,
(2017), “Both theoretical arguments and experience suggest that I is not sensitive to reasonable excursions of internal
energy, E for many materials, and is usually assumed to be a volume-dependent only function, I'(v).” For such a class of
materials, the compatibility relation in (3.50) can be written as a hyperbolic partial differential equation for ¢ (Menikoff,
2016):

dc dc
= iy 3.51
Vay = MW, (3:51)
The characteristic curves for the PDE are solutions to the ODE:
a6 _ _ @) (3.52)
dv v

For a characteristic passing through the initial state (v, 8y), we have:

. T’
0 =0, p(v) with ¢p(v) = exp —f o dv' ). (3.53)

Vo
The specific heat capacity is constant along the characteristic curve, i.e., c(v,0) = c(vy, 6y) = c(vo, 6/ qb(v)) =

é(8/¢(v)) = €(0), where the tilde signifies the scaled temperature, § = 8/¢(v). The function & represents the specific
heat capacity as a function of 8 along the isochore vy. Hence, for the class of materials with I' = I'(v), the specific heat is
a function of only the scaled temperature. With I' = I'(v) and ¢ = ¢(0), the equation of state (3.45) becomes:

rweo@) (¢ . ~
P(v,6) = P(v,0,) + %f ¢(8") a6’ (3.54)
bo
where 8, = 8,/¢(v). Note that the internal energy in equation (3.48) becomes
6
e(v,0) =e(,0,) +p(v) | €(6")db’,
% (3.55)

v r(v")e(d
with e(v,0,) = e —f [P(v’,@o) -6, %,(0)] dv’,
Vo

so that

P(w,0) =P(v,6y) + ? le(v,0) —e(v,0y) ], (3.56)

which is a common form of the Mie-Gruneisen equation of state. The forms of P and e in equations (3.54) and (3.55)
respectively and the resulting Mie-Gruneisen equation of state in equation (3.56) are a direct result of the assumption that
the Gruneisen parameter is a function of specific volume only. Also, note that the state relations for P, e, and 1 are often
written with 8, = 0K as the reference temperature as simplified forms for each of these quantities emerge with the cold
curve as the reference isotherm. However, we choose to write the state relations with ambient conditions as the reference
state due to the relative ease of obtaining material properties at the ambient temperature.

3.4 Thermoelastic Heating

Heating due to large elastic deformation is important in applications where a material is subject to impact and shocks.
Large pressures of the order of several GPa can be generated under such loading conditions in a very short amount of
time, typically tens of nanoseconds. Therefore, adiabatic conditions combined with large volumetric compression can
result in a significant temperature increase. Such an increase is especially important in the case of energetic materials
whose mechanical and chemical behavior is highly temperature sensitive. Moreover, the melting points of energetic
materials and their simulants are relatively low, compared to metals, which means that not a lot of thermal heating is
required to melt. Therefore, it is important to accurately predict the temperature of such materials under dynamic loads. In
the PSPI experiments, normal compression can significantly raise the temperature and affect the strength of the material
under subsequent shear loading. So, it is important to quantify the thermo-elastic heating.

In section 3.1.7, it was shown that the rate of heat generation due to elastic processes is given as: g¢ = —pcOrI': D¢
. . .96 .
(equation (3.26)). Since, we neglect the temperature dependence of the shear modulus, i.e., 0 = 0, the Gruneisen tensor

is spherical, i.e., T = ['(v)I, so that
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e

0 = ~ped () tr(DF) = ~pobI(v) T = ~podT (WK (3.57)

For dynamic compression of materials, one typically encounters isentropic or shock loading. So, it is worthwhile
investigating these thermodynamic processes in detail, along with the case of isothermal loading serving as a reference.
Plotting these curves for sucrose is expected to provide insights into material behavior under different types of loading. In
the following sections, analytical expressions for different state variables are derived for a solid undergoing isothermal,
isentropic or shock loading (Hugoniot), using the complete equation of state developed above. Special attention is paid to
the temperature increase expected for the three cases. In this investigation, temperature is not measured independently.
However, if an accurate method for temperature measurement were to be developed in the future, the equations developed
below would allow one to directly extract material parameters for the complete Mie-Gruneisen equation of state.

3.5 [Isentrope

Normal loading under pressure-shear plate impact can be considered as being close to following an isentrope, i.e.,
the PSPI experiments load the specimen quasi-isentropically. Since the temperature change during normal loading that
precedes the shear loading in a PSPI experiment influences the shear strength of the material, it is necessary to calculate
the temperature change during isentropic loading. Using the expression for 77 = 0 in equation (3.44), the Gruneisen
parameter can be expressed as:

o v (69) 358
o 6\av/y (3.58)
Integrating the above relation gives the temperature variation along an isentrope as a function of specific volume:
oM (v) =6, exp( f M ) ) = 0, (v). (3.59)
Vo

Since equation (3.59) represents a characteristic curve for the hyperbolic PDE in equation (3.51), it follows that the
specific heat c is constant along any isentrope. This is a consequence of the assumption that Gruneisen parameter is a
function of specific volume only.

Pressure along an isentrope can be found by substituting the temperature along the isentrope from equation (3.59)
into equation (3.54), which results in the following form:

NN
v

6o

PM ) = P(v,8,) + (8" ad’, (3.60)

oM

gm =
where 6 o)

= 90.

3.6 Isotherm

Pressure along an isotherm can be obtained from equation (3.54) by substituting the isotherm temperature 6 = 6;:

P(,0) =P(v,0,) + —= (v)¢(v) (9 ) do’. (3.61)
8o

where 8; = 0;/¢(v). In this work, the 3" order logarithmic equation of state (Poirier and Tarantola, 1998), expressed
below, is chosen as the reference isotherm:

p= Kgo( )ln(v)[1+¥ln(%)], (3.62)

where Ky and Ky, are elastic bulk modulus and the first derivative of elastic bulk modulus with respect to pressure,
respectively, at ambient temperature and specific volume. A derivation of equation (3.62) is presented in Appendix A.
Fig. 12 shows isotherms for sucrose at different temperatures, using the material parameters for sucrose in Table 2.
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Fig. 12 Isotherms for sucrose at different temperatures. 8, = 298 K. As temperature increases, the isotherms translate upward

3.7 Hugoniot

A problem of interest is the ability to predict detonation in energetic material aggregates when subjected to a
shock wave loading. Consider the case of a shock wave traveling through a solid that subjects the material to a high
pressure. Under such high pressures, the shear strength of the solid is negligible with respect to the pressure applied. So,
the normal stress jump across the shock wave can be approximated by the pressure jump. Then, the specific internal
energy of the solid for shock compression from an initial state of (eq, Py, 8y, Vo) is given through the following Rankine-
Hugoniot relation:

e () = ¢, +%(P(H)(v) + Py)(vo — v). (3.63)
Pressure along a Hugoniot requires another piece of information. Often, that is provided in terms of a shock speed-particle
speed relation. Another way to find the pressure on a Hugoniot is by using a reference curve and then substituting it into
the complete equation of state, which is represented in the present case using the Mie-Gruneisen form of the equation of
state (3.56):
rw)

P () = P(,60) = —= [ () ~ e(v,6,)]. (3.64)

Substituting the expressions for internal energy from equations (3.63) and (3.55) into equation (3.64), pressure along a
Hugoniot can be written as:

%Po(vo —v)+P(,6,) + ¥{fé [P(v’, 8,) — 0, %} dv’}

1 -0 ()

(3.65)

P (p) =

Now consider the definition of internal energy from equation (3.37), i.e., e(v,8) = ¥ (v, 0) + n(v, 0)6. The rate
of change of internal energy can be expressed as:

‘—'+'9+9‘—[(a¢) _+<a¢> 9]+'9+9‘ (3.66)
e=p+1n =3, " T \30), U - :
. P Y . .
Since (6_v)9 = —P and (%) = —7 (from equation (3.38)), equation (3.66) reduces to the rate form of the first law of
v
Thermodynamics for a reversible process involving volumetric deformations only, i.e.,
é = —Pv + 01). (3.67)
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Substituting the rate of change of entropy from equation (3.44), the rate of change of internal energy can be written as
follows:

I'cO .
ée= (—P+7)‘0+C9. (368)

Equating the rate of change of internal energy obtained from equations (3.63) and (3.68), a first-order ODE in 8 ) is
obtained:
de® Tc

1
— g = —
dv + v 2(170 v)

dPM ) 1

—— +5 (PP - Ry). (3.69)
h(v)

The right-hand side of equation (3.69) is a function of specific volume and can be abbreviated as h(v), and P4 can be

substituted from equation (3.65). Substituting the derivative of the scaled temperature, & = 6/¢(v), with respect to v, i.e.,

c

o) % = Z—z + %v) 0, into equation (3.69), a simpler expression for the ODE governing the temperature along a
Hugoniot is obtained:
]G]
5(5“’))& _ ) (3.70)
v ¢)

In its most generic form, the temperature relation above is a non-linear ODE and needs to be solved numerically. The
special case of a constant specific heat can be solved by straightforward integration.

3.8 Comparison of the Three Thermodynamic Processes

At this point, it is instructive to compare the pressure-volume-temperature (P, v, 8) response under the different

types of loading considered above. Fig. 13 shows a three-dimensional surface of a specialized complete Mie-Gruneisen

equation of state for sucrose in the (P, v, 8) space. It is assumed that ? = % where [ = I'(vy). The material properties
0

of sucrose used for plotting the curves are given in Table 2. The table includes an expression for the temperature-
dependent specific heat and an approximation of its integral, which are discussed further in Appendix B. An isotherm, an
isentrope and a Hugoniot are plotted simultaneously in Fig. 13. It is evident that there is a substantial difference between
the three curves along the temperature axis.

6K 450

Fig. 13 Pressure-Volume-Temperature curve for a complete Mie-Gruneisen equation of state for sucrose (Orange grid). Blue: Isotherm, Black:
Isentrope and Red: Hugoniot, all passing through the initial state, Py = 0, vy, 8, = 298K.
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Table 2 Thermoelastic material parameters for sucrose used in plotting calculated profiles of the Isentrope, Isotherm and Hugoniot.

Lo Initial density 1580.5 kg/m?
Elastic Parameters
Gy Shear Modulus at ambient 8.58 GPa
Kgg Isothermal bulk modulus at ambient 14.3 GPa
Kao Derivative of Bulk modulus with respect to pressure | 3.75
Iy Gruneisen parameter at ambient 1.09
Thermal parameters
Co Soecific b ) 7.095 x 10° kgK*/J
P pecitic heat capacity at c0nst2131t v, 2.230 x 10" kgK/J
Cy c,(0) = 4.180 x 107 kgK*/J
+¢10 + 302 + 363
ca T avT I 3.050 x 10 kgK/J
a; —105.517 J/kgK
6
a, f ¢, (86" ~ (a,0 + 2,67 + a,0°) k/_g 2.473 J/kgK>
0
as —6.067 x 10~* J/kgK?

For a more illustrative comparison, the thermodynamic curves are compared in two-dimensional plots. Fig. 14 (a)
shows that for the pressure P vs compression ratio, v/v,, the Hugoniot lies at the top and the isotherm lies at the bottom
of the three curves. However, for the volume compression ratios considered here, the difference between the curves is
relatively modest. The main difference between the isotherm, the isentrope and the Hugoniot lies in the temperature
increase of the material. While the temperature rise along an isentrope is almost linear with volume compression ratio
(Fig. 14 (b)), the temperature along the Hugoniot quickly diverges from the isentrope and leads to a much higher
temperature rise. These differences in the material response to different types of thermodynamic loading has significant
consequences for energetic materials. For example, a ramp wave with an isentropic pressure loading is much less likely to
cause ignition as compared to a shock wave of the same pressure magnitude.

From the preceding discussion, it is worth highlighting the importance of using a complete equation of state with a
temperature dependent specific heat. As noted by Menikoff and Sewell (2002) and Sewell and Menikoft (2004),
incorporating the temperature dependence of the specific heat in an equation of state is extremely important to accurately
predict hot-spot temperatures and hence the consequent chemical reaction kinetics. Let us compare the thermodynamic
response of sucrose for two cases: (a) a temperature dependent specific heat, and (b) a constant specific heat capacity,
evaluated at 8 = 0,. Fig. 15 (a) shows the difference arising in the temperature response due to the form of specific heat
chosen. As expected, the temperature along the isentrope should be unaffected by the choice of specific heat capacity
because it remains constant along an isentrope. However, there is a substantial difference in the temperature rise along a
Hugoniot. Using the temperature-dependent specific heat ¢(8) results in a lower temperature increase with compression
as compared to using a constant specific heat c(6,) with the difference between the two cases increasing as the amount of
compression increases. Such a comparison emphasizes the role played by the choice of specific heat capacity for shock
wave loading of energetic/simulant crystals. Thus, proper representation of the temperature dependence of specific heat
has consequences for accurately simulating the mechanical, thermal and chemical response of energetic materials. In
particular, the choice of specific heat can have a potentially significant impact on the accuracy of predicting deformation
localization and formation of hot-spots due to adiabatic shear bands and the likelihood of such hot-spots turning critical,
leading to ignition. Fig. 15 (b) shows that the choice of a temperature dependent specific heat has a small effect on the
pressure-volume response of sucrose.
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Fig. 14 (a) Pressure P vs compression ratio v/v,, and (b) temperature 8 vs compression ratio v/v,, plots for sucrose for a Hugoniot, an isotherm (at
6 = 6,) and an isentrope, all passing through the same initial point, i.e., Py = O,vl =1,0, =298K.
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Fig. 15 Effect of the choice of specific heat on thermodynamic curves for sucrose, i.e., the Hugoniot, isotherm and isentrope. Curves are plotted for
two cases: (1) a temperature-dependent specific heat capacity (solid lines) and (2) a temperature-independent specific heat capacity evaluated at 8 =
6, (dashed lines).

3.9 Summary of the Constitutive Model

In this section, a thermodynamic framework is presented for thermo-mechanical constitutive modeling of
sucrose. An energy balance equation accounting for the thermoelastic and the dissipative work is derived (3.23). The free
energy is written in terms of invariants of a logarithmic strain measure (3.32), such that it allows an additive
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decomposition of the Cauchy stress into pressure and deviatoric stresses (3.34). The constitutive relation for pressure, with
dependence on both volume and temperature, is derived in terms of a complete Mie-Gruneisen equation of state (3.54)
while the thermo-viscoplastic deformation is modeled through a pressure-dependent Johnson-Cook Model (3.35). Using
the complete equation of state, the deformation behavior of sucrose is compared under isentropic, isothermal and shock
loadings. The material constants for thermo-elasticity are presented in Table 2 while those for thermo-viscoplasticity are
presented in Table 3. In the next section, numerical simulations are carried out using this thermally-coupled mechanical
constitutive model and compared with PSPI experimental observations.

4 Numerical Simulations

The constitutive model for sucrose described in Section 3 has been implemented in the commercial finite element
software Abaqus/Explicit, using a user material subroutine VUMAT. This section details the results of numerical
simulations of PSPI loading and draws comparisons with experimental observations. The VUMAT algorithm is laid out in
detail in Appendix C.

The flyer, target plates and the sandwiched specimen are modeled using four-noded bilinear plane strain quadrilateral
elements with reduced integration, hourglass control and thermal coupling (CPE4RT). Since shear localization is
expected, the mesh size of the specimen is kept smaller than the expected shear band width. Without prior knowledge of
the expected temperature rise and shear strain-rates within the band, the shear band width is estimated as:

Spana =~ 2VDt, 4.1

where D = k/pyc(0) is the thermal diffusivity and t is the expected duration of loading. Using the material constants
listed in Table 2 and Table 3 and the temperature-dependence of the specific heat discussed in Appendix B, the thermal
diffusivity of sucrose can be calculated to vary between 94 x 10™° m? /s and 258 x 10~° m? /s (for specific heats at
ambient and the Dulong-Petit limit), and for a loading duration of about 1 us, the shear band width is expected to lie
between 0.61 um and 1 um. Therefore, a mesh size of 0.25 um, which is sufficiently smaller than the minimum expected
band width, is chosen to err on the side of caution (see Fig. 16). For the stability of the numerical scheme, the time-step is
dictated by the longitudinal wave speed in sucrose and the time-scale of thermal diffusion.

2

At < min <A_x‘ (8x) >, (42)
c, 2D

where ¢; = \/ (Kgo + (4/3)Gy)/py is the longitudinal wave speed at ambient and Ax is the mesh size. For a mesh size of

0.25 um, a time-step of 10115 satisfies the stability criteria in equation (4.2) with a sufficient margin for error.

Simulations are carried out using a dynamic, temperature-displacement, explicit analysis step. Full thermo-mechanical

coupling is modeled, including heat conduction even though its effects are negligible, as demonstrated below.

Fig. 16 Finite-element mesh for simulation of Shot3. The sucrose specimen (middle of the figure) has a finer mesh size of 0.25 um than the target
plates on either side which have a mesh size increasing linearly from 0.5 um (at the target/specimen interface) to 50 um (at the other ends).

4.1 Comparisons of stress profiles

Experimental and simulated velocity profiles at the sample/rear target plate interface are converted to nominal normal
and shear stresses using equation (2.1) and compared. The material constants used in simulations are shown in Table 2
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and Table 3. The choice of material constants is discussed and justified in Appendix B. While some of the material
constants have been obtained from literature, others have been fit to the PSPI experimental data. In particular, the material
parameters for the Johnson-Cook model are based on a modest search of parameter values. All parameters shown in Table
2 (i.e., the thermoelastic parameters) are adopted from the literature (as discussed further in Appendix B). Parameters for
the Johnson-Cook model shown in Table 3 are obtained by fitting the simulation results with the experimental results. It
has been observed that the agreement between simulations and experiments is most sensitive to the strain-rate sensitivity
coefficient C, the work-hardening exponent n, and the thermal softening exponent m in the Johnson-Cook model. The
remaining parameters in Table 3 are taken from literature (see Appendix B).

Fig. 17 shows experimental and simulated normal stress profiles for low and high-pressure shots. Since the
compaction of the initial surface roughness of the sucrose specimen is not modeled in the simulations, the initial step
observed in the normal stress profiles in the experiments is not seen in the simulations. The rise of normal stress to the
plateau agrees very well with the experiments. For the high-pressure shots, a slight deviation from the simulated profiles
is observed for normal velocities above 0.12 mm/ps, due to loading of the anvil WC plates beyond their Hugoniot Elastic
Limit. Simulated shear stress profiles are compared with experimental observations in Fig. 18. It is shown that the choice
of a single set of material constants can fit the shear stresses under different experimental conditions reasonably well.
Simulated profiles can capture the drop in the shearing resistance of sucrose, which results when thermal softening
overtakes hardening due to increasing strains and strain-rates. The rising portion of simulated nominal shear stress is
steeper than that observed in the experiments which indicates that the actual shear modulus value upon the arrival of shear
wave is smaller than the quasi-static shear modulus value used here. As discussed in section 3.2, the shear modulus varies
with temperature and pressure and such a variation, if experimentally validated, can be readily incorporated into the
simulation capability. However, due to the lack of experimental data on the variation of shear modulus with temperature
and pressure, a constant value is employed. Good agreement between the experiments and the simulations is seen for the
peak values of nominal shear stresses, especially for the cases of low pressures. Due to small variations in the
experimentally observed shear behavior under similar sets of conditions, simulated shear stress profiles fit some shots
better than the others. The drop in shear strength is also captured well in the numerical simulations. Simulated profiles for
the low-pressure experiments show a slightly delayed drop.

Table 3 Visco-plastic and thermal material constants for sucrose used in simulating stress profiles for PSPI experiments. !

Johnson-Cook parameters

A Static yield strength 500 MPa

B Strain-hardening coefficient 500 MPa

n Strain-hardening exponent 0.1

C Strain-rate hardening coefficient 0.01

€o Reference plastic strain-rate ls!

m Thermal softening exponent 0.45
Orer Reference temperature 298 K
0.0 Melt temperature at ambient pressure 459 K
é_lim Limiting strain-rate 107 !

Thermal parameters

k Thermal conductivity 0.486 W/mK

B Inelastic heat fraction 0.9
Pres Reference pressure in Simon-Glatzel melt relation 0

P; Parameter in Simon-Glatzel melt relation 0.3 GPa

d Parameter in Simon-Glatzel melt relation 3.25

' Anvil materials are modeled as thermoelastic with the following material constants: (a) D2 Steel (E = 210 GPa,v = 0.29,p, = 7787%, k=
20 %,C = 461]/kgK), and (b) WC (E = 650 GPa,v = 0.2,py = 154007’;—g k =100—,c = 209.3]/kgK), where E is the Young’s modulus

and v is the Poisson’s ratio.

w
3’ mK
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Fig. 17 Nominal normal stress profiles for (a) low-pressure and (b) high-pressure PSPI shots on sucrose. Experimental profiles (indicated by the
suffix ‘E’ in the legend) are shown using solid lines, while the corresponding simulated profiles (indicated by the suffix ‘S’ in the legend) are
represented using dashed lines.
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Fig. 18 Nominal shear stress profiles for (a) low-pressure and (b) high-pressure PSPI shots on sucrose. Experimental profiles (indicated by the suffix
‘E’ in the legend) are shown using solid lines, while the corresponding simulated profiles (indicated by the suffix ‘S’ in the legend) are represented

using dashed lines.

4.2 Adiabatic Shear Localization

A drop in the shear strength of sucrose as seen in both experiments and simulations is indicative of the development
of localized deformation in the form of adiabatic shear bands. Temperature profiles across the specimen for low and high-
pressure cases each are plotted in Fig. 19. Shot3 and Shot4 are chosen as representative low and high-pressure shots,
respectively. As each specimen is compressed by the normal wave, the temperature of the specimen rises uniformly due to
elastic and plastic work; the contribution of each to the temperature rise is discussed further in section 4.3.1. There is a
small drop in temperature at each specimen/anvil interface due to heat conduction into the bounding anvil plates.
However, the temperature drop at the interfaces is sufficiently small that thermal conduction effects are practically
negligible, and the temperature increase in the specimen can be assumed to be the result of a nearly adiabatic process.

30



After the arrival of the shear wave, adiabatic shear localization is observed in both the low and high-pressure cases. A
shear band of ~3.7 um width forms for the low-pressure case while two shear bands of widths ~3.8 ym and ~2.8 um
form for the high-pressure case, as shown in Fig. 19 (a) and (b) respectively.

For the low-pressure case, the shear wave arrives at the left specimen interface at 0.86 us (assuming impact takes
place at time t = O us) and shear localization begins at ~1.13 us. Shear localization is characterized by a sudden and steep
increase in temperature and a drop in shear stress, as shown for a material point in the middle of the shear band in Fig. 20
(a). Normal and shear stress profiles for the material point are also plotted to provide a perspective on the timeline of
events. It is observed that the temperature increases initially to 363 K following the arrival of the normal wave. When the
normal stress has plateaued, the temperature remains constant. After the shear wave arrives, there is a uniform increase in
temperature initially throughout the thickness of the specimen, followed by a rapid rise in the middle of the band once
localization begins. Temperatures as high as 1155 K are predicted at t =2 us.

For the high-pressure case, as shown in Fig. 19 (b), two shear bands form, with the second one (on the right)
initiating within a few nanoseconds of the first. The peak temperature in each band at t =2 us is about 1600 K and 1325 K
respectively. The difference in the times of initiation of the two shear bands is of the order of the time it takes for the
longitudinal wave to travel the specimen thickness. Thus, the second shear band (on the right) initiates before the effect of
the formation of the first shear band (on the left) is felt at its location. Such an observation is similar to the formation of
multiple necks in rapidly expanding cylindrical metal rings as observed by Grady and Benson (1983) and Altynova et al.
(1996) and theoretically analyzed by Guduru and Freund (2002). The number of necks were found to increase at higher
strain-rates which is similar to the observation of multiple shear bands for Shot 4. Stress and temperature profiles are
plotted in Fig. 20 (b) for the material point in the middle of the left shear band. Normal compression increases the
temperature substantially to a value of 492 K compared to 363 K for the low-pressure shot. A larger increase is expected
with increasing pressure due to an increase in both thermo-elastic work and thermo-viscoplastic work. It is also observed
that the time duration between the arrival of shear wave and the formation of a shear band is only 0.1 us compared to 0.27
us for the low-pressure case. Therefore, localization is expected to begin earlier in time in the higher pressure shots. Fig.
20 shows that the steep increase in temperature coincides with the drop in shear stress for both cases considered.
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Fig. 19 Through thickness temperature variation for (a) Shot3 (low-pressure shot) and (b) Shot4 (high-pressure shot) plotted as a function of the
deformed x-coordinate. The span of the specimen in the undeformed configuration is indicated by green arrows. The left most point, i.e., x=0 is kept
fixed in time while plotting the temperature profiles. Small portions of the target plates on either side are also plotted to demonstrate that minimal
heat conduction takes place at the specimen/anvil interfaces during the time duration considered. Temperatures are plotted at 8 different time instants
from 0.25 us to 2 us. Time of impact is 0 us. In (a), the normal wave arrives at the left interface of the specimen at 0.45 us, while the shear wave
arrives at 0.86 us. A uniform increase in temperature is observed across the specimen initially. A little while after the arrival of the shear wave,
between 1 and 1.25 us, the temperature increase begins to localize in a shear band. The band width is measured to be roughly 3.7 um. Temperatures
increase to as high as 1155 K within the band at 2 us. In (b), the normal wave arrives at the left interface of the specimen at 0.38 us, while the shear
wave arrives at 0.65 us. The temperature rises uniformly in the specimen after the arrival of the normal wave and begins to localize at ~0.75 us (the
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left band). Within a few nanoseconds, temperature begins to localize in a second band on the right. Two shear bands form, with a width of ~3.8 um
and ~2.8 um for the left and right bands respectively. The corresponding peak temperatures are 1600 K and 1325 K respectively at t =2 us.
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Fig. 20 Normal and shear stress profiles for a material point in the middle of the shear band for (a) Shot3 (low-pressure shot) and (b) Shot4 (high-
pressure shot). For Shot4, stresses and temperature are plotted for the left shear band. Shear stress profiles are scaled for better visualization. Stress
and temperature are shown on the left and right vertical axis respectively. All values are plotted for the integration point of the element in the middle
of the shear band. In (a), temperature is observed to rise steeply at ~1.13 us which coincides with a drop in shear stress, indicating the onset of
localization (shown using a vertical dashed red line). In (b), the corresponding localization time is ~0.75 us.

4.3 Discussion

Even though sucrose has a long history of being used as an energetic simulant, material models for sucrose have not
been developed that account for the shearing behavior over a wide pressure range. In this section, a material model of
sucrose with a complete equation of state and a thermo-viscoplasticity model for strength was shown to adequately
capture the experimentally observed shearing response in PSPI. Simulations show that the fall in the shear strength of
sucrose is a result of a thermo-viscoplastic instability in the form of adiabatic shear bands. It is also shown that normal
compression can lead to a significant temperature increase, especially at higher pressures. The model can be applied to
consider more complex phenomena like pore collapse or shear band formation under complex loading scenarios. The
contribution of thermoelastic heating to the temperature increase is significant and can affect the shearing response upon
arrival of the shear wave, as discussed below. Therefore, for accurate determination of temperatures and shearing behavior
under complex loading, a complete equation of state with a temperature-dependent specific heat capacity is required. If a
constant value of the specific heat capacity at the ambient conditions are used, the temperature increase would be
overpredicted. It is shown that melting eventually occurs in the shear bands. The choice of the melt curve can significantly
affect the shearing behavior as discussed below. Accurate modeling of material behavior beyond melt requires
consideration of solid-liquid phase transition, latent heat of melting and a constitutive relation for the molten liquid,
especially the shear viscosity of the liquid. Lack of experimental data for molten energetic crystals or their simulants
makes it difficult to validate material models for the melt. Modeling the liquid phase, especially the pressure and
temperature dependent shear viscosity, is important in simulations of phenomena such as pore-collapse. However, the
attention of this study is limited to the solid phase before melt. It is assumed that beyond melt, the solid loses its strength
completely while maintaining a constant limiting shear strain-rate (Grunschel, 2009). Such an assumption can be relaxed
when better models of the phase transition to the liquid phase and shear resistance of the melt phase become available.

4.3.1 Thermoelastic work

A significant temperature increase is expected from elastic compression of sucrose, as predicted by the isentropic
temperature increase in Fig. 14. It is important to accurately model this temperature increase for the PSPI experiments as
it significantly impacts the subsequent material response upon the arrival of the shear wave. Some plastic work is also
expected during normal compression which leads to an additional temperature rise. However, separating the thermo-
elastic and thermo-viscoplastic temperature changes during normal loading analytically is not possible due to the non-
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linear coupling of the two effects. It is, however, possible to separate the two contributions in numerical simulations.
Considering the specific heat to be constant for a given time-step, the temperature increase due to thermo-elasticity during
that time step can be calculated from equation (4.3) below. Such an approach is valid for the small time-steps used here,
which ensure that the variation in the specific heat during a time-step is small. The temperature change due to
thermoelastic work for a time-step can be calculated as:

Aq° (4.3)
pc(6)
where the thermo-elastic heat increment, Aq® = ¢¢At, is calculated in the deformed configuration (see equation (C.10) in
Appendix C). Simulated predictions are compared with the theoretical predictions for isentropic hydrostatic compression
of a single elastic 3D element. Near perfect agreement is seen between the analytical and computational results (see Fig.
21), verifying the method for separating temperature increase due to elastic and viscoplastic deformations.
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Fig. 21 Simulated (solid green line) and theoretical (red dashed line) temperature profiles of a single elastic 3D element subjected to a ramp
volumetric strain. The imposed loading is a linear variation of the compression ratio from 1.0 to 0.73 over a duration of 1 ns followed by a reversal to
the original state at the same rate.

The temperature increase at the middle of the shear band is plotted for low and high-pressure shots (Shot3 and
Shot4) as a function of pressure in Fig. 22. Each plot shows the overall total temperature, the thermoelastic contribution
(numerically calculated 8(®)), the theoretical isentropic temperature (" and the evolution of the melting point with
pressure according to two models (Lindemann and Simon-Glatzel). Note that the vertical increase in the temperature at
the right end of the plot corresponds to heating upon the formation of the shear band. Also note that 8(¢) and 6 agree
with each other very well. The difference between the total temperature increase (red curve) and thermoelastic
temperature increase (black curve) is the contribution from viscoplastic dissipation, which is comparable to the
thermoelastic contribution, prior to the formation of the shear band, especially in the higher pressure case. For the low-
pressure shot, the thermoelastic and viscoplastic contributions to the temperature increase are 42 K and 23 K respectively.
The corresponding numbers for the high pressure case are 117 K and 77 K. Two main conclusions that can be drawn from
Fig. 22 are: (a) the temperature increase during normal wave loading is substantial and (b) the thermoelastic and
viscoplastic contributions to the temperature increase during normal wave loading are comparable to each other,
especially at the higher pressure. Hence, it is important to include the thermoelastic term in a thermo-mechanically
coupled model for energetic materials and their simulants.
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Fig. 22 Simulated temperature profiles as a function of pressure, plotted at the middle of the shear band for (a) Shot3 (low-pressure shot) and Shot4
(high-pressure shot). 8 (solid red line) shows the simulated temperature profile using the Simon-Glatzel melting relation. A modest increase of 65 K
is observed in temperature during normal wave loading in (a), while the corresponding temperature increase in (b) is 194 K, which is substantially
larger. 8 (solid black line) is the numerically calculated thermoelastic contribution to the temperature increase and (") (dashed green line) is the
corresponding theoretically predicted isentropic temperature increase. 8,, (dashed blue line) is the melt curve for Lindemann Law and 6,,, (dashed
magenta line) is the melt curve for the Simon-Glatzel relation. In (a), the Lindemann Law predicts melting at 557 K while the Simon-Glatzel curve
predicts melting at a much higher temperature of 947 K at a saturation pressure of 2.95 GPa. In (b), the Lindemann Law predicts melting at 686 K
while the Simon-Glatzel curve predicts melting at a much higher temperature of 1323 K at a pressure of 9.45 GPa.

4.3.2 Melt Curve

The flow strength of sucrose is a strong function of the specimen temperature and its melt temperature, which is
accounted for by the (1 — ™) factor in the Johnson-Cook model for the flow strength. However, the melting point of
sucrose is itself a function of pressure (thus making the shear strength of sucrose dependent on pressure). Since the
thermal factor in the Johnson-Cook model is responsible for thermal softening and hence a fall in the shear strength, it is
important to consider the pressure-dependence of the melting point of sucrose, so that its shear behaviour can be simulated
consistently for different pressures. Accurate representation of the melt curve is also important for the prediction of hot-
spot formation. The shearing resistance of an energetic crystal drops to zero at melt, and the shear viscosity of the molten
fluid takes over and results in significantly reduced dissipation compared to the viscoplastic dissipation of the solid phase.
So, the melt curve dictates the amount of dissipation and hence the peak hot-spot temperatures during localization.
Formation of hot-spots and their transition to ignition is highly temperature-sensitive under weak shocks, which
emphasizes the importance of accurate prediction of the melting point as a function of pressure. However, measurement of
the melting point for energetic crystals is difficult due to associated dissociation reactions. Therefore, experimentally
measured melt curves are typically replaced by empirical laws. One such law is the Lindeman Law (Lindemann, 1910;
Ross, 1969; Poirier and Tarantola, 1998):

B = 2 (1-2) + 21 (2 44
m = Omoexp 200 (1= 0) + 30 ()]

where 6,,, is the melt temperature at ambient temperature and pressure. Note that the Lindeman Law can be linearized in
volume (Kraut-Kennedy relation) or in pressure (Menikoff and Sewell, 2002) but is not very accurate at high pressures as
described in Menikoff and Sewell (2002) and Appendix B. Molecular dynamics simulations on HMX (Kroonblawd and
Austin, 2021) show that the Lindemann Law grossly underestimates the melt temperature whereas the Simon-Glatzel
relationship (equation (3.36)) fits the molecular dynamics data very well. In equation (3.36), (Pr.f, P;, d) are fitting
parameters. Due to the lack of experimental data on the melt curve of sucrose as a function of pressure, parameters for the
Simon-Glatzel fit used for HMX by Kroonblawd and Austin (2021) are employed here for sucrose. Fig. 23 shows a
comparison between the shear stress profiles calculated using the Simon-Glatzel melt relation and the Lindemann melt
curve for low and high-pressure cases. Other material parameters are kept the same for both cases. Using the Lindemann
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Law results in a much lower shear strength than that observed experimentally. This is expected since a lower melt
temperature, as predicted by the Lindemann Law, results in earlier melting and hence an earlier decrease in shear strength.
Additionally, it results in a lower overall temperature due to decreased dissipation after melt, affecting the predictions of
strength and temperature. On the other hand, the Simon-Glatzel melt relation captures the experimental data much better.
A comparison between the two melting relations is also plotted in Fig. 22. It is observed that for the same pressure, the
Lindemann Law predicts a much lower melt temperature than the Simon-Glatzel relation.
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Fig. 23 Nominal shear stress vs time for (a) Shot3 (low-pressure shot) and (b) Shot4 (high-pressure shot). A comparison is drawn between the shear
stress profiles obtained using the Simon-Glatzel melt relation and the Lindemann melt curve, keeping all other material parameters for sucrose the
same.

4.3.3 Temperature and Volume-Dependent Shear Modulus
In the preceding sections, a constant value of the shear modulus was assumed. However, the shear modulus of
sucrose is expected to be dependent on specific volume and temperature, especially at high pressures. A commonly used

functional form of the shear modulus is a linear variation with both pressure and temperature, as described by Steinberg et
al. (1980):

G(r,0) = Gy + 202W0) G,
(.6) =G P (wayF? 76 & = 00) 43)
v

where G, is the shear modulus at ambient pressure and temperature and P (v, 8) follows from the complete equation of

. : . 06 3G
state. The derivatives of the shear modulus with respect to pressure and temperature, i.e., Py and 35’
assumed to be constant by Steinberg et al. (1980) for fitting experimental data of several metals. However, the shear
modulus behaviour near melt is not well known, especially for energetic materials, and it is expected that the shear
modulus drops to near zero after melt. A drastic drop in shear modulus at melt has been observed through shear wave

measurements by Nadal and Le Poac (2003). The Steinberg model in equation (4.5) does not necessarily give a zero shear

respectively, were

. L .G .
modulus at melt and does not consider the variation of the slope of the shear modulus-temperature curve, i.e., £, with
pressure, near the melting point. These issues were addressed by Nadal and Le Poac (2003) who proposed a modified
expression for the shear modulus that retains the linear variation of the shear modulus with pressure and temperature away
from the melting point while addressing the sharp decrease in the shear modulus at melt through the incorporation of a

temperature dependent pre-factor in equation (4.5).

Note that using a temperature dependent shear modulus will affect the expression for thermoelastic work derived
in section 3.4. The spatial Gruneisen tensor, which is not spherical anymore, can be expressed as:

35



v/ oP  2K,9G
—-(—— —N).

26! e 5 (4.6)

Cc

Since I: D¢ = tr(D®) = ;—Z = K, and N': D¢ = (ES: C¢~*C®)/2K,, the simplified expression for thermoelastic work can
be written as:
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5 Summary and Concluding Remarks

In this study, an experimental investigation has been carried out on a commonly used energetic material simulant,
sucrose, through PSPI experiments. To the best of our knowledge, this is the first investigation of its kind. Experiments
have been performed at two different nominal normal stress values, 3 and 9.5 GPa, with nominal shear strain-rates of
1.5—2x 10%s7 1 and 3 X 10° s for the low and high-pressure cases, respectively. The normal stress profiles show an
initial elastic precursor, followed by a sharp rise to a plateau. No reverberations are observed in the normal velocity
profiles due to the extreme thinness of the samples. The shear strength of sucrose shows a peak value followed by a
dramatic drop after reaching a critical strain. The peak shear stress and the shear stress drop are consistently observed at
both low and high pressures, although the critical strain at which the drop occurs varies with pressure. Such softening of
the shear response of sucrose may be attributed to thermo-viscoplastic localized instabilities. It is worth noting that
formation of adiabatic shear bands is a key mechanism of hot-spot formation in energetic crystals. The reported
measurements on sucrose motivate the need to study the shear strength behavior of actual energetic crystals such as RDX
and HMX under high-pressures and high strain-rates as the shear strength is expected to have direct implications for their
ignition mechanisms. It should also be noted that the peak shear strength of sucrose displays minimal pressure-sensitivity,
which is in contrast to the binders of polymer-bonded explosive systems (Malhotra, 2020; Malhotra et al., 2021). The
shear strength of the binder is expected to surpass that of sucrose beyond a certain pressure which can lead to a reversal in
the energy localization behavior and hence the subsequent hot-spot formation. Such a behavior has important
consequences for ignition behavior of polymer-bonded explosives.

Next, a thermodynamically-consistent constitutive model for sucrose has been presented. Molecular crystals such as
sucrose, HMX and RDX are complex materials to model under quasi-static and dynamic loads. The complexity arises due
to several factors: (a) anisotropic elastic properties, (b) thermo-elastic coupling, (c) a complex thermo-viscoplastic
response, (d) a low melting point, (e) strong dependence of material properties on temperature and pressure, such as the
elastic moduli, specific heat, melt curve and viscosity of molten fluid to name a few, and (f) the added complexity of
chemical reactions. Moreover, lack of experimental data on melt curves and temperature and pressure-dependencies of
shear viscosity of the melt for energetic crystals makes determination of material parameters an arduous task. Here, the
focus is restricted to modeling the solid phase before melting takes place. First, a thermodynamic foundation is presented
for modeling the material behavior of a solid. The temperature evolution equation is derived using the laws of
thermodynamics, with the thermoelastic work being represented in terms of the Gruneisen tensor. Next, the free energy is
expressed in terms of invariants of a logarithmic strain measure. The use of logarithmic strains facilitates the additive
decomposition of large strains into volumetric and deviatoric parts. As demonstrated above, using an adequate invariant
basis (K3, K, K3), the Cauchy stress tensor can be additively decomposed into pressure and deviatoric stresses. Such a
decomposition allows an independent focus on the equation of state of the material, which is typically measured through
separate experiments. Consistent with the thermodynamic foundation laid before, a complete Mie-Gruneisen equation of
state is derived by incorporating a temperature-dependent specific heat capacity. A complete equation of state allows for
an accurate prediction of the thermoelastic temperature increase during extreme deformations such as in PSPI or shock
loading, which bears important consequences for accurate prediction of deformation behavior and hot-spot formation in
energetic crystals. Using this complete equation of state, analytical expressions for pressure and temperature are derived
for the special cases of isothermal, isentropic and shock loading. The thermo-viscoplastic response is modeled using a
Johnson-Cook model with a pressure-dependent melting curve.
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Finite element simulations of PSPI experiments reveal that the shear softening is a result of the formation of a
thermo-viscoplastic instability in the form of adiabatic shear bands. It is shown that the fall in shearing resistance is
coincident with the sharp rise in local temperatures, which results in the formation of hot-spots. Therefore, adiabatic shear
bands are identified as a potent hot-spot mechanism in energetic crystals subject to impact loading. It is also shown that
the contribution of volumetric elastic compression to the temperature increase can be separated from that due to
viscoplasticity in the numerical implementation. Large thermo-elastic temperature increases in simulations emphasize the
importance of accurate modeling of the volumetric behavior of energetic materials through a complete equation of state.

The current study provides a good starting point in characterizing and modeling deformation behavior of an energetic
material simulant. However, much remains to be done to fully understand the complex thermo-mechanical behavior of
such molecular crystals both experimentally and theoretically. To begin with, localized temperature fields and strain-fields
that eventually lead to hot-spots need to be measured with sufficient fidelity to provide reliable experimental data for
modeling. As noted above, an important requirement is an accurate prediction of the melt curve as a function of pressure.
Experimental evidence is needed to corroborate the models used. While such measurements are difficult to carry out with
real energetic crystals due to the dissociation reactions associated with a temperature increase, simulants like sucrose
provide a good opportunity in this regard. At the same time, it is important to incorporate the temperature and pressure
dependence of the shear modulus, especially near melt. In the present work, the focus is kept on modeling the solid phase.
However, since localized melting is expected in the adiabatic shear bands, it is important to incorporate a solid to liquid
phase transition and the constitutive behavior of the liquid phase. So, the present framework needs to be extended to
incorporate the above features, which remains a task for the future. Experimental characterization of shear viscosity as a
function of temperature and pressure is expected to provide insights into the behavior of the molten phase and hence
experimental corroboration of a constitutive model for the liquid phase. Such measurements also remain an avenue for
future work. As the fraction of molten phase grows, dissipation is expected to drop. So, accurate prediction of temperature
fields and associated material behaviors, such as ensuing chemical behaviors in the case of energetic crystals, requires
accurate modeling of the phase transition as well. It should be noted that the experimental data on specific heat capacity of
sucrose is available for a very small range of temperatures and extending such measurements to higher temperatures will
increase confidence in the prediction of the temperature rise due to thermo-elasticity. As experimental techniques improve
in the future, the above mentioned measurements may become feasible, and the current constitutive model can be
extended to model such experiments.

Acknowledgements: The authors are thankful to AFOSR (Grant#FA9550-15-1-0415, Dynamic Materials and
Interactions, Dr. Martin Schmidt) and NSF (Award #1825582) for supporting this work.

Appendix A.  Derivation of a 3™ order equation of state

A 3"-order polynomial free-energy function is used to derive an isothermal equation of state. Note that the final
form of the equation of state depends on the volumetric strain measure used. The three most familiar measures of strain
are the logarithmic strain, the Euler-Almansi strain and the Green-Lagrange strain. We begin with the logarithmic strain.
Typically, a quadratic form of Helmholtz free energy is used. However, to model large non-linear deformations, a cubic
term can be added, as follows:

Yr(Ky) = AKP + A3K7 + -+, (A.1)
where Yy is the Helmholtz free energy per unit volume in the reference configuration, K; (= InJ = In(v/v,)) is the
logarithmic volumetric strain, and A, and A5 are constants. For the logarithmic strain measure, the pressure in the solid
can be found from the trace of the Cauchy stress tensor T (as shown in equation (3.30)):

_ oM 10ye_ dyp

3 = _] aKl = _voﬁ = _Kl e_Kl(ZAz + 3A3K1) (A2)

The constants A, and A3 need to be expressed in terms of measurable material parameters such as the isothermal bulk
modulus, Ky, and its first pressure derivative, Kg,, which are defined below:
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The subscript ‘0’ refers to the reference state of (vy, Py = 0,68, = 298 K). It can be shown that A, = Kgo/2 and A3 =
Kgo(2 — Kgo)/6. Substituting these relations into equation (A.2), the 3"-order equation of state in terms of the
logarithmic strain (Poirier and Tarantola, 1998) is written as:

p= Kgo( )ln(v)[1+K02_21n(%)]. (A4)

Now, we derive the 3-order Birch-Murnaghan equation of state in terms of the Euler-Almansi strain, which is
one of the most commonly encountered equations of state in shock physics and geophysics applications. For a purely
volumetric deformation, the Euler-Almansi strain can be expressed as:

I-Be™t 1723
o= - (A.5)
2 2
where B¢ = FeF¢” is the left Cauchy-Green tensor and F¢ = J/3] is the elastic deformation gradient for purely
volumetric deformation. The volumetric Eulerian strain is defined as:

tr (e) 1

(A.3)

_ (1 I 2/3) (A.6)
Now, consider the Helmholtz free energy written in terms of the volumetric Eulerian strain, similar to equation (A.1), as:
Pp(e) = aze? +aze’ + - (A.7)
where a, and a3 are constants. The pressure in the solid can be found using equation (3.38)
oy 0y de 5 1
P = 9 dedn —(2a,e + 3aze )(BJT?’UO)' (A.8)

Using the definitions for Kgo and Kp, from equation (A.3), it can be shown that a, = 9vyKp,/2 and az = v Kgo(4 —
Kpo)/2. Substituting the values of a, and a5 into equation (A.38), the 3-order Birch-Murnaghan equation of state can be
written as:

7 5
3 3

=S| () - ()

On similar lines, consider the derivation of a 3"-order equation of state in terms of the Green-Lagrange strain. For
a purely volumetric deformation, the Green-Lagrange strain can be found to be:
ce—1 J¥3-1
E = = / I (A.10)
2 2

2
142 (Kgo —4) {( o) - 1}] (A.9)

The volumetric Lagrangian strain E is defined as:

_tr(E) ] -1

— (A.11)
3 2
The referential Helmholtz free energy can be written in terms of the volumetric Lagrangian strain as:
Yr(E) = BRE? + B3E® + -+, (A.12)

where B, and B; are constants. Combining equations (3.7) and (3.15), the Cauchy stress can be obtained from the
derivative of free energy with respect to C¢ as:
0P

T = 2 pe9¥R per (A.13)
7 F e : :
Since F¢ = JY/3I and C¢ = J?/3I, the expression for pressure can be shown to be:
tT(T) al/)R 2
P=-= vyt = ]1/3 (2B,E + 3B3E?). (A.14)

38



Following a procedure similar to the logarithmic and Eulerian strains, B, = 3Kgo/2 and B; = 3KgoKp,/2, which when
substituted into equation (A.14) gives the 3™-order equation of state derived using Lagrangian strain:

P = _KGO

3

2

(

1

Vo

s _ ()3

2
3 ooy -2 (A.15)
1+ZK90{1—(70) H

A comparison of the 3"-order equations of state using the 3 different strain measures is shown in Fig. A.1. It is evident
that the Green-Lagrange strain leads to the most compliant behavior at the same volumetric compression while the Euler-
Almansi strain leads to the stiffest behavior. The equations of state using the logarithmic strain and the Euler-Almansi
strain are quite close to one another over the range of finite volumetric strains considered here. All three strain measures
show agreement at small strains, which is to be expected.

Appendix B.

Elastic Constants

Bulk Modulus

6

P (GPa)

—T—T— T

7 [

— T T T T

— Green-Lagrange Strain ]
= Euler—Almansi Strain A

— Logarithmic Strain 3

0.75

0.80 0.85 0.90

v
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Fig. A.1 3" order equations of state using 3 different strain measures.

Material Constants for Sucrose

Bridgman made measurements of compression ratios of sucrose under pressures up to 3 GPa (see Table V in
Bridgman (1949)). The values of the bulk modulus of sucrose as a function of pressure are tabulated below.

Table B.1 Bulk modulus of sucrose measured at different pressures. Bulk moduli and volumetric changes are calculated based on Table V in

Bridgman (1949).

Pressure Pressure 1-J Bulk Modulus

(kg/cm?) (GPa) (GPa)
5,000 0.5 0.03151 15.868
10,000 1 0.05518 18.122
15,000 1.5 0.07434 20.178
20,000 2 0.09074 22.041
25,000 2.5 0.10552 23.692
30,000 3 0.11866 25.282
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Fig. B.1 Linear fit to the experimental data for the isothermal bulk modulus of sucrose

Fig. B.1 indicates the pressure dependence of the bulk modulus for sucrose. Koy = 14.3 GPa and Ky, = 3.75 are
obtained using a linear fit to the experimental data. Ky, is the isothermal bulk modulus at ambient temperature and
pressure while Ky, is the first derivative of the bulk modulus with respect to pressure at ambient temperature and pressure.
These values are very close to the data obtained from Bridgman (1933).

Poisson’s Ratio and Shear Modulus
(Trott et al., 2007) used a Poisson’s ratio of 0.25 for sucrose. Using Kgg = 14.3 GPa and v = 0.25, Gy = 21.45 GPa is

obtained.
Thermal Constants

Coefficient of Thermal Expansion
A mean volumetric coefficient of thermal expansion of a,, = 140.1 X 1076 °C~* was reported by (Bridgman, 1933) over
a temperature range from 30 °C to 75°C.

Specific Heat
Specific heat capacity at constant pressure, ¢, was reported by (Anderson et al., 1950) over a temperature range from
259C t0 90 °C. The experimental data is given in B.2. In order to derive the specific heat capacity at constant volume c,,
the following thermodynamic relation can be used:

cp — ¢, = va;Ky, (B.1)
where v = V /m is specific volume, and Kj is the isothermal bulk modulus. Note that the specific heat at constant volume
has been represented by c in the main text. However, in this appendix c,, is used for the specific heat at constant volume to
differentiate it from the specific heat at constant pressure, ¢, . It can be seen from Table B.2 that the difference in ¢, and

¢, values is relatively small.

Table B.2 Specific heat capacities of sucrose. ¢, values are direct experimental measurements while ¢, values are derived from thermodynamic

constraints.
Tem c (—] )
(K)p p kg K e (= Cp — UHCZEKQ)
(Experimentally Measured)
275.6 1137.98 1087.331
281.9 1167.32 1115.513
289.7 1200.32 1147.079
296.2 1255.32 1200.885
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296.8 1234.54 1179.995
296.9 1238.21 1183.646
299.4 1250.43 1195.407
301.2 1250.43 1195.076
302.8 1263.88 1208.232

313 1313.99 1256.467
320.3 1351.89 1293.026
342.4 1476.56 1413.634
362.7 1581.68 1515.024

Fitting to the Debye Relation

Using a complete equation of state requires a temperature-dependent specific heat capacity. However,
experimentally measured values are not available for the entire temperature range of interest. So, the specific heat capacity
is fit to the well-known Debye model of specific heat capacity:

OR, /O \3 [0p/0 x%e* 9\3 [0p/0 y4ex
=—(— — d :3,4(_) f —d B.2
“ =M <9D> jo -1z o,) J, (e -1z ®.2)
where R, = 8.314 = Zn > is the universal gas constant and M is the molar mass in kg/mol, 8 is Debye temperature and

A=330 As0 > 0,c, = 0,and as 8 = oo,c, = fRy/M where the latter asymptotic limit is referred to as the Dulong-
M

Petit limit. f represents the degrees of freedom contributing to the specific heat. For a monoatomic molecule, f = 3.
However, for complex polyatomic molecules like HMX and sucrose, the number of degrees of freedom is very large. For
any non-linear molecule, the total degrees of freedom is 3N (3 translational, 3 rotational and 3N-6 vibrational) where N is
the number of atoms in the molecule. Hence, the Dulong-Petit limit of specific heat should be ¢, = 3NR;/M as 8 — oo,
However, as is noted in (Menikoff and Sewell, 2002), some of the vibrational degrees of freedom corresponding to C-H
bond stretching in HMX do not contribute to the specific heat capacity (as the vibrational frequencies of C-H bonds are
very high and these modes are not very highly populated). Therefore, for HMX, the Dulong-Petit limit is expected to be
¢, & (3% 28—8)Ry/M as 8 — oo, where number of atoms in HMX is 28 and number of C-H bonds is 8. However, no
such information is available about the vibrational frequencies of C-H bonds in sucrose. So, to begin with, a conservative

limit for the specific heat of sucrose is assumed, i.e., as 8 = oo, ¢, = AR 3279@% (M = 342.3 g/mol).
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0 1 1 1 1
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Fig. B.2 The Debye model fit to experimental data for the specific heat capacity at constant volume for sucrose.
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In the form for Debye model (equation B.2), ¢c,, = A as 8 — oo, and hence 4 is the Dulong-Petit limit. There are
two unknown constants for a fit to experimental data in the Debye form of specific heat, i.e., A and 8. The Debye

expression is fit to the experimental specific heat data for sucrose assuming A = 3279 kgLK and 8, = 1500 K as shown in

Fig. B.2. Since the experimental data for sucrose is available only for a small range of temperatures, a more accurate
estimate of the Dulong-Petit Limit (4) would lead to a better extrapolation of the specific heat at elevated temperatures (0
>400K).

o . L 53
Fitting to an Empirical form: ¢;,(0) = corc e, resd
In order to provide a simpler expression to calculate the specific heat and enable the integration of the Debye
form, the specific heat is fit to the empirical form shown below, as done for HMX by (Sewell and Menikoff, 2004):
~ 63
(o) = — = — B3
+(0) Co + €10 + ;0% + 303 ®B3)

where (cg, €1, €5, €3) are constants. Such a form is chosen as it obeys the asymptotic limits at the two temperature

extremes, i.e., é;(é) - 63asf — 0and é;(é) - % = Clas 6 — oo (Dulong-Petit Limit). A fit to the Debye relation for
3

the specific heat capacity using the empirical form is shown in Fig. B.2. It can be seen from the plot that the empirical

4
relation fits the Debye Model very well. The following set of parameters are used for this fit: ¢, = 7.095 x 103 kgTK,

3 2
¢, = 2.230x 101 kgTK, c; =4.180x 1073 k“qTK and ¢; = 3.050 x 107 kgTK. An explicit expression for the integral of

the specific heat capacity with temperature is still difficult to evaluate using the empirical relation for specific heat
(equation B.3). Therefore, the integral is calculated numerically, and a cubic polynomial is fit, as shown in Fig. B.3. A
simple cubic polynomial is able to fit the data very well.

x 10°

== [:xact integrated value
— Fit value

[c, (6" d' (Jkg)

0 500 1000 1500 2000
0 (K)

Fig. B.3 | 09 ¢,(6")d0' is evaluated numerically (thick blue curve) and fit to a cubic function (thin red curve)

Therefore, the approximation is given as: f: c,(0)d0’ =~ (a,0 + a,0% + a363 )k]—g where a; = —105.517 J/kgK, a, =
2.473 J/kgK? and a3 = —6.067 x 10~* J/kgK? are found through least squares fit.

Thermal Conductivity
A thermal conductivity value of 0.486 W/m K was reported in (Trott et al., 2007).

Mechanical Properties

Yield Strength
Nanoindentation measurements of sucrose by (Ramos and Bahr, 2007) estimated a hardness of 1.5 GPa suggesting a bulk

yield strength of 500 MPa, which motivates the use of A = 500 MPa in the Johnson-Cook model.
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Gruneisen parameter
The following functional form of the Gruneisen parameter is assumed as noted by (Grady, 2017): I'(v) = % v. The value
of Iy is derived from the following thermodynamic relation to be consistent with values for other thermodyflarnic
quantities under ambient conditions:

I'(v) _ Ky

v ¢
At ambient, [, = 1.09 is obtained which is very close to that for HMX (T ,,,,, = 1.1). The integrating factor ¢(v) can
now be calculated explicitly:

b0 = exp <_ fv FEJUI') dv’) — exp <_ "%dv’) = exp <F0 (1 - %)) (B.5)

Appendix C.  VUMAT Algorithm

(B.4)

Given: (Fy41,0n41) and (Fp,, FP, D, €Y at time t,,.
Calculate: (Tn+1,FfL+1,DfL+1, e_ﬁﬂ,Aqe,qu) attime t, 4 = t, + At.

Step 1: Update the plastic distortion using a forward Euler discretization of the evolution equation, FP = DP FP:
F? .. = (I1+AtDh)FE. (C.1)
Step 2: Update the elastic distortion and associated kinematic quantities:

_ p 1
F$l+1 - Fn+1(Fn+1) )
Ja+1 = det(Fyq),
Vnt1 = Volnt1)

. . (C.2)
n+1 = (Fn+1) Fn+1 ’
Ry =Fr(Us)™h
E7 1 = In(U7, ).
Step 3: Update the pressure using the complete equation of state:
Ke
Ppyq = ln(]n+1) 1--=2 l (]n+1)]
]n+1 ]"
~ ~2 5 =3
+ v_¢(vn+1)[a1 (9n+1 - 90) t+a (9721+1 - 90) +az(On41 — 90)]: (C.3)
0
. Un+1 ~ On+1
th = [—r(” —1)], dbpp =—r
with ¢(vp41) = exp "\, and tp4q )
Step 4: Update the Mandel and Cauchy stresses
n+1 2GE0n+1 _Pn+1]16{+119
1
Thya =]e_ R M7, 1 (RY +1)
nti (C4)
On+1 = 2 |M8,n+1|'
Step 5: Update the rate of plastic stretching DP.
a. Update the accumulated plastic strain:
Sy 2
Z p
= |[=|D?],
€= |3/Pn (C.5)
€. =€f +ePAL

n+1 n n
b. Calculate the melting temperature using the Simon-Glatzel relation:
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)

1
P —P d
9m,n+1 = Omo (1 + M)

P; (C.6)
a _ Ony1 — gref
i 0m,n+1 - Qref-
c. Calculate the effective plastic strain-rate using the Johnson-Cook Model:
. 1 On+1
(Eﬁﬂ)jc = €y exp C > n; - -1 (C.7)
(A +B (En+1) ) (1-67

d. Update the effective plastic strain-rate, ensuring that it remains bounded for cases in which 6,41 > 0, 1 41:

1 _ 1 N 1
P (P P (C3)
€n+1 (En+1)]C €um
e. Update DP:
3 p— S n+1
P _ )
Dy = 565 = (C.9)

Step 6: Calculate Ag®.

. I
Aq® = At q® = —0,44 Cv,n+1v_ (Injgyq —Inj?),
0

O _ (C.10)
Co+ C1Opy1 + 2054 + 30,4

Ji = det(F,F3 ).

Con+1 =

Step 7: Calculate AgP.

AqP = At qP = ]eianﬂe}fﬂm. (C.11)

n+1
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