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Abstract 
Spruce–fir (Picea–Abies) forests of the North American Acadian Forest Region 

are at risk of disappearing from the northeastern United States and Canada 
due to climate change. Species distribution models (SDMs) have been used to 
predict changes in this critical transitional ecosystem in the past, but none 
have addressed how seasonal patterns of temperature and precipitation inter- 
act to influence tree species abundance. Inferences have also been limited by 
contemporary inventory data that could not fully characterize species ranges 
because  they  either,  (1)  only  sampled  species  occurrence  after large-scale 
human disturbance and settlement, or (2) did not span critical geopolitical 

boundaries (e.g., the US–Canadian border) that intersect the focal species’ 
range(s). Here, we built new SDM models to better assess the bioclimatic dis- 
tribution of four spruce–fir species and to test the importance of seasonal cli- 
mate interactions. We compiled an extensive database of tree occurrence and 
abundance from recent (~1955–2012) and historical time periods (1623–1869) 
to model current species distributions and to predict how these might change 
under future climate. We found that including historical tree data in our SDMs 
revealed previously unrecognized suitable habitat along the southern edge of 
species’ contemporary  ranges.  Random forest models predicted  occurrence 
with high accuracy (area under receiver operator curve >0.98), and the sea- 
sonal climate variables that emerged as most important for these cold-adapted 
species all included interactions that reflected sensitivity to colder tempera- 
tures, and preferences for wet weather concentrated in the winter months. 
Under moderate climate warming (representative concentration pathway 6.0), 
the northeastern United States retained additional suitable habitat when his- 
torical data were included through 2060 for three of the four species: red 
spruce (Picea rubens), black spruce (Picea mariana), and balsam fir (Abies 
balsamea), while white spruce (Picea glauca) habitat contracted into Canada. 
In contrast, future predictions from models that used contemporary data alone 
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INTRODUCTION  

 
Tree species distributions are known to correlate with cli- 
mate, but are also multifaceted and dynamic, depending 
on other factors including disturbance regimes (Franklin 
et al., 2016), patterns of resource availability, and human 
land use (Nowacki & Abrams, 2015). Although changes 
in any one of these factors can affect species distribu- 
tions, the effects of climate change merit special attention 
as it is forcing ecosystems in ways that have no recent 
analog. To predict how the distribution of tree species 
will change with climate, we often look to evidence of 
past migration. Paleological examples indicate increases 
in temperature can shift species’ geographic ranges pole- 
ward or upward in altitude (Harsch et al., 2009; 
Parmesan, 2006), although records also suggest that these 
dynamics historically played out over hundreds to thou- 
sands of years (Schauffler & Jacobson Jr., 2002). Evidence 
like this creates an expectation that tree species will 
migrate as the climate changes. Observations of more 
rapid responses to current global warming, however, 
have also shown stable or expanding species distributions 
(Foster & D’Amato, 2015), with some evidence suggesting 
that tree ranges have stayed stable or shifted on the order 
of 10s of kilometers in latitude or 10s of meters in altitude 
over recent decades (Woodall et al., 2018). These variable 
patterns of contemporary climate response highlight the 
need to better predict how tree species distributions will 
continue to shift in the future, the factors that influence 
these patterns, and possible quantification of underlying 
uncertainty. 

Predicting the impacts of changing climate on trees spe- 
cies’ distributions remains difficult, however, due to 
(1) interactions among climate and the other  factors  
(e.g., disturbance), (2) weaknesses in existing data and 
models, and (3) trees’ sessile growth habit (e.g., dispersal 
happens slowly across generations). The first two of these 
challenges can be addressed within the framework of statis- 
tical species distribution models (SDMs), also known as 
ecological niche or bioclimatic envelope models, though 
SDMs  are  unsuited   to  address  effects  of  dispersal   or 

competition associated with (3). Species distribution 
models are an empirically based approach that correlates 
the presence of species to climatic variables and assumes 
the best indicator of a species realized niche is its current 
distribution  (Dyderski  et  al.,  2018;  Pearson  &   
Dawson, 2003). 

Uncertainty in predictions of species range from SDMs 
can arise from limitations in climate data, the empirical 
tree data, or the quantities being predicted. While evi- 
dence is growing that tree responses to climate depend on 
the interactive effects of temperature and precipitation 
(Foster & D’Amato, 2015; Parmesan, 2006), SDMs do not 
often consider climate interactions  (Peters  et  al.,  2020). 
In terms of empirical data, potential sources for  SDMs 
vary  from  historical  records   from   surveyors   (Cogbill 
et al., 2002; Hanberry et al., 2012; Thompson et al., 2013), 
herbaria, museums, or atlases (Graham et al., 2008) to sys- 
tematic national plot inventories (Dyderski et al., 2018; 
Guisan et al., 2007; Iverson et al., 2008; Rogers et  al., 
2017). Important spatial and  temporal  limitations  can 
arise from any of these available data, but can be difficult  
to fully quantify or address. Spatially, national inventory 
data may be too coarse or have limited capacity  to  
describe species that cross international  boundaries  
(Prasad et al., 2020; Weiskittel et al., 2012). Temporally, 
intense historic  anthropogenic  disturbance  has  altered 
or reduced the distribution of certain forest species in 
North America, limiting how well contemporary inven- 
tories  can  describe   true   bioclimatic   niches   (Tinner 
et al., 2013). Once an empirical dataset is chosen, SDMs 
can be built on either presence/absence occurrence data 
(Elith et al., 2010; Rogers et al., 2017) or abundance 
variables (e.g., relative basal area [RBA]; Iverson et al., 
2008). This choice of tree variable can affect predic-  
tions; abundance may better represent core habitat 
(Charney et al., 2021), while occurrence models may 
overpredict suitable habitat (Joyce & Rehfeldt, 2013), 
which may be a worthwhile risk for the conservation of 
endangered ecosystems (Ashcroft et al., 2017).  How  
these choices affect models of species that occur at low 
abundance   is   not   well   quantified   and   reduces   our 

forecast extirpation for all four species from the northeastern United States. 
Overall, these findings highlight that prediction of species ranges in transi- 
tional ecosystems that span geopolitical boundaries and gradients of intense 
land use are improved when historical data and seasonal climate interactions 
of both temperature and precipitation variables are incorporated. 

 
KEYWORDS  
Abies balsamea, climate change, historical data, occurrence, Picea glauca, Picea mariana, 
Picea rubens, species distribution models, spruce–fir forest 
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ability to predict future species distributions to an 
unknown degree. 

An appropriate model system to test these limitations 
would capture tree species ranges that span steep cli- 
matic gradients, cross geopolitical boundaries, and have 
a history of land-use change that could have disrupted 
the expression of realized niches. The Acadian Forest 
Region (AFR) is an example of a transitional ecosystem 
in eastern North America that spans the border between 
the United States and Canada. Projected future changes 
in climate show some of the most rapidly warming 
temperatures in the United States and globally  
(Gonzalez et al., 2018; Karmalkar & Bradley, 2017), 
including shrinking snow cover, more frequent droughts, 
and extended periods of low hydrological flows in the 
summer (Hayhoe et al., 2008). Of particular concern is 
the fate of the spruce–fir forest type, whose primary tree 
species, red spruce (Picea rubens Sarg.), black spruce 
(Picea mariana [Miller] B.S.P.), white spruce (Picea glauca 
[Moench] Voss), and balsam fir (Abies balsamea L.), 
prefer cooler and moister conditions. Previous SDMs 
have predicted range contraction of up to 400  km north 
(Iverson et al., 2008) and reduction of 97%–100% of suit- 
able spruce–fir habitat in the United States in the next 
100 years (Hansen et al., 2001). However, these previous 
efforts often relied on contemporary, US-only invento- 
ries that excluded habitat in Canada (Prasad et al., 2020) 
and may have suffered from obfuscation of past anthro- 
pogenic drivers (Foster & D’Amato, 2015; Wason & 
Dovciak, 2017). 

Here, we report models that tested ways to reduce 
potential uncertainty in predictions of tree species range 
shifts associated with climate change by addressing the 
widespread spatial, temporal, and methodological limita- 
tions outlined above. For the AFR, we tested how predic- 
tion of tree species distributions changed when models 
were built from a spatially comprehensive dataset that 
included observations from both the United States and 
Canada, with and without historical observations, and 
whether modeling occurrence, likelihood, or abundance 
variables were comparable. Our specific objectives were 
to: (1) develop species-specific models of current distribu- 
tions using contemporary data and climate interactions; 
(2) compare predictions when both contemporary and 
historical data were used; (3) evaluate different tree vari- 
ables of occurrence or abundance; and (4) assess how 
prediction of future distributions varied based on these 
choices. Understanding the future dynamics of transi- 
tional ecosystems under climate change is critical for pri- 
oritizing conservation strategies by identifying future 
climate refugia (Morelli et al., 2016), as well as where  
adaptation strategies might mitigate impacts associated 
with shifts in ecosystem state (Toot et al., 2020). 

MATERIALS AND METHODS  
 
Study area 

 
Our analysis focused on the AFR (Figure 1; Appendix S1: 
Figure S1), a broad ecoregion with diverse topography that 
spans 7o latitude and experiences correspondingly diverse cli- 
mates. Much of the region lies at the boundary of the shifting 
polar front, where warm, wet subtropical systems meet  sub- 
polar maritime systems and dry, cold continental air masses. 
Temperatures ranged on average from 7.4 to 20oC (climate 
normal 1961–1990) and increased 0.37–0.43oC per decade 
between 1965 and 2005, with greater increases  in the winter 
(Huntington et al., 2009; Appendix S1: Table S1). Annual pre- 
cipitation averaged 1111 mm year-1. Soils are mostly derived 
from glacial deposits that vary with elevation and latitude. 
We defined our study area by intentionally extending the area 
of analysis beyond the boundaries of the AFR to include most 
of the southern and northern extent of the focal species’ 
ranges. We considered several of the most ecologically and 
economically important conifer species in the AFR; red 
spruce, black spruce, white spruce, and balsam fir. While the 
ranges of black spruce, white spruce, and balsam fir extend 
well into the Canadian taiga, where little tree data have been 
collected, for the purpose of this analysis, we assumed that 
characterizing the northern range edge was not necessary  to 
describe species’ distributions within the AFR. 

 

Tree data 
 

We gathered observations of tree species occurrence and 
size (dbh), from agencies in the United States and Canada 
for the study area. A threshold of 10 cm dbh and greater 
was used in this analysis since this was the most consistent 
minimum dbh for the majority of available data. Prelimi- 
nary analysis performed using smaller dbh thresholds indi- 
cated only small changes in predictions of suitable habitat 
(Andrews, 2016). Specific details about the data protocols 
used by each organization are available in Andrews (2016) 
and Andrews et al. (2018). We selected four dependent var- 
iables including species occurrence (i.e., presence or 
absence on a plot) and three measures of relative abun- 
dance:  relative  stem  density  (RSD;  trees  ha-1),  RBA, and 
an importance value (IV; 50 x RBA + 50 x RSD), which 
combines proportional stem density and RBA as defined in 
Iverson et al. (2011) and scales from 0% to 100%. 

 
 
Contemporary and historical tree data 

 
We assembled 792,359 species occurrence observations 
from 248,821 plots to characterize the contemporary 
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FI G U RE 1 Maps and distributions of plots with spruce and fir used in this analysis. Panels (a) and (b) highlight the spatial differences 
between historical (pink) and contemporary (green) datasets. Panels (c) and (d) highlight species spatial differences. The inset in panel 
(d) shows the distribution of spruce–fir in the historical dataset, while the larger histogram describes the contemporary data. The histograms 
are the count of observations by elevation class for the historical and contemporary datasets (panel b) as well as by species (panel d). A more 
detailed map of the study area is provided in Appendix S1: Figure S1 

 
 

distribution of species (Appendix S1: Table S2). The data 
were collected from 1955 to 2012, with the majority 
collected after 1980 (85%). We also accessed 1342 histori- 
cal tree observations from 778 plots from a database 
developed by Cogbill (2000), as well as Thompson and 
Cogbill (2013), to characterize occurrence prior to wide- 
spread disturbance (abundance cannot be  determined  
from these data; Appendix S1: Figure S2).  These  data  
were originally collected between 1623 and 1869 and 

represent tree composition at the time of European settle- 
ment in the New England states and New York, although 
they differ from systematic General Land Office survey data 
that were collected for areas settled northwest of the Ohio 
River. The land in our study area was surveyed at the time 
of division into 40–60 ha lots by proprietors, with the largest 
tree at the corner of each lot recorded as a demarcation 
boundary (Cogbill, 2000). Although sampling methods were 
often poorly documented, Cogbill (2000) considers these 
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data to be representative of township scale (~16 x 16 km) 
composition at the time of collection (Cogbill et al., 2002). 
These data provided a unique opportunity to account for 
habitats and regions that may have historically supported 
spruce–fir prior to extirpation by land use or other factors. 

 

Climate and topographic data 
 

We used average climate data for 30-year climate normals 
(1961–1990) from the US Forest Service’s Moscow Forest Sci- 
ence Laboratory database to characterize climate coincident 
with the majority of the plot data (http://charcoal.cnre.vt. 
edu/climate/future/details.php; Joyce & Rehfeldt, 2013). We 
considered  33  climatic  variables  (Appendix  S1:  Table  S1), 
16 of which directly  measure  climate,  while  the  remaining  
17 were second-order interactions found useful in prior ana- 
lyses  (Joyce  &  Rehfeldt,  2013).  We  also  compiled  available 
climate data from Oregon State University’s PRISM Climate 
Group (https://prism.oregonstate.edu/) and  computed 30-
year climate normals  for 1895–1925 to identify  any  broad- 
scale climate differences coincident with the historic tree 
observations. In general, we observed a similar distribution 
between the contemporary and historical climate normals  
for the primary variables (Appendix S1: Figure S3), which is 
likely because of the difficulty of high-resolution climate 
reconstruction. Consequently, we assumed that the historic 
tree data could be linked with the contemporary climate var- 
iables (Appendix S1: Table S1) alongside the contemporary 
tree data, which allowed both datasets to consistently inform 
our models and projections without additional potential 
uncertainty due to the derivation of climate normals. 

We also included topographic variables to capture addi- 
tional biophysical effects related to soil drainage, exposure, 
and solar radiation. We determined elevation, slope, and 
aspect from plot records, or otherwise extracted them from 
a 30-m digital elevation model (DEM) (NED raster package 
[Hijmans, 2020] R statistical software [R Core Team, 2019]). 
We transformed aspect to a measure of northness and 
eastness using the Beers transformation, which was sin 
([aspect + 45] x π/180) + 1 (Beers et al., 1966). We derived 
five topographic indices using the DEM and the System for 
Automated Geoscientific Analyses (Brenning, 2008): topo- 
graphic wetness, convergence, terrain, topographic open- 
ness, and site curvature indices. 

 
 
Species-specific distribution model 
development 

 
We developed species-specific distribution models for 
occurrence and the three abundance variables using the 
random forest package for R (Breimen & Cutler, 2012). 

Species-specific occurrence models were constructed  with 
and without historical tree data. Random forest models cre- 
ate classification or regression trees with the former being 
useful   for    presence/absence    occurrence    data    (Elith  
et al., 2010; Guisan et al., 2007) and the latter when model- 
ing abundance (e.g., Iverson et al., 2008). The random for- est 
algorithm relies on  equal  representation  across  classes for 
accurate prediction (Joyce & Rehfeldt, 2013). To accom- 
modate this, we randomly subset absence observations to 
represent ~50% of data in the occurrence models and 20% 
in the abundance regression models. Half of the absence  
data were sampled from areas determined to  be  climati-  
cally similar, and half dissimilar, similar to  Joyce  and 
Rehfeldt (2013). In addition,  we  increased  the  prevalence 
of presence or abundance observations by doubling their 
number as recommended by Pearson and Dawson (2003). 

To determine which environmental predictors were 
most important, we ran five preliminary random forests con- 
sisting of 500 trees for each dataset. We determined the most 
important variables using the VarImp function; then, we 
refit final models using the five most important variables in 
a random forest with 500 trees. For consistency, we used the 
contemporary climate normals for both the contemporary 
and historical occurrence observations since preliminary 
analysis indicated similar model fits (Appendix S1: Table S4) 
and predictive behavior (Appendix S1: Figures S3 and S4) as 
models trained using the historical climate normals. 

 
 
Model evaluation and comparison 

 
We evaluated occurrence models using the area under 
receiver operator curve (AUC) and out-of-bag (OOB) error. 
We used mean square error and pseudo-R2 to evaluate 
regression models of abundance. In addition, we used 
kappa values to compare predictions of current distribution 
against actual distribution (Visser & Nijs, 2006). Kappa 
values  range  from  -1  to  1,  with  1  representing  perfect 
agreement in the distribution of categories between two 
maps. To calculate kappa, we divided the abundance 
values into eight equal categories based on the observed 
data (i.e., quantiles) and compared the resulting categorical 
maps. We considered the likelihood of occurrence output 
to see whether it could act as a proxy for abundance by cor- 
relating it with predicted basal area using Spearman’s  non- 
parametric rank correlation coefficient (ρ). 

 
 
Predictive mapping 

 
We mapped predicted future distributions for each spe- 
cies using the predict function of the random forest pack- 
age. Mapped predictions were produced with 0.00833o 

http://charcoal.cnre.vt.edu/climate/future/details.php
http://charcoal.cnre.vt.edu/climate/future/details.php
https://prism.oregonstate.edu/
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(~1 km2) rasters of the five model-selected climate vari- 
ables as they varied under future climate scenarios, for the 
years 2030, 2060, and 2090, although we focus our discus- 
sion of results on predictions for 2060 for brevity. Predicted 
climate rasters were an ensemble mean of each variable 
generated from various global circulation models (GCMs) 
under the representative concentration pathway 6.0 (RCP 
6.0) scenario (Taylor et al., 2012), which is a moderate forc- 
ing scenario. The GCMs used included: (1) Community 
Earth System Model (CCSM4); (2) Geophysical Fluid 
Dynamics Laboratory (GFDLCM3); (3) Hadley Meteo- 
rological Office (HadGEM2ES); (4) National Center for 
Atmospheric Research/University Corporation for Atmo- 
spheric Research (CESM1BGC); and (5) Centre National de 
Recherches Météorologiques (CNRMCM5). 

 
 
RESULTS  

 
Tree data 

 
Balsam fir, black, white, and red spruce occurred in 15%, 9%, 
7%, and 4% of plots, respectively (Figure 1). Absence data 
accounted for 80% of observations and 65% of plots, a major- 
ity of which arose from the US Forest Service (USFS) Forest 
Inventory & Analysis (FIA) data (96%), while most  spruce– 
fir presence data originated from non-FIA sources (97%). 
The distributions of plot-level RBA, RSD, and IV for white 
spruce, red spruce, and balsam fir all followed descending 
monotonic curves. Among plots where it occurred, black 
spruce RBA exhibited a flat to u-shaped beta distribution 
with higher concentrations near zero and one, demonstrat- 
ing a tendency to high dominance and monospecific stands. 
Relative abundances were higher overall for balsam fir and 
black spruce, and lower for white and red spruce (Table 1). 
The addition of historical tree data provided 321, 5, 33, and 
544 plots, respectively, to the balsam fir, white spruce, black 
spruce, and red spruce occurrence data. 

Model performance 
 

Random forest classification models were able to predict 
species occurrence with high accuracy according to AUC 
values, while also maintaining high sensitivity and speci- 
ficity (Table 2). All AUC values were greater than or 
equal to 0.98 (Table 2). Sensitivity, or the percentage of 
true occurrences that models predicted correctly, ranged 
from 98.8% (balsam fir) to 99.5% (black spruce) and speci- 
ficity ranged from 91.0% (black spruce) to 95.2% (red 
spruce). Occurrence models produced with additional 
historical data did not differ in accuracy from models 
built on only contemporary data in regard to OOB error 
and AUC (Table 2; Appendix S1: Table S4) or kappa sta- 
tistics (Appendix S1: Table S5). The predictive variables 
selected remained the same, although their importance 
rank was altered (Table 2). 

For species abundance metrics, random forest regres- 
sion models that predicted RBA performed slightly better 
than models of RSD or IV, but all models tended to 
underpredict absolute abundance values, on average 
(Appendix S1: Table S5). The average percent difference 
between the actual and predicted means among abun- 
dance variables was 39.5%, 43.6%, and 40.5% for RBA, 
RSD, and IV, respectively. As often occurs, random forest 
models were better at detecting mid-range abundance 
values, but overestimated low abundance and under- 
estimated high abundance. 

 
 
Current species’ distributions predicted 
from contemporary data 

 
Maps of predicted species occurrence were able to  accu- 
rately capture recent species presence, with some over- 
prediction (Figure 2a–d). Occurrence maps showed 
strong spatial agreement between observed and predicted 
species occurrence (Appendix S1: Figure S6), with kappa 

 
 

T A B L E  1 Statistics of occurrence and abundance (relative basal area [RBA], relative stem density [RSD], and importance value [IV]) by 
species 

 RBA (0–1)   RSD (0–1)   IV (0–100)a  

Species Mean SD  Mean SD  Mean SD Occurrence (%)b 

Balsam fir 0.31 0.27  0.39 0.30  33.84 27.09 15.4 (23.4) 

White spruce 0.17 0.21  0.17 0.23  16.65 20.39 6.6 (0.36) 

Black spruce 0.51 0.37  0.52 0.36  51.47 36.32 9.1 (2.4) 

Red spruce 0.21 0.34  0.33 0.22  22.56 22.69 4.1 (39.6) 

Note: For abundance measures, the mean and SD across plots where each species occurred, while occurrence is the percentage of plots where the species was 
observed for both the full and historical (in parentheses) datasets. 
aComputed as 50 x RBA + 50 x RSD. 
bPercentage of plots where the species occurred. 
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error Specificity Sensitivity AUC Top five variablesa ratio Species 
Prevalence OOB 

 

T A B L E  2 Results of random forest analyses of occurrence with and without historical data for each species 

Occurrence without historical data 
 

Balsam fir 55:20:25 3.30 94.08 98.84 0.99 PRDD5, MAPMTCM, PRMTCM, MAPDD5, GSPMTCM 

White spruce 50:25:25 4.09 92.40 99.41 0.98 PRDD5, PRMTCM, MAPMTCM, MAPDD5, GSPMTCM 

Black spruce 55:20:25 4.32 91.01 99.49 0.99 MAPDD5, PRMTCM, PRDD5, GSPMTCM, MAPMTCM 

Red spruce 40:40:20 3.15 95.17 99.37 0.99 PRDD5, MAPDD5, PRMTCM, MAPMTCM, GSPMTCM 

Occurrence with historical data 

Balsam fir 55:20:25 3.29 94.04 98.89 0.99 PRDD5, MAPMTCM, PRMTCM, GSPMTCM, MAPDD5 

White spruce 50:25:25 4.05 92.52 99.38 0.98 PRDD5, MAPMTCM, PRMTCM, MAPDD5, GSPMTCM 

Black spruce 55:20:25 4.20 91.26 99.52 0.99 PRMTCM, MAPDD5, PRDD5, MAPMTCM, GSPMTCM 

Red spruce 40:40:20 3.32 94.93 99.31 0.99 PRDD5, PRMTCM, MAPMTCM, MAPDD5, GSPMTCM 

Note: The prevalence ratio is a ratio of presence to the absence sample from within the hypervolume (HV) to an absence sample from outside the HV. 
Abbreviations: AUC, area under receiver operator curve; OOB, out-of-bag error. 
aGSP = growing season (April–September) precipitation; MAP = mean annual precipitation (mm); DD5 = annual days above 5o C based on mean monthly 
temperature (days x degree Celsius); MTCM = mean temperature in the coldest month; PRDD5 = PRATIO x DD5; PRATIO = GSP/MAP; 
MAPMTCM = mean annual precipitation x mean temperature in the coldest month, scaled; PRMTCM = growing season precipitation/mean annual 
precipitation x mean temperature in the coldest month; MAPDD5 = mean annual precipitation x annual days above 5o C based on mean monthly 
temperature, scaled; GSPMTCM = growing season precipitation x mean temperature of coldest month, scaled. 

 
 

values ranging from 0.77 for black spruce models to 0.80– 
0.83 for red and white spruce and balsam fir (Appendix S1: 
Table S5). The white spruce model overpredicted presence 
in interior New Brunswick, but captured populations in 
northern New England into Canada and along the coast 
(Figure 2). Despite a lower kappa statistic, the black spruce 
model captured distinct populations in northern Maine, 
along the coast, and in the northern Adirondacks. The red 
spruce model showed a well-defined range that captured 
extant populations in the Central Appalachians. The bal- 
sam fir model was able to capture the wide range of this 
species. When historical data were included in models 
based on current climate, small patches of additional habi- 
tat were revealed, while the overall habitat distribution 
remained similar to models built on contemporary data 
alone. Additional areas included southern New Hampshire 
and western Massachusetts for balsam fir, eastern New 
York  for white spruce, and southeast Massachusetts and 
Connecticut for red spruce (Figure 2a–d, in pink). 

The maps of predicted abundance tended to underesti- 
mate abundance in almost all of the models (Figure 3a–d; 
Appendix S1: Figures S7 and S8). While exact values were 
incorrectly estimated, the models were able to capture the 
cline from lesser to greater abundance, particularly for 
the RBA and IV models. Black spruce maps presented 
the most accurate patterns of abundance, representing 
populations in Québec and along the coasts of eastern 
New Brunswick, Nova Scotia, and Newfoundland. When 
likelihood of occurrence was evaluated, spatial similarity 
for all species  was found between  current core areas  of 

abundance (i.e., the 75th percentile of predicted RBA, 
Figure 3a–d) and the likelihood output (Figure 3e–h; 
Appendix S1: Figure S9). 

 
 

Future predictions of species’ distributions 

Maps of species occurrence for the year 2060 show poten- 
tial shifts of suitable habitat to the north and east, signifi- 
cantly reducing potential habitat for these species in the 
United States (Figure 2e–l). In 2060, white spruce habitat 
is projected to disappear completely from the northeast- 
ern United States, while persisting in the Canadian AFR 
in northern New Brunswick, the Gaspe Peninsula, and 
Cape Breton Island, Nova Scotia. Balsam fir and red 
spruce habitat persist in patches in Maine, New Hamp- 
shire, and the Adirondacks in the United States, as well 
as the northern and coastal highlands of New Brunswick 
and Cape Breton Island in Canada. Losses  in  the  
United States are met with modest gains to the north for 
balsam fir and white spruce, and to the northeast for red 
spruce. Black spruce is likely to occupy regions past the 
northern extent of the study area used in this analysis. By 
2090, balsam fir and white spruce have the greatest area 
of potential suitable habitat available (Table 3). All spe- 
cies lose area by 2090, however, when compared to cur- 
rent predicted suitable habitat (Appendix S1: Figure S10). 
Balsam fir (48%) and black spruce (73%) lose the most 
area, while white and red spruce only experience reduc- 
tions of 31% and 21% of suitable habitat. 
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FI G U RE 2 Predicted occurrence under current climate normals based on data from 1961 to 1990 (a–d), future occurrence in 2060 
(e–h), and change between present and future (i–l) for each species. Occurrence was predicted with and without additional historical data. 
Additional area predicted as suitable habitat is represented by pink (a–h) and by light green (i–l). “maint” and “gained-H” are suitable 
habitat maintained or gained with inclusion of historical data (i–l) 
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FI G U RE 3 Predicted current basal area (BA; a–d), likelihood (e–h), and future likelihood (i–l) for spruce and fir species. Only current predicted 
basal area greater than the relative 75th quantile is shown to highlight core areas of abundance. For the likelihood figures (e–l), areas that are “most 
likely” (ML, >85% of votes) are shown in dark green and “likely” (L, between 50% and 85% of votes) in yellow. Light green (+) indicates that with 
the inclusion of historical data, areas switched from likely to most likely. Light yellow (-) indicates a switch from most likely to likely 
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2090 2060 Current 2030 2090 2060 Current 2030 Species 

Occurrence model with only contemporary data Occurrence model with contemporary and historical data 

 

T A B L E  3 Area (thousands of km2) potentially occupied by each species under the presence/absence models with and without the 
historical data (percentage change from current area indicated by values in parentheses) 

Balsam fir 1521 1302 (-14.4) 1142 (-24.9) 791 (-48.0) 1523 1370 (-10.1) 1220 (-19.9) 870 (-42.9) 

White spruce    971 941 (-3.1) 815 (-16.1) 668 (-31.2) 950 946 (-0.4) 867 (-8.7) 713 (-24.9) 

Black spruce   1604 1005 (-37.3) 753 (-53.1) 434 (-72.9) 1617 1033 (-36.1) 817 (-49.5) 506 (-68.7) 

Red spruce 495 469 (-5.3) 401 (-19.0) 391 (-21.0) 504 525 (4.2) 518 (2.8) 578 (14.7) 
 

Models that included historical tree data produced 
significant differences in predicted future habitat for all 
four species, (Figure 2e–l, Table 3; Appendix S1: 
Figure S5), identifying 198,557 and 236,446 km2 of addi- 
tional suitable habitat for red and black spruce, respec- 
tively. Without the addition of historical data, these 
species were predicted to be extirpated  from  the 
United States by 2060. Additional habitat was also identi- 
fied in Québec for balsam fir and white spruce when his- 
torical data were included. In addition, red spruce 
showed a positive increase in suitable habitat of 4.2%, 
2.8%, and 14.7% for 2030, 2060, and 2090, respectively, 
unlike predictions for the three other species. 

 
 
Future likelihood of occurrence 

 
The likelihood of future occurrence was mapped from the 
random forest models with and without the historical data 
for each  species  (Figure  3i–l;  Appendix  S1: Figure S11). 
These predictions were similar to future presence/absence 
maps, but highlight potential core areas of suitable habitat. 
No locations with a likelihood greater than 85% were 
predicted to be within  the United States for  any  of the four 
species  by  2060.  “Likely”  habitat  was  identified  in the 
United States for balsam fir and red spruce with hotspots 
including Cape Breton Island and the Côte-Nord area 
along the Gulf of St. Lawrence within Québec. The addi- 
tion of historical data made no impact on habitat area with 
a likelihood of 50%–85% (i.e., “likely” habitat). For exam- 
ple, additional habitat identified in the United States in 
2060 using historical data (Figure 2f) was nevertheless not 
considered likely (Figure 3j). However, historical data did 
increase the rating of some areas from “likely” to “most 
likely”  (i.e.,  black  spruce  habitat  deemed  “most likely,” 
with likelihood >85%, increased by 5089 km2). 

 
 
DISCUSSION  

 
Species distribution models based on current bioclimatic 
niches are commonly used to assess vulnerability of a 

 
species or ecosystem to future changes in climate 
(Dyderski et al., 2018; Rogers et al., 2017), yet our find- 
ings illustrate that projected distributions are sensitive to 
the abundance variables used (Charney et al., 2021), the 
geographic extent of the underlying training data 
(Appendix S1: Figure S12), and to whether or not histori- 
cal occurrence data are included. The most important 
predictor variables varied by species and allow additional 
inference based on life history characteristics. All occur- 
rence models predicted species observations with high 
accuracy but the area occupied by each species varied  
when historical data were included and when alternative 
abundance metrics were used, while they were less sensi- 
tive to the temporal alignment of the climate normals 
with the period of observation (contemporary vs. historic; 
Appendix S1: Figures S4 and S5). The addition of histori- 
cal data identified both persistent and additional suitable 
habitats by 2060 on the southern edge of species’ ranges 
for ensemble climate change projections (RCP 6.0), 
which gives a more promising picture for the continua- 
tion of current forest composition than models based on 
contemporary occurrence alone. 

In particular, we found that the likelihood metric 
from occurrence models and abundance models were 
more suitable for assessing the landscape for habitat 
refugia hotspots. The likelihood metric can be derived 
from more available occurrence data such as historical 
observations; thus, information from a variety of invento- 
ries can be combined into a single, inclusive dataset for 
SDMs. When we used thresholds to refine the species 
ranges from model likelihood (Figure 3), it generally 
showed that additional habitat gained from the inclusion 
of historical data had relatively low likelihood for the 
occurrence of spruce–fir species. Predictions from SDMs 
that  rely  solely  on  current  inventory  data  should  be 
reconsidered in light of our results that show predicted 
ranges are sensitive to the inclusion or exclusion of his- 
torically accurate data (Appendix S1: Figure S10). 

Models predicted species abundance best for species 
whose distribution correlated strongly with biophysical 
gradients and exhibited higher dominance where they 
occurred, while models were weaker for those species 
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with wider geographic distributions, but lower prevalence 
and dominance within plots. For example, black spruce 
observations were concentrated at the northern extent of 
the study area where dominance indicated by RBA and 
RSD could reach 100%. Abundance modeling may have 
performed the best for black spruce because its abun- 
dance varied so strongly across a latitudinal and climatic 
gradient. In comparison, abundance models for white 
spruce performed the worst. This species occurs at low 
local abundance (mean RBA 17%) across its very large 
range. As a result, abundance models likely captured a 
larger portion of white spruce’s fundamental niche, but 
could not differentiate its realized niche given the 
region’s  disturbance  history.  In  contrast,  red  spruce 
models were conservative and tended to underpredict its 
abundance. More conservative prediction of red spruce 
abundance was a result of the species’ tendency to occur 
in mixtures with moderate to low dominance (mean RBA 
~21%) and its limited range, which reflects both its nar- 
row ecological niche and historic selective logging of this 
species from lower elevation mixed-wood  stands  in the 
19th and early 20th centuries (Foster & D’Amato, 2015; 
Kelty & D’Amato, 2006). 

The overprediction of low values exhibited in the 
abundance maps does not discount these models as a use- 
ful conservation tool. Areas that predict low abundance 
of an at-risk species are not likely to be chosen for the 
conservation of critical habitat (Guisan et al., 2013; Ash- 
croft et al., 2017). Although abundance models under- 
estimated actual observed values, they were able to detect 
variation in abundance and maintained patterns of rela- 
tive density across the landscape. The likelihood output 
from occurrence-only models also displayed parallel 
landscape patterns. Although the abundance of rarer spe- 
cies (e.g., white spruce) was not predicted as accurately, 
the relative results could still highlight the most suitable 
habitat. In sum, likelihood maps from occurrence models 
had similar utility to those developed from abundance 
data and have the potential for wider application due to 
the greater availability of occurrence data from both con- 
temporary and historical time periods. 

The variables selected as most important were sur- 
prisingly consistent across all 20 models and concen- 
trated primarily on weather during winter months. Five 
climate variables were often selected (i.e., PRDD5, 
MAPDD5,  PRMTCM,  MAPMTCM,  and GSPMTCM) 
from the 41 variables considered and all were climate 
interactions, showing that both precipitation and temper- 
ature help determine species’ habitats (Appendix S1: 
Figure S13). In particular, temperature variables reflected 
a preference or tolerance for colder climates for all four 
species, while precipitation variables indicated prefer- 
ences for wet weather concentrated in the winter months. 

Previous studies have emphasized the importance of 
summer temperature as an indicator of species occur- 
rence and growth (Duveneck et al., 2014) and have exam- 
ined the correlation between mean July temperature and 
the tree line (Cogbill et al., 1997). Alternatively, recent 
biogeographical studies suggest that tolerance to climate 
extremes, particularly freezing temperatures, accounts for 
80% of variation in range size (Mathews & Bonser, 2005). 
In this analysis, mean temperature of the warmest month 
was not as important as cold weather variables (Wason & 
Dovciak, 2017). 

While  our  models  predict  that  potential spruce–fir 
habitat will decrease in the United States and throughout 
much of the AFR, they also suggest that extensive areas 
of suitable habitat will persist in Canada. Hotspots 
include the Gaspé Peninsula and other high elevation 
areas along the Gulf of St. Lawrence, Anticosti Island, 
and interior and northern regions in Newfoundland. 
Small populations along the Appalachian Mountains in 
Maine and New Hampshire will also be important loca- 
tions for refugia in the United States. These predicted 
refugia agree with similar analyses for the “boreal conifer 
forest” under future climate (Tang & Beckage, 2010). 
While coastal habitats did not emerge as important per- 
sistent habitats in our projections, with the exception of 
red spruce in Nova Scotia, past persistence of white and 
black spruce in coastal New England during a period of 
warming between 6000 and 5000 years suggests that cool 
and foggy marine conditions may not be adequately rep- 
resented in our modeling framework and these areas 
could continue to act as refugia in the near future 
(Schauffler & Jacobson Jr., 2002). In addition, our  
model for red spruce using both contemporary and his- 
torical data indicated a potential increase in habitat, 
particularly in Newfoundland. The species may be 
responding to area with potentially higher temperature 
and precipitation, as has been observed in other studies 
(e.g., Kosiba et al., 2018). 

Potential and important model limitations should be 
considered in conjunction with our species-specific find- 
ings. Underlying differences in the spatial resolution, 
sampling    methods,    and    minimum    threshold  dbh 
(Appendix S1: Figures S14–S17) add uncertainty to the 
contemporary data. The historic dataset may also suffer 
from possible limitations related to the unknown reliabil- 
ity of species identification, the general representativeness 
of the observations, the accuracy of location information, 
and  the changes in historic climate over the subsequent 
100–200 years prior to our models (Cogbill, 2000). The lat- 
ter limitation might be particularly important given that 
the period of our historical observations (1623–1869) over- 
lapped with the Little Ice Age (~1300–1860), which may 
explain  why inclusion of these observations extended the 
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“refugia potential” of each species further south under 
warming climatic trends. Consequently, it is possible that 
climate change is already influencing species occurrence 
trends and altering what might be considered suitable 
habitat. 

For example, substantial changes in species composi- 
tion and spruce habitat are known to have occurred with 
a 0.55oC change in temperature, though over millennia, 
(Gajewski, 1988) and temperatures in the northeast 
United States have risen approximately 1oC in the last 
century with greater increase along the shoreline from 
New Jersey to New Hampshire (Hayhoe et al., 2007), 
though effects of coincident changes in precipitation 
remain unexplored. In addition, changes in land use have 
been reported to have a greater effect on species composi- 
tion shifts in the United States than climate change 
(Nowacki & Abrams, 2015). Finally, our models did not 
account for changes in soil conditions, potential variation 
in snowpack, or the complex spatiotemporal varying 
effects of disturbance agents like spruce budworm 
(Choristoneura fumiferana; e.g., Chen et al., 2021) on 
suitable habitat. Overall, we highlight that developing 
suitable SDMs can be complex, particularly for transi- 
tional ecosystems that span  geopolitical  boundaries 
(e.g., Prasad et al., 2020; Weiskittel et al., 2012) and spe- 
cies whose current distributions may be truncated due to 
historic land use or other complex factors. 

By building SDMs using the fullest representation of 
a species’ range, we identified areas of potential species 
persistence and refugia that would otherwise be missed. 
Our models add notable contributions over previous 
efforts in that they show (1) that distributions of spruce– 
fir species are particularly sensitive to interactions of tem- 
perature  and  precipitation  patterns  during  the  winter; 
(2) how the inclusion of historical, presettlement data 
expands predictions of future habitat under climate 
change  with  no  loss  in  general  model  accuracy;   and 
(3) that likelihood from more widely available 
occurrence-only models can predict potential refugia 
with efficacy that is equivalent to models of relative 
abundance. Our results clearly support the need for 
extensive regional and representative datasets, particu- 
larly for ecotonal tree species like the ones studied here, 
while the combination of occurrence likelihood and 
inclusion of key historical data were critical in ensuring 
reliable predictions of potential future conditions. 
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