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Abstract. Let Mn be drawn uniformly from all ±1 symmetric n×n matrices.
We show that the probability thatMn is singular is at most exp(−c(n logn)1/2),
which represents a natural barrier in recent approaches to this problem. In
addition to improving on the best-known previous bound of Campos, Mattos,
Morris and Morrison of exp(−cn1/2) on the singularity probability, our method

is different and considerably simpler: we prove a “rough” inverse Littlewood-
Offord theorem by a simple combinatorial iteration.

1. Introduction

Let An denote a random n × n matrix drawn uniformly from all matrices with
{−1, 1} coefficients. It is an old problem, of uncertain origin,1 to determine the
probability that An is singular. While a few moments of consideration reveals a
natural lower bound of (1 + o(1))n22−n+1, which comes from the probability that
two rows or columns are equal up to sign, it is widely believed that in fact

(1) P(detAn = 0) = (1 + o(1))n22−n+1 .

This singularity probability was first shown to tend to zero in 1967 by Komlós
[10], who obtained the bound P(det(An) = 0) = O(n−1/2). The first exponential
upper bound was established by Kahn, Komlós, and Szemerédi [9] in 1995 with
subsequent improvements on the exponent by Tao and Vu [17, 18] and Bourgain,
Vu and Wood [1]. In 2018, Tikhomirov [20] settled this conjecture up to lower order
terms by showing P(det(An) = 0) = (1/2 + o(1))n. Very recently, a closely related
problem was resolved by Jain, Sah and Sawhney [8], who showed that the analogue
of (1) holds when the entries of An are i.i.d. discrete variables of finite support that
are not uniform on their support. The conjecture (1) remains open for matrices
with mean-zero {−1, 1} entries.

The focus of this paper is on the analogous question for symmetric random
matrices. In particular, let Mn denote a uniformly drawn matrix among all n× n
symmetric matrices with entries in {−1, 1}. In this setting it is also widely believed
that P(detMn = 0) = Θ(n22−n) as in the asymmetric case [2, 3, 22] although
here much less is known. For instance, the fact that P(detMn = 0) = o(1), was
only resolved in 2005 by Costello, Tao and Vu [3]. Subsequent superpolynomial
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2 MARCELO CAMPOS ET AL

upper bounds of the form n−C for all C and exp(−nc) were proven respectively
by Nguyen [12] and Vershynin [21] by different techniques: Nguyen used an inverse
Littlewood-Offord theorem for quadratic forms based on previous work by Nguyen
and Vu [11, 13], while Vershynin used a more geometric approach pioneered by
Rudelson and Vershynin [14–16].

A combinatorial approach developed by Ferber, Jain, Luh and Samotij [5] was
applied by Ferber and Jain [4] in 2018 to prove that P(detMn = 0) ≤ exp

(
−

cn1/4(log n)1/2
)
. Another combinatorial approach was taken by Campos, Mattos,

Morris and Morrison [2] who achieved the bound P(detMn = 0) ≤ exp
(
−cn1/2

)
.

Their argument centers around an inverse Littlewood-Offord theorem inspired by
the method of hypergraph containers.

The proofs of [2, 4, 21] all follow the same general shape: divide all potential
vectors v for which we could have Mnv = 0 into “structured” and “unstructured”
vectors, show that the unstructured vectors do not contribute, and union bound
over the structured vectors. The main difficulty (and novelty) in these proofs arises
in a careful understanding of the contribution of the structured vectors.

While we have this method to thank for the recent successes on this problem,
an important limitation was pointed out in [2, Section 2.2] who argued that this
method could not provide any improvement to the singularity probability beyond
exp(−c

√
n logn), provided the randomness in the matrix is not “reused”. Here we

show that this natural barrier is attainable.

Theorem 1. Let Mn be drawn uniformly from all n× n symmetric matrices with
entries in {−1, 1}. Then for c = 2−13 and n sufficiently large

P(det(Mn) = 0) ≤ exp
(
−c

√
n logn

)
.

Indeed, our proof of Theorem 1 follows the shape of [2,4,21] and improves upon
these results primarily by proving an improved and considerably simpler “rough”
inverse Littlewood-Offord theorem. This theorem parallels Theorem 2.1 in [2] and
improves upon it by replacing the use of Fourier analysis in [2] with a simple
combinatorial algorithm. This proof additionally gives us more information in our
inverse theorem, which allows for a simplified application to the proof of Theorem 1.

To state our rough inverse theorem, we need a few notions. For a vector v ∈ Z
n
p

and μ ∈ [0, 1], we define the random variable Xμ(v) := ε1v1 + · · · + εnvn, where
εi ∈ {−1, 0, 1} are i.i.d. and P(εi = 1) = P(εi = −1) = μ/2. Also define ρμ(v) =
maxx P(Xμ(v) = x) and2 let |v| denote the number of non-zero entries of v. Finally
for T ⊆ [n], let vT := (vi)i∈T .

We now introduce a simple concept that is key to our rough inverse Littlewood-
Offord theorem. For a vector w = (w1, . . . , wd) we define the neighbourhood of w
(relative to μ) as

Nμ(w) := {x ∈ Zp : P(Xμ(w) = x) > 2−1
P(Xμ(w) = 0)},(2)

which is the set of places where our random walk is “likely” to terminate, relative
to 0. The following result, which is our “rough” Littlewood-Offord theorem, says
that if v ∈ Z

n
p and ρμ(v) is large then there is a small subvector x of v so that

vi ∈ Nμ(x) for many i ∈ [n].

2We will also write ρ1(v) = ρ(v).
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SINGULARITY OF RANDOM SYMMETRIC MATRICES REVISITED 3

Theorem 2. Let μ ∈ (0, 1/4], k, n ∈ N, p be prime and v ∈ Z
n
p . Set d =

2
μ log ρμ(v)

−1, suppose that |v| ≥ kd and ρμ(v) ≥ 2
p . Then there exists T ⊆ [n]

with |T | ≤ d so that if we set w = vT then vi ∈ Nμ(w) for all but at most kd values
of i ∈ [n] and

|Nμ(w)| ≤
256

(μk)1/5
· 1

ρμ(v)
.

In practice we will not apply Theorem 2 directly, but rather in two parts (Lem-
mas 7 and 8). The first can be found in Section 6 and uses Fourier analysis in the
style of Halász [6], whose influential techniques pervade the literature. The second
is a novel (and simple) iterative application of a greedy algorithm. This can be
found in Section 2 along with the proof of Theorem 2.

In what follows we discuss the proof of Theorem 1. In addition to illustrating
the method of [2,4] in a little more detail, we hope the reader will get some feeling
for why Theorem 2 is so integral to the problem.

1.1. Discussion of proof. The event ‘Mn is singular’ can, somewhat daftly, be
expressed as

⋃
v∈Rn\{0}{Mv = 0}. To reduce the size of this unwieldy union, we

notice that it is sufficient to consider all non-zero v ∈ Z
n and then reduce modulo

p, for a prime p ≈ exp
(
c(n logn)1/2

)
. Since the probability that Mv is zero is

certainly bounded by the probability Mv is zero modulo p, it is enough for us to
upper bound the probability of the event

⋃
v∈Zn

p \{0}{Mv = 0}, where all operations
are taken over the field of p elements.

Having reduced our event to a union of a finite number of sets, it is temping
to greedily apply the union bound to the events {Mv = 0}, for non-zero v ∈ Z

n
p .

Unfortunately in our case, a small wrinkle arises with vectors for which ρ(v) ≈ 1/p;
that is, very close to the “mixing” threshold. To get around this, we again follow
[2,4] and use a lemma that allows us to safely exclude all v with ρ(v) < cn/p from
our union bound, at the cost of working with a slightly different event which, in
practice, adds little difficulty to our task. In particular, to prove Theorem 1, it will
be enough to establish the following.

Theorem 3. Let c = 1/800, n ∈ N sufficiently large and p ≤ exp(c
√
n logn) prime.

Then for β = Θ(n/p) we have

(3)
∑

v:ρ(v)≥β

max
w∈Zn

p

P(Mv = w) ≤ e−cn .

To bound the sum on the left hand side of (3), we invoke our inverse Littlewood-
Offord result (Theorem 2, in the form of Lemmas 4 and 7).

We will in fact first sketch a proof of Theorem 3 under the stricter assumption
that p ≤ exp(c

√
n) and then show how to recover the missing

√
log n factor. We

do this for two reasons. Firstly, the proof under the stricter assumption on p
already contains the key ideas, and so we feel this is the clearest way to present
the argument. Secondly, the reader can extract a very short proof of the bound
P(det(Mn) = 0) ≤ exp (−c

√
n) if they so desire.

In Section 5, we provide the short derivation of Theorem 1 from Theorem 3 and
[2, Lemma 2.1].

Remark. Simultaneously to our work, Jain, Sah and Sawhney [7] obtained an upper
bound on the singularity probability of the form exp(−cn1/2(log n)1/4) and a bound
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4 MARCELO CAMPOS ET AL

on the lower tail of the least singular value for symmetric random matrices with
subgaussian entries.

2. An inverse Littlewood-Offord lemma

In this section we present one of the key ideas of this paper, namely a greedy
algorithm which furnishes us with a simple yet powerful inverse Littlewood-Offord
result.

To go further, we introduce a little notation. Let Z∗
p denote the set of all vectors

of finite dimension with entries in Zp. For v = (v1, . . . , vk), w = (w1, . . . , wl) ∈ Z
∗
p,

let vw := (v1, . . . , vk, w1, . . . , wl) denote the concatenation of v and w and let vk

denote the concatenation of k copies of v. For v ∈ Z
n
p and T ⊆ [n], let vT := (vi)i∈T

and say that w is a subvector of v if w = vT for some T ⊆ [n]. We also define |v|
to be the size of the support of v, the number of non-zero coordinates.

Unless specified otherwise, take μ = 1/4 for definiteness. We recall the key
definition introduced in (2). For w ∈ Z

∗
p, we define the neighbourhood of w as

N(w) := {x ∈ Zp : P(Xμ(w) = x) > 2−1
P(Xμ(w) = 0)}.

This is motivated by the fact that for μ ∈ [0, 1/2], the walk Xμ is most likely to
be found at 0 (see e.g. [19, Corollary 7.12]), i.e.

(4) ρμ(w) = P(Xμ(w) = 0) .

Hence, we may think of N(w) as the set of all values of the random walk Xμ(w),
which are at least half as likely as the most likely value. We can also easily control
the size of N(w) in terms of ρμ(w). Indeed,

1 ≥
∑

x∈N(w)

P(Xμ(w) = x) >
1

2
|N(w)| · P(Xμ(w) = 0) =

1

2
|N(w)|ρμ(w)

and so

(5) |N(w)| ≤ 2

ρμ(w)
.

We now turn to our greedy algorithm which, given a vector v ∈ Z
∗
p, returns a

short subvector w of v such that each coordinate of v is contained in N(w). The
following simple lemma can be interpreted as an inverse Littlewood-Offord result
in its own right, and is almost as good as Theorem 2; however it only gives a bound
of |N(w)| ≤ 1/ρμ(w) ≤ 1/ρμ(v), which is lacking the crucial factor of k−1/5. For
this lemma we use the monotonicity of ρμ [19, Corollary 7.12]: if w, v ∈ Z

∗
p where

w is a subvector of v, then

(6) ρμ(v) ≤ ρμ(w) .

Lemma 4. For μ ∈ (0, 1/4] and n ∈ N, let v ∈ Z
n
p . Then there exists T ⊆ [n],

such that vi ∈ N(vT ) for all i /∈ T , ρμ(vT ) ≤ (1− μ/2)|T | and so

|T | ≤ 2

μ
log

1

ρμ(v)
.

Proof. We build a sequence of sets T1, . . . , Td ⊆ [n] with |Ti| = i via the following
greedy process. Let T1 = {1}. Given Tt ⊆ [n] with |Tt| = t for t ≥ 1, let vTt

=
(x1, . . . , xt). Pick i ∈ [n]\Tt such that

ρμ(x1 . . . xtvi) ≤ (1− μ/2)ρμ(x1 . . . xt) .(7)
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SINGULARITY OF RANDOM SYMMETRIC MATRICES REVISITED 5

If no such i exists we terminate the process and set T = Tt. Suppose this process
runs for d steps producing T ⊆ [n] such that vT = (x1, . . . , xd). By the termination
condition, we have that for i ∈ [n]\T

ρμ(x1 . . . xdvi) > (1− μ/2)ρμ(x1 . . . xd) .

Conditioning on the coefficient of vi and using that P(Xμ(x1 . . . xd) = vi) =
P(Xμ(x1 . . . xd) = −vi) by symmetry, we can rewrite the left hand side to obtain

μP(Xμ(x1 . . . xd) = vi) + (1− μ)ρμ(x1 . . . xd) > (1− μ/2)ρμ(x1 . . . xd) .

Rearranging shows vi ∈ N(vT ). For the bound on d = |T |, observe that by (6),
inequality (7) and the fact that ρμ(x1) = (1− μ) we have

ρμ(v) ≤ ρμ(x1 . . . xd) ≤ (1− μ/2)d ≤ e−μd/2 .

�

3. A weak version of Theorem 3

In this section we sketch how a weak version of Theorem 3 follows from Lemma 4.
This section is not needed for the proof of Theorem 1, but is included to illustrate
some of the key ideas. Moreover, the bound P(det(Mn) = 0) ≤ exp (−c

√
n) follows

easily from Theorem 6 and Lemma 9 and so we obtain a particularly short proof
of this result.

First we need the following strengthening of the monotonicity property (6). This
type of lemma abounds in the literature, first appearing in [9]. Since the proof is a
simplification of the Fourier arguments in the proof Lemma 12, we omit the details.

Lemma 5. For α > 0 there is a ν, K > 0 so that for all v with ρμ(v) = Ω(n/p)
and |v| ≥ K we have

ρμ(v) ≤ αρν(v) .

Theorem 6. There exists c > 0 such that for n ∈ N sufficiently large, p ≤ exp(c
√
n)

prime and β = Θ(n/p) we have

(8)
∑

v:ρ(v)≥β

max
w∈Zn

p

P(Mv = w) = e−Ω(n) .

Proof. Let α = 2−16, let ν ∈ (0, 1/4] and K > 0 be given by Lemma 5 and set
d = 2

ν log p. Let c > 0 be a constant taken sufficiently small so that the bounds in
the following proof hold. We will use Lemma 4 to count the number of possible v
with ρ(v) ≥ β: for each such v, there must be a subset T ⊂ [n] so that vi ∈ Nν(vT )
for all i /∈ T . More formally, let V = {v ∈ Z

n
p \ {0} : ρ(v) ≥ β} and for v ∈ V , let

f(v) := (T, vT ) where T ⊂ [n] is the set obtained by applying Lemma 4 to v (with
μ = ν). Let S := f(V).

For a given s = (T, u) ∈ S we have |T | ≤ d and u ∈ Z
|T |
p . We may therefore

bound

(9) |S| ≤ 2n · pd ≤ 2(1+2c2/ν)n .

Further, for a given s = (T, u) ∈ S, we note that for every v ∈ f−1(s) we must have
vi ∈ Nν(u) for every i /∈ T and so

(10) |f−1(s)| ≤ |Nν(u)|n−|T | ≤
(

2

ρν(u)

)n−|T |
.
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6 MARCELO CAMPOS ET AL

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S vS

S Sc

MSc×S

v

Figure 1. Diagram of the matrix M .

For each v ∈ f−1(s), let T ⊂ S where |S| = min{|T |+K, |v|} (and vi 	= 0 for all
i ∈ S). We may then bound

(11) P(Mv = w) ≤ max
w′

P(MSc×S(vS) = w′) ≤ ρ(vS)
n−|S| ,

where for the second inequality we used that the entries of MSc×S are i.i.d. (see
Figure 1). Now if |T |+K ≤ |v| we apply Lemma 5 to get ρ(vS) ≤ cρν(vS) ≤ cρν(u).
Then applying (10) with (11) for each s = (T, u) yields∑

v∈f−1(s)
|v|≥|T |+K

max
w∈Zn

p

P(Mv = w) ≤ |f−1(s)|ρ(u)n−|S|

≤
(

2

ρν(u)

)n−|T |
(cρν(u))

n−|T |−K ≤ 2−4n ,

where for the final inequality we used that ρν(u) ≥ 1/p, and so ρν(u)
K ≥ 2−n.

Combining with (9) shows that∑
s∈S

∑
v∈f−1(s)
|v|≥|T |+K

max
w∈Zn

p

P(Mv = w) ≤ 2−n .

On the other hand if |T | = t and |v| ≤ t+K we use that ρ(vS) ≤ ρν(vS) ≤ ρν(u) ≤
(1−ν/2)t (where the final inequality follows from Lemma 4). In this case there are
pt+K

(
n

≤t+K

)
choices for v. Combining this with (11) we have

∑
s∈S

∑
v∈f−1(s)
|v|≤|T |+K

max
w∈Zn

p

P(Mv = w) ≤
d∑

t=1

pt
(

n

≤ t+K

)
(1− ν/2)t(n−d−K) ≤ (1− ν)n/8.

�

4. The greedy algorithm iterated

In this section we show that we can strengthen Lemma 4 by applying it iter-
atively. This will be key to regaining this crucial k−1/5 in Theorem 2, and will
ultimately give our

√
log n gain in the exponent of the singularity probability.
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SINGULARITY OF RANDOM SYMMETRIC MATRICES REVISITED 7

For this lemma we need the following property of ρμ, which can be found in
[19, Corollary 7.12]. Let w1, . . . , wk ∈ Z

∗
p and μ ∈ (0, 1/2) then

(12) ρμ(w1 · · ·wk) ≤ max
j∈[k]

ρμ
(
wk

j

)
.

Lemma 7. Let μ ∈ (0, 1/4], n ∈ N and v ∈ Z
n
p . Set d = 2

μ log ρμ(v)
−1 and let

k ∈ N be such that kd ≤ n. Then there exists T ⊆ S ⊆ [n] with |T | ≤ d, |S| ≤ kd
such that vi ∈ N(vT ) for all i 	∈ S and ρμ(vS) ≤ ρμ(v

k
T ).

Proof. We will define a sequence of sets [n] = A1 ⊇ · · · ⊇ Ak ⊇ Ak+1. Given vAj
,

we choose Tj ⊆ [n] with vTj
= (x1, . . . , xd(j)) given by Lemma 4 applied to vAj

and
let

Aj+1 = Aj \ Tj and S =

k⋃
j=1

Tj .

By Lemma 4, we have that vi ∈ N(vTj
) for all i ∈ Aj+1. In particular, since

Sc ⊆ Aj for all 1 ≤ j ≤ k + 1, vi ∈ N(vTj
) for all i 	∈ S and 1 ≤ j ≤ k. Note also

that |Tj | ≤ d for all 1 ≤ j ≤ k.
Let T be the Tj for which ρμ(v

k
Tj
) is maximized. The first claim of the lemma

follows from the above. For the second claim note that, by (12) we have

ρμ(vS) ≤ max
1≤j≤k

ρμ(v
k
Tj
) = ρμ(v

k
T ) .

�
To conclude the proof of our Theorem 2—and to understand the strength of

Lemma 7—we introduce our main Fourier ingredient, the proof of which is found
in Section 6.

Lemma 8. Let μ ∈ (0, 1/4], k ∈ N and v ∈ Z
∗
p such that |v| 	= 0. Then

ρμ(v
k) ≤ 64(μk)−1/5ρμ(v) + p−1 .

Proof of Theorem 2. Let k, n ∈ N and v ∈ Z
n
p be as in the theorem statement. By

Lemma 7, there exists T ⊆ S ⊆ [n] with |T | ≤ d, |S| ≤ kd such that vi ∈ N(vT )
for all i 	∈ S and ρμ(vS) ≤ ρμ(v

k
T ). Moreover, since |v| ≥ kd, the support of vT is

non-zero. Applying Lemma 8 we conclude that

ρμ(vS) ≤ ρμ(v
k
T ) ≤ 64(μk)−1/5ρμ(vT ) + p−1 .

By (5) and (6) we then have

|Nμ(vT )| ≤
2

ρμ(vT )
≤ 128

(μk)1/5(ρμ(vS)− p−1)
≤ 256

(μk)1/5ρμ(v)
,

where on the final bound we use that ρμ(v) ≥ 2
p . �

5. Proof of Theorem 1

In this section we prove our main theorem, Theorem 1. We first show how
Theorem 1 follows quickly from Theorem 3 and then we switch our focus to proving
Theorem 3.

Define

qn(β) := max
w∈Zn

p

P
(
∃ v ∈ Z

n
p \ {0} : Mv = w and ρ(v) ≥ β

)

and note the following lemma from [2] (their Lemma 2.1).
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8 MARCELO CAMPOS ET AL

Lemma 9. Let n ∈ N and p > 2 be a prime. Then for every β > 0

P(det(Mn) = 0) ≤ n

2n−3∑
m=n−1

(
β1/8 +

qm(β)

β

)
.

Proof of Theorem 1 assuming Theorem 3. Pick a prime p = t exp(c
√
n log n) with

c = 1/800 and t ∈ [1/2, 1]. Letting β = Θ(n/p), we apply the union bound and
Theorem 3 to conclude that for n− 1 ≤ m ≤ 2n− 3, we have

qm(β) ≤
∑

v:ρ(v)≥β

max
w∈Zm

p

P(Mv = w) ≤ e−cm.

Thus, we apply Lemma 9, to obtain

P(det(Mn) = 0) ≤ e−c(1+o(1))
√
n log n/8 + e−cn(1+o(1)) ≤ e−c

√
n log n/9 ,

for n sufficiently large. �

With this reduction firmly in-hand, we turn to prove Theorem 3.

Proof of Theorem 3. Throughout we assume that n is sufficiently large so that all
inequalities in the proof hold, we let k = n1/4, d = 2

μ log p ≤ 2
μ

√
n logn and define

V := {v ∈ Z
n
p\{0} : ρμ(v) ≥ β}. Our task is to bound

(13) Qn(β) :=
∑
v∈V

max
w

P(Mnv = w).

We start our analysis of (13) by partitioning this sum by way of a function f :
V → S. To define f , let v ∈ Z

n
p and apply Lemma 7 to obtain S, T ⊆ [n]. We

then apply Lemma 4 to vS to obtain a further set T ′ ⊆ [n]. We then define
f(v) = (S, T, T ′, vT , vT ′) and put S := f(V). We thus partition our sum (13) as

(14) Qn(β) =
∑
s∈S

∑
v∈f−1(s)

max
w

P(Mnv = w).

Note that if s = (S, T, T ′, u1, u2) ∈ S, then
(15)

|S| ≤ kd, |u1|, |u2| ≤ d, ρμ(u1) ≥ β, ρμ(u2) ≤ (1− μ/2)|u2| and u2 	= 0

by Lemmas 4 and 7 together with (6), and note that we have the bound

(16) |S| ≤ 8np2d ,

since there are 8n choices for S, T, T ′ and at most p2d choices for u1, u2.
We now turn to bounding a given term in the sum (14), based on which piece

of the partition it is in. Let s = (S, T, T ′, u1, u2) ∈ S and v ∈ f−1(s). For any
w ∈ Z

n
p , we bound P(Mnv = w) by first revealing the rows indexed by Sc and then

revealing the rows indexed by S\T ′,

P(Mv = w) ≤ P
(
M(S\T ′)×[n]v = wS\T ′ | MSc×[n]v = wSc

)
· P(MSc×[n]v = wSc).

Looking only on the off-diagonal blocks (S \ T ′) × T ′ and Sc × S and considering
the “worst case” vectors for these blocks, we have

P(Mv = w) ≤ max
u

P(M(S\T ′)×T ′vT ′ = u) ·max
u

P(MSc×SvS = u).
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The crucial point here is that these events can be written as an intersection of
independent events concerning the rows. That is

(17) P(Mv = w) ≤ ρ(vT ′)|S|−|T ′|ρ(vS)
n−|S| ≤ ρμ(vT ′)|S|−|T ′|ρμ(vS)

n−|S|,

where this last inequality follows from the monotonicity of ρ in the parameter μ,
noted at (6).

We now bound the size of a piece of our partition |f−1(s)|. By (5) together with
Lemmas 4 and 7, the number of choices for vSc and vS\T ′ are (respectively) at most

|N(u1)|n−|S| ≤
(

2

ρμ(u1)

)n−|S|
, |N(u2)||S|−|T ′| ≤

(
2

ρμ(u2)

)|S|−|T ′|
,

so that

|f−1(s)| ≤
(

2

ρμ(u1)

)n−|S| (
2

ρμ(u2)

)|S|−|T ′|
.(18)

By (17) and the fact that |S| ≤ kd = o(n) (by our choice of parameters), we have

(19)
∑

v∈f−1(s)

max
w

P(Mnv = w) ≤ 2n
(
ρμ(u

k
1)

ρμ(u1)

)n−|S|

≤ 2n
(
ρμ(u

k
1)

ρμ(u1)

)24n/25

.

We consider first the case where |u1| 	= 0; then we may apply Lemma 8 to obtain
the bound

ρμ(u
k
1) ≤ 64(μk)−1/5ρμ(u1) +

1

p
.

By the bound ρμ(u1) ≥ β = Θ(n/p), we then have

ρμ(u
k
1)

ρμ(u1)
≤ 64(μk)−1/5 +Θ(n−1) ≤ n−1/24 .

Combining this with (16) and (19) shows that∑
s∈S,
|u1|�=0

∑
v∈f−1(s)

max
w

P(Mnv = w) ≤ |S| · n−n/25 ≤ 8np2dn−n/25

≤ 8n exp

(
4c

μ
n logn− 1

25
n logn

)
≤ e−n ,(20)

provided c ≤ μ/200. Now if |u1| = 0 then there are at most

|f−1(s)| ≤
(

2

ρμ(u2)

)|S|−|T ′|

choices for v. Notice that ρμ(vS) ≤ ρμ(u2) and so

∑
v∈f−1(s)

max
w

P(Mnv = w) ≤ ρμ(u2)
n−|T ′|

(
1

ρμ(u2)

)|S|−|T ′|

≤ ρμ(u2)
n/2 ≤ (1− μ/2)n|u2|/2 ,

where for the final inequality we used (15). On the other hand, by (15), the number
of choices for s = (S, T, T ′, u1, u2) such that |u1| = 0, |u2| = t is at most(

n

≤ kd

)3

pt ≤ exp(ct ·
√
n log n+ 3kd log n).
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10 MARCELO CAMPOS ET AL

Putting our bounds together, we have∑
s∈S,

|u1|=0,|u2|=t

∑
v∈f−1(s)

max
w

P(Mnv = w) ≤ exp(ct ·
√
n logn+ 3kd log n− nμt/4)

≤ e−nμt/5 .

Summing over all t ≥ 1 (recalling that u2 	= 0) and using (20), we conclude that

Qn(β) =
∑
s∈S

∑
v∈f−1(s)

max
w

P(Mnv = w) ≤ e−μn/6 ,

as desired. �

6. Proof of Lemma 8

In this section, we pin down one final loose end, the proof of Lemma 8, which
is our main Fourier lemma. For v ∈ Z

n
p , and μ ∈ [0, 1] we note a standard Fourier

expression for ρμ(v). Define

(21) fμ,v(ξ) :=
n∏

i=1

((1− μ) + μcp(viξ)),

where we let cp(x) = cos(2πx/p). We then have

(22) ρμ(v) = Eξ∈Zp
fμ,v(ξ) .

Clearly |fμ,v(ξ)| ≤ 1 and for μ ≤ 1/2 each of the terms in the product fμ,v(ξ)
is non-negative. In this case it is natural to work with log fμ,v. For this, we let
‖x‖T denote the distance from x ∈ R to the nearest integer and note the following
bounds. For μ ∈ [0, 1/4] we have

(23) μ‖x/p‖2
T
≤ − log (1− μ+ μcp(x)) ≤ 32μ‖x/p‖2

T
,

which are elementary3 and can be found in (7.1) in [19].
For Lemma 10, one of the main results of this section, we need the well-known

Cauchy-Davenport inequality which tells us that for A,B ⊆ Zp we have |A+B| ≥
min{|A|+ |B| − 1, p}. Here, as usual, A+B := {a+ b : a ∈ A, b ∈ B}.

A first step towards Lemma 8 is to prove it in the case when ρμ(v) is not too
large.

Lemma 10. Let μ ∈ (0, 1/4], v ∈ Z
∗
p and k ∈ N. Then

ρμ(v
k) ≤

(
ρμ(v)

k−1
k +

8√
μk

)
ρμ(v) + p−1.

To prove this lemma, we adopt some temporary notation. Let F = fμ,vk and

G = fμ,v, be as defined in (21) and note that G = F 1/k. We note also that F is

non-negative since μ ≤ 1/4. Let 	 := 1
8 (μk)

1/2. For all α ∈ (0, 1), we consider the
level sets

Aα := {ξ ∈ Zp : F (ξ) > α} Bα := {ξ ∈ Zp : G(ξ) > α}.

Claim 11. For α ∈ (0, 1), we have 	 ·Aα ⊆ Bα.

3For these explicit constants, note the bounds a ≤ − log(1 − a) ≤ (3/2)a for a ∈ [0, 1/4] and
x2 ≤ 1− cos(2πx) ≤ 20x2 for |x| ≤ 1/2.
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SINGULARITY OF RANDOM SYMMETRIC MATRICES REVISITED 11

Proof. To see this, assume ξ1, . . . , ξ� ∈ Aα and so G(ξi) = (F (ξi))
1/k > α1/k for

each i ∈ [	]. Taking logs of both sides and applying (23) gives, for each i ∈ [	],

(24) μ
n∑

j=1

‖ξivj‖2T ≤ − logG(ξi) ≤ k−1 logα−1 .

Thus, using the triangle inequality along with (24) gives
⎛
⎝ n∑

j=1

‖(ξ1 + · · ·+ ξ�)vj‖2T

⎞
⎠

1/2

≤
�∑

i=1

⎛
⎝ n∑

j=1

‖ξivj‖2T

⎞
⎠

1/2

≤ 	

(
logα−1

μk

)1/2

.

It then follows from the upper bound in (23) that

− logG(ξ1 + · · ·+ ξ�) ≤ 32

n∑
j=1

‖(ξ1 + · · ·+ ξ�)vj‖2T ≤ 32
	2

μk
logα−1.

Thus, using our choice of 	 = 1
8 (μk)

1/2, we have G(ξ1 + · · · + ξ�) > α, and so
ξ1 + · · ·+ ξ� ∈ Bα. �

Proof of Lemma 10. Letting g := EξG = ρμ(v), we want to show that EξF ≤(
g(k−1)/k + 8√

μk

)
g+p−1. We do this in two ranges. First we recall that F 1/k = G

and so

Eξ [F1(F ≤ g)] ≤ Eξ

[
G · g(k−1)/k

]
= g

2k−1
k .

Next we treat the ξ for which F (ξ) > g. First note that by Markov’s inequality
|Bα| < p, for all α > g. It follows from Claim 11 and the Cauchy-Davenport
inequality that |Aα| ≤ 	−1|Bα|+ 1 for all α > g. Thus,

Eξ [F1 (F > g)] =

∫ 1

g

|At|p−1 dt ≤ 	−1

∫ 1

g

|Bt|p−1 dt+ 1/p ≤ g/	+ 1/p.

Putting our bounds together we have

ρμ(v
k) ≤

(
g(k−1)/k +

8√
μk

)
g + 1/p =

(
ρμ(v)

(k−1)/k +
8√
μk

)
ρμ(v) + p−1,

as desired. �

To complete our proof of Lemma 8, we need the following classical result:

Lemma 12. If v ∈ Z
∗
p with v 	= 0 then ρμ(v) ≤ 64√

μ|v|
+ p−1.

Letting d = |v|, this lemma may be deduced by bounding ρμ(v) ≤ ρμ(v
d
j ) for

some j by (12), noting that ρμ(v
d
j ) = ρμ(1

d) and bounding the latter either directly
or using a standard local central limit theorem. Alternatively, a stronger statement
may be found in [2, Lemma 2.3].

Proof of Lemma 8. If ρμ(v) ≤ (μk)−1/4 then Lemma 10 tells us that ρμ(v
k) ≤

64(μk)−1/5ρμ(v) + p−1, as desired. On the other hand, if ρμ(v) > (μk)−1/4,

ρμ(v
k) =

64√
μk|v|

+ 1/p ≤ 64(μk)−1/4ρμ(v) + 1/p

thus completing the proof. �
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