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We present a new analysis to extract pion’s parton distribution functions (PDFs) in the framework
of the statistical model. Starting from the statistical model framework first developed for the spin-
1/2 nucleon, we apply appropriate modifications taking into account the spin-O nature of pion and
the isospin and charge-conjugation symmetry properties. This results in a significant reduction of the
number of parameters compared to a recent work to extract pion’s PDFs. Using 7 ~-induced Drell-Yan

data to determine the parameters of this statistical model approach, we show that a good description of
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these experimental data with Next-to-Leading order QCD calculations can be obtained. Good agreement
between the calculations and the 7w+ /m~ Drell-Yan cross section ratio data, not included in the global
fit, has confirmed the predictive power of these new pion PDFs.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The first determination of the proton parton distribution func-
tions (PDFs), based on the framework of the statistical model, was
proposed about 20 years ago by Bourrely, Buccella, and Soffer [1].
Some salient features of the statistical approach include the natural
connection between the polarized and unpolarized parton distri-
butions, as well as the relationships between the valence and sea
quark distributions. These important features of the statistical ap-
proach allow many predictions for the flavor and spin structures of
proton’s PDFs, which are usually not possible for the conventional
global fits without adding theoretical constraints. Some notable
successes of the statistical model include the prediction of x dis-
tribution of the flavor asymmetry of unpolarized sea, d(x) — u(x),
and the prediction of Au(x) > 0 > Ad(x) [2]. These predictions
were confirmed in recent unpolarized Drell-Yan experiment [3] and
single-spin asymmetry measurement of W-boson production [4].
A review of the major results on describing the nucleon parton
distributions in the statistical model can be found in an updated
version [5].

The statistical approach for extracting proton’s PDFs can be nat-
urally extended to other hadrons. Of particular interest are the
PDFs for pions. Pion has the dual roles of being the lightest quark-
antiquark bound state and a Goldstone boson due to the sponta-
neous breaking of the chiral symmetry. Many theoretical models
have explored the partonic structures of the pion [6]. Recent ad-
vance [7] in lattice QCD has also led to the first calculations on the
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x distribution of the meson PDFs in the Large-Momentum Effec-
tive Theory (LaMET) [8,9]. New experimental data relevant to the
pion PDFs have been collected in the COMPASS experiment with
pion-induced dimuon production [10]. The interesting prospects
of probing pion’s PDFs with tagged deep-inelastic scattering are
being pursued at the Jefferson Laboratory and considered for the
future Electron-lon Collider (EIC) [11]. The interest in pion’s par-
tonic structure is reflected in several recent publications [12-14]
where pion’s PDFs were extracted via global fits to existing data.

The first extraction of the pion’s PDFs based on the statisti-
cal model approach was reported in [13]. In this paper we adopt
a much simpler parametrization for the parametric forms of the
parton distributions by imposing some constraints based on sym-
metry principles. We first define the parametrizations of the pion’s
quark, antiquark and gluon distributions based on the statisti-
cal model. We then show that the existing pion-induced Drell-
Yan data E615 [15], NA10 [16] and E326 [17] can be very well
described with these new pion PDFs. A prediction for the ratio
+/m~ is also shown, followed by conclusion.

In the previous analysis to extract pion’s PDFs in the statistical
model [13], no assumption was made on the flavor and spin struc-
tures of the quark and antiquark distributions in pion. While this
led to a significant flexibility in determining pion’s PDFs, the lim-
ited amount of relevant experimental data would limit the ability
to determine these flexible parametrizations in an unambiguous
fashion. It is advantageous to reduce the number of parameters,
taking into account some symmetry principles and other plausi-
ble assumptions. However, it was unclear whether the experimen-
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tal data can be well described by the statistical model when the
number of parameters is significantly reduced. The findings of the
present work, to be discussed later, are that an excellent descrip-
tion of the data can be obtained in the statistical model approach
when the parameters are reduced in a judicious fashion.

We begin by defining the notations of the various parton distri-
bution functions for pions. After imposing the particle-antiparticle
charge-conjugation (C) symmetry for the parton distributions in
charged pions, we can define the PDFs in 7 and 7~ as follows:

UX) =ug+(X) =tz-(x); D) =dp+(X) =dg-(%). (M
UX) =g+ (X) =dz-(X); DX) =dp+(X) =tz-(X). )
SX) =$7+(X) =57-(0; SK) =57+ () =57-(X) . 3)
C(X)=gn+(X) =gz-(X) . (4)

The PDFs for 7° are simply given by the average of the 7+ and
7~ PDFs. In Egs. (1)-(4), we define 7 PDFs, namely, U(x), D(x),
U(x), D(x), S(x), S(x) and G(x). We can further require charge
symmetry (CS), which is a weaker form of the isospin symmetry,
to reduce the number of independent PDFs. The CS refers to the
invariance under a rotation by 180° along the second axis in the
isospin space. We note that in the previous statistical model analy-
sis [13], the C symmetry was imposed but the CS was not required.
While it is of great interest to test the validity of CS in pion PDFs,
the existing data are not sensitive to violation of CS, as discussed
in a review of the theories and experiments on CS at the partonic
level [18]. Therefore, the CS is now required for the present work.
This requirement can be relaxed in the future when precision data
sensitive to CS in pion PDFs become available.

It is well known that the requirements of C and CS invariance
would imply U(x) = D(x) and U(x) = D(x). As shown in Eq. (1),
C symmetry leads to u;+(x) = ;- (x). Invariance under the rota-
tion in the isospin space by 180°, i.e., CS invariance, would give
Uy - (x) =d;+ (x). Therefore, invariance under the combined opera-
tions of C and CS implies U(x) = D(x). In a similar fashion, it can
be readily shown that U(x) = D(x).

The absence of valence strange quark in pion only implies that
the first moments of S(x) and S(x) are the same, namely,

1 1

/S(x)dx=/§(x)dx. (5)

0 0

1
/[S(x) —S(®)1dx=0;
0

Using C and CS invariance, it can be shown that S(x) = S(x) in
Eq. (3). First, the C invariance implies S;+(x) = S;-(x). A subse-
quent rotation in the isospin space would give 5;-(x) = S;+(x),
because s and 5 are isoscalar particles and invariant under isospin
rotation. Therefore, we obtain

S(x) = S(x) (6)

as a result of the invariance under a combined operation of C and
CS. In Ref. [13] the strange quark contents in pion were ignored. In
this work, we include the contributions from strange sea, as they
must be present and contribute to the momentum sum rule.

In the statistical approach for proton’s PDFs, there are positive
and negative helicity distributions for each quark and antiquark
flavor. Unlike the spin-1/2 proton, pion has zero spin. Hence, it is
no longer necessary to define the positive and negative helicity dis-
tributions for pion’s PDFs. This further simplifies the analysis com-
pared with the earlier work [13], and it is reflected in Eqgs. (1)-(3)
which only define a single parton distribution for each quark or
antiquark flavor.

Based on the framework of the statistical model, we adopt the
following parametric forms for pion’s PDFs:
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b 2 ob
xU(x) =xD(x) = Ay Xyx U_ AUX_ - . (7)
exp[(x — Xy)/x]+1  exp(x/x)+1
—1,b A b
%0 (x) = xD (x) = —AUXu) X" LI (8)
expl(x+ Xy)/x]+1  exp(x/x) +1
e _ ;\Uxi’U
WO =150 = S expix/m + 11 ©)
_ A(;Xbc

Following the formulation developed for proton’s PDFs, the
x distributions for fermions (quark and antiquark) have Fermi-
Dirac parametric form, while gluon has a Bose-Einstein x distri-
bution [1,2]. The two separate terms for U(x) and U(x) in Egs. (7)
and (8) refer to the non-diffractive and diffractive contribution, re-
spectively [1,2]. In the previous analysis [13], the diffractive term
was neglected for simplicity. As shown in the analysis of proton’s
PDFs in the statistical model [2], the presence of the diffractive
term is important for describing the data at the low x region.
Therefore, we have added the diffractive term in this new anal-
ysis for pion’s PDFs.

A key feature of the statistical model is that the chemical po-
tential, Xy, for the quark distribution U(x) becomes —Xy for the
antiquark distribution U (x). The parameter X plays the role of the
effective “temperature”. For the strange-quark distribution S(x),
the requirement that the S and S have identical x distribution im-
plies that the chemical potential in the non-diffractive term must
vanish. This implies that the non-diffractive and diffractive terms
for S(x) have a similar parametric form, and we make the simple
assumption that S(x) is equal to half of the diffractive part of U (x)
due to the heavier strange quark mass. This reduction of a factor
two of the strange-quark sea relative to light-quark sea is consis-
tent with experimental observation for the nucleon sea [19].

Equations (7)-(10) contain a total of 8 parameters, namely, Ay,
Xy, by, % Ay, by, Ac, and b¢. In contrast, the number of pa-
rameters for Ref. [13] is significantly larger, at 14, even without
including strange-quark sea in the pion PDFs.

Among these 8 parameters, only 6 are truly free, due to the
constraints from two sum rules. The quark-number sum rule re-
quires

1
/[U(x)—(](x)]dx:l, (11)
0
and the momentum sum rule implies

1
/X[ZU(X)-i—ZU(X)+25(X)+G(X)]dx=1 . (12)
0

Since the Drell-Yan data are not sensitive to pion’s gluon dis-
tribution, it is mainly through this momentum sum rule that G(x)
is determined. The strong correlation between A; and bg can be
removed by requiring

bc=1+by . (13)

Equation (13) has the interesting consequence that G(x) has the
same x dependence as the diffractive part of the quark distribu-
tions when x — 0 [1,2]. The dominance of the gluon and sea-quark
distributions at x — 0 and the strong interplay among them make
Eq. (13) quite a reasonable assumption. Equation (13) further re-
duces the number of parameters by one. The significant reduction
in the total number of free parameters in the statistical model, re-
sulted from the application of symmetry constraints and Eq. (13)
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Table 1

Results of the K factor and x2 for each data set from the global fit. P is the beam
momentum, K the normalization factor for the Drell-Yan cross sections, Ngqq the
number of data points.

P(GeV) K Naata x>
E615 252 0.995 91 124
E326 225 1154 50 77
NA10 286 1211 23 7
NA10 194 1211 44 15
Total 208 224

discussed above, allows a stringent test of the statistical model for
describing pion’s PDFs. It is not evident a priori that existing data
can be well described by the statistical model with very limited
number of parameters.

In order to obtain the parameters for pion’s PDFs according to
the parametrizations listed in Egs. (7) - (10), we have performed
a NLO QCD fits of 7w ~-induced Drell-Yan dimuon production data
on tungsten targets from E615 [15] at 252 GeV, E326 [17] at 225
GeV, and NA10 [16] at 194 GeV and 286 GeV. For the E615 7~ +
W measurement, we have selected data in the kinematic region
0.185 < /T < 0.415 to avoid the contamination from quarkonium
resonance. Similarly, for the E326 w7~ + W data, we only include
data points satisfying M(u™ ™) > 4.75 GeV and xf > 0. The data
from the NA10 7~ + W measurements are shown in Figs. 3 and 4.

Detailed expressions for the NLO Drell-Yan cross sections were
presented in [13]. The nucleon PDFs used in the calculation were
taken from the BS15 PDFs [5], which were obtained from a global
fit to existing data in the framework of the statistical model. The
QCD evolution was done using the HOPPET program [20], and the
%2 minimization was performed utilizing the CERN MINUIT pro-
gram [21]. Since the Drell-Yan data in this analysis were all col-
lected using nuclear targets (tungsten), it is necessary to take into
account the nuclear modification of the nucleon PDFs. As the nu-
clear PDFs extracted in the framework of the statistical model are
not yet available, we have adopted the following approach for the
nuclear PDFs. Specifically, the u(x, Q) and u(x, Q) distributions in
nucleus A are given as

A _ z p _ =D
ut(x, Q) = 2[Ry, (6 Quf (x, Q) + Ra(x, Q)i (x, Q)]
N _
+ — [Ray (x Q)dY (x, Q) + R3(x, Q)dP(x, Q)1;

_4 zo oo
ut(x, Q) = —[Ra(x, Qui(x, Q)]

N _
+ 7 [Rax. Q)dP(x, Q)]. (14)

Analogous expressions are obtained for dA(x, Q), a"*(x, Q), and
SA(x, Q). In Eq. (14), the nuclear modification factors, Ry, (x,Q),
Ri, Rq, . Ry, were taken from the EPPS17 nuclear PDFs [22], ob-
tained from a global fit to the data on nuclear targets. Until a
future analysis of nuclear PDFs in the statistical model becomes
available, this approach is adequate for taking into account the nu-
clear modification of the nucleon PDFs.

Table 1 lists the number of data points and the values of x?
obtained from the best fit to these data sets. Note that the normal-
izations for the absolute cross sections from various experiments
contain systematic uncertainties on the order of ~ 10 percents. In
the global fit, the normalizations for various data sets are allowed
to vary, as listed in Table 1, in order to achieve improved consis-
tency among various data sets. We require the K-factors for the
fit to NA10 data at two beam energies to be identical. While the
K-factor for E615 is very close to unity, we find that the K-factors
for E326 and NA10 are roughly 10% or 20% above unity. This could
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Fig. 1. Different 7w~ parton distributions versus x, after NLO QCD evolution at
Q2 =10 GeV?. Present statistical model (solid), previous statistical model [13] (long
dashed), SMRS PDFs from Ref. [23] (dashed), GRV PDFs from Ref. [24] (dotted-
dashed), JAM PDFS from Ref. [12] (dotted) are shown. For SMRS and GRV xS(x) =
xU (x).
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Fig. 2. Drell-Yan data from the E615 experiment 7~W at P, =252 GeV [15]. d?c /d/Tdxp versus xp for several /T intervals are compared with the results of our global

fit (solid curves).
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Fig. 3. Drell-Yan data from the NA10 experiment 7 ~W at P77, =194 GeV [16]. d?c /d/Tdxp versus xp for several /T intervals are compared with the results of our global

fit (solid curves).

reflect either an underestimate of the normalization uncertainties
from these experiments or the nature of the current analysis in the
statistical model which contains very few parameters.

Table 1 shows that good x? values can be obtained from the
best fits to the Drell-Yan data. The best-fit parameters, obtained at

an initial scale ch, =1 GeV?, are:

Ay =0.776 +0.15
Xy =0.756 & 0.01
Ay =2.089 +0.21

Ag=3117%£1.7

by = 0.500 + 0.02
X =0.1063 + 0.004
by = 0.4577 4+ 0.009

be=1+by . (15)
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Fig. 4. Drell-Yan data from the NA10 experiment 7 ~W at P, =286 GeV [16]. d%0 /d/Tdxp versus Xp

fit (solid curves).

It is worth noting that the temperature, x = 0.106, found for
pion is very close to that obtained for proton, X =0.090 [5], indi-
cating a common feature for the statistical description for baryons
and mesons. On the other hand, the chemical potential of the va-
lence quark for pion, Xy = 0.756, is significantly large than that
for proton, Xy ~ 0.39 [5]. This reflects the fact that baryons con-
tain three valence quarks while mesons only consist of two valence
quarks.

Fig. 1 displays xU(x), xU(x), xS(x) = xS(x), and xG(x) at
Q2 = 10 GeV? obtained in the present analysis. Comparisons
with the distributions from the previous analysis in the statisti-
cal model [13] and global fits of SMRS [23], GRV [24] and the
recent JAM [12] are also shown in Fig. 1. The shape and magni-
tude of the pion PDFs obtained in the statistical model analysis
are significantly different from that of SMRS and GRV. This reflects
the very different parametric forms for the PDFs in the statistical
model compared with that of the conventional global fits.

In Figs. 2 - 4, we show the fits to the E615 and NA10 data
using the current result on pion’s PDFs. We note that the data
are well described by the statistical model with a parametrization
much simpler than the previous analysis [13]. A good agreement is
also obtained for the E326 data at 225 GeV [17].

To check the predictive capability of the current pion PDFs, we
show in Fig. 5 the calculations for the ratios of 7+ /7~ Drell-Yan
cross section ratios at 200 GeV on hydrogen and platinum targets.
Reasonable agreement with the NA3 data [25] is found. It was
suggested some time ago that a comparison of the 7+ and 7~
induced Drell-Yan data on an isoscalar target such as deuteron or
12C can probe sensitively the sea-quark distribution in pion [26].
Such measurement is indeed being planned in a future experiment
at CERN [27].

The Drell-Yan cross section at the NLO QCD contains the contri-
bution from the quark-gluon fusion process, which leads to some
sensitivity to the gluon distribution in pion. Nevertheless, it is im-
portant to consider other processes which are sensitive to gluon
distributions at the LO QCD level. A recent analysis suggests that
existing pion-induced J/W production can probe the gluon distri-
bution in pion at large x sensitively [28]. The prospect for including
the 7+ induced Drell-Yan data as well as the pion-induced J/W¥
production data to extract the pion’s PDFs in a future global fit
with the statistical model is being considered. An extension of this
approach to extract the kaon’s PDFs would also be of great inter-
est [29]. It should be cautioned, however, that the mechanism for
J /¥ production is still not well understood, and future theoreti-

for several /T intervals are compared with the results of our global

P, = 200GeV 1

0.8 - o(r* Pt)/o(n” Pt) ® [solid]

r o(n* Hy)/o(n~ Hy)) o [dashed] 1

M (GeV)

Fig. 5. Drell-Yan 7+ /= cross section ratio data on hydrogen and platinum tar-
gets at 200 GeV from the NA3 experiment [25]. Calculations using the pion PDFs
obtained in the current analysis are compared with the data.

cal efforts are required to extract reliable information on meson’s
PDFs from the J/W production data.

In conclusion, we have performed a new analysis to extract
pion’s PDFs in the statistical model using a parametrization con-
taining fewer number of parameters than an earlier analysis. This
significant reduction in the number of parameters is largely due
to symmetry considerations. This new analysis with reduced num-
ber of parameters shows that a good description of the existing
7~ -induced Drell-Yan data can be obtained in the statistical model
approach.

A comparison between the proton and pion PDFs in the sta-
tistical model approach shows that very similar temperature pa-
rameters are found for both cases, suggesting the consistency of
this approach for different hadronic systems. The higher value of
the valence-quark chemical potential found for pion than proton
reflects the different number of valence quarks in mesons and
baryons. The predictive power of the pion PDFs obtained in this
analysis has been illustrated from the good agreement between
the calculation and the /7~ Drell-Yan cross section ratio data.
New pion-induced Drell-Yan data anticipated from COMPASS would
provide further tests of the pion PDFs obtained in the statistical
approach.
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This statistical model approach can be extended in the future by
enlarging the data sets to include the 7 *-induced Drell-Yan data
as well as the pion-induced J/W production data. These data fur-
ther constrain the sea-quark and gluon distributions in pion. The
prospect to extend this analysis to extract kaon’s PDFs is also being
considered.
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