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Abstract: Sucrose is a commonly used energetic material simulant for 𝛽-HMX. However, its behavior under extreme 

loading conditions remains poorly understood. Pressure-Shear Plate Impact (PSPI) experiments have been conducted to 

provide an experimental foundation for developing a suitable constitutive model for sucrose. Experiments have been 

performed at two different nominal normal stress values, 3 and 9.5 GPa, with nominal shear strain-rates of the order of 

106 𝑠−1. Sucrose exhibits a shear strength of ~400-500 MPa in this pressure range, with a relatively small pressure 

sensitivity. However, pronounced strain softening is observed in sucrose at sufficiently large shear strains - even a 

dramatic drop in shearing resistance in some cases. A thermodynamically-consistent constitutive theory is presented to 

model the thermoelastic, thermo-viscoplastic response of sucrose. The use of the logarithmic strain and an appropriate set 

of invariants allows for separation of the Cauchy stress into pressure and deviatoric terms. A complete Mie-Gruneisen 

equation of state is presented to model the volumetric behavior while the deviatoric response is captured through the 

Johnson-Cook Model. The material model is able to capture experimental observations and predicts localization in the 

form of adiabatic shear bands, which explains the catastrophic drop in shearing resistance of sucrose observed in the 

experiments. Such localization events carry important implications for energetic materials in the context of hot-spot 

formation and underline the importance of dynamic shearing strength measurements. 
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1 Introduction 

An energetic crystal is one with a large amount of stored chemical energy that can be released over a very short duration 

of time. Energetic crystals such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), cyclotrimethylene trinitramine 

(RDX), 2,4,6-Trinitrobenzene-1,3,5-triamine (TATB), etc. play important roles in military and space applications, 

construction and mining. Energetic crystals are routinely employed as a solid fuel in rocket propellants and in mining and 

construction. One of the important classes of energetic materials is polymer-bonded explosives (PBXs), which are 

composites of energetic crystals held together by a small fraction (typically ~2-10%) of a polymeric binder. The presence 

of the binder in these granular composites imparts reduced shock sensitivity, which allows safer transportation and storage 

and minimizes accidental events like sympathetic detonations. There has been a great deal of interest in developing 

“insensitive munitions” in recent years, which motivates a systematic study of ignition mechanisms in energetic materials 

under controlled conditions. It is generally accepted that ignition in energetic materials begins in localized regions of high 

temperature known as ‘hot-spots’ (Bowden and Yoffe, 1958, 1952), which are formed when localized mechanical energy 

is converted into heat. Since the mechanical behavior, microstructure and composition of PBXs affect their impact 

sensitivity and propensity for ignition, it is imperative to study their mechanical response and that of their constituents 

under high pressure and high strain-rate loading conditions of relevance.  
 

In the study of PBXs, energetic crystals like HMX and RDX are often replaced by simulant crystals such as 

sucrose, melamine and acetaminophen. A simulant crystal is a molecular crystal that closely resembles an energetic 

crystal in terms of one or more relevant attributes such as crystal structure, density and mechanical properties. For 

example, sucrose and acetaminophen are simulants for HMX due to their similar monoclinic crystal structure. 𝛽-HMX 

crystals have 𝑃21/𝑐 (𝑃21/𝑛) symmetry with unit cell dimensions of 𝑎 = 6.54 Å, 𝑏 = 11.05 Å, 𝑐 = 8.70 Å, 𝛽 = 124.30 

(Miller and Garroway, 2001). Sucrose also belongs to the 𝑃21 space group with cell dimensions of 𝑎 = 10.89 Å, 𝑏 =
8.69 Å, 𝑐 = 7.77 Å, 𝛽 = 1030 (Beevers et al., 1952). Sucrose has also been shown to have mechanical behavior similar to 

that of HMX, RDX and pentaerythritol tetranitrate (PETN) under drop-weight impact (Heavens and Field, 1974) and a 

similar shock Hugoniot as HMX (Sheffield et al., 1998). These similarities have resulted in sucrose being a commonly 

used energetic material simulant. Sucrose has not only been used as a mock energetic crystal in the energetic materials 

industry but has also found an important application in the pharmaceutical industry as a model material to study 



 2 

compaction processes (Duncan-Hewitt and Weatherly, 1990), where the use of sucrose offers insights into fracture in 

chipping, capping and delamination in such compaction processes. Due to their inert nature, energetic simulants provide a 

safe and cost-effective way to infer the mechanical behavior of real energetic crystals, which makes them suitable for 

many laboratory settings. Another advantage of studying energetic simulants is that they allow decoupling of mechanical 

and chemical behaviors of energetic crystals so that one can understand the mechanical signatures of phenomena such as 

pore collapse, adiabatic shear localization, fracture and granular friction independent of the effects of the accompanying 

chemical reaction in an actual energetic material (Sheffield et al., 1998). Moreover, it should be noted that several 

properties of energetic crystals are not adequately characterized, including: (a) the melt curve as a function of pressure, (b) 

the thermal conductivity of the solid phase as a function of pressure and temperature, (c) the specific heat capacity of the 

liquid phase as a function of pressure and temperature, (d) viscosity in the liquid phase as a function of pressure and 

temperature, and (e) the anisotropy of yield surface. Some of these properties are difficult to measure experimentally 

because of the onset of chemical decomposition and a subsequent reaction under extreme conditions. However, all the 

above properties are important for accurate modeling of the mechanical behavior of energetic crystals under large 

deformations and accurate prediction of ignition from hot-spot formation. Simulant crystals like sucrose offer an 

opportunity to provide reference values and trends for the relevant material properties of real energetic crystals. 

 

 

Due to their mechanical and chemical fragility, characterization of molecular crystals using traditional testing 

methods is challenging. Brittle molecular crystals, such as RDX, HMX, PETN, sucrose, etc., fracture readily because they 

cannot be subjected to large strains or plastic deformation. Moreover, characterization methods such as electron 

microscopy are difficult to use on these materials for quantitative assessment as they chemically dissociate under an 

electron beam. Hence, not much is known about the deformation behavior of molecular crystals and the underlying 

deformation mechanisms. As a result, researchers have been left with only a handful of experimental methods to 

characterize these materials in the quasi-static limit. Nano-indentation and atomic force microscopy (AFM) have been 

used to extract the elastic moduli and hardness of sucrose (Duncan-Hewitt and Weatherly, 1989; Masterson and Cao, 

2008; Ramos and Bahr, 2007). Apart from mechanical and chemical fragility, molecular crystals are difficult to analyze 

and characterize experimentally because of other complex features such as anisotropy and phase transformations. For 

example, 𝛽-HMX has a monoclinic crystal structure with 13 elastic constants (Stevens and Eckhardt, 2005; Zaug, 1998). 

Similar measurements of the elastic constants of RDX (Haussühl, 2001; Haycraft et al., 2006; Schwarz et al., 2005) 

showed large anisotropy of elastic properties along different orientations. Anisotropy in crystallographic slip results in a 

varying mechanical response when shocked in different orientations. Dick et al. (2004) demonstrated the anisotropy in 

strength and elastic precursor decay of 𝛽-HMX single crystals when shocked in different orientations. The inelastic 

mechanisms of deformation have also been shown to vary with orientation. Similarly, Hooks et al. (2006) showed that 

elastic wave speeds, Hugoniots and plastic wave relaxation rates are highly anisotropic for shocked RDX single crystals. 

Such a large anisotropy in the elastic and plastic properties of energetic crystals requires extensive experimental 

characterization for reliable constitutive models.  

 

 

A great deal of work has been done over the past few decades to understand the compressive response of PBXs 

(Funk et al., 1996; Gray III et al., 1998; Idar et al., 1998) and their polymer-bonded simulants (PBSs) (Funk et al., 1996; 

Hu et al., 2015; Idar et al., 1998; Kendall and Siviour, 2015; Liu et al., 2011; Siviour et al., 2008; Williamson et al., 2006). 

While mechanical testing of PBSs under extreme conditions has received substantial attention, modeling of the 

phenomena leading to hot-spot formation in PBXs and PBSs requires accurate constitutive modeling of the constituents, 

which is lacking. The mechanical response of energetic crystals such as HMX and RDX has been studied in detail under 

uniaxial strain through normal compression impact experiments (Dick et al., 2004; Hooks et al., 2006). However, a 

systematic characterization of the shear strength of energetic crystals and their simulants has not been done so far. Despite 

being the most widely used simulant, sucrose has not been sufficiently characterized to inform constitutive models 

adequately. Trott et al. (2007) investigated the response of granular sugar under shock compression for different sample 

thicknesses, impact velocities and particle size distributions. A shock Hugoniot has also been reported by Sheffield et al. 

(1998). However, these studies are insufficient to model the strength response of sucrose as a function of pressure and 

strain-rate. At present, there is insufficient experimental data to develop an accurate anisotropic elastic-viscoplastic model 

of sucrose. It is difficult to develop even a sufficiently robust isotropic model for polycrystalline sucrose or a sufficiently 

large aggregate of sucrose grains, which can adequately model large deformations under high pressures and high strain 

rates. The absence of any shear strength measurements makes it difficult to perform realistic simulations of deformation 

and phenomena such as pore-collapse, shear localization and friction that lead to hot-spot formation. Granularity of the 
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specimen further hinders the ability to probe the bulk material response of sucrose. The effect of the granular nature of the 

specimen is evidenced by the very different normal velocity profiles for the same impact velocities observed by Trott et 

al. (2007). For these reasons, we employ the Pressure-Shear Plate Impact (PSPI) technique in the present work to measure 

the material response of a uniform sucrose layer to normal and shear loading. 

 

 

Adding to the complexity of the mechanical behavior of molecular solids, it has been reported that under high 

pressures, temperatures and shear strains, molecular solids can undergo phase transformations. Ciezak-Jenkins and 

Jenkins (2018) and Patyk et al. (2012) reported an isostructural phase transformation in sucrose at a pressure of ~5 GPa, 

using a diamond anvil cell. Ciezak-Jenkins and Jenkins (2018) subjected sucrose samples to large shear strains at high 

pressures using a rotational diamond anvil cell and showed that amorphization occurs under such loading conditions. 

However, the diamond anvil cell studies do not quantify the shear strains and rates of loading and hence do not provide 

the necessary quantitative information to develop material models. Therefore, in the present work, we lay an experimental 

foundation using the PSPI experiments for the constitutive modeling of sucrose. In addition to being the first undertaking 

to study the high pressure and high strain-rate strength of sucrose, the experimental results also reveal the propensity of 

sucrose to undergo shear localization. Such findings beg for more experimental effort on real energetic crystals such as 

HMX and RDX under PSPI loading.  

 

Since the response of molecular crystals to mechanical loading is inherently complex, constitutive models for 

energetic crystals and simulants are complex as well. In general, in order to model the material response and capture the 

physics behind phenomena such as pore collapse and subsequent chemical reactions, it is imperative to retain a 

sufficiently general model, albeit at the expense of complexity and computational resources expended. A general material 

model for such molecular crystals should incorporate: (a) a finite deformation framework, (b) non-linear anisotropic 

thermo-elasticity, i.e., have anisotropic elastic moduli which are dependent on pressure and temperature in general and be 

able to handle finite non-linear elastic deformations under large pressures through a complete equation of state, (c) plastic 

anisotropy, typically modeled using a crystal plasticity approach, and (d) thermo-elastic heat generation and plastic 

dissipation. Multiple researchers have taken up the task of including one or more of the above-mentioned features into the 

constitutive modeling of materials subject to extreme dynamic environments. Since the applications of interest involve 

large deformations, only finite deformation models are reviewed here. Barton et al. (2009) employed an anisotropic 

thermo-elastic model coupled with crystal plasticity to model pore collapse in HMX, although pressure and temperature-

dependent moduli were not used and a constant specific heat capacity was assumed. Austin et al. (2015) extended the 

model by Barton et al. (2009) to incorporate a temperature-dependent specific heat and coupled chemical kinetics to 

simulate pore-collapse and consequent shear band formation. The effects of including crystal anisotropy and rate-

dependent viscoplasticity on shear band formation were analyzed, and it was shown that a rate-independent model does 

not lead to shear band formation during the pore-collapse process, thus altering the mechanical signatures and subsequent 

chemical decomposition reactions. Use of pressure-dependent elastic moduli (Becker, 2004; Grunschel, 2009; Wang et al., 

2016) enables capturing large volumetric strains and the evolution of shocks from steep pressure gradients. All the above 

references used crystal-plasticity to model the anisotropic plastic response. Clayton (2014) presented a thermodynamics-

driven approach to modeling large deformations in hard anisotropic materials such as sapphire, diamond and quartz that 

incorporates all the aforementioned features of a general constitutive model. However, validating such a model requires a 

large number of experimentally characterized material constants which may not be feasible to obtain for most materials.  

 

 In the present study, we present a thermodynamically-consistent framework for finite deformation modeling of 

sucrose. The framework presented here is generic and can be used for any isotropic material subject to extreme dynamic 

environments involving high pressures, high strain-rates and large strains, both in compressive and shear loading 

scenarios. It enables the incorporation of a complete equation of state and a thermo-viscoplastic strength model in a 

thermodynamically-consistent manner, thus allowing an accurate representation of thermoelastic and thermo-viscoplastic 

work. Moreover, the use of logarithmic strains accompanied by an appropriate set of invariants (Criscione et al., 2000) 

allows the separation of stress into pressure and deviatoric terms. This is particularly useful in validating the model using 

experimental observations since the equation of state is measured through a separate set of experiments as compared to 

strength measurements. Due to a lack of experiments on sucrose, there is a lack of experimentally verified material 

constants. The present model uses a reasonable number of material parameters to address this problem.  

 

The paper is organized into five sections. Section 2 details the experimental methods used and the results of PSPI 

experiments on sucrose. The shear behavior of sucrose is characterized under high shear strain-rates and high pressures. In 
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section 3, we present the thermodynamic framework used to model sucrose, followed by a description of the constitutive 

model and a derivation of a complete Mie-Gruneisen equation of state. Analytic expressions for different types of loading, 

such as isentropic, isothermal and shock loadings, are derived without any strength considerations, and the behavior of 

sucrose is compared under such conditions. The importance of using a temperature-dependent specific heat is highlighted 

for the case of shock loading. In section 4, we describe the numerical implementation of the material model and 

demonstrate that the proposed constitutive model is able to fit the experimental data reasonably well under varied testing 

conditions. Section 5 presents a summary of the dynamic shearing behavior of sucrose reported in the preceding sections 

and discusses possible avenues of further improvement on the experimental and modeling fronts. 

 

2 Experiments 

2.1 Methods 

Pressure Shear Plate Impact (PSPI) experiments have been used to study the dynamic response of sucrose under 

extreme conditions. Pioneered by Kim et al. (1977), PSPI experiments allow investigation of the shearing response of 

materials under high pressures, high shearing strain-rates and high shear strains. In these experiments, a flyer plate 

impacts the target plate at an angle 𝜃 generating both compressive longitudinal waves and shear waves. The angle 𝜃 is 

usually kept below 20° to ensure that no slip occurs at the impact face. A 2.5-inch gas gun at the plate impact facility at 

Brown University is used for these experiments. The gun barrel has a keyway which facilitates oblique impacts. One of 

the most common test configurations is a sandwich configuration as shown in Fig. 1. In this configuration, a thin sample 

(typically 10-200 𝜇𝑚 in thickness) is sandwiched between two hard elastic plates, hereafter, referred to as the front target 

plate and the rear target plate. The flyer and target plates are made from a hard material such as tungsten carbide or high 

strength steel, that remains elastic (or nearly so) over the range of loading pressures and strain rates reported herein. Upon 

impact a one-dimensional plane-wave loading is obtained. This loading allows for a comparatively straightforward 

interpretation of the stress-state achieved inside the specimen. 

 

 

 
Fig. 1 PSPI Experimental Set-up. The projectile is typically a light-weight fiberglass tube. A flyer plate is glued to an aluminum plate bonded to the 

front of the projectile. A flat step is made on the aluminum front plate perpendicular to the impact direction.  This step is used to short the pins of the 

velocity sensor that is used to measure the velocity of the projectile. The velocity sensor consists of five pins, placed at an angle of ~110° to the 

impact direction. Rotation of the projectile is prevented by a key, attached to the projectile and sliding in a keyway in the gun barrel. The flyer plate 

and the target assembly are aligned for impact of parallel plates with an angle, 𝜃, between the normal direction to the impact plane and the direction 

of approach. Plane compressive and shear waves are generated at the impact face.  A thin specimen, sandwiched between two hard elastic plates 

(target plates), is loaded by the forward propagating plane waves emanating from the impact plane. Particle velocities at the free surface are measured 

using a combined normal and transverse displacement interferometer (NDI & TDI) (Kim et al., 1977).  Transverse displacements are measured 

interfering two beams diffracted symmetrically by a diffraction grating deposited on the free surface of the rear target plate. A diffraction grating 

with 625 lines/mm is used in this study.   

 

The t-X plot for a typical PSPI experiment with a sandwich configuration is shown in Fig. 2. The impact occurs at 

X=0 and t=0, where X refers to the Lagrangian coordinate along the thickness direction (as shown in Fig. 1) in a reference 
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configuration and t represents time. On impact, longitudinal and shear waves are sent through the front target plate and the 

flyer. Due to low acoustic impedance of the specimen, these waves reverberate through the specimen before the stress 

state rings-up to a uniform value. Note that the thickness of the front target plate is chosen so that the compressive stress 

in the specimen has rung-up to a uniform value before the arrival of the shear wave. Hence, the measurement of the shear 

strength of the specimen is made at a state of nominally constant normal stress. The time window of shear loading at a 

constant normal stress is cut short by the earliest arrival of the unloading wave from the free surface of the rear target 

plate or the unloading wave reflected from the rear face of the flyer, as shown in Fig. 1. On impact, cylindrical unloading 

waves are generated at the circumference of the plates due to traction-free boundary conditions. When these waves reach 

the point being monitored on the free surface of the rear target plate, displacements can no longer be interpreted as caused 

by one-dimensional plane waves. The record is discarded beyond this point. The thickness of the rear target plate and the 

flyer are chosen to maximize the shear window. Typically, a shear window of 0.75-1 𝜇𝑠 is achieved, which allows large 

shear strains of 1-10 for shear strain rates of 106-107 s-1.  

 

 
Fig. 2 A typical t-X plot for a PSPI experiment (Shot1 is depicted here. See Section 2.3 for details). Solid red lines represent the longitudinal wave 

characteristics and dashed green lines represents the shear wave characteristics. The dashed red line represents the transients reflected from the rear 

target/specimen interface. The horizontal black dotted dashed line represents the lateral release wave. The shear window in the scenario depicted here 

is limited by the lateral release wave. 

If the flyer and target plates respond elastically, velocities and tractions at the sample/rear target plate interface can 

be inferred from the free surface velocity measurements made on the rear target plate. For such a case, normal and shear 

stresses in the sample can be obtained using a characteristic analysis for one-dimensional elastic wave propagation.  The 

normal and shear stresses can be inferred from particle velocity measurements made at the free surface, as given through 

the following expressions:  

 

 
𝜎𝑠𝑝 = −

𝜌0𝑐𝐿𝑢𝑓𝑠

2
, 

𝜏𝑠𝑝 = −
𝜌0𝑐𝑆𝑣𝑓𝑠

2
. 

(2.1) 

 

Here, 𝜎 and 𝜏 represent normal and shear stresses respectively; 𝑢 and 𝑣 represent normal and transverse particle 

velocities; 𝑐𝐿 and 𝑐𝑆 are the longitudinal and shear wave speeds in the target and flyer material; and 𝜌0 is the initial 

density of the target plate and flyer material. The subscript ‘sp’ indicates specimen and ‘fs’ stands for free surface. After a 

sufficient number of reverberations, a nominally uniform state of stress is obtained through the thickness of the sample as 

given by: 𝜎𝑠𝑝 = −
𝜌0𝑐𝐿𝑢0

2
, where 𝑢0 = 𝑉0 cos (𝜃) and 𝑉0 is the impact velocity. However, the shear stress may not ring up 

to the peak value of  𝜏𝑠𝑝 = −
𝜌0𝑐𝑆𝑣0

2
 (where 𝑣0 = 𝑉0sin (𝜃)) if the sample deforms plastically in shear. Then, the velocity 

difference between the front and back of the specimen leads to a shear strain rate given as: 

 𝛾̇ =
𝑣0 − 𝑣𝑓𝑠

ℎ𝑠
, (2.2) 
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where ℎ𝑠 is the specimen thickness. The expression for the strain rate in equation (2.2) is valid only after the specimen has 

reached a state of constant shear stress. The shear strain-rate can then be integrated to yield the shear strain. In cases in 

which the anvil material does not respond elastically, its constitutive response needs to be characterized beyond the elastic 

limit and an inverse analysis used to infer velocities at the sample/rear target plate interface from the experimentally 

measured free surface velocities at the rear target plate. Such an inverse analysis has been provided by Clifton et al. 

(2020). 

 

The above analysis assumes an ideal condition of perfectly parallel impacting surfaces. However, there is always a 

finite amount of tilt between the flyer and the target plate. It is important to keep the tilt as low as possible, typically a 

value below 2 mrad is desired.  In order to achieve such low tilt angles, a high precision alignment technique was invented 

by Kumar and Clifton (1977). Alignment of the flyer to the sandwich consists of two steps: a coarse alignment step and a 

fine alignment step. In the coarse-alignment step, the flyer and the sandwich are brought in contact and the degrees of 

freedom of the sandwich adjusted to ensure no gaps and a complete overlap of the impacting surfaces. This is followed by 

a fine alignment step that uses a partially-mirrored, 90° precision-prism. The procedure is described in detail in Kumar and 

Clifton (1977). An alignment precision as small as 0.02 mrad is achieved using this method. In order to confirm if a shot 

is valid, the tilt is measured by  recording times of contact of the flyer with tilt pins lapped flush with the target impact 

surface (Klopp and Clifton, 1990).  

 

2.2 Specimen Preparation 

A uniform thin layer of crystalline sucrose is prepared on the front target plate by spin-coating a super-saturated 

solution of sucrose in de-ionised water. Pure sucrose from Sigma Aldrich is used rather than a commercial variety of 

sugar. An 80% w/w solution of sucrose in water is prepared and degassed. The solution is spin-coated on the substrate at 

4000 rpm. The substrate is placed on a hot plate at ~60 0C for ~12-16 hours until all water has evaporated, and the 

sucrose has crystallized. As shown in Fig. 3, it is important to stay above the metastability limit (in Zone III) for 

crystallization to occur. A moist environment and a rough substrate are found to favor grain nucleation and growth. Once 

the sucrose layer is prepared on the front target plate, the rear target plate is placed on top of the sucrose specimen and the 

sandwich is glued on the periphery of the sample/target plate interface with an epoxy while gently pressing with a small 

weight. During PSPI experiment, slip is prevented by the large compressive normal stress. 

 

 

 
Fig. 3 Sucrose concentration (% weight of solid) vs temperature (The data for the figure was taken from Shastry and Hartel (1996)). Zone I: Under-

saturated solution, Zone II: Meta-stable solution, Zone III: Labile solution, Zone IV: Amorphous state. Sucrose crystallization begins above the 

metastability limit. So, for a solution heated at 60°C, a starting solution concentration of 80% is chosen.  
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Fig. 4 (a) WC front target plate (diameter = 50 mm) with a 15 𝜇𝑚 thick uniform layer of sucrose spin-coated on top. (b), (c) Magnified views of a 

spot on the sample and (d) a stitched version of microscope images indicating sucrose grain boundaries.  

 

A sample obtained by following the above preparation process is shown in Fig. 4. The sample thickness is 

measured using a Dektak profilometer. A sucrose layer of 10-20 𝜇𝑚 in thickness can be obtained by this method, which 

facilitates large shear strain rates of the order of 106 s-1. Note that the specimens are not perfectly flat and have a surface 

roughness of the order of a micron. On cooling, cracks are observed on the sample, as shown in Fig. 4(b) and (c), due to a 

large mismatch between the coefficient of thermal expansion of the substrate and that of sucrose. However, the width of 

these cracks is extremely small as indicated by the scale bar and are not significant in the PSPI experiments. Fig. 4(d) 

depicts a polycrystalline layer of a sucrose specimen with a grain size of the order of a few microns. Another critical issue 

of interest is the crystallinity of the sucrose layer. To ensure that the sucrose layer prepared by the spin-coating method is 

crystalline, X-Ray Diffraction (XRD) studies are carried out on powdered crystalline sucrose and spin-coated sucrose 

layers (see Fig. 5). An overlap of XRD peaks of the spin-coated specimen and that of crystalline powdered sugar shows 

that the spin-coating method indeed yields a crystalline layer. Fig. 5(a) shows that XRD intensity peaks for different spin-

coated samples overlap, indicating consistency across different samples and different spots on the same sample. It is 

evident from Fig. 5(b) that the spin-coated sample shows most of the peaks corresponding to powdered sucrose although 

with lower relative intensities. So, it is reasonable to conclude that spin-coating gives a crystalline sample. 
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Fig. 5 (a) XRD intensity plot for spin-coated sucrose samples. XRD graphs of WC, spin-coated samples on WC and spin-coated samples on an 

amorphous glass substrate are compared to isolate intensity peaks corresponding to sucrose. (b) XRD intensity plot for WC, a spin-coated sucrose 

sample on a WC substrate and sucrose powder. The spin-coated sample shows most of the peaks displayed by the crystalline sucrose powder, albeit 

at a lower intensity. Graphs in (a) and (b) are shifted along the intensity axis for clarity. 
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2.3 Experimental Results 

A total of seven PSPI shots have been conducted on sucrose. A summary of the shots is provided in Table 1. D2 steel 

is used as the anvil material for the low normal stress (nominally 3 GPa) shots, while WC is used for the high normal 

stress (nominally 9.5 GPa) shots. Shear strain rates of the order of 106 s-1 are obtained as a result of using a small sample 

thickness of 10-20 𝜇𝑚.  

 
Table 1 Summary of PSPI shots on sucrose 

Shot No. 
Target 

Material 

𝒉𝑺  
(𝝁𝒎) 

𝒉𝑭  
(𝒎𝒎) 

𝒉𝑭𝑻  
(𝒎𝒎) 

𝒉𝑹𝑻  
(𝒎𝒎) 

𝜽 
𝑽𝟎 

(𝒎/𝒔) 
Tilt 

(mrad) 

𝝈𝒎𝒂𝒙 
(𝑮𝑷𝒂) 

𝝉𝒎𝒂𝒙 
(𝑮𝑷𝒂) 

𝜸̇ (𝒔−𝟏) 

Shot1 D2 Steel 12.05 6.915 2.978 6.511 18° 132.06 1.21 2.82 0.382 1.95x106 

Shot2 D2 Steel 12.63 6.94 2.951 6.522 18° 134 NA 2.9 0.442 1.7x106 

Shot3 D2 Steel 16.97 6.965 2.944 6.571 18° 133.46 1.02 2.93 0.404 1.55x106 

Shot4 WC 17.6 6.443 2.886 5.872 18° 187 0.5 9.1 0.460 2.9x106 

Shot5 WC 16.91 6.324 2.855 5.986 18° 194.5 0.8 9.75 0.288 3.1x106 

Shot6 WC 13.58 6.369 2.937 5.934 18° 191.9 0.37 9.64 0.580 3.98x106 

Shot7 WC 18.24 6.335 2.914 5.940 18° 188.52 0.97 9.47 0.530 2.95x106 

ℎ𝑆: sample thickness ℎ𝐹: flyer thickness, ℎ𝐹𝑇: front target plate thickness, ℎ𝑅𝑇: rear target plate thickness, 𝜃: angle of impact, 𝑉0: impact velocity, 𝜎𝑚𝑎𝑥: peak normal 

stress, 𝜏𝑚𝑎𝑥: peak shear stress, 𝛾̇: mean shear strain-rate 

 

Fig. 6 shows the normal stress profiles, and the shear stress profiles are plotted in Fig. 7. Saturation normal stresses of ~3 

GPa and ~9.5 GPa are nominally obtained for the low and high velocity shot categories. The normal stress profiles show 

an elastic precursor as indicated by the initial step. Following the elastic precursor, the normal stress profiles for the low-

pressure shots rise steeply to the plateau with a rise time of approximately 86 ns. For the high-pressure shots, the initial 

rise after the elastic precursor is steep but a bend is observed at a normal stress of ~6 GPa, which could be a result of the 

anvil material (WC) reaching its Hugoniot elastic limit (HEL). No steps corresponding to the ring-up of normal stress are 

observed despite the large acoustic impedance mismatch between the anvil material and sucrose because the sucrose 

layers are extremely thin. Instead, the normal stress rises steeply to the saturation value. 
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Fig. 6 Normal stress vs time profiles for all PSPI shots on sucrose. Solid lines show the high-pressure shots while dashed lines show the low-pressure 

shots. Low and high-pressure shots are laid on top of each other for a better comparison and to demonstrate the consistency of normal behavior 

across different shots. The arrival of the unloading wave is marked by a dot for each case. 

 

The shear behavior offers more interesting insights into the mechanical behavior of sucrose under high pressures 

and high shear strain-rates (>106 s-1). The shear stress rises to a peak value followed by pronounced strain softening. 

Under these loading conditions, sucrose loses its shearing resistance after accumulating a certain amount of shear strain. 

For the low-pressure case (Fig. 7 (a)), the shear stress profiles are quite repeatable. For the high-pressure case (Fig. 7 (b)), 

two shots (Shot4 and Shot7) show almost identical shear behavior. However, for Shot 5, the peak shear strength is much 

lower than the other shots and shows a complete loss in shear strength, the reason for which is not fully understood. It is 

possible that this particular specimen had pre-existing defects such as voids which collapse upon the arrival of the shear 

wave, leading to more damage than would be expected in a nominally homogeneous defect-free specimen, and hence 

leading to complete shear failure. The shear stress profile for Shot6 is not plotted since the data for that shot is very noisy 

due to the low signal to noise ratio of the transverse displacement interferometer (TDI). Overall, the high-pressure shots 

exhibit more variability in the shear stress data compared to the low-pressure shots. However, both cases show 

qualitatively similar behavior. Also note that as the transverse velocity reduces to a very small value after shear strain-

softening, the shear-stress profiles become noisy due to the low signal to noise ratio of the TDI signal thereafter. 
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Fig. 7 Shear stress vs time profiles for (a) low-pressure shots and (b) high-pressure shots on sucrose. Low and high-pressure shots are laid on top of 

each other for a better comparison and to demonstrate the consistency of shear behavior across different shots. The arrival of the longitudinal 

unloading wave occurs at times latter than depicted here for each case. Note that the high frequency oscillations at the end of the shear profiles are a 

result of low signal to noise ratio of the TDI signal. 

 

The dramatic drop in shear strength of sucrose can be attributed to a thermo-viscoplastic instability leading to 

localized shearing deformation and possibly melting in the sucrose sample. Such behavior is modeled using the 

constitutive model described in Section 3. A simple calculation of the amount of plastic work due to shear converted to 

heat (= ∫ 𝛽 𝜏𝑑𝛾) suggests a significant increase in temperature. Here ∫ 𝜏𝑑𝛾 is the amount of plastic work due to shearing 

deformation, and 𝛽 is the fraction of plastic work converted to heat. For example, assuming homogeneous deformation 

across the specimen in Shot4 and taking 𝛽 = 0.9 and ambient values of the specific heat (1244 𝐽/𝑘𝑔𝐾) and density of 

sucrose (1580.5 𝑘𝑔/𝑚3), a temperature increase of approximately 286℃ is expected. The thermal softening eventually 

overtakes the strain and strain-rate hardening, leading to localized deformation. Such localized failure through the 

formation of adiabatic shear bands has been observed in molecular solids such as RDX (Coffey and Sharma, 2001; 

Sharma et al., 1996; Sharma and Coffey, 1996). Sharma et al. (1996) and Sharma and Coffey (1996) used Atomic Force 

Microscopic (AFM) imaging to illustrate the lattice and molecular deformations in RDX resulting from drop-weight 

loading. AFM images of an RDX single crystal subject to an aquarium shock of 12.9 GPa magnitude by Sandusky et al., 

(1993) were shown in Coffey and Sharma (2001). AFM images of recovered samples showed that shear bands with 

widths of several tens of microns formed along crystal slip planes and extended for hundreds of microns. It was also 

shown that RDX melted locally within the shear bands, flowed out of the bands and solidified on the crystal surface. 

Molecular dynamics studies of shock-loaded HMX (Jaramillo et al., 2007) and RDX (Cawkwell et al., 2008) also showed 

the formation of nano-shear bands at 450 to the direction of impact. However, quantitative measurements of the peak shear 

stress at which shear bands formed were not made in any of the above studies.  

 

Peak shear stresses in sucrose exhibit some variability for a given normal stress. The variability is low for the low 

normal stress case. However, in general, the peak shearing resistance of sucrose seems to be very weakly dependent on 

normal stress, as shown in Fig. 8.  
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Fig. 8 Peak shear stress of sucrose vs normal stress at a nominally similar shear strain rate. The dashed line indicates a linear fit to the experimental 

data. The equation of the linear fit is displayed above the trendline. Note that substantial temperature increase is expected due to normal compression 

and therefore, the peak shear stress is expected to depend on temperature as well. Hence, the plot shows the coupled effect of normal stress and 

temperature rather than normal stress alone. 

 

Shear strain-rate curves are plotted for low and high-pressure shots on sucrose in Fig. 9 (a) and (b), respectively. 

Mean shear strain-rate values for the low-pressure shots lie in the ~1.5 × 106 − 2 × 106 𝑠−1 range while the mean shear 

strain-rates for high-pressure shots are slightly higher (~2.9 × 106 − 3.1 × 106 𝑠−1 ). The shear strain-rate values 

calculated here should be taken with caution as they assume that deformation in the specimen is homogeneous and the 

shear stress has equilibrated. Due to the extremely small thickness of the specimen, shear stress equilibrium can be 

attained fairly quickly. However, strain localization is suspected inside the specimen after the fall in shear strength. For 

such inhomogeneous deformations, the shear strain-rate plots shown here do not represent the actual strain-rate inside the 

specimen. So, the shear strain-rate and the consequent integrated shear strain values are only nominal proxies of actual 

values. Shear stress versus nominal shear strain behavior is plotted in Fig. 10. It can be observed that the shear stress 

begins to decrease around a nominal shear strain of ~0.2 for the low-pressure shots while the critical shear strain for high 

pressure shots is ~0.5, signalling the role of pressure in suppressing the onset of instability. 
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Fig. 9 Shear strain-rates for (a) low-pressure shots and (b) high-pressure shots. The mean shear strain-rate values for each shot are indicated by the 

light-colored dashed lines. 

 

 
Fig. 10 Shear stress vs nominal shear strain for (a) low-pressure shots and (b) high-pressure shots. 

 

This section presents an investigation of the shear strength of an energetic crystal simulant, i.e., sucrose, through 

PSPI experiments. A brief introduction to the PSPI experiments has been provided and methods for preparation of thin 

polycrystalline sucrose layers for PSPI experiments have been discussed in detail. PSPI experiments have been conducted 

at two different normal stresses of approximately 3 and 9.5 GPa and shear strain rates of the order of 106 s-1. Under such 

loading conditions, sucrose loses its shear strength dramatically after reaching a peak value. Such softening of the shear 

response of sucrose may be attributed to a thermo-viscoplastic localized instability, which is discussed in a subsequent 

section. In the next section, we formulate a constitutive model for sucrose which not only captures the experimental 

observations from this section but can also be extended to other experimental loading scenarios. 

 



 14 

3 Constitutive Model 

This section focuses on developing a thermodynamically consistent framework for finite deformation modeling of 

sucrose. In Section 3.1, a thermodynamic foundation is laid for constitutive modeling of a solid. This is followed by a 

description of an isotropic thermoelastic, thermo-viscoplastic material model in Section 3.2. An isotropic model for 

sucrose is presented for two main reasons, apart from its simplicity: (a) a lack of characterization data for the anisotropic 

elastic constants of sucrose and (b) the use of polycrystalline samples in the PSPI experiments. The logarithmic strain is 

employed in the constitutive model for the thermoelastic response because the consequent Cauchy stress additively 

decomposes into volumetric and deviatoric parts even at finite strains, which is not possible when using the Green-

Lagrange strain tensor (Barton et al., 2009; Becker, 2004). Such a decomposition makes it easier to handle the volumetric 

and deviatoric responses separately and to incorporate a complete equation of state into the framework. Since energetic 

crystals and their simulants are routinely subject to shock conditions, it is imperative to develop a material model that is 

able to faithfully represent the mechanical and thermal behavior under these conditions. As a result, a complete Mie-

Gruneisen equation of state, with a temperature-dependent specific heat capacity, is derived and implemented in Section 

3.3, laying the foundation for modeling the temperature-coupled elastic behavior under large pressures. In Section 3.1.6, it 

is shown that the temperature evolution equation involves two important terms, i.e., a rate of thermo-elastic heating and a 

rate of plastic dissipation, apart from thermal conduction, and in Section 3.4, an analytic expression for thermo-elastic 

heating is derived. Based on the complete equation of state, analytic expressions for different types of loading, namely, 

isentropic, isothermal and shock loading, are derived without strength considerations in Sections 3.5, 3.6 and 3.7, 

respectively and compared in Section 3.8. The complete Mie-Gruneisen equation of state uses an isothermal 3rd-order 

logarithmic equation of state as its reference curve. Appendix A presents a derivation for the 3rd-order equation of state 

using the logarithmic strain, consistent with our constitutive modeling approach (Note that the logarithmic equation of 

state was first derived by Poirier and Tarantola (1998)). Using logarithmic strains also has advantages at high pressures 

since a constitutive model based on logarithmic strains requires a smaller number of material constants to fit the 

experimental data (Anand, 1986, 1979; Clayton, 2014; Poirier and Tarantola, 1998). Note that the constitutive model for 

sucrose utilizes several material constants, not all of which are experimentally validated through PSPI experiments. 

Therefore, it is important to justify their choice based on experimental and theoretical observations of other researchers. 

The choice of material constants is discussed in detail in Appendix B. 

 

In addition to the above, it must be noted that molecular crystals such as RDX, HMX and sucrose undergo 

complicated transformations, such as phase change and chemical decomposition under extreme environments. Adequate 

representation of such complex behaviors requires the consideration of additional physics and appropriate multi-phase 

models, which are not the focus of present work.   

 

3.1 Thermodynamics of a Solid 

3.1.1 Kinematics 
Consider a body occupying a region of space ℬ0 in the reference/undeformed configuration. The body is then 

subjected to a motion 𝒙 = 𝝌(𝑿, 𝑡) so that it occupies a region of space ℬ𝑡 at time 𝑡 in the spatial/deformed configuration. 

The deformation gradient is then given by 𝑭 = 𝛁𝝌 with 𝐽 = 𝑑𝑒𝑡(𝑭) > 0, where 𝛁 denotes the gradient with respect to the 

material coordinate 𝐗 in the undeformed body. We assume that the deformation gradient 𝑭 is multiplicatively decomposed 

into elastic and plastic parts, 𝑭𝑒 and 𝑭𝑝, respectively (commonly referred to as the Kröner decomposition): 𝑭 = 𝑭𝑒𝑭𝑝. It 

is assumed that 𝐽𝑒 ≡ 𝑑𝑒𝑡(𝑭𝑒) > 0 and that the plastic deformation is incompressible, i.e., 𝐽𝑝 ≡ 𝑑𝑒𝑡(𝑭𝑝) = 1, so that only 

the elastic deformation leads to a change in volume, i.e., 𝐽𝑒 = 𝐽. The right polar decomposition of 𝑭𝑒 is given as 𝑭𝑒 =
𝑹𝑒𝑼𝑒, where 𝑹𝑒 is the elastic rotation tensor and 𝑼𝒆 is a symmetric positive-definite tensor, called the elastic right stretch 

tensor. The spatial velocity gradient 𝑳 defined as: 𝑳 ≡ 𝒈𝒓𝒂𝒅 𝒗 = 𝑭̇𝑭−1, where 𝒈𝒓𝒂𝒅 represents the gradient with respect 

to the spatial coordinate 𝒙 in the deformed body. Using the Kroner decomposition of deformation, the velocity gradient 

can be decomposed as: 𝑳 = 𝑭̇𝑒𝑭𝑒−1 + 𝑭𝑒𝑭̇𝑝𝑭𝑝−1𝑭𝑒−1 = 𝑳𝑒 + 𝑭𝑒𝑳𝑝𝑭𝑒−1, with 𝑳𝑒 = 𝑭𝑒̇𝑭𝑒−1  and 𝑳𝑝 = 𝑭𝑝̇𝑭𝑝−1. The 

elastic and plastic rate of stretching and spin tensors are defined as: 

 

𝑫𝑒 ≡ 𝑠𝑦𝑚(𝑳𝑒), 
𝑾𝑒 ≡ 𝑠𝑘𝑤(𝑳𝑒), 
𝑫𝑝 ≡ 𝑠𝑦𝑚(𝑳𝑝), 
𝑾𝑝 ≡ 𝑠𝑘𝑤(𝑳𝑝). 

(3.1) 

It is assumed that plastic flow is irrotational, i.e., 𝑾𝑝 = 𝟎, so that 𝑳𝑝 = 𝑫𝑝.  
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3.1.2 First Law of Thermodynamics 
The first law of thermodynamics states that the change in internal energy of an isolated system is equal to the 

work done on the system plus the heat added to the system. In the reference configuration, the local form of the first law is 

written as (Gurtin et al., 2010): 

 𝑒𝑅̇ = 𝑻0: 𝑭̇ − 𝐷𝑖𝑣 (𝒒𝑅) + 𝑟𝑅 , (3.2) 

where 𝑒𝑅 is the internal energy per unit reference volume, 𝒒𝑅 is the referential heat flux vector and 𝑟𝑅 is the heat supply 

per unit reference volume. Throughout, we use the subscript ‘R’ to denote referential quantities. The tensor 𝑻𝟎 is the 

unsymmetric 1st Piola-Kirchhoff stress tensor, and  𝑻0: 𝑭̇ is the stress power per unit reference volume. The stress power 

can also be expressed in terms of the symmetric Cauchy stress tensor, 𝑻 = 𝐽−1𝑻0𝑭
𝑇, as: 𝑻0: 𝑭̇ = 𝐽𝑻: 𝑳. Hence, the first 

law can be re-written as: 

 𝑒𝑅̇ = 𝐽𝑻: 𝑳 − 𝐷𝑖𝑣 (𝒒𝑅) + 𝑟𝑅 . (3.3) 

 

3.1.3 Second Law of Thermodynamics 
The second law of thermodynamics states that the net entropy production of an isolated system is non-negative. 

The local form of the second law in the reference configuration is written as (Gurtin et al., 2010): 

 𝛿R = 𝜂̇𝑅 + 𝐷𝑖𝑣 (
𝒒𝑅
𝜃
) −

𝑟𝑅
𝜃
≥ 0, (3.4) 

where 𝜂𝑅 is the entropy per unit reference volume, δ𝑅 is the entropy production rate per unit reference volume, and 𝜃 is 

the absolute temperature.  

 

 

3.1.4 Free-energy Imbalance 
The Helmholtz free energy is related to the energy and entropy through 𝜓𝑅 = 𝑒𝑅 − 𝜂𝑅𝜃, where 𝜓𝑅 is the 

Helmholtz free energy per unit reference volume. Hence, the rate of change of free energy can be written as 𝜓𝑅̇ = 𝑒𝑅̇ −

𝜂𝑅̇𝜃 − 𝜂𝑅𝜃̇. Combining with equation (3.3) and 𝜂𝑅̇ from equation (3.4), we obtain the local free-energy imbalance 

inequality: 

 𝜓𝑅̇ + 𝜂𝑅𝜃̇ − 𝐽𝑻: 𝑳 +
1

𝜃
𝒒𝑅 ∙ 𝛁θ = −𝜃𝛿𝑅 ≤ 0. (3.5) 

The quantity 𝜃δ𝑅 represents dissipation rate per unit reference volume, and the free-energy imbalance requires that the 

dissipation rate is non-negative. 

 

Next, consider the stress power term 𝐽𝑻: 𝑳, which can be decomposed into elastic and plastic terms: 

 𝐽𝑻: 𝑳 = 𝐽𝑻: 𝑳𝑒 + 𝐽𝑻:𝑭𝑒𝑳𝑝𝑭𝑒−1 = 𝐽𝑻:𝑫𝑒 + 𝐽𝑭𝑒𝑇𝑻𝑭𝑒−𝑇: 𝑳𝑝 (3.6) 

Noting that 𝑫𝑒 can be expressed as 𝑫𝑒 =
1

2
𝑭𝑒

−𝑇
𝑪𝑒̇𝑭𝑒

−1
, where 𝑪𝑒 = 𝑭𝑒

𝑇
𝑭𝑒 is the right Cauchy-Green tensor, the stress 

power may be written as 𝐽𝑻: 𝑳 = (𝐽𝑭𝑒
−1𝑻𝑭𝑒−𝑇):

𝑪𝑒

2

̇
+ (𝐽𝑭𝑒

𝑇𝑻𝑭𝑒−𝑇): 𝑳𝑝. Two additional stress measures are defined as: 

 𝑻𝑒 = 𝐽𝑭𝑒−1𝑻𝑭𝑒−𝑇 , (3.7) 

 𝑴𝑒 = 𝐽𝑭𝑒𝑇𝑻𝑭𝑒−𝑇 = 𝑪𝑒𝑻𝑒 , (3.8) 

where 𝑻𝑒 is the symmetric elastic 2nd Piola-Kirchhoff stress, and 𝑴𝑒 is the Mandel stress. Hence, the stress power can be 

re-written as: 

 𝐽𝑻: 𝑳 = 𝑻𝑒:
𝑪𝑒̇

2
+𝑴𝑒: 𝑳𝑝. (3.9) 

Re-writing the first law from equation (3.3) in terms of the stress measures introduced above, we have: 

 𝑒𝑅̇ = 𝑻
𝑒:
𝑪𝑒̇

2
+𝑴𝑒: 𝑳𝑝 −𝐷𝑖𝑣 (𝒒𝑅) + 𝑟𝑅 . (3.10) 

 

3.1.5 Thermoelastic Constitutive Equations and Thermodynamic Restrictions 
The constitutive laws for 𝜓𝑅, 𝜂𝑅 and 𝑻𝑒 are assumed to be functions of the same set of variables (𝑪𝑒 , 𝜃, 𝛁𝜃, 𝝃) 

where 𝝃 represents the list of internal state variables: 
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𝜓𝑅 = 𝜓̂𝑅(𝑪
𝑒 , 𝜃, 𝛁𝜃, 𝝃), 

𝜂𝑅 = 𝜂̂𝑅(𝑪
𝑒 , 𝜃, 𝛁𝜃, 𝝃), 

𝑻𝑒 = 𝑻𝑒̂(𝑪𝑒 , 𝜃, 𝛁𝜃, 𝝃). 

(3.11) 

The constitutive equation for the internal energy follows as 𝑒𝑅 = 𝑒̂𝑅(𝑪
𝒆, 𝜃, 𝛁𝜃, 𝝃) = 𝜓̂𝑅(𝑪

𝒆, 𝜃, 𝛁𝜃, 𝝃) + 𝜂̂𝑅(𝑪
𝒆, 𝜃, 𝛁𝜃, 𝝃)𝜃. 

Taking the time derivative of the free energy, one obtains 

 𝜓𝑅̇ =
𝜕𝜓̂𝑅
𝜕𝑪𝑒

: 𝑪𝑒̇ +
𝜕𝜓̂𝑅
𝜕𝜃

𝜃̇ +
𝜕𝜓̂𝑅
𝜕𝛁𝜃

∙ 𝛁𝜃̅̅ ̅̇̅ +
𝜕𝜓̂𝑅
𝜕𝝃

∗ 𝝃̇, (3.12) 

where ‘∗’ denotes the appropriate scalar product considering the order of 𝝃. Using equation (3.5), the rate of change of the 

free energy can also be written as: 

 𝜓𝑅̇ = 𝑻
𝑒:
𝑪𝑒̇

2
+𝑴𝑒: 𝑳𝑝 − 𝜂𝑅𝜃̇ −

1

𝜃
𝒒𝑅 ∙ 𝛁𝜃 − 𝜃𝛿𝑅 . (3.13) 

From equations (3.12) and (3.13),  

 (
𝜕𝜓̂𝑅
𝜕𝑪𝑒

−
1

2
𝑻𝑒) : 𝑪𝑒̇ + (

𝜕𝜓̂𝑅
𝜕𝜃

+ 𝜂𝑅) 𝜃̇ +
𝜕𝜓̂𝑅
𝜕𝛁𝜃

∙ 𝛁𝜃̅̅ ̅̇̅ + (
𝜕𝜓̂𝑅
𝜕𝝃

∗ 𝝃̇ +
1

𝜃
𝒒𝑅 ∙ 𝛁𝜃 −𝑴

𝑒: 𝑳𝑝 + 𝜃𝛿R) = 0. (3.14) 

Following the Coleman-Noll procedure, one can deduce the following state relations for stress and entropy: 

 𝑻𝑒 = 2
𝜕𝜓̂𝑅
𝜕𝑪𝑒

, (3.15) 

 𝜂𝑅 = −
𝜕𝜓̂𝑅
𝜕𝜃

, (3.16) 

 
𝜕𝜓̂𝑅
𝜕𝛁𝜃

= 𝟎. (3.17) 

From equation (3.17), it can be inferred that the free energy and hence the stress, entropy and internal energy are 

independent of the temperature gradient. In view of the above relations, the second law reduces to the following reduced 

dissipation inequality: 

 
𝜕𝜓̂𝑅
𝜕𝝃

∗ 𝝃̇ +
1

𝜃
𝒒𝑅 ∙  𝛁𝜃 −𝑴

𝒆: 𝑳𝒑 = −𝜃𝛿R ≤ 0. (3.18) 

 

3.1.6 Temperature Evolution Equation 
In this section, a partial differential equation that dictates the evolution of temperature during a thermally-coupled 

mechanical deformation is derived. Consider the time derivative of the internal energy and use the thermodynamic 

relations derived in equations (3.15) and (3.16):  

 𝑒̇𝑅 = 𝜓̇𝑅 + 𝜃𝜂̇𝑅 + 𝜃̇𝜂𝑅 =
𝑻𝑒

2
: 𝑪𝑒̇ −

𝜃

2

𝜕𝑻𝑒

𝜕𝜃
: 𝑪̇𝑒 + (

𝜕𝜓̂𝑅
𝜕𝝃

− 𝜃
𝜕2𝜓̂𝑅
𝜕𝝃𝜕𝜃

) ∗ 𝝃̇ − 𝜃
𝜕2𝜓̂𝑅
𝜕𝜃2

𝜃̇. (3.19) 

Substituting 𝑒̇𝑅 from the first law (equation (3.10)) and rearranging terms, one obtains 

 
−𝐷𝑖𝑣 (𝒒𝑅) + 𝑟𝑅 + (

𝜃

2

𝜕𝑻𝑒

𝜕𝜃
: 𝑪̇𝑒)

⏟        
𝑞̇𝑅
𝑒

+ [𝑴𝑒: 𝑳𝑝 − (
𝜕𝜓̂𝑅
𝜕𝝃

− 𝜃
𝜕2𝜓̂𝑅
𝜕𝝃𝜕𝜃

) ∗ 𝝃̇]
⏟                    

𝑞̇𝑅
𝑝

= −𝜃
𝜕2𝜓̂𝑅
𝜕𝜃2

𝜃̇
⏟      

𝑐𝑅𝜃̇

, 
(3.20) 

where 𝑞̇𝑅
𝑒  is referential rate of heating due to thermo-elasticity, 𝑞̇𝑅

𝑝
 represents the referential rate of inelastic heating and 𝑐𝑅 

is the referential heat capacity, defined at constant strain and constant internal variables. More specifically, 𝑐𝑅 is the 

specific heat capacity 𝑐 multiplied by the referential mass density 𝜌0, i.e., 𝑐𝑅 = 𝜌0𝑐. Equation (3.20) is the evolution 

equation for temperature. The first term in the expression for 𝑞̇𝑅
𝑝

, i.e., 𝑴𝑒: 𝑳𝑝, represents the rate of plastic work, while the 

remainder of 𝑞̇𝑅
𝑝
 represents the rate of change of internal energy of cold work ((

𝜕𝜓̂𝑅

𝜕𝝃
− 𝜃

𝜕2𝜓̂𝑅

𝜕𝝃𝜕𝜃
) ∗ 𝝃̇) (Rosakis et al., 2000). 

Following Rosakis et al. (2000) and Gurtin et al. (2010), the Taylor-Quinney parameter 𝛽 is defined as follows which 

quantifies the fraction of plastic power converted to heat: 
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𝛽 =

𝑞̇𝑅
𝑝

𝑴𝑒: 𝑳𝑝
. (3.21) 

In general, 𝛽 is dependent on the evolution of internal variables that describe the density of defects such as dislocations. 

Experiments on metals by Hodowany et al. (2000) showed that 𝛽 increases with increasing plastic strain and becomes 

constant after a saturation is achieved in the dislocation density. However, due to the difficulty of experimentally 

characterizing 𝛽, a constant value is typically assumed in the literature, which is the approach adopted here.  

 

The thermoelastic term in equation (3.20) can be written in a more convenient form using the referential 

Gruneisen tensor 𝚪R as follows (Gurtin et al., 2010): 

 𝚪R = −
1

𝑐𝑅
(
𝜕𝑻𝑒

𝜕𝜃
). (3.22) 

Substituting equations (3.21) and (3.22) into equation (3.20), one obtains 

 −𝐷𝑖𝑣 (𝒒𝑅) + 𝑟𝑅 −
𝑐𝑅𝜃

2
𝚪R: 𝑪̇

𝑒 + 𝛽𝑴𝑒: 𝑳𝑝 = 𝑐𝑅𝜃̇. (3.23) 

 

3.1.7 Dissipative Constitutive Equations 
Assuming plastic irrotationality, we have 𝑳𝑝 = 𝑫𝑝. Using a co-directional flow rule, the plastic stretch-rate 𝑫𝑝 

can be written as: 

 𝑫𝑝 =
3

2
 𝜖̅̇𝑝

𝑴0
𝑒

𝜎̅
, (3.24) 

where 𝑴0
𝑒 is the deviatoric portion of Mandel stress, 𝜖̅̇𝑝 (= √

2

3
|𝑫𝑝|) is the effective plastic strain rate  

 and  𝜎̅ (= √
3

2
 |𝑴0

𝑒|) is the effective stress. Hence, the rate of plastic work can be simplified as: 𝑴𝑒: 𝑳𝑝 = 𝑴𝑒: 𝑫𝑝 =

𝜎̅𝜖̅̇𝑝.  

 

Under the assumption of isotropy, the spatial heat flux vector 𝒒 = 𝐽−1𝑭𝒒𝑅 and the spatial temperature gradient 

𝑔𝑟𝑎𝑑𝜃 = 𝑭−𝑇𝜵𝜃 are related through Fourier’s Law of Heat Conduction, i.e., 𝒒 = −𝑘 𝑔𝑟𝑎𝑑𝜃, where 𝑘 is the thermal 

conductivity. In order to express the temperature evolution equation (3.23) spatially, the thermoelastic heat generation in 

the deformed configuration can be expressed through the spatial Gruneisen tensor, as defined below using equation (3.7): 

 𝚪 = 𝑭𝑒𝚪R𝑭
𝑒𝑇 = 𝑭𝑒 (−

𝑣0
𝑐

𝜕𝑻𝑒

𝜕𝜃
)𝑭𝑒

𝑇 = −
𝐽𝑣0
𝑐

𝜕(𝐽−1𝑭𝑒𝑻𝑒𝑭𝑒
𝑇
)

𝜕𝜃
= −

𝑣

𝑐
(
𝜕𝑻

𝜕𝜃
). (3.25) 

where 𝑣0 = 1/𝜌0 is the referential specific volume, 𝑣 = 𝐽𝑣0 is the spatial specific volume and 𝑐 = 𝑣0𝑐𝑅 is the specific 

heat capacity at constant strain and constant internal variables with units of J/kg K. Finally, the temperature evolution 

equation can be written in the spatial form as: 

  
𝑑𝑖𝑣 (𝑘 𝑔𝑟𝑎𝑑𝜃) + 𝑟−𝜌𝑐𝜃𝚪:𝑫𝑒⏟      

𝑞̇𝑒

+
𝛽

𝐽
𝜎̅𝜖̅̇𝑝

⏟  
𝑞̇𝑝

= 𝜌𝑐𝜃̇. 
(3.26) 

where 𝑟 = 𝐽−1𝑟𝑅 is the heat supply per unit deformed volume, 𝜌 = 𝐽−1𝜌0 is the spatial mass density, 𝑞̇𝑒 = 𝐽−1𝑞̇𝑅
𝑒  is the 

spatial rate of thermoelastic heating and 𝑞̇𝑝 = 𝐽−1𝑞̇𝑅
𝑝

 is the spatial rate of inelastic heating. The operator 𝑑𝑖𝑣 represents the 

divergence in the deformed configuration. In general, the thermal conductivity is dependent on temperature. However, we 

neglect the dependence of thermal conductivity on temperature. 

 

3.2 Specialized Constitutive Equations 

3.2.1 Free Energy 
The constitutive equation for the free energy is taken to depend on the logarithmic elastic strain in the 

intermediate configuration, which is defined as follows in terms of the right stretch tensor, 𝑼𝑒: 

 𝑬𝑒 ≡ 𝑙𝑛(𝑼𝒆). (3.27) 

The logarithmic strain is used because it facilitates an additive decoupling of the volumetric and deviatoric strains, which 

is not possible with the Green-Lagrange strain. Furthermore, with the use of an appropriate invariant basis, the consequent 



 18 

stress terms can also be decomposed into pressure and deviatoric response terms, as demonstrated by Criscione et al. 

(2000). Such a decomposition is helpful in the direct incorporation of a complete equation of state, which is typically 

measured through a separate set of experiments. Moreover, elastic constitutive equations using the logarithmic strains 

typically require fewer higher order parameters to fit experimental data under moderate and high pressures (Clayton, 

2014; Poirier and Tarantola, 1998). 

 

The elastic response of sucrose is defined though the free energy per unit reference volume 𝜓𝑅. In general, 𝜓𝑅 is a 

function of the elastic right Cauchy-Green tensor 𝑪𝑒 and temperature 𝜃, but idealizing sucrose as an isotropic material, the 

free energy can be represented in terms of the three elastic principal stretches (𝜓𝑅 = 𝜓̃𝑅(𝜆1
𝑒 , 𝜆2

𝑒 , 𝜆3
𝑒 , 𝜃)) or the three 

principal invariants of 𝑪𝑒, (𝜓𝑅 = 𝜓̃𝑅(𝐼1, 𝐼2, 𝐼3, 𝜃)) where 𝐼1 = 𝑡𝑟𝑪
𝑒, 𝐼2 =

1

2
[(𝑡𝑟𝑪𝑒)2 + 𝑡𝑟𝑪𝑒

2
] and 𝐼3 = det 𝑪

𝑒 = 𝐽𝑒2. 

Due to the insufficient experimental information on defects in molecular solids such as sucrose, for simplicity, the 

dependence of the free energy on internal variables is not considered. With a free energy based on the principal invariants 

(𝐼1, 𝐼2, 𝐼3), it is not possible to isolate the effect of each invariant in the consequent constitutive equation for the stress due 

to the non-orthogonality of different stress response terms, i.e., 
𝜕𝐼𝑖

𝜕𝑪𝒆
:
𝜕𝐼𝑗

𝜕𝑪𝒆
≠ 0 for 𝑖, 𝑗 = 1,2,3 and 𝑖 ≠ 𝑗.  Therefore, the free 

energy density is written in terms of a set of logarithmic strain invariants (𝐾1, 𝐾2, 𝐾3), as proposed by Criscione et al. 

(2000). With each of these invariants, one can associate specific aspects of deformation and isolate the effect of each. The 

first invariant, 𝐾1(= 𝑡𝑟(𝑬
𝑒) = ln(𝐽𝑒)), represents the volume change, where the superscript ‘e’ indicates elastic. The 

second invariant, 𝐾2 (= |𝑬0
𝑒|), represents the magnitude of the distortional response of the material under constant 

volume, where subscript ‘0’ indicates the deviatoric part of a tensor. Since 𝑬𝑒 =
𝐾1

3
𝑰 + 𝑬0

𝑒, a tensorial direction can be 

associated with this deviatoric strain invariant: 𝑵 =
𝜕𝐾2

𝜕𝑬𝑒
=

𝑬0
𝑒

|𝑬0
𝑒|

, where 𝑵 is a unit tensor. Hence, the strain can be written 

as 𝑬𝑒 =
𝐾1

3
𝑰 + 𝐾2𝑵. The third invariant 𝐾3 (= 3√6det(𝑵)) represents the mode of distortion.  Note that 𝐾1 > 0 for 

dilatation and 𝐾1 < 0 under compression. The magnitude of distortion is always positive, 𝐾2 ≥ 0, whereas 𝐾3 is confined 

to the range −1 ≤ 𝐾3 ≤ 1. We have that 𝐾3 = 1 in simple tension, 𝐾3 = −1 in simple compression and 𝐾3 = 0 in simple 

shear. 

 

Let 𝜓̃𝑅(𝐾1, 𝐾2, 𝐾3, 𝜃) be the free energy density. It can be shown that, for an isotropic material, the Mandel stress 

and the logarithmic strain in the intermediate configuration are work conjugates. Hence, 

 𝑴𝑒 =
𝜕𝜓̃𝑅
𝜕𝑬𝑒

= (
𝜕𝜓̃𝑅
𝜕𝐾1

𝜕𝐾1
𝜕𝑬𝑒

+
𝜕𝜓̃𝑅
𝜕𝐾2

𝜕𝐾2
𝜕𝑬𝑒

+
𝜕𝜓̃𝑅
𝜕𝐾3

 
𝜕𝐾3
𝜕𝑬𝑒

) = (
𝜕𝜓̃𝑅
𝜕𝐾1

𝑰 +
𝜕𝜓̃𝑅
𝜕𝐾2

𝑵+
𝜕𝜓̃𝑅
𝜕𝐾3

𝒀), (3.28) 

where 𝒀 = 3√6𝑵𝟐 − √6𝑰 − 3𝐾3𝑵. Since, for an isotropic material, the tensors, 𝑪𝑒 and 𝑻𝑒 are coaxial, i.e., have the same 

principal directions, the Cauchy stress can be found using the definition of Mandel stress in equation (3.8): 

 𝑻 =
1

𝐽
𝑹𝑒𝑴𝑒𝑹𝑒𝑇 =

1

𝐽
(
𝜕𝜓̃𝑅
𝜕𝐾1

𝑰 +
𝜕𝜓̃𝑅
𝜕𝐾2

𝑵′ +
𝜕𝜓̃𝑅
𝜕𝐾3

𝒀′), (3.29) 

where 𝑵′ = 𝑹𝑒𝑵𝑹𝑒𝑇 and 𝒀′ = 𝑹𝑒𝒀𝑹𝑒𝑇. Note that 𝑵′: 𝑰 = 𝟎, 𝒀′: 𝑰 = 𝟎 and 𝑵′: 𝒀′ = 𝟎, i.e., the Cauchy stress is composed 

of three mutually orthogonal terms, and each term is dependent on a derivative of a different strain invariant. This is 

enabled by using the logarithmic strain measure and an appropriate set of invariants for the logarithmic strain. So, it is 

possible to isolate the three response terms by contracting with 𝑰, 𝑵′ and 𝒀′. Specifically, the first term in (3.29) 

corresponds to the pressure term: 

 
𝑻: 𝑰

3
= −𝑃 =

1

𝐽

𝜕𝜓̃𝑅
𝜕𝐾1

, (3.30) 

while the other two terms sum to give the deviatoric stress. Therefore, the pressure term can be isolated from the 

deviatoric response, while retaining its dependence on all three invariants and temperature, i.e., 𝑃(𝐾1, 𝐾2, 𝐾3, 𝜃).  
  

Furthermore, the free energy density, 𝜓̃𝑅(𝐾1, 𝐾2, 𝐾3, 𝜃) can, in general, be decomposed additively into three parts: 

(a) a purely volumetric term, 𝑓1(𝐾1, 𝜃),  (b) a purely distortional term, 𝑓2(𝐾2, 𝐾3, 𝜃) and (c) a coupled 

volumetric/distortional term, 𝑓3(𝐾1, 𝜃)𝑓4(𝐾2, 𝐾3, 𝜃),  where the temperature dependence is retained in each portion of the 

free energy density: 

 𝜓̃𝑅(𝐾1, 𝐾2, 𝐾3, 𝜃) = 𝑓1(𝐾1, 𝜃) + 𝑓2(𝐾2, 𝐾3, 𝜃) + 𝑓3(𝐾1, 𝜃)𝑓4(𝐾2, 𝐾3, 𝜃). (3.31) 
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Such a general form for free energy density has been used by Landauer et al. (2019) to capture the isothermal nonlinear 

response of elastomeric foams. For the purpose of modeling sucrose, we consider a specific form of equation (3.31) for 

free energy that neglects the dependence on 𝐾3: 

 𝜓̃𝑅(𝐾1, 𝐾2, 𝐾3, 𝜃) = 𝑓1(𝐾1, 𝜃) + 𝐺(𝐾1, 𝜃)𝐾2
2, (3.32) 

where 𝐺(𝐾1, 𝜃) is the temperature and volumetric strain-dependent shear modulus. The first term in the free-energy 

expression leads to the pressure through 𝑃(𝐾1, 𝜃) = −
1

𝐽

𝜕𝑓1

𝜕𝐾1
−
1

𝐽

𝜕𝐺

𝜕𝐾1
𝐾2
2. The pressure is found through a complete 

equation of state as described in Section 3.3. For the range of pressures considered in this investigation, the contribution 

of the shear-induced pressure (−
1

𝐽

𝜕𝐺

𝜕𝐾1
𝐾2
2) is much smaller than the first term (−

1

𝐽

𝜕𝑓1

𝜕𝐾1
) due to small elastic distortional 

strains (which are limited by the shear strength of the material) and can therefore be neglected for simplicity. The Mandel 

stress and the Cauchy stress for such a free energy density function can then be calculated as: 

 𝑴𝑒(𝐾1, 𝐾2, 𝜃) = −𝑃(𝐾1, 𝜃)𝐽𝑰 + 2𝐺(𝐾1, 𝜃)𝐾2𝑵, (3.33) 

 𝑻(𝐾1, 𝐾2, 𝜃) = −𝑃(𝐾1, 𝜃)𝑰 +
2

𝐽
𝐺(𝐾1, 𝜃)𝐾2𝑵

′. (3.34) 

 Some of the commonly used functional forms of the shear modulus are further discussed in Section 4.3.3. 

However, the shear modulus for sucrose has not been experimentally measured as a function of volume and/or 

temperature. So, in this study, a constant value of the shear modulus is assumed, i.e., 𝐺(𝐾1, 𝜃) = 𝐺0.  

 

3.2.2 Flow Rule 

Since 𝑳𝑝 = 𝑫𝑝 and 𝑳𝑝 = 𝑭𝑝̇𝑭𝑝−1, the evolution of the plastic distortion 𝑭𝑝 is given through the relation: 𝑭̇𝑝 =

𝑫𝑝𝑭𝑝. The plastic stretch rate 𝑫𝑝 is given through a codirectional flow rule, 𝑫𝑝 =
3

2
 𝜖 ̅̇𝑝

𝑴0
𝑒

𝜎̅
 (equation (3.24)), and the 

effective plastic strain-rate and the effective stress are related through a strain-rate and temperature-dependent constitutive 

law. The Johnson-Cook model (Johnson and Cook, 1985) is used here: 

 𝜎̅ = [𝐴 + 𝐵(𝜖̅𝑝)𝑛] [1 + 𝐶 ln(
𝜖̅̇𝑝

𝜖̅0̇
)] (1 − 𝜃𝑚), (3.35) 

where 𝜖̅𝑝(𝑡) = ∫ 𝜖̅̇𝑝(𝜁)𝑑𝜁
𝑡

0
 is the accumulated effective plastic strain, (𝐴, 𝐵, 𝑛, 𝐶, 𝜖̅0̇,𝑚) are material parameters, 

𝜃 (=
𝜃−𝜃𝑟𝑒𝑓

𝜃𝑚(𝑃)−𝜃𝑟𝑒𝑓
) is a function of temperature 𝜃 and pressure 𝑃, 𝜃𝑟𝑒𝑓 is the reference temperature (usually taken to be 

room temperature) and 𝜃𝑚 is the melt temperature. The parameter 𝐴 is the yield strength of the material at the reference 

strain-rate 𝜖̅0̇ and the reference temperature 𝜃𝑟𝑒𝑓. The parameters 𝐵 and 𝑛 depict the effect of strain-hardening where 𝐵 is 

the work hardening modulus and 𝑛 is the work-hardening exponent. The parameter 𝐶 is the strain-rate-sentivity 

coefficient while 𝑚 is the thermal softening exponent. Since high pressures are applied in our experiments, and 

temperatures are expected to go beyond melting, the dependence of the melting temperature on pressure is taken into 

account. Moreover, the melting point of large organic molecules, such as sucrose and HMX is expected to be highly 

pressure-dependent (Kroonblawd and Austin, 2021; Menikoff and Sewell, 2002). Numerical simulations of the 

deformation of energetic crystals widely use the Lindemann Law of melting or its linearized version, called the Kraut-

Kennedy relation. However, molecular dynamics simulations on HMX (Kroonblawd and Austin, 2021) indicate that the 

Lindemann Law grossly underestimates the melting point as a function of temperature. An alternative empirical form 

obtained by Simon and Glatzel (1929) is therefore used: 

 𝜃𝑚 = 𝜃𝑚0 (1 +
𝑃 − 𝑃𝑟𝑒𝑓

𝑃𝑖
)
1/𝑑

, (3.36) 

where (𝑃𝑟𝑒𝑓 , 𝑃𝑖 , 𝑑) are fitting parameters, and 𝜃𝑚0 is the melt temperature at the reference pressure 𝑃𝑟𝑒𝑓. The 

consequences of the choice for the form of the melt curve are discussed in section 4.3.2. 

 

 To obtain a general, complete continuum model, two more issues should be addressed: (a) the phase transition 

from solid to liquid and (b) a constitutive model for the liquid. One way to model the solid-liquid phase transition is by 

introducing an order parameter, i.e., a phase-field parameter, as done by Fried and Gurtin (1993). The stress response of 

the liquid phase can be decomposed into pressure and deviatoric stress components. While the pressure of the liquid can 

be described through an appropriate equation of state, the deviatoric stress depends on the strain-rate through a pre-factor, 

called the shear viscosity of the liquid, which is generally a function of pressure and temperature. Both phase transitions 

and a material model for the liquid phase are not accounted for in the current work but are, however, important for the 

prediction of chemical reactions in the melt. Since the yield strength of the material model drops rapidly at melt, the 
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strain-rates tend to increase exponentially and become unreasonably large. In the present framework, the shear strain-rates 

after melt are set to reach an upper limit beyond which they are assumed to stay constant, as done by Grunschel (2009). 

This point is discussed in further detail in Section 4. The focus of the present work remains on the solid phase and its 

constitutive modelling. Next, the development of a complete equation of state for the solid is discussed.  

 

 

3.3 Complete Equation of State 

The Mie-Gruneisen equation of state is a commonly used form of the equation of state for a solid subjected to shock 

loading. It is often encountered in hydrocodes for solids under pressures of up to a few Megabar. In this section, a 

derivation of a complete equation of state is presented, i.e., with a temperature dependent specific heat capacity. Note that 

the equation of state is derived in the deformed configuration as opposed to the intermediate configuration used in the 

above discussion. We work with the following quantities: (a) the specific free energy 𝜓 = 𝜓𝑅/𝜌0, (b) the specific entropy 

𝜂 = 𝜂𝑅/𝜌0, (c) the pressure 𝑃 = −1/3 𝑡𝑟(𝑻), and (d) the spatial specific volume 𝑣 = 𝐽𝑣0 = 𝑣0 exp(𝐾1), where 𝑣0 =
1/𝜌0. Under pure volumetric deformation, the thermoelastic constitutive equations are: 

 

𝜓 = 𝜓(𝑣, 𝜃), 
𝜂 = 𝜂(𝑣, 𝜃), 
𝑃 = 𝑃(𝑣, 𝜃), 
𝑒 = 𝑒(𝑣, 𝜃) = 𝜓(𝑣, 𝜃) + 𝜂(𝑣, 𝜃)𝜃 . 

(3.37) 

The state relations 𝜂𝑅 = −𝜕𝜓𝑅/𝜕𝜃 and 𝑃 = −(1/𝐽)𝜕𝜓𝑅/𝜕𝐾1, which were defined in the intermediate configuration in 

equations (3.16) and (3.30), respectively, now become 

 𝜂 = −
𝜕𝜓

𝜕𝜃
  𝑎𝑛𝑑  𝑃 = −

𝜕𝜓

𝜕𝑣
 (3.38) 

in the deformed configuration, which imply the following Maxwell relation: 

 
𝜕𝜂

𝜕𝑣
=
𝜕𝑃

𝜕𝜃
. (3.39) 

The specific heat at constant volume is defined as: 

 𝑐 =
𝜕𝑒

𝜕𝜃
 . (3.40) 

Using the definition of the specific internal energy 𝑒(𝑣, 𝜃) from equation (3.37) and that of the specific entropy from 

equation (3.38), the above definition of the specific heat at constant volume can be expressed in the following form: 

 𝑐 = 𝜃
𝜕𝜂

𝜕𝜃
. (3.41) 

The scalar Gruneisen parameter is defined as: 

 Γ(𝑣, 𝜃) =
𝑣

𝑐
 
𝜕𝑃

𝜕𝜃
. (3.42) 

Using equation (3.39), an alternate expression for the Gruneisen parameter is as follows: 

 Γ(𝑣, 𝜃) =
𝑣

𝑐
 
𝜕𝜂

𝜕𝑣
. (3.43) 

Using equation (3.25), we note that the scalar Gruneisen parameter is simply  Γ =
1

3
𝑡𝑟(𝚪).  

 

 To determine the state relations in terms of known/measurable thermodynamic quantities, 𝑐(𝑣, 𝜃) and Γ(𝑣, 𝜃), we 

determine the rate of change of specific entropy and pressure. Applying chain rule and combining the definitions of 

𝑐(𝑣, 𝜃) and Γ(𝑣, 𝜃) through equations (3.41), (3.42) and (3.43), we obtain: 

 

𝜂̇ = (
𝜕𝜂

𝜕𝑣
)
𝜃
𝑣̇ + (

𝜕𝜂

𝜕𝜃
)
𝑣
𝜃̇ =

Γ𝑐

𝑣
 𝑣̇ +

𝑐

𝜃
𝜃̇, 

𝑃̇ = (
𝜕𝑃

𝜕𝑣
)
𝜃
𝑣̇ + (

𝜕𝑃

𝜕𝜃
)
𝑣
𝜃̇ = (

𝜕𝑃

𝜕𝑣
)
𝜃
𝑣̇ +

Γ𝑐

𝑣
𝜃̇. 

(3.44) 

Since state relations do not depend on the thermodynamic path, the rate forms are integrated from an initial state 

(𝑣0, 𝜃0, 𝜂0, 𝑃0) to the final state (𝑣, 𝜃, 𝜂, 𝑃), along the path shown in Fig. 11, to yield the following relations: 
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𝜂(𝑣, 𝜃) = 𝜂0 +∫
Γ(𝑣′, 𝜃0)𝑐(𝑣

′, 𝜃0)

𝑣′
𝑑𝑣′

𝑣

𝑣0

+∫
𝑐(𝑣, 𝜃′)

𝜃′
𝑑𝜃′

𝜃

𝜃0

, 

𝑃(𝑣, 𝜃) = 𝑃(𝑣, 𝜃0) +
1

𝑣
∫ Γ(𝑣′, 𝜃0)𝑐(𝑣

′, 𝜃)𝑑𝜃′
𝜃

𝜃0

, 

(3.45) 

where 𝑃(𝑣, 𝜃0) is the equation of state along an isotherm at a temperature of 𝜃0, and 𝑃0 = 𝑃(𝑣0, 𝜃0). Therefore, to fully 

specify the state relations, one needs (1) an isotherm at 𝜃0, i.e., 𝑃(𝑣, 𝜃0), (2) the Gruneisen parameter, Γ(𝑣, 𝜃), and (3) the 

specific heat capacity, 𝑐(𝑣, 𝜃). 
 

 
Fig. 11 A thermodynamic path connecting the initial and final states. 

 

 To determine the Helmholtz free energy, we apply chain rule: 

 𝜓̇ = −𝑃(𝑣, 𝜃)𝑣̇ − 𝜂(𝑣, 𝜃)𝜃̇, (3.46) 

and integrate to obtain 

 𝜓(𝑣, 𝜃) = 𝜓0 − 𝜂0(𝜃 − 𝜃0) − ∫ [𝑃(𝑣′, 𝜃0) + (𝜃 − 𝜃0)
Γ(v′, 𝜃0)𝑐(𝑣

′, 𝜃0)

𝑣′
] 𝑑𝑣′

𝑣

𝑣0

−∫
(𝜃 − 𝜃′)

𝜃′
𝑐(𝑣, 𝜃′)𝑑𝜃′

𝜃

𝜃0

, (3.47) 

 

where 𝜓0 = 𝜓(𝑣0, 𝜃0). The internal energy can, therefore, be calculated as: 

 𝑒(𝑣, 𝜃) = 𝜓(𝑣, 𝜃) + 𝜂(𝑣, 𝜃)𝜃 = 𝑒0 −∫ [𝑃(𝑣′, 𝜃0) − 𝜃0
Γ(v′, 𝜃0)𝑐(𝑣

′, 𝜃0)

𝑣′
] 𝑑𝑣′ +∫ 𝑐(𝑣, 𝜃′)𝑑𝜃′

𝜃

𝜃0

𝑣

𝑣0

, (3.48) 

where 𝑒0 = 𝜓0 + 𝜂0𝜃0. 

 

3.3.1 Specialization for a Temperature Independent Gruneisen Parameter 
First, note that the Gruneisen parameter Γ and the specific heat 𝑐 are not independent but related through the 

following thermodynamic compatibility equation (Menikoff, 2016; Sheffield and Duvall, 1983): 

 
𝜕

𝜕𝑣
(
𝜕2𝜓

𝜕𝜃2
) =

𝜕

𝜕𝜃
(
𝜕2𝜓

𝜕𝜃𝜕𝑣
). (3.49) 

Combining equations (3.38) and (3.41), it can be shown that 𝑐 = −𝜃 (
𝜕2𝜓

𝜕𝜃2
). Similarly, combining equations, (3.38) and 

(3.43), one obtains Γ𝑐 = −𝑣
𝜕2𝜓

𝜕𝜃𝜕𝑣
. Therefore, the compatibility relation in equation (3.49) takes the following form: 

 𝑣
𝜕𝑐

𝜕𝑣
= 𝜃

𝜕(Γ𝑐)

𝜕𝜃
. (3.50) 
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Next, we assume that the Gruneisen parameter is a function of specific volume only, Γ = Γ(𝑣). As mentioned by Grady, 

(2017), “Both theoretical arguments and experience suggest that Γ is not sensitive to reasonable excursions of internal 

energy, E for many materials, and is usually assumed to be a volume-dependent only function, Γ(𝑣).” For such a class of 

materials, the compatibility relation in (3.50) can be written as a hyperbolic partial differential equation for 𝑐 (Menikoff, 

2016): 

 𝑣
𝜕𝑐

𝜕𝑣
= 𝜃Γ(𝑣)

𝜕𝑐

𝜕𝜃
. (3.51) 

The characteristic curves for the PDE are solutions to the ODE: 

 
𝑑𝜃

𝑑𝑣
= −𝜃

Γ(𝑣)

𝑣
. (3.52) 

 

For a characteristic passing through the initial state (𝑣0, 𝜃0), we have: 

 𝜃 = 𝜃0 𝜙(𝑣)   with  𝜙(𝑣) = exp(−∫
Γ(𝑣′)

𝑣′
𝑑𝑣′

𝑣

𝑣0

). (3.53) 

The specific heat capacity is constant along the characteristic curve, i.e., 𝑐(𝑣, 𝜃) = 𝑐(𝑣0, 𝜃0) = 𝑐(𝑣0, 𝜃/𝜙(𝑣)) =

𝑐̃(𝜃/𝜙(𝑣)) = 𝑐̃(𝜃̃), where the tilde signifies the scaled temperature, 𝜃̃ = 𝜃/𝜙(𝑣). The function 𝑐̃ represents the specific 

heat capacity as a function of 𝜃 along the isochore 𝑣0. Hence, for the class of materials with Γ = Γ(𝑣), the specific heat is 

a function of only the scaled temperature. With Γ = Γ(𝑣) and 𝑐 = 𝑐̃(𝜃̃), the equation of state (3.45) becomes: 

 𝑃(𝑣, 𝜃) = 𝑃(𝑣, 𝜃0) +
Γ(𝑣)𝜙(𝑣)

𝑣
∫ 𝑐̃(𝜃̃′) 𝑑𝜃̃′
𝜃̃

𝜃̃0

, (3.54) 

where 𝜃̃0 = 𝜃0/𝜙(𝑣). Note that the internal energy in equation (3.48) becomes 

 

𝑒(𝑣, 𝜃) = 𝑒(𝑣, 𝜃0) + 𝜙(𝑣)∫ 𝑐̃(𝜃̃′)𝑑𝜃̃′
𝜃̃

𝜃̃0

, 

with  𝑒(𝑣, 𝜃0) = 𝑒0 −∫ [𝑃(𝑣′, 𝜃0) − 𝜃0
Γ(v′)𝑐̃(𝜃̃0)

𝑣′
] 𝑑𝑣′

𝑣

𝑣0

, 

(3.55) 

so that 

 𝑃(𝑣, 𝜃) = 𝑃(𝑣, 𝜃0) +
Γ(𝑣)

𝑣
[𝑒(𝑣, 𝜃) − 𝑒(𝑣, 𝜃0) ], (3.56) 

which is a common form of the Mie-Gruneisen equation of state. The forms of 𝑃 and 𝑒 in equations (3.54) and (3.55) 

respectively and the resulting Mie-Gruneisen equation of state in equation (3.56) are a direct result of the assumption that 

the Gruneisen parameter is a function of specific volume only. Also, note that the state relations for 𝑃, 𝑒, 𝜓 and 𝜂 are often 

written with 𝜃0 = 0𝐾 as the reference temperature as simplified forms for each of these quantities emerge with the cold 

curve as the reference isotherm. However, we choose to write the state relations with ambient conditions as the reference 

state due to the relative ease of obtaining material properties at the ambient temperature. 

 

3.4 Thermoelastic Heating 

Heating due to large elastic deformation is important in applications where a material is subject to impact and shocks. 

Large pressures of the order of several GPa can be generated under such loading conditions in a very short amount of 

time, typically tens of nanoseconds. Therefore, adiabatic conditions combined with large volumetric compression can 

result in a significant temperature increase. Such an increase is especially important in the case of energetic materials 

whose mechanical and chemical behavior is highly temperature sensitive. Moreover, the melting points of energetic 

materials and their simulants are relatively low, compared to metals, which means that not a lot of thermal heating is 

required to melt. Therefore, it is important to accurately predict the temperature of such materials under dynamic loads. In 

the PSPI experiments, normal compression can significantly raise the temperature and affect the strength of the material 

under subsequent shear loading. So, it is important to quantify the thermo-elastic heating. 

 

In section 3.1.7, it was shown that the rate of heat generation due to elastic processes is given as: 𝑞̇𝑒 = −𝜌𝑐𝜃𝚪:𝑫𝑒 

(equation (3.26)). Since, we neglect the temperature dependence of the shear modulus, i.e., 
𝜕𝐺

𝜕𝜃
= 0, the Gruneisen tensor 

is spherical, i.e., 𝚪 = Γ(𝑣)𝑰, so that 
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 𝑞̇𝑒 = −𝜌𝑐𝜃Γ(𝑣) 𝑡𝑟(𝑫𝑒) = −𝜌𝑐𝜃Γ(𝑣) 
𝐽𝑒

𝐽𝑒

̇
= −𝜌𝑐𝜃Γ(𝑣)𝐾1̇. (3.57) 

For dynamic compression of materials, one typically encounters isentropic or shock loading. So, it is worthwhile 

investigating these thermodynamic processes in detail, along with the case of isothermal loading serving as a reference. 

Plotting these curves for sucrose is expected to provide insights into material behavior under different types of loading. In 

the following sections, analytical expressions for different state variables are derived for a solid undergoing isothermal, 

isentropic or shock loading (Hugoniot), using the complete equation of state developed above. Special attention is paid to 

the temperature increase expected for the three cases. In this investigation, temperature is not measured independently. 

However, if an accurate method for temperature measurement were to be developed in the future, the equations developed 

below would allow one to directly extract material parameters for the complete Mie-Gruneisen equation of state.  

 

3.5 Isentrope 

Normal loading under pressure-shear plate impact can be considered as being close to following an isentrope, i.e., 

the PSPI experiments load the specimen quasi-isentropically. Since the temperature change during normal loading that 

precedes the shear loading in a PSPI experiment influences the shear strength of the material, it is necessary to calculate 

the temperature change during isentropic loading. Using the expression for 𝜂̇ = 0 in equation (3.44), the Gruneisen 

parameter can be expressed as: 

 Γ = −
𝑣

𝜃
(
𝜕𝜃

𝜕𝑣
)
𝜂
. (3.58) 

Integrating the above relation gives the temperature variation along an isentrope as a function of specific volume: 

 𝜃(η)(𝑣) = 𝜃0 exp(−∫
Γ(𝑣′)

𝑣′
𝑑𝑣′

𝑣

𝑣0

) = 𝜃0𝜙(𝑣). (3.59) 

Since equation (3.59) represents a characteristic curve for the hyperbolic PDE in equation (3.51), it follows that the 

specific heat 𝑐 is constant along any isentrope. This is a consequence of the assumption that Gruneisen parameter is a 

function of specific volume only.  

 

Pressure along an isentrope can be found by substituting the temperature along the isentrope from equation (3.59) 

into equation (3.54), which results in the following form: 

 𝑃(𝜂)(𝑣) = 𝑃(𝑣, 𝜃0) +
Γ(𝑣)𝜙(𝑣)

𝑣
∫ 𝑐̃(𝜃̃′) 𝑑𝜃̃′
𝜃̃(𝜂)

𝜃̃0

, (3.60) 

where 𝜃̃(𝜂) =
𝜃(η)

𝜙(𝑣)
= 𝜃0. 

 

 

3.6 Isotherm 

Pressure along an isotherm can be obtained from equation (3.54) by substituting the isotherm temperature 𝜃 = 𝜃𝑖: 

 𝑃(𝑣, 𝜃𝑖) = 𝑃(𝑣, 𝜃0) +
Γ(𝑣)𝜙(𝑣)

𝑣
∫ 𝑐̃(𝜃̃′) 𝑑𝜃̃′.
𝜃𝑖̃

𝜃̃0

 (3.61) 

where 𝜃̃𝑖 = 𝜃𝑖/𝜙(𝑣). In this work, the 3rd order logarithmic equation of state (Poirier and Tarantola, 1998), expressed 

below, is chosen as the reference isotherm:  

 𝑃 = 𝐾𝜃0 (
𝑣0
𝑣
) ln (

𝑣0
𝑣
) [1 +

𝐾𝜃0
′ − 2

2
ln (

𝑣0
𝑣
)], (3.62) 

where 𝐾𝜃0 and 𝐾𝜃0
′  are elastic bulk modulus and the first derivative of elastic bulk modulus with respect to pressure, 

respectively, at ambient temperature and specific volume. A derivation of equation (3.62) is presented in Appendix A. 

Fig. 12 shows isotherms for sucrose at different temperatures,  using the material parameters for sucrose in Table 2.   
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Fig. 12 Isotherms for sucrose at different temperatures. 𝜃0 = 298 𝐾. As temperature increases, the isotherms translate upward  

 

3.7 Hugoniot 

A problem of interest is the ability to predict detonation in energetic material aggregates when subjected to a 

shock wave loading. Consider the case of a shock wave traveling through a solid that subjects the material to a high 

pressure. Under such high pressures, the shear strength of the solid is negligible with respect to the pressure applied. So, 

the normal stress jump across the shock wave can be approximated by the pressure jump. Then, the specific internal 

energy of the solid for shock compression from an initial state of (𝑒0, 𝑃0, 𝜃0, 𝑣0) is given through the following Rankine-

Hugoniot relation: 

 𝑒(𝐻)(𝑣) = 𝑒0 +
1

2
(𝑃(𝐻)(𝑣) + 𝑃0)(𝑣0 − 𝑣). (3.63) 

Pressure along a Hugoniot requires another piece of information. Often, that is provided in terms of a shock speed-particle 

speed relation. Another way to find the pressure on a Hugoniot is by using a reference curve and then substituting it into 

the complete equation of state, which is represented in the present case using the Mie-Gruneisen form of the equation of 

state (3.56):  

 𝑃(𝐻)(𝑣) − 𝑃(𝑣, 𝜃0) =
Γ(𝑣)

𝑣
[𝑒(𝐻)(𝑣) − 𝑒(𝑣, 𝜃0)]. (3.64) 

Substituting the expressions for internal energy from equations (3.63) and (3.55) into equation (3.64), pressure along a 

Hugoniot can be written as: 

 𝑃(𝐻)(𝑣) =

Γ(𝑣)
2𝑣 𝑃0(𝑣0 − 𝑣) + 𝑃(𝑣, 𝜃0) +

Γ(𝑣)
𝑣 {∫ [𝑃(𝑣′, 𝜃0) − 𝜃0

Γ(v′)𝑐̃(𝜃0̃)
𝑣′ ]  𝑑𝑣′

𝑣

𝑣0
}

1 −
Γ(𝑣)
2𝑣 (𝑣0 − 𝑣)

. (3.65) 

 

Now consider the definition of internal energy from equation (3.37), i.e., 𝑒(𝑣, 𝜃) = 𝜓(𝑣, 𝜃) + 𝜂(𝑣, 𝜃)𝜃. The rate 

of change of internal energy can be expressed as: 

 𝑒̇ = 𝜓̇ + 𝜂̇𝜃 + 𝜃𝜂̇ = [(
𝜕𝜓

𝜕𝑣
)
𝜃
𝑣̇ + (

𝜕𝜓

𝜕𝜃
)
𝑣
𝜃̇] + 𝜂̇𝜃 + 𝜃𝜂.̇  (3.66) 

Since (
𝜕𝜓

𝜕𝑣
)
𝜃
= −𝑃 and (

𝜕𝜓

𝜕𝜃
)
𝑣
= −𝜂 (from equation (3.38)), equation (3.66) reduces to the rate form of the first law of 

Thermodynamics for a reversible process involving volumetric deformations only, i.e., 

 𝑒̇ = −𝑃𝑣̇ + 𝜃𝜂.̇  (3.67) 
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Substituting the rate of change of entropy from equation (3.44), the rate of change of internal energy can be written as 

follows:  

 𝑒̇ = (−𝑃 +
Γ𝑐𝜃

𝑣
) 𝑣̇ + 𝑐𝜃.̇  (3.68) 

Equating the rate of change of internal energy obtained from equations (3.63) and (3.68), a first-order ODE in 𝜃(𝐻) is 

obtained: 

 𝑐
𝑑𝜃(𝐻)

𝑑𝑣
+
Γ𝑐

𝑣
 𝜃(𝐻) =

1

2
(𝑣0 − 𝑣)

𝑑𝑃(𝐻)(𝑣)

𝑑𝑣
 +
1

2
(𝑃(𝐻)(𝑣) − 𝑃0) .⏟                          

ℎ(𝑣)

 (3.69) 

The right-hand side of equation (3.69) is a function of specific volume and can be abbreviated as ℎ(𝑣), and 𝑃(𝐻) can be 

substituted from equation (3.65). Substituting the derivative of the scaled temperature, 𝜃̃ = 𝜃/𝜙(𝑣), with respect to 𝑣, i.e., 

𝜙(𝑣)
𝑑𝜃̃

𝑑𝑣
=
𝑑𝜃

𝑑𝑣
+
Γ(𝑣)

𝑣
𝜃, into equation (3.69), a simpler expression for the ODE governing the temperature along a 

Hugoniot is obtained:  

 𝑐̃(𝜃̃(𝐻))
𝑑𝜃̃(𝐻)

𝑑𝑣
=
ℎ(𝑣)

𝜙(𝑣)
. (3.70) 

In its most generic form, the temperature relation above is a non-linear ODE and needs to be solved numerically. The 

special case of a constant specific heat can be solved by straightforward integration.  

 

 

3.8 Comparison of the Three Thermodynamic Processes 

At this point, it is instructive to compare the pressure-volume-temperature (𝑃, 𝑣, 𝜃) response under the different 

types of loading considered above. Fig. 13 shows a three-dimensional surface of a specialized complete Mie-Gruneisen 

equation of state for sucrose in the (𝑃, 𝑣, 𝜃) space. It is assumed that 
Γ(𝑣)

𝑣
=
Γ0

𝑣0
 where Γ0 = Γ(𝑣0). The material properties 

of sucrose used for plotting the curves are given in Table 2. The table includes an expression for the temperature-

dependent specific heat and an approximation of its integral, which are discussed further in Appendix B. An isotherm, an 

isentrope and a Hugoniot are plotted simultaneously in Fig. 13. It is evident that there is a substantial difference between 

the three curves along the temperature axis.  

 

 
Fig. 13 Pressure-Volume-Temperature curve for a complete Mie-Gruneisen equation of state for sucrose (Orange grid). Blue: Isotherm, Black: 

Isentrope and Red: Hugoniot, all passing through the initial state, 𝑃0 = 0, 𝑣0, 𝜃0 = 298𝐾. 
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Table 2 Thermoelastic material parameters for sucrose used in plotting calculated profiles of the Isentrope, Isotherm and Hugoniot.  

𝜌0 Initial density 1580.5 kg/m3 

Elastic Parameters 

𝐺0 Shear Modulus at ambient 8.58 GPa 

𝐾𝜃0 Isothermal bulk modulus at ambient 14.3 GPa 

𝐾𝜃0
′  Derivative of Bulk modulus with respect to pressure 3.75 

Γ0 Gruneisen parameter at ambient 1.09 

Thermal parameters 

𝑐0 
Specific heat capacity at constant 𝑣, 

𝑐𝑣(𝜃) =
𝜃3

𝑐0 + 𝑐1𝜃 + 𝑐2𝜃
2 + 𝑐3𝜃

3
 

7.095 x 103 kgK4/J 

𝑐1 2.230 x 101 kgK3/J 

𝑐2 4.180 x 10-3 kgK2/J 

𝑐3 3.050 x 10-4 kgK/J 

𝑎1 

∫ 𝑐𝑣(𝜃′)𝑑𝜃′
𝜃

0

≈ (𝑎1𝜃 + 𝑎2𝜃
2 + 𝑎3𝜃

3)
𝐽

𝑘𝑔
 

−105.517 J/kgK 

𝑎2 2.473 J/kgK2  

𝑎3 −6.067 × 10−4 J/kgK3 

 

For a more illustrative comparison, the thermodynamic curves are compared in two-dimensional plots. Fig. 14 (a) 

shows that for the pressure 𝑃 vs compression ratio, 𝑣/𝑣0, the Hugoniot lies at the top and the isotherm lies at the bottom 

of the three curves. However, for the volume compression ratios considered here, the difference between the curves is 

relatively modest. The main difference between the isotherm, the isentrope and the Hugoniot lies in the temperature 

increase of the material. While the temperature rise along an isentrope is almost linear with volume compression ratio 

(Fig. 14 (b)), the temperature along the Hugoniot quickly diverges from the isentrope and leads to a much higher 

temperature rise. These differences in the material response to different types of thermodynamic loading has significant 

consequences for energetic materials. For example, a ramp wave with an isentropic pressure loading is much less likely to 

cause ignition as compared to a shock wave of the same pressure magnitude. 

 

From the preceding discussion, it is worth highlighting the importance of using a complete equation of state with a 

temperature dependent specific heat. As noted by Menikoff and Sewell (2002) and Sewell and Menikoff (2004), 

incorporating the temperature dependence of the specific heat in an equation of state is extremely important to accurately 

predict hot-spot temperatures and hence the consequent chemical reaction kinetics. Let us compare the thermodynamic 

response of sucrose for two cases: (a) a temperature dependent specific heat, and (b) a constant specific heat capacity, 

evaluated at 𝜃 = 𝜃0. Fig. 15 (a) shows the difference arising in the temperature response due to the form of specific heat 

chosen. As expected, the temperature along the isentrope should be unaffected by the choice of specific heat capacity 

because it remains constant along an isentrope. However, there is a substantial difference in the temperature rise along a 

Hugoniot. Using the temperature-dependent specific heat 𝑐(𝜃) results in a lower temperature increase with compression 

as compared to using a constant specific heat 𝑐(𝜃0) with the difference between the two cases increasing as the amount of 

compression increases. Such a comparison emphasizes the role played by the choice of specific heat capacity for shock 

wave loading of energetic/simulant crystals. Thus, proper representation of the temperature dependence of specific heat 

has consequences for accurately simulating the mechanical, thermal and chemical response of energetic materials. In 

particular, the choice of specific heat can have a potentially significant impact on the accuracy of predicting deformation 

localization and formation of hot-spots due to adiabatic shear bands and the likelihood of such hot-spots turning critical, 

leading to ignition. Fig. 15 (b) shows that the choice of a temperature dependent specific heat has a small effect on the 

pressure-volume response of sucrose. 
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Fig. 14 (a) Pressure 𝑃 vs compression ratio 𝑣/𝑣0, and (b) temperature 𝜃 vs compression ratio 𝑣/𝑣0, plots for sucrose for a Hugoniot, an isotherm (at 

𝜃 = 𝜃0) and an isentrope, all passing through the same initial point, i.e., 𝑃0 = 0,
𝑣

𝑣0
= 1, 𝜃0 = 298 𝐾. 

   

 

 
Fig. 15 Effect of the choice of specific heat on thermodynamic curves for sucrose, i.e., the Hugoniot, isotherm and isentrope. Curves are plotted for 

two cases: (1) a temperature-dependent specific heat capacity (solid lines) and (2) a temperature-independent specific heat capacity evaluated at 𝜃 =
𝜃0 (dashed lines).  

 

3.9 Summary of the Constitutive Model 

  In this section, a thermodynamic framework is presented for thermo-mechanical constitutive modeling of 

sucrose. An energy balance equation accounting for the thermoelastic and the dissipative work is derived (3.23). The free 

energy is written in terms of invariants of a logarithmic strain measure (3.32), such that it allows an additive 
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decomposition of the Cauchy stress into pressure and deviatoric stresses (3.34). The constitutive relation for pressure, with 

dependence on both volume and temperature, is derived in terms of a complete Mie-Gruneisen equation of state (3.54) 

while the thermo-viscoplastic deformation is modeled through a pressure-dependent Johnson-Cook Model (3.35). Using 

the complete equation of state, the deformation behavior of sucrose is compared under isentropic, isothermal and shock 

loadings. The material constants for thermo-elasticity are presented in Table 2 while those for thermo-viscoplasticity are 

presented in Table 3. In the next section, numerical simulations are carried out using this thermally-coupled mechanical 

constitutive model and compared with PSPI experimental observations.  

 

4 Numerical Simulations 

The constitutive model for sucrose described in Section 3 has been implemented in the commercial finite element 

software Abaqus/Explicit, using a user material subroutine VUMAT. This section details the results of numerical 

simulations of PSPI loading and draws comparisons with experimental observations. The VUMAT algorithm is laid out in 

detail in Appendix C. 

 

The flyer, target plates and the sandwiched specimen are modeled using four-noded bilinear plane strain quadrilateral 

elements with reduced integration, hourglass control and thermal coupling (CPE4RT). Since shear localization is 

expected, the mesh size of the specimen is kept smaller than the expected shear band width. Without prior knowledge of 

the expected temperature rise and shear strain-rates within the band, the shear band width is estimated as: 

 𝛿𝑏𝑎𝑛𝑑 ≈ 2√𝐷𝑡, (4.1) 

where 𝐷 = 𝑘/𝜌0𝑐(𝜃) is the thermal diffusivity and 𝑡 is the expected duration of loading. Using the material constants 

listed in Table 2 and Table 3 and the temperature-dependence of the specific heat discussed in Appendix B, the thermal 

diffusivity of sucrose can be calculated to vary between 94 × 10−9 𝑚2/𝑠 and 258 × 10−9 𝑚2/𝑠 (for specific heats at 

ambient and the Dulong-Petit limit), and for a loading duration of about 1 𝜇𝑠, the shear band width is expected to lie 

between 0.61 𝜇𝑚 and 1 𝜇𝑚. Therefore, a mesh size of 0.25 𝜇𝑚, which is sufficiently smaller than the minimum expected 

band width, is chosen to err on the side of caution (see Fig. 16). For the stability of the numerical scheme, the time-step is 

dictated by the longitudinal wave speed in sucrose and the time-scale of thermal diffusion. 

 
Δ𝑡 < min(

Δ𝑥

𝑐𝐿
,
(Δ𝑥)2

2𝐷
), 

(4.2) 

where 𝑐𝐿 = √(𝐾𝜃0 + (4/3)𝐺0)/𝜌0 is the longitudinal wave speed at ambient and Δ𝑥 is the mesh size. For a mesh size of 

0.25 𝜇𝑚, a time-step of 10−11𝑠 satisfies the stability criteria in equation (4.2) with a sufficient margin for error. 

Simulations are carried out using a dynamic, temperature-displacement, explicit analysis step. Full thermo-mechanical 

coupling is modeled, including heat conduction even though its effects are negligible, as demonstrated below. 

 

 
Fig. 16 Finite-element mesh for simulation of Shot3. The sucrose specimen (middle of the figure) has a finer mesh size of 0.25 𝜇𝑚 than the target 

plates on either side which have a mesh size increasing linearly from 0.5 𝜇𝑚 (at the target/specimen interface) to 50 𝜇𝑚 (at the other ends).  

 

4.1 Comparisons of stress profiles 

Experimental and simulated velocity profiles at the sample/rear target plate interface are converted to nominal normal 

and shear stresses using equation (2.1) and compared. The material constants used in simulations are shown in Table 2 
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and Table 3. The choice of material constants is discussed and justified in Appendix B. While some of the material 

constants have been obtained from literature, others have been fit to the PSPI experimental data. In particular, the material 

parameters for the Johnson-Cook model are based on a modest search of parameter values. All parameters shown in Table 

2 (i.e., the thermoelastic parameters) are adopted from the literature (as discussed further in Appendix B). Parameters for 

the Johnson-Cook model shown in Table 3 are obtained by fitting the simulation results with the experimental results. It 

has been observed that the agreement between simulations and experiments is most sensitive to the strain-rate sensitivity 

coefficient C, the work-hardening exponent n, and the thermal softening exponent m in the Johnson-Cook model. The 

remaining parameters in Table 3 are taken from literature (see Appendix B).  

 

 Fig. 17 shows experimental and simulated normal stress profiles for low and high-pressure shots. Since the 

compaction of the initial surface roughness of the sucrose specimen is not modeled in the simulations, the initial step 

observed in the normal stress profiles in the experiments is not seen in the simulations. The rise of normal stress to the 

plateau agrees very well with the experiments. For the high-pressure shots, a slight deviation from the simulated profiles 

is observed for normal velocities above 0.12 mm/µs, due to loading of the anvil WC plates beyond their Hugoniot Elastic 

Limit. Simulated shear stress profiles are compared with experimental observations in Fig. 18. It is shown that the choice 

of a single set of material constants can fit the shear stresses under different experimental conditions reasonably well. 

Simulated profiles can capture the drop in the shearing resistance of sucrose, which results when thermal softening 

overtakes hardening due to increasing strains and strain-rates. The rising portion of simulated nominal shear stress is 

steeper than that observed in the experiments which indicates that the actual shear modulus value upon the arrival of shear 

wave is smaller than the quasi-static shear modulus value used here. As discussed in section 3.2, the shear modulus varies 

with temperature and pressure and such a variation, if experimentally validated, can be readily incorporated into the 

simulation capability. However, due to the lack of experimental data on the variation of shear modulus with temperature 

and pressure, a constant value is employed. Good agreement between the experiments and the simulations is seen for the 

peak values of nominal shear stresses, especially for the cases of low pressures. Due to small variations in the 

experimentally observed shear behavior under similar sets of conditions, simulated shear stress profiles fit some shots 

better than the others. The drop in shear strength is also captured well in the numerical simulations. Simulated profiles for 

the low-pressure experiments show a slightly delayed drop.  

 
Table 3 Visco-plastic and thermal material constants for sucrose used in simulating stress profiles for PSPI experiments.1  

Johnson-Cook parameters 

𝐴 Static yield strength 500 MPa 

𝐵 Strain-hardening coefficient 500 MPa 

𝑛 Strain-hardening exponent 0.1 

𝐶 Strain-rate hardening coefficient 0.01 

𝜖̅0̇ Reference plastic strain-rate  1 s-1 

𝑚 Thermal softening exponent 0.45 

𝜃𝑟𝑒𝑓 Reference temperature 298 K 

𝜃𝑚0 Melt temperature at ambient pressure 459 K 

𝜖̅𝑙̇𝑖𝑚
𝑝

 Limiting strain-rate 107 s-1 

Thermal parameters 

𝑘 Thermal conductivity 0.486 W/mK 

𝛽 Inelastic heat fraction 0.9 

𝑃𝑟𝑒𝑓 Reference pressure in Simon-Glatzel melt relation 0 

𝑃𝑖 Parameter in Simon-Glatzel melt relation 0.3 GPa 

𝑑 Parameter in Simon-Glatzel melt relation 3.25 
1Anvil materials are modeled as thermoelastic with the following material constants: (a) D2 Steel (𝐸 = 210 𝐺𝑃𝑎, 𝜈 = 0.29, 𝜌0 = 7787

𝑘𝑔

𝑚3 , 𝑘 =

20
𝑊

𝑚𝐾
, 𝑐 = 461𝐽/𝑘𝑔𝐾), and (b) WC (𝐸 = 650 𝐺𝑃𝑎, 𝜈 = 0.2, 𝜌0 = 15400

𝑘𝑔

𝑚3 , 𝑘 = 100
𝑊

𝑚𝐾
, 𝑐 = 209.3𝐽/𝑘𝑔𝐾), where 𝐸 is the Young’s modulus 

and 𝜈 is the Poisson’s ratio. 
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Fig. 17 Nominal normal stress profiles for (a) low-pressure and (b) high-pressure PSPI shots on sucrose. Experimental profiles (indicated by the 

suffix ‘E’ in the legend) are shown using solid lines, while the corresponding simulated profiles (indicated by the suffix ‘S’ in the legend) are 

represented using dashed lines.  

 

 
Fig. 18 Nominal shear stress profiles for (a) low-pressure and (b) high-pressure PSPI shots on sucrose. Experimental profiles (indicated by the suffix 

‘E’ in the legend) are shown using solid lines, while the corresponding simulated profiles (indicated by the suffix ‘S’ in the legend) are represented 

using dashed lines.  

 

4.2 Adiabatic Shear Localization 

A drop in the shear strength of sucrose as seen in both experiments and simulations is indicative of the development 

of localized deformation in the form of adiabatic shear bands. Temperature profiles across the specimen for low and high-

pressure cases each are plotted in Fig. 19. Shot3 and Shot4 are chosen as representative low and high-pressure shots, 

respectively. As each specimen is compressed by the normal wave, the temperature of the specimen rises uniformly due to 

elastic and plastic work; the contribution of each to the temperature rise is discussed further in section 4.3.1. There is a 

small drop in temperature at each specimen/anvil interface due to heat conduction into the bounding anvil plates. 

However, the temperature drop at the interfaces is sufficiently small that thermal conduction effects are practically 

negligible, and the temperature increase in the specimen can be assumed to be the result of a nearly adiabatic process. 
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After the arrival of the shear wave, adiabatic shear localization is observed in both the low and high-pressure cases. A 

shear band of ~3.7 𝜇𝑚 width forms for the low-pressure case while two shear bands of widths ~3.8 𝜇𝑚 and ~2.8 𝜇𝑚 

form for the high-pressure case, as shown in Fig. 19 (a) and (b) respectively. 

 

 For the low-pressure case, the shear wave arrives at the left specimen interface at 0.86 𝜇𝑠 (assuming impact takes 

place at time t = 0 𝜇𝑠) and shear localization begins at ~1.13 𝜇𝑠. Shear localization is characterized by a sudden and steep 

increase in temperature and a drop in shear stress, as shown for a material point in the middle of the shear band in Fig. 20 

(a). Normal and shear stress profiles for the material point are also plotted to provide a perspective on the timeline of 

events. It is observed that the temperature increases initially to 363 K following the arrival of the normal wave. When the 

normal stress has plateaued, the temperature remains constant. After the shear wave arrives, there is a uniform increase in 

temperature initially throughout the thickness of the specimen, followed by a rapid rise in the middle of the band once 

localization begins. Temperatures as high as 1155 K are predicted at t = 2 𝜇𝑠.  
 

For the high-pressure case, as shown in Fig. 19 (b), two shear bands form, with the second one (on the right) 

initiating within a few nanoseconds of the first. The peak temperature in each band at t = 2 𝜇𝑠 is about 1600 K and 1325 K 

respectively. The difference in the times of initiation of the two shear bands is of the order of the time it takes for the 

longitudinal wave to travel the specimen thickness. Thus, the second shear band (on the right) initiates before the effect of 

the formation of the first shear band (on the left) is felt at its location. Such an observation is similar to the formation of 

multiple necks in rapidly expanding cylindrical metal rings as observed by Grady and Benson (1983) and Altynova et al. 

(1996) and theoretically analyzed by Guduru and Freund (2002). The number of necks were found to increase at higher 

strain-rates which is similar to the observation of multiple shear bands for Shot 4. Stress and temperature profiles are 

plotted in Fig. 20 (b) for the material point in the middle of the left shear band. Normal compression increases the 

temperature substantially to a value of 492 K compared to 363 K for the low-pressure shot. A larger increase is expected 

with increasing pressure due to an increase in both thermo-elastic work and thermo-viscoplastic work. It is also observed 

that the time duration between the arrival of shear wave and the formation of a shear band is only 0.1 𝜇𝑠 compared to 0.27 

𝜇𝑠 for the low-pressure case. Therefore, localization is expected to begin earlier in time in the higher pressure shots. Fig. 

20 shows that the steep increase in temperature coincides with the drop in shear stress for both cases considered.  

 

 

 
Fig. 19 Through thickness temperature variation for (a) Shot3 (low-pressure shot) and (b) Shot4 (high-pressure shot) plotted as a function of the 

deformed x-coordinate. The span of the specimen in the undeformed configuration is indicated by green arrows. The left most point, i.e., x=0 is kept 

fixed in time while plotting the temperature profiles. Small portions of the target plates on either side are also plotted to demonstrate that minimal 

heat conduction takes place at the specimen/anvil interfaces during the time duration considered. Temperatures are plotted at 8 different time instants 

from 0.25 𝜇𝑠 to 2 𝜇𝑠. Time of impact is 0 𝜇𝑠. In (a), the normal wave arrives at the left interface of the specimen at 0.45 𝜇𝑠, while the shear wave 

arrives at 0.86 𝜇𝑠. A uniform increase in temperature is observed across the specimen initially. A little while after the arrival of the shear wave, 

between 1 and 1.25 𝜇𝑠, the temperature increase begins to localize in a shear band. The band width is measured to be roughly 3.7 𝜇𝑚. Temperatures 

increase to as high as 1155 K within the band at 2 𝜇𝑠. In (b), the normal wave arrives at the left interface of the specimen at 0.38 𝜇𝑠, while the shear 

wave arrives at 0.65 𝜇𝑠. The temperature rises uniformly in the specimen after the arrival of the normal wave and begins to localize at ~0.75 𝜇𝑠 (the 
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left band). Within a few nanoseconds, temperature begins to localize in a second band on the right. Two shear bands form, with a width of ~3.8 𝜇𝑚  

and ~2.8 𝜇𝑚 for the left and right bands respectively. The corresponding peak temperatures are 1600 K and 1325 K respectively at t = 2 𝜇𝑠.  

 

 
Fig. 20 Normal and shear stress profiles for a material point in the middle of the shear band for (a) Shot3 (low-pressure shot) and (b) Shot4 (high-

pressure shot). For Shot4, stresses and temperature are plotted for the left shear band. Shear stress profiles are scaled for better visualization. Stress 

and temperature are shown on the left and right vertical axis respectively. All values are plotted for the integration point of the element in the middle 

of the shear band. In (a), temperature is observed to rise steeply at ~1.13 𝜇𝑠 which coincides with a drop in shear stress, indicating the onset of 

localization (shown using a vertical dashed red line). In (b), the corresponding localization time is ~0.75 𝜇𝑠. 

4.3 Discussion 

Even though sucrose has a long history of being used as an energetic simulant, material models for sucrose have not 

been developed that account for the shearing behavior over a wide pressure range. In this section, a material model of 

sucrose with a complete equation of state and a thermo-viscoplasticity model for strength was shown to adequately 

capture the experimentally observed shearing response in PSPI. Simulations show that the fall in the shear strength of 

sucrose is a result of a thermo-viscoplastic instability in the form of adiabatic shear bands. It is also shown that normal 

compression can lead to a significant temperature increase, especially at higher pressures. The model can be applied to 

consider more complex phenomena like pore collapse or shear band formation under complex loading scenarios. The 

contribution of thermoelastic heating to the temperature increase is significant and can affect the shearing response upon 

arrival of the shear wave, as discussed below. Therefore, for accurate determination of temperatures and shearing behavior 

under complex loading, a complete equation of state with a temperature-dependent specific heat capacity is required. If a 

constant value of the specific heat capacity at the ambient conditions are used, the temperature increase would be 

overpredicted. It is shown that melting eventually occurs in the shear bands. The choice of the melt curve can significantly 

affect the shearing behavior as discussed below. Accurate modeling of material behavior beyond melt requires 

consideration of solid-liquid phase transition, latent heat of melting and a constitutive relation for the molten liquid, 

especially the shear viscosity of the liquid. Lack of experimental data for molten energetic crystals or their simulants 

makes it difficult to validate material models for the melt. Modeling the liquid phase, especially the pressure and 

temperature dependent shear viscosity, is important in simulations of phenomena such as pore-collapse. However, the 

attention of this study is limited to the solid phase before melt. It is assumed that beyond melt, the solid loses its strength 

completely while maintaining a constant limiting shear strain-rate (Grunschel, 2009). Such an assumption can be relaxed 

when better models of the phase transition to the liquid phase and shear resistance of the melt phase become available. 

 

4.3.1 Thermoelastic work 
A significant temperature increase is expected from elastic compression of sucrose, as predicted by the isentropic 

temperature increase in Fig. 14. It is important to accurately model this temperature increase for the PSPI experiments as 

it significantly impacts the subsequent material response upon the arrival of the shear wave. Some plastic work is also 

expected during normal compression which leads to an additional temperature rise. However, separating the thermo-

elastic and thermo-viscoplastic temperature changes during normal loading analytically is not possible due to the non-
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linear coupling of the two effects. It is, however, possible to separate the two contributions in numerical simulations. 

Considering the specific heat to be constant for a given time-step, the temperature increase due to thermo-elasticity during 

that time step can be calculated from equation (4.3) below. Such an approach is valid for the small time-steps used here, 

which ensure that the variation in the specific heat during a time-step is small. The temperature change due to 

thermoelastic work for a time-step can be calculated as: 

 
Δ𝜃 =

Δ𝑞𝑒

𝜌𝑐(𝜃)
, 

(4.3) 

where the thermo-elastic heat increment, Δ𝑞𝑒 = 𝑞̇𝑒Δ𝑡, is calculated in the deformed configuration (see equation (C.10) in 

Appendix C). Simulated predictions are compared with the theoretical predictions for isentropic hydrostatic compression 

of a single elastic 3D element. Near perfect agreement is seen between the analytical and computational results (see Fig. 

21), verifying the method for separating temperature increase due to elastic and viscoplastic deformations.  

 

 
Fig. 21 Simulated (solid green line) and theoretical (red dashed line) temperature profiles of a single elastic 3D element subjected to a ramp 

volumetric strain. The imposed loading is a linear variation of the compression ratio from 1.0 to 0.73 over a duration of 1 ns followed by a reversal to 

the original state at the same rate. 

 

 The temperature increase at the middle of the shear band is plotted for low and high-pressure shots (Shot3 and 

Shot4) as a function of pressure in Fig. 22. Each plot shows the overall total temperature, the thermoelastic contribution 

(numerically calculated 𝜃(𝑒)), the theoretical isentropic temperature 𝜃(𝜂) and the evolution of the melting point with 

pressure according to two models (Lindemann and Simon-Glatzel). Note that the vertical increase in the temperature at 

the right end of the plot corresponds to heating upon the formation of the shear band. Also note that 𝜃(𝑒) and 𝜃(𝜂)agree 

with each other very well. The difference between the total temperature increase (red curve) and thermoelastic 

temperature increase (black curve) is the contribution from viscoplastic dissipation, which is comparable to the 

thermoelastic contribution, prior to the formation of the shear band, especially in the higher pressure case. For the low-

pressure shot, the thermoelastic and viscoplastic contributions to the temperature increase are 42 K and 23 K respectively. 

The corresponding numbers for the high pressure case are 117 K and 77 K. Two main conclusions that can be drawn from 

Fig. 22 are: (a) the temperature increase during normal wave loading is substantial and (b) the thermoelastic and 

viscoplastic contributions to the temperature increase during normal wave loading are comparable to each other, 

especially at the higher pressure. Hence, it is important to include the thermoelastic term in a thermo-mechanically 

coupled model for energetic materials and their simulants. 
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Fig. 22 Simulated temperature profiles as a function of pressure, plotted at the middle of the shear band for (a) Shot3 (low-pressure shot) and Shot4 

(high-pressure shot). 𝜃 (solid red line) shows the simulated temperature profile using the Simon-Glatzel melting relation. A modest increase of 65 K 

is observed in temperature during normal wave loading in (a), while the corresponding temperature increase in (b) is 194 K, which is substantially 

larger. 𝜃(𝑒) (solid black line) is the numerically calculated thermoelastic contribution to the temperature increase and 𝜃(𝜂) (dashed green line) is the 

corresponding theoretically predicted isentropic temperature increase. 𝜃𝑚 (dashed blue line) is the melt curve for Lindemann Law and 𝜃𝑚 (dashed 

magenta line) is the melt curve for the Simon-Glatzel relation. In (a), the Lindemann Law predicts melting at 557 K while the Simon-Glatzel curve 

predicts melting at a much higher temperature of 947 K at a saturation pressure of 2.95 GPa. In (b), the Lindemann Law predicts melting at 686 K 

while the Simon-Glatzel curve predicts melting at a much higher temperature of 1323 K at a pressure of 9.45 GPa. 

 

4.3.2 Melt Curve 
The flow strength of sucrose is a strong function of the specimen temperature and its melt temperature, which is 

accounted for by the (1 − 𝜃𝑚) factor in the Johnson-Cook model for the flow strength. However, the melting point of 

sucrose is itself a function of pressure (thus making the shear strength of sucrose dependent on pressure). Since the 

thermal factor in the Johnson-Cook model is responsible for thermal softening and hence a fall in the shear strength, it is 

important to consider the pressure-dependence of the melting point of sucrose, so that its shear behaviour can be simulated 

consistently for different pressures. Accurate representation of the melt curve is also important for the prediction of hot-

spot formation. The shearing resistance of an energetic crystal drops to zero at melt, and the shear viscosity of the molten 

fluid takes over and results in significantly reduced dissipation compared to the viscoplastic dissipation of the solid phase. 

So, the melt curve dictates the amount of dissipation and hence the peak hot-spot temperatures during localization. 

Formation of hot-spots and their transition to ignition is highly temperature-sensitive under weak shocks, which 

emphasizes the importance of accurate prediction of the melting point as a function of pressure. However, measurement of 

the melting point for energetic crystals is difficult due to associated dissociation reactions. Therefore, experimentally 

measured melt curves are typically replaced by empirical laws. One such law is the Lindeman Law (Lindemann, 1910; 

Ross, 1969; Poirier and Tarantola, 1998): 

 
𝜃𝑚 = 𝜃𝑚0 exp [2Γ0 (1 −

𝑣

𝑣0
) +

2

3
ln (

𝑣

𝑣0
)], 

(4.4) 

where 𝜃𝑚0 is the melt temperature at ambient temperature and pressure. Note that the Lindeman Law can be linearized in 

volume (Kraut-Kennedy relation) or in pressure (Menikoff and Sewell, 2002) but is not very accurate at high pressures as 

described in Menikoff and Sewell (2002) and Appendix B. Molecular dynamics simulations on HMX (Kroonblawd and 

Austin, 2021) show that the Lindemann Law grossly underestimates the melt temperature whereas the Simon-Glatzel 

relationship (equation (3.36)) fits the molecular dynamics data very well. In equation (3.36), (𝑃𝑟𝑒𝑓 , 𝑃𝑖 , 𝑑) are fitting 

parameters. Due to the lack of experimental data on the melt curve of sucrose as a function of pressure, parameters for the 

Simon-Glatzel fit used for HMX by Kroonblawd and Austin (2021) are employed here for sucrose. Fig. 23 shows a 

comparison between the shear stress profiles calculated using the Simon-Glatzel melt relation and the Lindemann melt 

curve for low and high-pressure cases. Other material parameters are kept the same for both cases. Using the Lindemann 
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Law results in a much lower shear strength than that observed experimentally. This is expected since a lower melt 

temperature, as predicted by the Lindemann Law, results in earlier melting and hence an earlier decrease in shear strength. 

Additionally, it results in a lower overall temperature due to decreased dissipation after melt, affecting the predictions of 

strength and temperature. On the other hand, the Simon-Glatzel melt relation captures the experimental data much better. 

A comparison between the two melting relations is also plotted in Fig. 22. It is observed that for the same pressure, the 

Lindemann Law predicts a much lower melt temperature than the Simon-Glatzel relation. 

 

 

 
Fig. 23 Nominal shear stress vs time for (a) Shot3 (low-pressure shot) and (b) Shot4 (high-pressure shot). A comparison is drawn between the shear 

stress profiles obtained using the Simon-Glatzel melt relation and the Lindemann melt curve, keeping all other material parameters for sucrose the 

same. 

4.3.3 Temperature and Volume-Dependent Shear Modulus  
In the preceding sections, a constant value of the shear modulus was assumed. However, the shear modulus of 

sucrose is expected to be dependent on specific volume and temperature, especially at high pressures. A commonly used 

functional form of the shear modulus is a linear variation with both pressure and temperature, as described by Steinberg et 

al. (1980): 

 
𝐺(𝑣, 𝜃) = 𝐺0 +

𝜕𝐺

𝜕𝑃

𝑃(𝑣, 𝜃)

(
𝑣0
𝑣
)
1/3
+
𝜕𝐺

𝜕𝜃
(𝜃 − 𝜃0), (4.5) 

where 𝐺0 is the shear modulus at ambient pressure and temperature and 𝑃(𝑣, 𝜃) follows from the complete equation of 

state. The derivatives of the shear modulus with respect to pressure and temperature, i.e., 
𝜕𝐺

𝜕𝑃
 and 

𝜕𝐺

𝜕𝜃
, respectively, were 

assumed to be constant by Steinberg et al. (1980) for fitting experimental data of several metals. However, the shear 

modulus behaviour near melt is not well known, especially for energetic materials, and it is expected that the shear 

modulus drops to near zero after melt. A drastic drop in shear modulus at melt has been observed through shear wave 

measurements by Nadal and Le Poac (2003). The Steinberg model in equation (4.5) does not necessarily give a zero shear 

modulus at melt and does not consider the variation of the slope of the shear modulus-temperature curve, i.e., 
𝜕𝐺

𝜕𝜃
, with 

pressure, near the melting point. These issues were addressed by Nadal and Le Poac (2003) who proposed a modified 

expression for the shear modulus that retains the linear variation of the shear modulus with pressure and temperature away 

from the melting point while addressing the sharp decrease in the shear modulus at melt through the incorporation of a 

temperature dependent pre-factor in equation (4.5).  

 

Note that using a temperature dependent shear modulus will affect the expression for thermoelastic work derived 

in section 3.4. The spatial Gruneisen tensor, which is not spherical anymore, can be expressed as: 
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 𝚪 = −
𝑣

𝑐
(−
𝜕𝑃

𝜕𝜃
𝑰 +

2𝐾2
𝐽𝑒
𝜕𝐺

𝜕𝜃
𝑵′). (4.6) 

Since 𝑰:𝑫𝑒 = 𝑡𝑟(𝑫𝑒) =
𝐽𝑒̇

𝐽𝑒
= 𝐾1̇ and 𝑵′: 𝑫𝑒 = (𝑬0

𝑒: 𝑪𝑒
−1
𝑪𝑒̇)/2𝐾2, the simplified expression for thermoelastic work can 

be written as: 

 𝑞̇𝒆 = −𝜃
𝜕𝑃

𝜕𝜃
𝐾1̇ +

𝜃

𝐽𝑒
𝜕𝐺

𝜕𝜃
 𝑬0
𝑒: 𝑪𝑒

−1
𝑪𝑒 .̇  (4.7) 

 

5 Summary and Concluding Remarks 

In this study, an experimental investigation has been carried out on a commonly used energetic material simulant, 

sucrose, through PSPI experiments. To the best of our knowledge, this is the first investigation of its kind. Experiments 

have been performed at two different nominal normal stress values, 3 and 9.5 GPa, with nominal shear strain-rates of 

1.5 − 2 × 106 𝑠−1 and 3 × 106 𝑠−1 for the low and high-pressure cases, respectively. The normal stress profiles show an 

initial elastic precursor, followed by a sharp rise to a plateau. No reverberations are observed in the normal velocity 

profiles due to the extreme thinness of the samples. The shear strength of sucrose shows a peak value followed by a 

dramatic drop after reaching a critical strain. The peak shear stress and the shear stress drop are consistently observed at 

both low and high pressures, although the critical strain at which the drop occurs varies with pressure. Such softening of 

the shear response of sucrose may be attributed to thermo-viscoplastic localized instabilities. It is worth noting that 

formation of adiabatic shear bands is a key mechanism of hot-spot formation in energetic crystals. The reported 

measurements on sucrose motivate the need to study the shear strength behavior of actual energetic crystals such as RDX 

and HMX under high-pressures and high strain-rates as the shear strength is expected to have direct implications for their 

ignition mechanisms. It should also be noted that the peak shear strength of sucrose displays minimal pressure-sensitivity, 

which is in contrast to the binders of polymer-bonded explosive systems (Malhotra, 2020; Malhotra et al., 2021). The 

shear strength of the binder is expected to surpass that of sucrose beyond a certain pressure which can lead to a reversal in 

the energy localization behavior and hence the subsequent hot-spot formation. Such a behavior has important 

consequences for ignition behavior of polymer-bonded explosives.  

 

Next, a thermodynamically-consistent constitutive model for sucrose has been presented. Molecular crystals such as 

sucrose, HMX and RDX are complex materials to model under quasi-static and dynamic loads. The complexity arises due 

to several factors: (a) anisotropic elastic properties, (b) thermo-elastic coupling, (c) a complex thermo-viscoplastic 

response, (d) a low melting point, (e) strong dependence of material properties on temperature and pressure, such as the 

elastic moduli, specific heat, melt curve and viscosity of molten fluid to name a few, and (f) the added complexity of 

chemical reactions. Moreover, lack of experimental data on melt curves and temperature and pressure-dependencies of 

shear viscosity of the melt for energetic crystals makes determination of material parameters an arduous task. Here, the 

focus is restricted to modeling the solid phase before melting takes place. First, a thermodynamic foundation is presented 

for modeling the material behavior of a solid. The temperature evolution equation is derived using the laws of 

thermodynamics, with the thermoelastic work being represented in terms of the Gruneisen tensor.  Next, the free energy is 

expressed in terms of invariants of a logarithmic strain measure. The use of logarithmic strains facilitates the additive 

decomposition of large strains into volumetric and deviatoric parts. As demonstrated above, using an adequate invariant 

basis (𝐾1, 𝐾2, 𝐾3), the Cauchy stress tensor can be additively decomposed into pressure and deviatoric stresses. Such a 

decomposition allows an independent focus on the equation of state of the material, which is typically measured through 

separate experiments. Consistent with the thermodynamic foundation laid before, a complete Mie-Gruneisen equation of 

state is derived by incorporating a temperature-dependent specific heat capacity. A complete equation of state allows for 

an accurate prediction of the thermoelastic temperature increase during extreme deformations such as in PSPI or shock 

loading, which bears important consequences for accurate prediction of deformation behavior and hot-spot formation in 

energetic crystals. Using this complete equation of state, analytical expressions for pressure and temperature are derived 

for the special cases of isothermal, isentropic and shock loading. The thermo-viscoplastic response is modeled using a 

Johnson-Cook model with a pressure-dependent melting curve.  
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Finite element simulations of PSPI experiments reveal that the shear softening is a result of the formation of a 

thermo-viscoplastic instability in the form of adiabatic shear bands. It is shown that the fall in shearing resistance is 

coincident with the sharp rise in local temperatures, which results in the formation of hot-spots. Therefore, adiabatic shear 

bands are identified as a potent hot-spot mechanism in energetic crystals subject to impact loading. It is also shown that 

the contribution of volumetric elastic compression to the temperature increase can be separated from that due to 

viscoplasticity in the numerical implementation. Large thermo-elastic temperature increases in simulations emphasize the 

importance of accurate modeling of the volumetric behavior of energetic materials through a complete equation of state.  

 

The current study provides a good starting point in characterizing and modeling deformation behavior of an energetic 

material simulant. However, much remains to be done to fully understand  the complex thermo-mechanical behavior of 

such molecular crystals both experimentally and theoretically. To begin with, localized temperature fields and strain-fields 

that eventually lead to hot-spots need to be measured with sufficient fidelity to provide reliable experimental data for 

modeling. As noted above, an important requirement is an accurate prediction of the melt curve as a function of pressure. 

Experimental evidence is needed to corroborate the models used. While such measurements are difficult to carry out with 

real energetic crystals due to the dissociation reactions associated with a temperature increase, simulants like sucrose 

provide a good opportunity in this regard. At the same time, it is important to incorporate the temperature and pressure 

dependence of the shear modulus, especially near melt. In the present work, the focus is kept on modeling the solid phase. 

However, since localized melting is expected in the adiabatic shear bands, it is important to incorporate a solid to liquid 

phase transition and the constitutive behavior of the liquid phase. So, the present framework needs to be extended to 

incorporate the above features, which remains a task for the future. Experimental characterization of shear viscosity as a 

function of temperature and pressure is expected to provide insights into the behavior of the molten phase and hence 

experimental corroboration of a constitutive model for the liquid phase. Such measurements also remain an avenue for 

future work. As the fraction of molten phase grows, dissipation is expected to drop. So, accurate prediction of temperature 

fields and associated material behaviors, such as ensuing chemical behaviors in the case of energetic crystals, requires 

accurate modeling of the phase transition as well. It should be noted that the experimental data on specific heat capacity of 

sucrose is available for a very small range of temperatures and extending such measurements to higher temperatures will 

increase confidence in the prediction of the temperature rise due to thermo-elasticity. As experimental techniques improve 

in the future, the above mentioned measurements may become feasible, and the current constitutive model can be 

extended to model such experiments. 
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Appendix A. Derivation of a 3rd order equation of state 
 

A 3rd-order polynomial free-energy function is used to derive an isothermal equation of state. Note that the final 

form of the equation of state depends on the volumetric strain measure used. The three most familiar measures of strain 

are the logarithmic strain, the Euler-Almansi strain and the Green-Lagrange strain. We begin with the logarithmic strain. 

Typically, a quadratic form of Helmholtz free energy is used. However, to model large non-linear deformations, a cubic 

term can be added, as follows: 

 𝜓𝑅(𝐾1) = 𝐴2𝐾1
2 + 𝐴3𝐾1

3 +⋯, (A.1) 

where 𝜓𝑅 is the Helmholtz free energy per unit volume in the reference configuration, 𝐾1(= ln 𝐽 = ln(𝑣/𝑣0)) is the 

logarithmic volumetric strain, and 𝐴2 and 𝐴3 are constants. For the logarithmic strain measure, the pressure in the solid 

can be found from the trace of the Cauchy stress tensor 𝑻 (as shown in equation (3.30)): 

 

𝑃 = −
𝑡𝑟(𝑻)

3
= −

1

𝐽

𝜕𝜓𝑅
𝜕𝐾1

= −𝑣0
𝜕𝜓𝑅
𝜕𝑣

= −𝐾1 𝑒
−𝐾1(2𝐴2 + 3𝐴3𝐾1). (A.2) 

The constants 𝐴2 and 𝐴3 need to be expressed in terms of measurable material parameters such as the isothermal bulk 

modulus, 𝐾𝜃0 and its first pressure derivative, 𝐾𝜃0
′ , which are defined below: 
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𝐾𝜃0 = −(𝑣

𝜕𝑃

𝜕𝑣
)
𝑣0,𝜃0

, 

𝐾𝜃0
′ = (

𝜕𝐾𝜃
𝜕𝑃

)
𝑣0,𝜃0

. 

(A.3) 

The subscript ‘0’ refers to the reference state of (𝑣0, 𝑃0 = 0, 𝜃0 = 298 𝐾). It can be shown that 𝐴2 = 𝐾𝜃0/2 and 𝐴3 =
𝐾𝜃0(2 − 𝐾𝜃0

′ )/6. Substituting these relations into equation (A.2), the 3rd-order equation of state in terms of the 

logarithmic strain (Poirier and Tarantola, 1998) is written as: 

 𝑃 = 𝐾𝜃0 (
𝑣0
𝑣
) ln (

𝑣0
𝑣
) [1 +

𝐾𝜃0
′ − 2

2
ln (

𝑣0
𝑣
)]. (A.4) 

 

Now, we derive the 3rd-order Birch-Murnaghan equation of state in terms of the Euler-Almansi strain, which is 

one of the most commonly encountered equations of state in shock physics and geophysics applications. For a purely 

volumetric deformation, the Euler-Almansi strain can be expressed as: 

 𝒆 =
𝑰 − 𝑩𝑒

−1

2
=
1 − 𝐽−2/3

2
𝑰, (A.5) 

where 𝑩𝑒 = 𝑭𝑒𝑭𝑒𝑇 is the left Cauchy-Green tensor and 𝑭𝑒 = 𝐽1/3𝑰 is the elastic deformation gradient for purely 

volumetric deformation. The volumetric Eulerian strain is defined as: 

 𝑒 =
𝑡𝑟(𝒆)

3
=
1

2
 (1 − 𝐽−2/3). (A.6) 

Now, consider the Helmholtz free energy written in terms of the volumetric Eulerian strain, similar to equation (A.1), as: 

 𝜓𝑅(𝑒) = 𝑎2𝑒
2 + 𝑎3𝑒

3 +⋯ . (A.7) 

where 𝑎2 and 𝑎3 are constants. The pressure in the solid can be found using equation (3.38) 

 𝑃 = −
𝜕𝜓

𝜕𝑣
= −

𝜕𝜓

𝜕𝑒

𝜕𝑒

𝜕𝑣
 = −(2𝑎2𝑒 + 3𝑎3𝑒

2) (
1

3𝐽5/3 𝑣0
). (A.8) 

Using the definitions for 𝐾𝜃0 and 𝐾𝜃0
′  from equation (A.3), it can be shown that 𝑎2 = 9𝑣0𝐾𝜃0/2 and 𝑎3 = 9𝑣0𝐾𝜃0(4 −

𝐾𝜃0
′ )/2. Substituting the values of 𝑎2 and 𝑎3 into equation (A.8), the 3rd-order Birch-Murnaghan equation of state can be 

written as: 

 𝑃 =
3

2
𝐾𝜃0 [(

𝑣0
𝑣
)

7
3
 − (

𝑣0
𝑣
)

5
3
] [1 +

3

4
(𝐾𝜃0

′ − 4) {(
𝑣0
𝑣
)

2
3
− 1}]. (A.9) 

 

On similar lines, consider the derivation of a 3rd-order equation of state in terms of the Green-Lagrange strain. For 

a purely volumetric deformation, the Green-Lagrange strain can be found to be: 

 𝑬 =
𝑪𝑒 − 𝑰

2
=
𝐽2/3 − 1

2
𝑰. (A.10) 

The volumetric Lagrangian strain 𝐸 is defined as: 

 𝐸 =
𝑡𝑟(𝑬)

3
=
𝐽2/3 − 1

2
. (A.11) 

The referential Helmholtz free energy can be written in terms of the volumetric Lagrangian strain as: 

 𝜓𝑅(𝐸) = 𝐵2𝐸
2 +𝐵3𝐸

3 +⋯, (A.12) 

where 𝐵2 and 𝐵3 are constants. Combining equations (3.7) and (3.15), the Cauchy stress can be obtained from the 

derivative of free energy with respect to 𝑪𝑒 as: 

 𝑻 =
2

𝐽𝑒
𝑭𝑒
𝜕𝜓𝑅
𝜕𝑪𝑒

 𝑭𝑒𝑇 . (A.13) 

Since 𝑭𝑒 = 𝐽1/3𝑰 and 𝑪𝑒 = 𝐽2/3𝑰, the expression for pressure can be shown to be: 

 𝑃 = −
𝑡𝑟(𝑻)

3
= −𝑣0

𝜕𝜓𝑅
𝜕𝑣

= −
2

𝐽1/3
(2𝐵2𝐸 + 3𝐵3𝐸

2). (A.14) 
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Following a procedure similar to the logarithmic and Eulerian strains, 𝐵2 = 3𝐾𝜃0/2 and 𝐵3 = 3𝐾𝜃0𝐾𝜃0
′ /2, which when 

substituted into equation (A.14) gives the 3rd-order equation of state derived using Lagrangian strain: 

 
𝑃 =

3

2
𝐾𝜃0 [(

𝑣0
𝑣
)

1
3
− (
𝑣0
𝑣
)
−
1
3
] [1 +

3

4
𝐾𝜃0
′ {1 − (

𝑣0
𝑣
)
−
2
3
}]. 

(A.15) 

A comparison of the 3rd-order equations of state using the 3 different strain measures is shown in Fig. A.1. It is evident 

that the Green-Lagrange strain leads to the most compliant behavior at the same volumetric compression while the Euler-

Almansi strain leads to the stiffest behavior. The equations of state using the logarithmic strain and the Euler-Almansi 

strain are quite close to one another over the range of finite volumetric strains considered here. All three strain measures 

show agreement at small strains, which is to be expected. 

 
Fig. A.1 3rd order equations of state using 3 different strain measures. 

 

Appendix B. Material Constants for Sucrose 
 

Elastic Constants 

 

Bulk Modulus 

Bridgman made measurements of compression ratios of sucrose under pressures up to 3 GPa (see Table V in 

Bridgman (1949)). The values of the bulk modulus of sucrose as a function of pressure are tabulated below. 

 
Table B.1 Bulk modulus of sucrose measured at different pressures. Bulk moduli and volumetric changes are calculated based on Table V in 

Bridgman (1949).  

Pressure 

(kg/cm2) 

Pressure 

(GPa) 
1 − 𝐽 

Bulk Modulus 

(GPa) 

5,000 0.5 0.03151 15.868 

10,000 1 0.05518 18.122 

15,000 1.5 0.07434 20.178 

20,000 2 0.09074 22.041 

25,000 2.5 0.10552 23.692 

30,000 3 0.11866 25.282 
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Fig. B.1 Linear fit to the experimental data for the isothermal bulk modulus of sucrose 

 

Fig. B.1 indicates the pressure dependence of the bulk modulus for sucrose. 𝐾𝜃0 = 14.3 𝐺𝑃𝑎 and 𝐾𝜃0
′ = 3.75 are 

obtained using a linear fit to the experimental data. 𝐾𝜃0 is the isothermal bulk modulus at ambient temperature and 

pressure while 𝐾𝜃0
′  is the first derivative of the bulk modulus with respect to pressure at ambient temperature and pressure. 

These values are very close to the data obtained from Bridgman (1933). 

 

 Poisson’s Ratio and Shear Modulus 

(Trott et al., 2007) used a Poisson’s ratio of 0.25 for sucrose. Using 𝐾𝜃0 = 14.3 𝐺𝑃𝑎 and 𝜈 = 0.25, 𝐺0 = 21.45 𝐺𝑃𝑎 is 

obtained. 

 

Thermal Constants 

 

Coefficient of Thermal Expansion 

A mean volumetric coefficient of thermal expansion of 𝛼𝑣 = 140.1 × 10
−6 ℃−1 was reported by (Bridgman, 1933) over 

a temperature range from 30 0𝐶 to 75 0𝐶.  

 

 Specific Heat 

Specific heat capacity at constant pressure, 𝑐𝑝 was reported by (Anderson et al., 1950) over a temperature range from 

25 0𝐶 to 90 0𝐶. The experimental data is given in B.2. In order to derive the specific heat capacity at constant volume 𝑐𝑣 

the following thermodynamic relation can be used: 

 𝑐𝑝 − 𝑐𝑣 = 𝑣𝜃𝛼𝑣
2𝐾𝜃, (B.1) 

where 𝑣 = 𝑉/𝑚 is specific volume, and 𝐾𝜃 is the isothermal bulk modulus. Note that the specific heat at constant volume 

has been represented by 𝑐 in the main text. However, in this appendix 𝑐𝑣 is used for the specific heat at constant volume to 

differentiate it from the specific heat at constant pressure, 𝑐𝑝. It can be seen from Table B.2 that the difference in 𝑐𝑝 and 

𝑐𝑣 values is relatively small.  

  
Table B.2 Specific heat capacities of sucrose. 𝑐𝑝 values are direct experimental measurements while 𝑐𝑣 values are derived from thermodynamic 

constraints. 

Temp 

(K) 

𝑐𝑝 (
𝐽

𝑘𝑔 𝐾
) 

(Experimentally Measured) 

𝑐𝑣  (= 𝑐𝑝 − 𝑣𝜃𝛼𝑣
2𝐾𝜃)  

275.6 1137.98 1087.331 

281.9 1167.32 1115.513 

289.7 1200.32 1147.079 

296.2 1255.32 1200.885 
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296.8 1234.54 1179.995 

296.9 1238.21 1183.646 

299.4 1250.43 1195.407 

301.2 1250.43 1195.076 

302.8 1263.88 1208.232 

313 1313.99 1256.467 

320.3 1351.89 1293.026 

342.4 1476.56 1413.634 

362.7 1581.68 1515.024 

 

 Fitting to the Debye Relation 

Using a complete equation of state requires a temperature-dependent specific heat capacity. However, 

experimentally measured values are not available for the entire temperature range of interest. So, the specific heat capacity 

is fit to the well-known Debye model of specific heat capacity: 

 𝑐𝑣 =
9𝑅0
𝑀
(
𝜃

𝜃𝐷
)
3

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

𝜃𝐷/𝜃

0

= 3𝐴 (
𝜃

𝜃𝐷
)
3

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

𝜃𝐷/𝜃

0

 (B.2) 

where 𝑅0 = 8.314
𝐽

𝐾 𝑚𝑜𝑙
 is the universal gas constant and 𝑀 is the molar mass in 𝑘𝑔/𝑚𝑜𝑙, 𝜃𝐷 is Debye temperature and 

𝐴 =
3𝑅0

𝑀
. As 𝜃 → 0, 𝑐𝑣 → 0, and as 𝜃 → ∞, 𝑐𝑣 → 𝑓𝑅0/𝑀 where the latter asymptotic limit is referred to as the Dulong-

Petit limit. 𝑓 represents the degrees of freedom contributing to the specific heat. For a monoatomic molecule, 𝑓 = 3. 

However, for complex polyatomic molecules like HMX and sucrose, the number of degrees of freedom is very large. For 

any non-linear molecule, the total degrees of freedom is 3𝑁 (3 translational, 3 rotational and 3N-6 vibrational) where 𝑁 is 

the number of atoms in the molecule. Hence, the Dulong-Petit limit of specific heat should be 𝑐𝑣 → 3𝑁𝑅0/𝑀 as 𝜃 → ∞. 

However, as is noted in (Menikoff and Sewell, 2002), some of the vibrational degrees of freedom corresponding to C-H 

bond stretching in HMX do not contribute to the specific heat capacity (as the vibrational frequencies of C-H bonds are 

very high and these modes are not very highly populated). Therefore, for HMX, the Dulong-Petit limit is expected to be 

𝑐𝑣 → (3 × 28 − 8)𝑅0/𝑀 as 𝜃 → ∞, where number of atoms in HMX is 28 and number of C-H bonds is 8. However, no 

such information is available about the vibrational frequencies of C-H bonds in sucrose. So, to begin with, a conservative 

limit for the specific heat of sucrose is assumed, i.e., as 𝜃 → ∞, 𝑐𝑣 →
3×45𝑅0

𝑀
= 3279

𝐽

𝑘𝑔 𝐾
 (𝑀 = 342.3 𝑔/𝑚𝑜𝑙).  

 

 
Fig. B.2 The Debye model fit to experimental data for the specific heat capacity at constant volume for sucrose. 
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In the form for Debye model (equation B.2), 𝑐𝑣 → 𝐴 𝑎𝑠 𝜃 → ∞, and hence A is the Dulong-Petit limit. There are 

two unknown constants for a fit to experimental data in the Debye form of specific heat, i.e., 𝐴 and 𝜃𝐷. The Debye 

expression is fit to the experimental specific heat data for sucrose assuming 𝐴 = 3279
𝐽

𝑘𝑔 𝐾
 and 𝜃𝐷 = 1500 𝐾 as shown in 

Fig. B.2. Since the experimental data for sucrose is available only for a small range of temperatures, a more accurate 

estimate of the Dulong-Petit Limit (A) would lead to a better extrapolation of the specific heat at elevated temperatures (θ 

>400K). 

 

Fitting to an Empirical form: 𝒄𝒗̃(𝜽̃) =
𝜽̃𝟑

𝒄𝟎+𝒄𝟏𝜽̃+𝒄𝟐𝜽̃
𝟐+𝒄𝟑𝜽̃

𝟑 

In order to provide a simpler expression to calculate the specific heat and enable the integration of the Debye 

form, the specific heat is fit to the empirical form shown below, as done for HMX by (Sewell and Menikoff, 2004): 

 𝑐𝑣̃(𝜃̃) =
𝜃̃3

𝑐0 + 𝑐1𝜃̃ + 𝑐2𝜃̃
2 + 𝑐3𝜃̃

3
 (B.3) 

where (𝑐0, 𝑐1, 𝑐2, 𝑐3) are constants. Such a form is chosen as it obeys the asymptotic limits at the two temperature 

extremes, i.e., 𝑐𝑣̃(𝜃̃) → 𝜃̃3 𝑎𝑠 𝜃̃ → 0 and 𝑐𝑣̃(𝜃̃) →
3𝑅0

𝑀
=

1

𝑐3
𝑎𝑠 𝜃̃ → ∞ (Dulong-Petit Limit). A fit to the Debye relation for 

the specific heat capacity using the empirical form is shown in Fig. B.2. It can be seen from the plot that the empirical 

relation fits the Debye Model very well. The following set of parameters are used for this fit: 𝑐0 = 7.095 × 10
3 𝑘𝑔𝐾

4

𝐽
, 

𝑐1 = 2.230 × 10
1 𝑘𝑔𝐾

3

𝐽
, 𝑐2 = 4.180 × 10

−3 𝑘𝑔𝐾
2

𝐽
 and 𝑐3 = 3.050 × 10

−4 𝑘𝑔𝐾

𝐽
. An explicit expression for the integral of 

the specific heat capacity with temperature is still difficult to evaluate using the empirical relation for specific heat 

(equation B.3). Therefore, the integral is calculated numerically, and a cubic polynomial is fit, as shown in Fig. B.3. A 

simple cubic polynomial is able to fit the data very well. 

 

 
Fig. B.3 ∫ 𝑐𝑣(𝜃′)𝑑𝜃′

𝜃

0
 is evaluated numerically (thick blue curve) and fit to a cubic function (thin red curve)  

Therefore, the approximation is given as: ∫ 𝑐𝑣(𝜃′)𝑑𝜃′
𝜃

0
≈ (𝑎1𝜃 + 𝑎2𝜃

2 + 𝑎3𝜃
3 )

𝐽

𝑘𝑔
  where 𝑎1 = −105.517 J/kgK, 𝑎2 =

 2.473 J/kgK2 and 𝑎3 = −6.067 × 10
−4 J/kgK3 are found through least squares fit.  

 

Thermal Conductivity 

A thermal conductivity value of 0.486 W/m K was reported in (Trott et al., 2007).  

 

 

Mechanical Properties  

 

Yield Strength 

Nanoindentation measurements of sucrose by (Ramos and Bahr, 2007) estimated a hardness of 1.5 GPa suggesting a bulk 

yield strength of 500 MPa, which motivates the use of 𝐴 = 500 𝑀𝑃𝑎 in the Johnson-Cook model. 
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Gruneisen parameter 

The following functional form of the Gruneisen parameter is assumed as noted by (Grady, 2017): Γ(𝑣) =
Γ0

𝑣0
𝑣. The value 

of Γ0 is derived from the following thermodynamic relation to be consistent with values for other thermodynamic 

quantities under ambient conditions: 

 Γ(𝑣)

𝑣
=
𝛼𝑣𝐾𝜃
𝑐𝑣

. (B.4) 

At ambient, Γ0 = 1.09 is obtained which is very close to that for HMX (Γ0𝐻𝑀𝑋 = 1.1). The integrating factor 𝜙(𝑣) can 

now be calculated explicitly: 

 𝜙(𝑣) = exp(−∫
Γ(𝑣′)

𝑣′
𝑑𝑣′

𝑣

𝑣0

) = exp(−∫
Γ0
𝑣0
𝑑𝑣′

𝑣

𝑣0

) = exp(𝛤0 (1 −
𝑣

𝑣0
)). (B.5) 

 

 

Appendix C. VUMAT Algorithm 
 

Given: (𝑭𝑛+1, 𝜃𝑛+1) and (𝑭𝑛, 𝑭𝑛
𝑝
, 𝑫𝑛

𝑝
, 𝜖𝑛̅
𝑝

) at time 𝑡𝑛. 

Calculate: (𝑻𝑛+1, 𝑭𝑛+1
𝑝

, 𝑫𝑛+1
𝑝

, 𝜖𝑛̅+1
𝑝
, Δ𝑞𝑒 , Δ𝑞𝑝) at time 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡. 

 

Step 1: Update the plastic distortion using a forward Euler discretization of the evolution equation, 𝑭̇𝒑 = 𝑫𝒑𝑭𝒑: 

 𝑭𝑛+1
𝑝

= (𝑰 + Δ𝑡𝑫𝑛
𝑝
)𝑭𝑛

𝑝
. (C.1) 

Step 2: Update the elastic distortion and associated kinematic quantities: 

 
𝑭𝑛+1
𝑒 = 𝑭𝑛+1(𝑭𝑛+1

𝑝
)
−1
, 

𝐽𝑛+1
𝑒 = det(𝐹𝑛+1

𝑒 ) , 
𝑣𝑛+1 = 𝑣0𝐽𝑛+1

𝑒 , 

𝑼𝑛+1
𝒆 = √(𝑭𝑛+1

𝑒 )𝑇𝑭𝑛+1
𝑒  , 

𝑹𝑛+1
𝑒 = 𝑭𝑛+1

𝑒 (𝑼𝑛+1
𝑒 )−1, 

𝑬𝑛+1
𝑒 = ln(𝑼𝑛+1

𝑒 ). 

(C.2) 

Step 3: Update the pressure using the complete equation of state: 

 

𝑃𝑛+1 = −
𝐾𝜃0
𝐽𝑛+1
𝑒 𝑙𝑛(𝐽𝑛+1

𝑒 ) [1 −
𝐾𝜃0
′ − 2

2
𝑙𝑛(𝐽𝑛+1

𝑒 )]

+
Γ0
𝑣0
𝜙(𝑣𝑛+1)[𝑎1(𝜃̃𝑛+1 − 𝜃̃0) + 𝑎2(𝜃̃𝑛+1

2 − 𝜃̃0
2
) + 𝑎3(𝜃̃𝑛+1

3 − 𝜃̃0
3
)], 

𝑤𝑖𝑡ℎ   𝜙(𝑣𝑛+1) = exp [−Γ0 (
𝑣𝑛+1
𝑣0

− 1)] , 𝑎𝑛𝑑 𝜃̃𝑛+1 =
𝜃𝑛+1

𝜙(𝑣𝑛+1)
. 

(C.3) 

Step 4: Update the Mandel and Cauchy stresses: 

 𝑴𝑛+1
𝑒 = 2𝐺𝑬0,𝑛+1

𝑒 − 𝑃𝑛+1𝐽𝑛+1
𝑒 𝑰, 

𝑻𝑛+1 =
1

𝐽𝑛+1
𝑒  𝑹𝑛+1

𝑒 𝑴𝑛+1
𝑒 (𝑹𝑛+1

𝑒 )𝑇, 

𝜎𝑛+1̅̅ ̅̅ ̅̅ = √
3

2
 |𝑴0,𝑛+1

𝒆 |. 

(C.4) 

Step 5: Update the rate of plastic stretching 𝑫𝑝. 

a. Update the accumulated plastic strain: 

 

𝜖𝑛
𝑝̅̅ ̅̇ = √

2

3
|𝑫𝑛
𝑝
|, 

𝜖𝑛+1 
𝑝̅̅ ̅̅ ̅̅ ̅ = 𝜖𝑛

𝑝̅̅ ̅ + 𝜖𝑛
𝑝̅̅ ̅̇Δ𝑡. 

(C.5) 

b. Calculate the melting temperature using the Simon-Glatzel relation: 
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𝜃𝑚,𝑛+1 = 𝜃𝑚0 (1 +
𝑃𝑛+1 − 𝑃𝑟𝑒𝑓

𝑃𝑖
)

1
𝑑
, 

𝜃𝑛+1 =
𝜃𝑛+1 − 𝜃𝑟𝑒𝑓

𝜃𝑚,𝑛+1 − 𝜃𝑟𝑒𝑓
. 

(C.6) 

c. Calculate the effective plastic strain-rate using the Johnson-Cook Model: 

 

(𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅̇ )

𝐽𝐶
= 𝜖0̇ exp(

1

𝐶
 (

𝜎𝑛+1̅̅ ̅̅ ̅̅

(𝐴 + 𝐵 (𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅ )

𝑛
) (1 − 𝜃𝑛+1

𝑚 )
− 1)). (C.7) 

d. Update the effective plastic strain-rate, ensuring that it remains bounded for cases in which 𝜃𝑛+1 > 𝜃𝑚,𝑛+1: 
 1

𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅̇

=
1

(𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅̇ )

𝐽𝐶

+
1

𝜖𝑙𝑖𝑚
𝑝̅̅ ̅̅ ̅̇
 . 

(C.8) 

e. Update 𝑫𝑝: 

 
𝑫𝑛+1
𝑝

=
3

2
𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅̇ 𝑴0,𝑛+1

𝒆

𝜎̅𝑛+1
. (C.9) 

Step 6: Calculate Δ𝑞𝑒. 
 

 

 

 

 

 
Δ𝑞𝑒 = Δ𝑡 𝑞𝑒̇ = −𝜃𝑛+1 𝑐𝑣,𝑛+1

Γ0
𝑣0
(ln 𝐽𝑛+1

𝑒 − ln 𝐽𝑛
𝑒), 

𝑐𝑣,𝑛+1 =
𝜃̃𝑛+1
3

𝑐0 + 𝑐1𝜃̃𝑛+1 + 𝑐2𝜃̃𝑛+1
2 + 𝑐3𝜃̃𝑛+1

3
, 

𝐽𝑛
𝑒 = det (𝑭𝑛𝑭𝑛

𝑝−1
).  

(C.10) 

Step 7: Calculate Δ𝑞𝑝. 

 
Δ𝑞𝑝 = Δ𝑡 𝑞𝑝̇ =

𝛽

𝐽𝑛+1
𝑒 𝜎̅𝑛+1𝜖𝑛+1

𝑝̅̅ ̅̅ ̅̅̇ Δ𝑡. (C.11) 
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