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Abstract
We address counting and optimization variants of multicriteria global min-cut and
size-constrained min-k-cut in hypergraphs.

1. For an r-rank n-vertex hypergraph endowed with ¢ hyperedge-cost functions, we
show that the number of multiobjective min-cuts is O (2! n3~1). In particular,
this shows that the number of parametric min-cuts in constant rank hypergraphs
for a constant number of criteria is strongly polynomial, thus resolving an open
question by Aissi et al. (Math Program 154(1-2):3-28, 2015). In addition, we give
randomized algorithms to enumerate all multiobjective min-cuts and all pareto-
optimal cuts in strongly polynomial-time.

2. We also address node-budgeted multiobjective min-cuts: For an n-vertex hyper-
graph endowed with ¢ vertex-weight functions, we show that the number of
node-budgeted multiobjective min-cuts is O(r2"n’*?), where r is the rank of
the hypergraph, and the number of node-budgeted b-multiobjective min-cuts for
a fixed budget-vector b € R is O(n?).

3. We show that min-k-cut in hypergraphs subject to constant lower bounds on part
sizes is solvable in polynomial-time for constant &, thus resolving an open problem
posed by Guinez and Queyranne (Unpublished manuscript. . See also , 2012). Our
technique also shows that the number of optimal solutions is polynomial.
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All of our results build on the random contraction approach of Karger (Proceedings
of the 4th annual ACM-SIAM symposium on discrete algorithms, SODA, pp 21-30,
1993). Our techniques illustrate the versatility of the random contraction approach to
address counting and algorithmic problems concerning multiobjective min-cuts and
size-constrained k-cuts in hypergraphs.
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1 Introduction

Cuts and partitioning play a central role in combinatorial optimization and have numer-
ous theoretical as well as practical applications. We consider multicriteria cut problems
inhypergraphs. Let G = (V, E) be ann-vertex hypergraphandcy, ..., ¢; : E — Rxg
be ¢ non-negative hyperedge-cost functions, where ¢ is a fixed constant and the hyper-
graph induced by hyperedges of positive ¢, cost is connected. The cost of a set of
hyperedges F € E under criterion i € [t]is ¢;(F) = Zee r ci(e). For a partition
X = (X1,...,Xg) of V, we use 6(X) to denote the set of hyperedges that intersect
at least two parts of X. For a subset U of vertices, we will use U to denote VAU and
8(U) to denote § (U, U)). For a vertex v, we will use 8 (v) to denote 8 ({v}). A subset
F of hyperedges is a k-cut if there exists a partition X = (X7, ..., X) of V such that
F = §(X). We refer to a 2-cut simply as a cut. We recall that the rank of a hypergraph
G is the size of the largest hyperedge in G (the rank of a graph is 2).

Since we have several criteria, there may not be a single cut that is best for all
criteria. In multicriteria optimization, there are three important notions to measure the
quality of a cut: (i) parametric min-cuts, (ii) pareto-optimal cuts, and (iii) multiobjective
min-cuts. We define these notions now.

Definition 1.1 A cut F is a parametric min-cut if there exist positive multipliers
M1, ..., 4 € Ry such that F is a min-cut in the hypergraph G with hyperedge
costs given by ¢, (e) := Zzt‘=1 wuici(e) foralle € E.

Definition 1.2 A cut F dominates another cut F' if ¢;(F) < ¢;(F’) for every i € [f]
and there exists i € [#] such that ¢; (F) < ¢;(F'). A cut F is pareto-optimal if it is not
dominated by any other cut.

Definition 1.3 For a budget-vector b € R’;Ol, acut F is a b-multiobjective min-cut if
c;(F) < b; foreveryi € [t — 1] and ¢; (F) is minimum subject to these constraints. A
cut F is a multiobjective min-cut if there exists a non-negative budget-vector b € RZ;O]
for which F is a b-multiobjective min-cut.

These three notions satisfy the following relationship with the containment being
possibly strict (see “Appendix A.1” for a proof):

Parametric min-cuts C Pareto-optimal cuts € Multiobjective min-cuts. (1)
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Multicriteria cuts and size-constrained k-cuts in hypergraphs

There is also a natural notion of min-cuts under node-weighted budget constraints.
Let wy,...,w; : V — Rys¢ be vertex-weight functions and ¢ : E — Ry be a
hyperedge-cost function. For a budget-vector b € R’ ;, asubset F C E of hyperedges
is anode-budgeted b-multiobjective min-cut if F = §(U) for some subsety) = U C V
with ), .y wi(u) < b; for all i € [t] and ¢(F) is minimum among all such subsets
of E. A cut F is a node-budgeted multiobjective min-cut if there exists a non-negative
budget-vector b for which F is a node-budgeted b-multiobjective min-cut. In this
work, we address the following natural questions concerning multiobjective min-cuts
and min-k-cuts:

1. Multiobjective min-cuts: Is the number of multiobjective min-cuts at most strongly
polynomial?

2. Node-budgeted multiobjective min-cuts: Is the number of node-budgeted multi-
objective min-cuts at most strongly polynomial?

3. Size-constrained min-k-cut: For fixed positive integers k and s, . . ., s¢ (all con-
stants), a vertex-weight function w : V — Z., and a hyperedge-cost function
c: E — R4, can we compute a k-cut F' with minimum c(F') subject to the con-
straint that F is the set of hyperedges crossing some k-partition (Uy, . .., Ug) of
V where ZueUi w(u) > s; for every i € [k] in polynomial-time? Is the number
of optimal solutions strongly polynomial?

Previous work. For single criterion, a classic result of Dinitz et al. [6] shows that
the number of min-cuts in an n-vertex graph is 0 (n?) (also see Karger [11]). The
same upper bound was shown to hold for constant-rank hypergraphs by Kogan and
Krauthgamer [13] and for arbitrary-rank hypergraphs by Chekuri and Xu [5] and by
Ghaffari et al. [7] via completely different techniques. For + = 2 criteria in graphs,
Mulmuley [15] showed an O (n'®) upper bound on the number of parametric min-cuts.
For ¢ criteria in constant-rank hypergraphs, Aissi et al. [1] showed that the number of
parametric min-cuts is O (m'n?), where m is the number of hyperedges, using the fact
that the number of approximate min-cuts in constant-rank hypergraphs is polynomial.
Karger [12] improved this bound to O (n'*!) by a clever and subtle argument based
on his random contraction algorithm; we will describe his argument later. Karger also
constructed a graph that exhibited $2 (n/?) parametric min-cuts.

Armon and Zwick [3] showed that all pareto-optimal cuts in graphs can be enu-
merated in pseudo-polynomial time. For ¢ = 2 criteria in constant-rank hypergraphs,
Aissietal. [1] showed an upper bound of O (n%) on the number of pareto-optimal cuts—
this was the first result showing a strongly polynomial upper bound. Aissi et al. raised
the question of whether the number of pareto-optimal cuts is strongly polynomial
for a constant number ¢ of criteria in constant-rank hypergraphs (or even in graphs).
Note that, by containment relationship (1), answering our first question affirmatively
would also answer their open question. On a related note, Aissi et al. [2] designed a
random contraction based algorithm to solve the b-multiobjective min-cut problem
in graphs. The correctness analysis of their algorithm also implies that the num-
ber of H-multiobjective min-cuts in graphs for a fixed budget-vector b € Rtjl is
0(n2’). We emphasize the subtle, but important, distinction between the number of
b-multiobjective min-cuts for a fixed budget-vector b and the number of multiobjective
min-cuts.
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Node-budgeted multiobjective min-cut has a rich literature extending nicely to
submodular functions. For graphs, Armon and Zwick [3] gave a polynomial-time
algorithm to find a minimum valued cut with at most b vertices in the smaller side.
Goemans and Soto [8] addressed the more general problem of minimizing a symmetric
submodular function f : 2¥ — R over a downward-closed family .#. Recall that the
hypergraph cut function is symmetric submodular and the family of vertex subsets
satisfying node-weighted budget constraints is in fact downward-closed. Goemans
and Soto extended Queyranne’s submodular minimization algorithm to enumerate all
the O (n) minimal minimizers in .# using O (n3) oracle calls to the function f and the
family .#. Their result implies that the number of minimal minimizers is O (n), but it
is straightforward to see that the total number of minimizers could be exponential. For
the special case of node-budgeted multiobjective min-cuts in graphs, Aissi et al. [2]
gave a faster algorithm than that of Goemans and Soto—their algorithm is based on
random contraction, runs in 0(n2)-time, and shows that the number node-budgeted
b-multiobjective min-cuts in graphs for a fixed budget-vector b Rt>0 is 0 (n?).

For size-constrained min-k-cut, if we allow arbitrary sizes (i.e., arbitrary lower
bounds), then the problem becomes NP-hard even for k = 2 as it captures the well-
studied min-bisection problem in graphs. If we consider constant sizes but arbitrary
k, then the problem is again NP-hard in graphs [9]. So, our focus is on constant
k and constant sizes. Guinez and Queyranne [10] raised size-constrained min-k-cut
with unit vertex-weights as a sub-problem towards resolving the complexity of the
submodular k-partitioning problem. In submodular k-partitioning, we are given a sub-
modular function f : 2V — R (by value oracle) and a fixed constant integer k (e.g.,
k =2,3,4,5,...) and the goal is to find a k-partition (U, ..., Uy) of the ground
set V so as to minimize Zf: 1 f(U;). The complexity of even special cases of this
problem are open: e.g., if the submodular function f is the cut function of a given
hypergraph, then its complexity is unknown.! Guinez and Queyranne showed surpris-
ingly strong non-crossing properties between optimum solutions to size-constrained
(k — 1)-partitioning (constant size lower bounds on the parts) and optimum solu-
tions to k-partitioning. This motivated them to study the size-constrained min-k-cut
problem in hypergraphs for unit vertex-weights as a special case. They showed that
size-constrained min-k-cut for unit vertex-weights is solvable in polynomial-time
in constant-rank hypergraphs (with exponential run-time dependence on the rank)
and mention the open problem of designing an algorithm for it in arbitrary-rank
hypergraphs. The size-constrained min-k-cut problem for unit sizes (i.e., all size lower-
bounds s1, ..., s, are equal to one) is known as the hypergraph k-cut problem. The
hypergraph k-cut problem was shown to admit a polynomial-time algorithm only
recently [4] via a non-uniform random contraction algorithm.

! We note that if the submodular function f is the cut function of a given hypergraph, then the submodular
k-partition problem is not identical to hypergraph k-cut as the two objectives are different. However, if the
submodular function is the cut function of a given graph, then the submodular k-partition problem coincides
with the graph k-cut problem which is solvable in polynomial-time.
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1.1 Our contributions

Our high-level contribution is in showing the versatility of the random contraction
technique to address algorithmic and counting problems concerning multiobjective
min-cuts and size-constrained min-k-cuts in hypergraphs. All of our results build on
the random contraction technique with additional insights.

Our first result is a strongly polynomial upper bound on the number of multiobjec-
tive min-cuts in constant-rank hypergraphs.

Theorem 1.1 The number of multiobjective min-cuts in anr-rank, n-vertex hypergraph
with t hyperedge-cost functions is O (r2"'n3=1).

We emphasize that our upper bound is over all possible non-negative budget-vectors
(in contrast to the number of b-multiobjective min-cuts for a fixed budget-vector b).
Theorem 1.1 and containment relationship (1) imply that the number of pareto-optimal
cuts in constant-rank hypergraphs is O(n¥~!) and hence, is strongly polynomial
for constant number of criteria. This answers the main open question posed by
Aissi et al. [1]. We also design randomized polynomial time algorithms to enumerate
all multiobjective min-cuts and all pareto-optimal cuts in constant-rank hypergraphs
(see Sect. 2.3). Independent of our work, Rico Zenklusen has also shown Theorem 1.1
using a different approach. We learned after the conference submission of this work
that his approach also leads to deterministic polynomial time algorithms to enumerate
all multiobjective min-cuts and all pareto-optimal cuts in constant-rank hypergraphs.
We will outline his proof approach in the technical section.

Given the upper bound in Theorem 1.1, a discussion on the lower bound is in
order. We recall that Karger [12] constructed a graph with ¢ edge-cost functions that
exhibited 2 (n'/?) parametric min-cuts. This is also a lower bound on the number of
pareto-optimal cuts and multiobjective min-cuts by (1). We improve this lower bound
for pareto-optimal cuts by constructing a graph with 7 edge-cost functions that exhibits
£2(n") pareto-optimal cuts (see Sect. 2.4). Our instance also exhibits the same lower
bound on the number of b-multiobjective min-cuts for a fixed budget-vector b.

Our next result is an upper bound on the number of node-budgeted multiobjective
min-cuts and node-budgeted b-multiobjective min-cuts.

Theorem 1.2 1. The number of node-budgeted multiobjective min-cuts in an r-rank,
n-vertex hypergraph with t vertex-weight functions is O (r2"n'*?).

2. For a fixed budget-vector b € R, the number of node-budgeted b-multiobjective
min-cuts in an n-vertex hypergraph with t vertex-weight functions is O (n?).

We draw the reader’s attention to the distinction between the two parts in The-
orem 1.2. The first part implies that the number of node-budgeted multiobjective
min-cuts is strongly polynomial in constant-rank hypergraphs for constant number of
vertex-weight functions. The second part implies that the number of node-budgeted
b-multiobjective min-cuts for any fixed budget-vector b € RZ  is strongly polynomial
in arbitrary-rank hypergraphs for any number ¢ of vertex-weight functions.

Our final result shows that the size-constrained min-k-cut problem can be solved

in polynomial time for constant k and constant sizes (in arbitrary-rank hypergraphs).
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Theorem 1.3 Let k > 2 be a fixed positive integer and let 1 < s; < sy < --- < 5y be
fixed positive integers. Let G = (V, E) be an n-vertex hypergraph with hyperedge-
cost function ¢ : E — R. Then, there exists a polynomial-time algorithm that takes
(G, c) as input and returns a fixed w-weighted s-size-constrained min-k-cut for any
choice of vertex-weight function w : V. — Z_ with probability

1
2 <n2ok1+1 ) ’

Theorem 1.3 resolves an open problem posed by Guinez and Queyranne [10]. A
structural consequence of Theorem 1.3 is that the number of size-constrained min-k-
cuts (over all possible node-weight functions w : V' — Z. ) in a given hypergraph is
polynomial for constant sizes and constant k.

We refer the reader to Table 1 for a comparison of known results and our contribu-
tions.

where oj_1 1= 25:11 Si.

1.2 Technical overview

As mentioned earlier, all our results build on the random contraction technique intro-
duced by Karger [11] to solve the global min-cut problem in graphs. Here, a uniform
random edge of the graph is contracted in each step until the graph has only two nodes;
the set of edges between the two nodes is returned as the cut. Karger showed that this
algorithm returns a fixed global min-cut with probability £2(n~2). As a consequence,
the number of min-cuts in an n-vertex graph is O (n2). The algorithm extends naturally
to r-rank hypergraphs, however the naive analysis will only show that the algorithm
returns a fixed global min-cut with probability £2(n~"). Kogan and Krauthgamer [13]
introduced an LP-based analysis thereby showing that the algorithm indeed succeeds
with probability £2(27"n72). As a consequence, the number of global min-cuts in
constant-rank hypergraphs is also O (n?).

In a recent work, Karger observed that uniform random contraction can also be used
to bound the number of parametric min-cuts in constant-rank hypergraphs. We describe
his argument for graphs since two of our theorems build on it. Suppose we fix the
multipliers p1, .. ., u, in the parametric min-cut problem, then a fixed min ¢, -cost cut
can be obtained with probability £2 (n~2) by running the random contraction algorithm
with respect to the edge-cost function ¢, . Karger suggested an alternative viewpoint of
the execution of the algorithm for the edge-cost function ¢, . For simplicity, we assume
parallel edges instead of costs, i.e., ¢;(e) € {0, 1} for every edge e and every criterion
i € [t]. Let E; be the set of edges with non-zero weight in the i’th criterion. The
execution of the random contraction algorithm wrt ¢;, can alternatively be specified
as follows: a permutation 7; of the edges in E; for each i € [t] and an interleaving
indicating at each step whether the algorithm contracts the next edge from m; or
7 or ... or my. Critically, the sequences mr; for every i € [f] can be assumed to be
uniformly random. Thus, we can move all randomness upfront, namely pick a uniform
random permutation 7; for each criterioni € [t]. Now, instead of returning one cut, we
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C. Beideman et al.

return the collection of cuts produced by contracting along all possible interleavings.
This modified algorithm no longer depends on the specific multipliers w1, ..., u; and
hence, a parametric min-cut for any fixed choice of multipliers w1, ..., u; will be in
the output collection with probability at least £2 (n~2). It remains to bound the number
of interleavings since that determines the number of cuts in the returned collection: the
crucial observation here is that the number of interesting interleavings is only n'~!.
This is because interleaved contractions produce the same final graph as performing a
certain number of contractions according to 71 (until the number of vertices is, say, n1),
then a certain number of contractions based on 7> (until the number of vertices is, say,
n3), and so on. So, the order of contractions becomes irrelevant and only the numbers
of vertices ny, .. ., n; are relevant. Overall, this implies that the number of parametric
min-cuts is O(n'T!). We emphasize that this interleaving argument relies crucially
on the basic random contraction algorithm picking edges to contract according to
a uniform distribution (allowing the permutations 1, ..., 7; to be uniform random
permutations).

Next, we describe our approach underlying the proof of Theorem 1.1, but for
graphs. In order to bound the number of multiobjective min-cuts through the inter-
leaving argument, we first need a random contraction based algorithm to solve the
b-multiobjective min-cut problem. Indeed, Aissi et al. [2] designed a random contrac-
tion based algorithm to solve the b-multiobjective min-cut problem in graphs. Their
algorithm proceeds as follows: For each i € [t — 1], let U; be the set of vertices
uevV-— U'j;ll U; for which ¢; (8(u)) > b; (known as the set of i-infeasible vertices),
and let U; .=V — Utl;ll U;. In each step, they pick i € [f] with probability pro-
portional to the number of i-infeasible vertices (i.e., |U;|) and pick a random edge e
among the ones incident to U; with probability proportional to ¢; (e), contract e, and
repeat. Unfortunately, this algorithm does not have the uniform distribution that is
crucially necessary to apply Karger’s interleaving argument. To introduce uniformity
to the distribution, we modify this algorithm in two ways:

1. Ateach step we deterministically choose the criterion i corresponding to the largest
U, (as opposed to picking i randomly with probability proportional to |U;|).

2. Next, we choose a uniform random edge e from among all edges in the graph with
probability proportional to c;(e) (as opposed to picking an edge only from among
the edges incident to U;). We contract this chosen edge e.

These two features bring a uniform distribution property to the algorithm, which in
turn, allows us to apply the interleaving argument. With these two features, we show
that the algorithm returns a fixed b-multiobjective min-cut for a fixed budget-vector
b with probability £2(n~2'). Armed with the two features, we move all randomness
upfront using the interleaving argument. As a consequence, we obtain that the total
number of multiobjective min-cuts (irrespective of the choice of budget-vector b) is
O (> ~1). For constant-rank hypergraphs, we perform an LP-based analysis of our
algorithm for b-multiobjective min-cut (thus, extending Kogan and Krauthgamer’s
analysis) to arrive at the same success probability. The interleaving argument for
constant-rank hypergraphs proceeds similarly.

We emphasize that the interleaving argument does not extend to arbitrary-rank
hypergraphs. This is because the currently known random contraction based algorithms
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for min-cut in arbitrary-rank hypergraphs crucially require non-uniform contractions
(the next hyperedge to contract is chosen from a distribution that depends on the current
sizes of all hyperedges), so we cannot assume that the permutations w1, 2, ..., T,
are uniformly random. Consequently, we do not even know if the number of para-
metric min-cuts in a hypergraph is at most strongly polynomial. Another interesting
open question here is whether the b-multiobjective min-cut problem in hypergraphs
is solvable in polynomial-time even for + = 2 criteria. We have arrived at hyper-
graph instances (with large rank) for which Aissi, Mahjoub, and Ravi’s approach (as
well as our modified approach) will never succeed, even with non-uniform random
contractions.

Next, we outline the proof of Theorem 1.2. The approach is to again design a
random contraction algorithm that returns a fixed node-budgeted b-multiobjective
min-cut with probability £2(n2) (in both constant-rank and arbitrary-rank hyper-
graphs). Such an algorithm would imply the second part of the theorem immediately
while the first part would follow if we can apply an interleaving-like argument (i.e., the
designed algorithm performs uniform random contractions). Our approach is essen-
tially an extension of the approach by Goemans and Soto who suggested contracting
the infeasible vertices together (a vertex u is infeasible if w; (u) > b; for somei € [¢]).
Aissi, Mahjoub, and Ravi show that doing this additional step after each random con-
traction step returns a fixed node-budgeted b-multibjective min-cut with probability
£2(n~?) in graphs. Our main contribution is showing that this additional “contracting
infeasible vertices together” step in conjunction with (1) uniform random contractions
for constant-rank hypergraphs and (2) non-uniform random contractions for arbitrary
hypergraphs succeeds with the required probability. Next, a naive interleaving-like
argument can be applied for constant-rank hypergraphs to conclude that the number
of node-budgeted multiobjective min-cuts is O (n’ +3). We improve this to O (n' +2)
with a more careful argument.

Finally, we outline our approach for Theorem 1.3. Guinez and Queyranne address
size-constrained k-cut in constant-rank hypergraphs for unit vertex-weights by per-
forming uniform random contractions until the number of nodes in the hypergraph is
close to Zle s; at which point they return a uniform random cut. Their success prob-
ability has exponential dependence on the rank. The key technical ingredient to bring
down the exponential dependence on rank is the use of non-uniform contractions. For
the special case of unit sizes and unit vertex-weights (i.e., the hypergraph k-cut prob-
lem), Chandrasekaran et al. [4] introduced an explicit non-uniform distribution that
leads to a success probability of £2(n~2*~1)_ Our algorithm extends the non-uniform
distribution to arbitrary but constant sizes (as opposed to just unit sizes), yet without
depending on vertex-weights. Our analysis takes care of the vertex-weight function
through weight tracking, i.e., by declaring the weight of a contracted node to be the
sum of the weight of the vertices in the hyperedge being contracted. We note that our
algorithm’s success probability when specialized to the case of unit vertex-weights and
unit sizes is weaker than the success probability of the algorithm by Chandrasekaran,
Xu, and Yu (by a factor of n). We leave it as an open question to improve this. On
the other hand, our algorithm has the added advantage that it does not even take the
vertex-weight function w as input and yet succeeds in returning a w-vertex-weighted
s-size-constrained k-cut for any choice of w with inverse polynomial probability.
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Organization. In Sect. 2, we bound the number of multiobjective min-cuts (and prove
Theorem 1.1), give efficient algorithms to enumerate all multiobjective min-cuts and
all pareto-optimal cuts, and present lower bounds on the number of pareto-optimal cuts
and the number of b-multiobjective min-cuts. In Sect. 3, we address node-budgeted
multiobjective min-cuts and prove Theorem 1.2. In Sect. 4, we give an algorithm to
solve size-constrained min-k-cut, thereby proving Theorem 1.3.

1.3 Preliminaries

We define the random contraction procedure that is central to all of our algorithms.
Let G = (V, E) be a hypergraph, and let U C V be a set of vertices in G. We define
G contract U, denoted G /U, to be a hypergraph on the vertex set (V\U) U {u}, where
u is a newly introduced vertex. The hyperedges of G/U are defined as follows. For
each hyperedge ¢ € E of G, such that e ¢ U, G/U has a corresponding hyperedge
e/, where ¢ := eif e C V\U and ¢ := (e\U) U {u} otherwise, and c;(¢') = c¢;(e)
for every i € [t]. If w is a vertex-weight function for G, then we will also use w as a
vertex-weight function for G/U. We define the weight of the newly introduced vertex
uwasw(u) =y .y w).

We will need the following lemma that will be used in the analysis of two of our
algorithms. We present its proof in the appendix.

Lemma 1.1 Letr, y, n be positive integers withn >y >r+1 > 2. Let f : N — Ry
be a positive-valued function defined over the natural numbers. Then, the optimum

value of the linear program (L Py) defined below is mino< j<,(1— ﬁ)f(n—j—i—l).
r
minimize Z(xj —y)fm—j+1 (LPy)
X2seees Xps V2,005 Vr R
j=2
subject to 0<yj<xj vVjie{2,...,r} 2
r
ij =1 (3)
j=2
r r
OTED DAL @
j=2 j=2

2 Multiobjective min-cuts and pareto-optimal cuts

In this section, we give upper and lower bounds on the number of multiobjective min-
cuts and pareto-optimal cuts and prove Theorem 1.1 (see Definitions 1.3 and 1.2).
Let G = (V, E) be an r-rank hypergraph and let ¢y, ...,¢; : E — Rxq be cost
functions on the hyperedges of G such that the hypergraph induced by hyperedges of
positive ¢; cost is connected. We note that the assumption that the hypergraph induced
by hyperedges of positive ¢; cost is connected is required to say that the number of
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b-multiobjective min-cuts in G is polynomial, since a complete graph where every
edge has zero c; cost will have exponentially many b-multiobjective min-cuts for
sufficiently large b.

We begin with a randomized algorithm for the h-multiobjective min-cut problem in
Sect. 2.1. We take an alternative viewpoint of this randomized algorithm in Sect. 2.2
to prove Theorem 1.1. Since all pareto-optimal cuts are multiobjective min-cuts, The-
orem 1.1 also implies that the number of pareto-optimal cuts in an r-rank n-vertex
hypergraph G with ¢ hyperedge-cost functions is O (r2"/n>~1). In Sect. 2.3, we give
randomized polynomial-time algorithms to enumerate all pareto-optimal cuts and all
multiobjective min-cuts. In Sect. 2.4, we show a lower bound of £2(n") on the number
of pareto-optimal cuts and on the number of b-multiobjective min-cuts.

2.1 Finding b-multiobjective min-cuts

In this section, we design a randomized algorithm for the b-multiobjective min-cut
problem, which is formally defined below.

b- MULTIOBJECTIVE MIN- CUT

Given: A hypergraph G = (V, E) with hyperedge-cost functions ¢y,
..., ¢ E — R, such that
the hypergraph induced by hyperedges of positive ¢; cost is connected, and a
budget-vector b € R’;O .

Goal: A b-multiobjective min-cut.

We use Algorithm 1. We summarize its correctness and run-time guarantees in Theo-
rem 2.1.

b- MULTIOBJECTIVE- MIN- CUT(G. r, t, ¢, b):
Input: An r-rank hypergraph G = (V, E), hyperedge-cost functions

c1,...,¢  E— R5p and a budget-vector b € R’z_ol.
If|V|<rt:
X <« arandom subset of V
return 6 (X)

Fori=1,...,t—1:

Ui — e V\ U Up: ci6w) > bi})
U < V\ Uz;ll Uj
i < argmax e[ |Uj| /
e < arandom hyperedge chosen according to Prle = ¢'] = %
G <~ GJe
Return b- MULTIOBJECTIVE- MIN- CUT(G’, 7, t, ¢, b)

Algorithm 1 »- MULTIOBJECTIVE MIN- CUT
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Theorem 2.1 Let G = (V, E) be an r-rank n-vertex hypergraph with hyperedge-cost
functions c1, ...,c; : E — Rsq, such that the hypergraph induced by hyperedges
of positive c; cost is connected, and let b € RI;OI be a budget-vector. Let F be an
arbitrary b-multiobjective min-cut. Then, Algorithm 1 outputs F with probability at
least Q,,, where

% if n<rt, and

On = —1
241 (n—t(r—2) .
2”(rt+1)( w ) if n>re

Moreover, the algorithm can be implemented to run in polynomial time.

Proof We note that the sets U; can be computed in polynomial time, and the algorithm
recomputes them at most n times. Random contraction can also be implemented in
polynomial time, and therefore the overall run-time of the algorithm is polynomial.
We also note that whenever we contract a hyperedge, c¢; (E) > 0. This is because, if
i < t, then in order for U; to be the largest of Uy, ..., U;, some vertex v must have
¢ci(6(v)) > b; > 0, and if i = ¢, then ¢;(E) > 0 since the hypergraph induced by
hyperedges of positive c; cost is connected.

We now bound the correctness probability by induction on 7. For the base case,
we consider n < rt. In this case, the algorithm returns §(X) for a random X C V.
There are 2" possible values for X, and F = §(X) for at least one of them. Thus, the
probability that the algorithm returns F is at least zi,, > 2% = Q0.

Next, we prove the induction step. Let n > rt and assume that the theorem holds
for all hypergraphs with at most n — 1 vertices and rank at most ». We will need the
following claim.

Cliam 2.1 The algorithm outputs F with probability at least the optimum value of the
following linear program.

r

minimize Z(xj —¥)On—j+1 (LP>)
X2yeees Xps ¥2s5eens r X
j=2
subject to O0<y;=<x;Vjel2,...,r}

Xr:x]' =1
j=2
r r
IZADRTED IV AT
j=2

j=2

Proof Since n > rt, when the algorithm is executed on G it will contract a randomly
chosen hyperedge and recurse. Let ¢’ be the random hyperedge chosen by the algo-
rithm. If ¢’ ¢ F, then F will still be a b-multiobjective min-cut in G /e’. We observe
that G /¢’ is a hypergraph with n — |¢’| + 1 vertices and the rank of G /¢’ is at most
the rank of G. Therefore, if ¢’ ¢ F, then the algorithm will output F with probability
at least Qp—j¢/|41-
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Leti € [¢] be the index of the cost function chosen by the algorithm. Let

Ej:={eeE: el =j},

¢i(Ej)
x;:=Prl¢ e E{]]= ——~, and
! ! ¢i(E)
G(EiNF)
i =Pr[¢ e E;NF]= L "~
Yj [ j ] (E)

As we noted above, ¢;(E) > 0 always, so these values are well-defined. We note that
E; is the set of hyperedges of size j, x; is the probability of picking a hyperedge of
size j to contract, and y; is the probability of picking a hyperedge of size j from F
to contract. We know that

p
Pr[Algorithm returns the cut F] > Z(xj — i) On—j+1- (&)
j=2

The values of x; and y; will depend on the structure of G. However we can deduce

some relationships between them. Since 0 < ¢;(E; N F) < ¢;(E;) for every j €
{2,...,r}, we know that

0<y;<xjforevery je(2,...,r} (6)

Moreover, x; is the probability of picking a hyperedge of size j. Hence,

ijzl. (7
j=2

Next, we show that for every i € [f] and every v € U;, we have

ci(F) = ¢i(8(v)). ®)

Ifi <t then ¢;(F) < b; < ¢;(6(v)) forevery v € U;. Leti = t. We recall that F is
a b-multiobjective min-cut. Since every cut induced by a single vertex in U; satisfies
all of the budgets, no such cut can have a better c;-cost than F', so ¢;(F) < ¢;(§(v))
for every v € U;.

From inequality (8), we conclude that

Dvew, 6GW) _ Foey ciG®) _ Eeepleleite) _ Xjma i~ cilE))

¢i(F) < < =
' |U;| |U;]| |U;] |Ui|

Therefore

r r
a(F) _ 1 5~
yj =Prle’ € F]= =—= ) _J X
,X:; ! ci(E) |U,-|; !
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Thus, we have that

r r
Uil Y yi <Y jxj. ©)
j=2 j=2

The minimum value of our lower bound in Eq. (5) over all choices of x; and y;
that satisfy inequalities (6), (7), and (9) is a lower bound on the probability that the
algorithm outputs F. O

Let U; be the largest among the sets Uy, .. ., U; that the algorithm generates when
executed on input (G, r, t, ¢, b). Claim 2.1 tells us that the algorithm outputs F with
probability at least the optimum value of the linear program (L P») from the claim.

The linear program (L P) is exactly the linear program (L P;) from Lemma 1.1
with y = |U;| and f(n) := Q. To apply Lemma 1.1, we just need to show that
n > |U;j| = r + 1. We recall that U; is the largest of the ¢ sets that the algorithm
constructs. Each of these sets is a subset of V, so we can conclude that |U;| < |V| = n.
We also know from the construction of the sets Uy, . .., U, that they partition V. This
means that Z;Zl |Uj| = n. Since U; is the largest of the sets, we must have |U;| > %
Since n > rt, this means |U;| > ”til > r. Thus |U;| > r, and since r and |U;| are
integers, we conclude that |U;| > r + 1. Therefore, we can apply Lemma 1.1 with

y = |U;| to conclude that

: : J
Pr[Algorithm returns the cut /] > min (1 — ————— —itl-
[Alg ]_2§j§r< |U,'|—r+j>Qn j+1
The following claim completes the proof of the theorem. O

Cliam 2.2 Forevery j € {2,...,r}, we have

J
1_— _ >
< U —r ]) On j+1 = On

Proof Let j € {2,...,r}. The given inequality is equivalent to

Qn—j+1 o |Uil-r+j
. . . . . QYl B |Ul |7r ’
Since U; is the largestamong Uy, . . ., U, which together partition V, we have |U; | > 2.

;
Consequently, % =1+ W <1+ ni_trt Therefore, it suffices to prove that

jt
n—tr’

%zl—i— We case on the value of n — j + 1.

Case I: Suppose thatn — j + 1 > rt. Then, we have

Qujri _ (57 zﬁ n_tr—2 -t (10)
Qn ("I T ==t =2) =

We consider two sub-cases based on the value of j.
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Case 1.a: Suppose that j > 2¢. Then, we observe that

21’—‘[1 n—tr=2-t n—tr—2 \*
n—j+1—t(r—2)—£_(n—j+1—t(r—2)>

£=0
_— 2
=(1+ _J
n—j+1—-tr—-2)

2t(j — 1
s HUZD

n—j+1—t(r—-2)

. o
21+J¢+(J )t

n—rt

jt
142

n—rt

We use j > 2t in the second to last inequality and j > 2 in the final inequality.

Case 1.b: Suppose that j < 2¢. Then we can cancel additional terms from the right
hand side of Eq. (10) to obtain that

21 j—2

1—[ n—tr—2)—14¢ _ n—tr—2)—1¢
Zzon—1+1—t(r—2)—ﬁ o n—tr—{
— _ j—1

(" t(r—2)

- n—tr
2t \/7!

(142

n—rt

2t(j — 1

> 142U

n—rt

14—

n—rt

Thus, in either subcase, our desired inequality holds.

Case 2: Suppose thatn — j +1 < rt. Now the expression for 0, ;1 is different.
Since we still know thatn > rz + 1 and j < r, we conclude that

Qn-j1 _ (rt+ (")
0, 2t +1
_ rt + 1)(rt+1—21t(r—2))
2t + 1
=rt+1
> 14 jt

jt
n—rt

> 1+
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Thus, our desired inequality holds in all cases. O

2.2 Finding multiobjective min-cuts

In this section, we present Algorithm 2, which does not take a budget-vector as input,
yet outputs any multiobjective min-cut (for any choice of budget-vector) with inverse
polynomial probability. This is accomplished by returning a collection of cuts.

In contrast to Algorithm 1, all of the randomness in Algorithm 2 (except for the
selection of a random cut in the base case) occurs upfront through the selection of
a permutation of the hyperedges. Theorem 2.2 summarizes the guarantees of Algo-
rithm 2.

MULTIOBJECTIVE- MIN- CUT(G, . t, €], ..., ¢;):
Input: An r-rank hypergraph G = (V, E) and
hyperedge-cost functions cy, ..., ¢; : E — Rxo.
If|V|<rt:
Pick a random subset X of V and return §(X)
Fori=1,...,¢:

Ei < {e€ E:ci(e) >0}
m; < apermutation of E; generated by repeatedly choosing a not yet
chosen hyperedge ¢ with probability proportional to ¢; (e)

R <0

For each sequence ny,...n, withn >ny >ny > .- >n,_1 > n, = rt:
G <~ G
Fori=1,...,t:

While |V (G’)| > n; and some hyperedge from 7; is present in G':
e < the first hyperedge from 7; that is still present in G’
G < G'/e
X < arandom subset of V (G')
Add §(X) to R if it is not already present
Return R

Algorithm 2 MULTIOBJECTIVE MIN- CUT

Theorem 2.2 Let G be anr-rank, n-vertex hypergraph with t hyperedge-cost functions.
Then, a fixed multiobjective min-cut F is in the collection returned by Algorithm 2
with probability

_Q(n—m)

r2rt

Moreover, the algorithm outputs at most n'~" cuts.

Proof We begin by showing the second part of the theorem. The algorithm outputs
at most one cut for each choice of ny,...,n;—1 € [n] (or just one cut if |V| < rt).
Hence, it outputs at most n’~! cuts. We now argue that the algorithm retains the same
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success probability as Algorithm 1, for any fixed budget-vector b. Suppose n < rt.
Then both Algorithms 1 and 2 return §(X) for a random subset X of the vertices of
G. Thus, for any cut F, the two algorithms have the same probability of returning F.
Henceforth, we assume n > rt.

We will view Algorithm 1 from a different perspective. In that algorithm, whenever

we contract a hyperedge e, we choose, for some i € [¢], a hyperedge according to the
ci (e )

probability distribution Pr[e = €] = . In particular, the choice of i depends on
which contractions have been made so far but the choice of a particular hyperedge,
given the choice of i, does not depend on our previous contractions, except for the fact
that we do not contract hyperedges which have already been reduced to singletons.
We note that allowing the contraction of singletons would not change the success
probability of the algorithm. Therefore, we could modify Algorithm 1 so that it begins
by selecting permutations 7y, ..., 7; of Eq, ..., E; (where E; = {e € E: cij(e) >
0}) as in Algorithm 2, and then whenever the algorithm asks to contract a random
hyperedge with probability proportional to its weight under c;, we instead contract
the next hyperedge from m; which is still present in the current hypergraph. This
modification does not change at any step the probability that a particular hyperedge is
the next contraction of a non-singleton hyperedge, and therefore the success probability
of the algorithm remains exactly the same.

Viewing Algorithm 1 in this way, we note that when we reach the base case
of n < rt, we will have contracted the first m; hyperedges of each m;, for some
mi,...,my € {0,...|E|}. The crucial observation now is that interleaved contrac-
tions can be separated. That is, if we know m; for every i € [¢], the order in which
we do the contractions is irrelevant: we will get the same resulting hypergraph if we
contract the first m hyperedges from 1, then contract the first m, hyperedges from
12, and so on up through the first m; hyperedges from 7, instead of the interleaved
contractions. Let 1 be the number of vertices in the hypergraph obtained after con-
tracting the first m | hyperedges from 71, subsequently, let 7, be the number of vertices
in the hypergraph obtained after contracting the first m hyperedges from 7, and so
on.

When we view Algorithm 1 in this way, it is only the choice of the values ny, ..., n;
that depends on the budgets, while the choice of the permutation 7r; does not depend
on the budgets. Algorithm 2 is running exactly the version of Algorithm 1 that we
have just described, except that instead of choosing n1, ..., n; based on the budgets,
it simply tries all possible options (which will certainly include whichever n1, ..., n;
Algorithm 1 would use for the given input budget-vector). Therefore for every fixed
choice of budget-vector b, and every fixed b-multiobjective min-cut F', the probability
that F is in the collection R output by the algorithm is at least as large as the probability
that F is the cut output by Algorithm 1. By Theorem 2.1, this probability is $2 %:,21),
as desired. O

We derive Theorem 1.1 from Theorem 2.2 now.

Theorem 1.1 The number of multiobjective min-cuts in an r-rank, n-vertex hypergraph
with t hyperedge-cost functions is O (r2"'n3=1).
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Proof Let x be the number of multiobjective min-cuts in the hypergraph. By The-
orem 2.2, the expected number of multiobjective min-cuts output by our algorithm
MULTIOBJECTIVE MIN- CUT (i.e., Algorithm 2) is (x /r2"")§2 (n~2"). Theorem 2.2 also
tells us that the algorithm outputs at most n’~! cuts. Therefore, x = r2"" - O (n¥~1).

O

2.3 Enumerating multiobjective min-cuts and pareto-optimal cuts

In this section, we give algorithms to enumerate all multiobjective min-cuts and pareto-
optimal cuts in polynomial time.

We first give a polynomial time algorithm to enumerate all multiobjective min-
cuts. We execute our algorithm for MULTIOBJECTIVE MIN- CUT (i.e., Algorithm 2)
a sufficiently large number of times so that it succeeds with high probability (i.e.,
with probability at least 1 — 1/n): In particular, executing it 722" O (n*' log n) many
times gives us a collection % that is a superset of the collection o of multi-
objective min-cuts with high probability. Moreover, the size of the collection ¢ is
212" 0 (n¥~1logn). We can prune € to identify €);o in polynomial-time as fol-
lows: remove every cut F' € & for which there existsacut F' € € withc;(F') < ¢;(F)
and ¢;(F') < c¢;(F)forevery | <i <t—1.

Next, we give a polynomial time algorithm to enumerate pareto-optimal cuts. By
containment relation (1), it suffices to identify all pareto-optimal cuts in the collection
% . For this, we only need a polynomial-time procedure to verify if a given cut F
is pareto-optimal. Algorithm 3 gives such a procedure. It essentially searches for a
cut that dominates the given cut F' by running our algorithm for 5- MULTIOBJECTIVE
MIN- CuUT with ¢ different budget-vectors.

VERIFY- PARETO- OPTIMALITY(G, r,t,c1, ..., ¢, F):
Input: An r-rank hypergraph G = (V, E), cost functions ¢y, ..., ¢; : E — R,
andacut Fin G

Fori=1,...,t:
€<« (Cly.--Ci=1,Citls---+Ct,Ci)
b < (CI(F)v s Ci—l(F)a Ci+1(F)a D) LI(F))
For j =1,...,r2""0®n* logn):
F’ < b- MULTIOBJECTIVE- MIN- CUT(G, 7, t, ¢, b)
If F’ is a b-multiobjective cut in (G, ¢) and ¢; (F') < ¢;(F):
Return FALSE
Return TRUE

Algorithm 3 Verify pareto-optimality of a given cut

Theorem 2.3 Let G be an r-rank, n-vertex hypergraph G with t hyperedge-cost func-
tions ci, ..., ¢ : E(G) — Rxq such that the hypergraph induced by hyperedges of
positive c; cost is connected for every i € [t],

and let F be a cut in G. If F is a pareto-optimal cut, then Algorithm 3 returns
TRUE, and if F is not a pareto-optimal cut, then the algorithm returns FALSE with
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high probability. Moreover, the algorithm can be implemented to run in polynomial
time.

Proof The run-time of the algorithm is polynomial since our algorithm for b-
MULTIOBJECTIVE MIN- CUT (i.e., Algorithm 1) is a polynomial-time algorithm.
Algorithm 3 returns false only if it finds a cut that dominates the input cut F. If
F is pareto-optimal, no such cut will exist, and therefore the algorithm will return
true.

Next, suppose the input cut F is not pareto-optimal. Then F must be dominated by
some other cut F’. Let i € [¢] be such that ¢; (F') < ¢;(F) (such an i is guaranteed to
exist by the definition of domination). Let b be a budget-vector of the costs of F under
the cost functions other than ¢; and let ¢’ be ¢ with ¢; moved to the end of the vector
of cost functions. Then F will not be a b-multiobjective min-cut in (G, ¢’), since F’
also satisfies b, but has a lower c;-cost. Therefore, any b-multiobjective min-cut will
dominate F (since it will also satisfy b and cannot have higher ¢; cost than F’). Thus, if
any of our 2" n?*" log n calls to our algorithm for »-MULTIOBJECTIVE- MIN- CUT (i.e.,
Algorithm 1) for this value of i returns a multiobjective min-cut, then the algorithm
will return false. We recall that the hypergraph induced by hyperedges of positive c¢;
cost is connected. By Theorem 2.1, our algorithm for 5>-MULTIOBJECTIVE MIN- CUT
returns a b-multiobjective min-cut with probability rz%.(?(n%). Therefore, if we run
this algorithm 72"* O (n* log n) times, a b-multiobjective min-cut will be returned at
least once with high probability, and our algorithm will correctly return false. O

2.4 Lower bounds

In this section, we discuss lower bounds on the number of distinct pareto-optimal
cuts in n-vertex hypergraphs. Karger gave a family of graphs with n'/? parametric
min-cuts [12]. We recall that every parametric min-cut is a pareto-optimal cut by the
containment relation (1). Thus, n’ /2 is also a lower bound on the number of pareto-
optimal cuts in n-vertex hypergraphs. To the best of the authors’ knowledge, this is the
best lower bound on the number of pareto-optimal cuts that is known in the literature.
We give an §2(n") (for constant ¢) lower bound on the number of pareto-optimal cuts
in a graph. Our lower bound construction is different from that of Karger.

Theorem 2.4 For all positive integers t and n such that n > t + 2, there exists an

n-vertex graph G with associated edge-cost functions c1, ..., c; : E(G) — Ry such
Nt . .

that G has at least ("t—z) distinct pareto-optimal cuts.

Proof For fixed n and ¢, construct a graph G as follows. The graph G has two special
vertices u and v. The rest of the vertices are used to form ¢ distinct paths between
u and v with each path consisting of at least L”t;zj +1 > ”t;z distinct edges. We
assign edge costs as follows: If e is an edge in the i’th path, then ¢;(e¢) = 1, while
cj(e) =1/(t + 1) forevery j € [t]\{i}. See Fig. 1 for an example.

We will show that any cut which contains exactly one edge from each path is
pareto-optimal. The number of such cuts is at least ("t;z)[, since each path has at least
(n — 2)/t edges, so this will suffice to prove the theorem.
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Fig.1 An illustration of our lower bound construction for r = 3

We observe that any cut contains either exactly one edge from each path or at least
two edges from some path. Any cut F which contains exactly one edge from each
path will have ¢; (F) = 2t/(t + 1) for every i € [¢t]. Any cut F’ that contains at least
two edges from some path i € [¢] will have ¢;(F') = 2 > 2t/(t + 1). Therefore no
cut which contains two edges from the same path can dominate a cut which contains
exactly one edge from each path. Furthermore, if two different cuts each contain
exactly one edge from all paths, then they both have the same cost under every cost
function, and thus neither can dominate the other. We conclude that every cut which
contains exactly one edge from each path is pareto-optimal. O

Remark 1 The lower bound from Theorem 2.4 is still significantly smaller than the
O3~ upper bound from Theorem 1.1. We believe that this gap comes from the
slack in the analysis of our randomized algorithms.

Remark 2 We note that the construction in Theorem 2.4 also shows that there exists a
budget-vector b € Rﬂ:l such that the number of h-multiobjective min-cuts is £2(n’):
consider budget values b; = (2t)/(t + 1) for every i € [t — 1]. We emphasize that
since not every multiobjective min-cut is pareto-optimal, this lower bound does not
imply the one from Theorem 2.4. Since distinct pareto-optimal cuts need not be b-
multiobjective min-cuts for the same vector b, the bound in Theorem 2.4 does not
immediately imply this bound either.

2.5 Alternative proof of strongly polynomial bound on the number of
multiobjective min-cuts

In this section, we give an alternative proof due to Zenklusen showing that the number

of multiobjective min-cuts in constant rank hypergraphs for constant many objective
functions (i.e., when both r and t are O(1)) is strongly polynomial. The proof is
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constructive and leads to a deterministic algorithm to enumerate all multiobjective
min-cuts/pareto-optimal cuts in strongly polynomial time.

Let G = (V, E) be an r-rank, n-vertex hypergraph with ¢ hyperedge-cost functions
Cly...,¢ . E — Rsg, such that the hypergraph induced by hyperedges of positive
¢; cost is connected, where r,t = O(1). For a subset F C E, we will write ¢(F) =
(c1(F),...,c;(F)) todenote the vector of cost function values. A cut F is supported
if there exists w1, ..., u; > 0 such that any cut F’ that is minimum with respect to the
cost function given by ¢, (e) := Z§=1 wici(e) for all e € E satisfies ¢; (F) = ¢;(F')
for every i € [¢].

Let

P = convex-hull({(c1(6(S)), ..., c:(8(8) : 0 #SC V) + tho CR

be the dominant (or up-closure) of the convex-hull of cost-vectors corresponding to
cuts. Thus, P can equivalently be defined as the dominant of the convex-hull of all
supported pareto-optimal cuts. Hence, the vertices of the polyhedron P are precisely
the vectors c(F'), where F is a supported pareto-optimal cut.

We now give an algorithm to enumerate all multiobjective min-cuts/pareto-optimal
cuts. We note that P is full-dimensional because it is up-closed and the graph G is
connected with |V| > 2. Aissi et al. [1] showed that the number of supported pareto-
optimal cuts is O(n'") and they can all be enumerated in time O(n'""). Hence, P
only has a strongly polynomial number of vertices, i.e., it has O(n’*) many vertices.
Consequently, the number of facets of P is é(n”z) (since each facet is uniquely
defined by # — 1 linearly independent edge directions of the facet, each of which is
either the difference of two vertices or one of the axis-parallel directions e, ..., e;—
stronger bounds can be obtained, for example, by using known bounds on the number
of facets as a function of the number of vertices [14]). Let .% be the set of facets of
P. By the result of Aissi et al., we have that |.%| = é(n” 2) and all these facets can
be enumerated in 0~(n”2) time. For each facet F' € %, there is a parameteric cost
cr, which is a conic combination of the costs ¢y, ..., ¢; such that F is the set of all
points of P that minimize the linear objective cr. Since the hypergraph induced by
hyperedges of positive ¢, cost is connected, no cut has zero cost with respect to ¢;,
and therefore, it follows that the origin O is not in P, and the minimum-cost cut with
respect to any function c¢p for F € .% has strictly positive value. The central idea
behind the enumeration of all multiobjective min-cuts is the following result showing
that every multiobjective min-cut is a ¢f-approximate min-cut with respect to one of
the cost functions in {cr : F € Z}.

Theorem 2.5 Let R C E be a multiobjective min-cut such that ¢,(R) > 0. Then, there
exists F € .% such that

cr(R) < tmin{cr(5(S)) : 0 #S C V}.

A strongly polynomial bound of o" ’2) on the number of multiobjective min-
cuts follows from Theorem 2.5, since for each F € .%#, there are O(ntz) many -
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approximate min-cuts with respect to cr (which follows by the results of Kogan and
Krauthgamer [13]).

Proof of Theorem 2.5 Let R be a b-multiobjective min-cut for some b € R'~! and let
x :=¢(R) € RL,,. Consider the segment between x and the origin 0. Since the origin
is not in P, the segment from x to 0 will leave P at some point. Let A > O be the
smallest value such that Ax € P, and let y = Ax. Hence, y is the point where the
segment from x to 0 is about to leave the polyhedron P. Let F € .% be a facet of P
containing y and certifying that ux ¢ P forany u < A. Hence, {ux : u € R} crosses
the facet F when going from . > X to < A. Formally, this is equivalent to choosing
F to be a facet on which y lies and such that clTry > 0.

Let I" be the vertices of P, which correspond to cost-vectors of cuts. By definition
of P, and the fact that y € P, we can write y as a convex combination of vectors in
I" and a vector with non-negative entries. Formally,

4 t
y=) Bizi+ Y v, (11)
i=1 i=1

where z; € I" and §; > Oforeveryi € [£], Zle Bi =1,y > 0foreveryi € [t],and

e; is the all-zeroes vector with a single 1 in the i’th component. By Carathéodory’s

Theorem, we can choose £ < ¢ since y is on a face of P of dimension at most # — 1.
Let

j = argmax{g; : i € [{]}.
Since the B;s are non-negative and sum to 1, and £ < ¢, we have

1
.

Bj >

Moreover, by expression (11), we have that 8;z; < y. Hence,

1 1
X'szj < Xy =x.

Suppose B;/A > 1. Then z;(i) < (Bj/A)z;(i) < x(i) for every i € [¢] satisfying
zj(i) > 0. Thus, the cut R” whose cost-vector is z; = c(R’) is also a b-multiobjective

min-cut with smaller objective value than R (i.e., ¢;(R") < ¢;(R)), a contradiction to
optimality of R. Hence, B;/A < 1. Consequently,

1
L= B = >
and we get
1
chx = xc,@y <t-chy <t -min{cp(8(S)): ¥ #S < V).

The last inequality above is because y lies on F and is therefore a minimizer of P
along the direction cf. O
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3 Node-budgeted multiobjective min-cuts

In this section, we give algorithms to find min-cuts that satisfy node-weighted budget
constraints. Theorem 1.2 will be a consequence of these algorithms. We begin by
formally defining the problem.

Let G = (V, E) be a hypergraph with hyperedge-cost function ¢ : £ — R;.
Let wy, ..., w; : V. — R>¢ be vertex-weight functions. Let ¢(F) = ZeeF c(e) for
F C E,and w;(U) = ),y wi(v) for U C V. The following definition will be
useful in defining node-budgeted multiobjective min-cuts.

Definition 3.1 For a budget-vector b € RL ),

1. A vertex v € V is feasible if w;(v) < b; for all i € [¢] and infeasible otherwise
and

2. A set of vertices S C V is feasible if w;(S) = ZveS w;(v) < b; foralli € [t]

and infeasible otherwise.
We recall the definition of node-budgeted multiobjective min-cuts.

Definition 3.2 For a budget-vector b € Rt>0’ aset FF C FE is a node-budgeted b-
multiobjective min-cut if F = §(X) for some feasible set ¥ C X C V, and ¢(F) is
minimum among all such subsets of E. A set F C E is a node-budgeted multiobjective
min-cut if there exists a budget-vector b € RQO for which F is a node-budgeted b-
multiobjective min-cut.

The following will be a central problem of interest in this section.

NODE- BUDGETED b- MULTIOBJECTIVE MIN- CUT

Given: A hypergraph G = (V, E) with vertex-weight functions wy, ..., w;: V —
R>0, a hyperedge-cost function c: £ — R, and a budget-vector b € IR’ZO.

Goal: A node-budgeted b-multiobjective min-cut.

3.1 Constant-rank hypergraphs

In this section, we design a polynomial-time algorithm to find node-budgeted b-
multiobjective min-cuts in constant-rank hypergraphs and then prove the first part
of Theorem 1.2. We use Algorithm 4 to solve node-budgeted b-multiobjective min-
cuts in constant-rank hypergraphs. It essentially runs the standard random contraction
algorithm for min-cut with an additional step that deterministically contracts all infea-
sible vertices together. We summarize the guarantees of this algorithm in Theorem 3.1.
We will subsequently use Theorem 3.1 to prove the first part of Theorem 1.2.

Theorem 3.1 Let G = (V, E) be an r-rank n-vertex hypergraph with hyperedge-cost
Sunction ¢ : E — R4 and vertex-weight functions wi, ..., w; : V. — Rso and a
budget-vector b € tho. Let F be an arbitrary node-budgeted b-multiobjective min-

cut in G. Then Algorithm 4 returns F with probability at least . Moreover, the

1
)
algorithm can be implemented to run in polynomial time.
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NODE- BUDGETED- b- MULTIOBJECTIVE- MIN- CUT- CONSTANT- RANK(G, r, t, w, ¢, b):
Input: An r-rank hypergraph G = (V, E), a positive integer ¢,
a vector w of vertex-weight functions with w; : V. — Ry fori € [¢],
a cost function ¢ : E — R, and budget-vector b € RQ

Contract all infeasible vertices of G into a single vertex
If|Vi<r+1:
X <« arandom subset of V
Return §(X)
e < arandom hyperedge chosen according to Prle = ¢'] = iE‘E;
(G,w) < (G,w)/e
Return NODE- BUDGETED- b- MULTIOBJECTIVE- MIN- CUT- CONSTANT- RANK(G, r, t, w, ¢, b)

Algorithm 4 NODE- BUDGETED b- MULTIOBJECTIVE MIN- CUT in constant-rank hypergraphs

Proof We first analyze the run-time. Each recursive call reduces the number of vertices,
so the total number of recursive calls is at most n. Apart from the recursion, the
algorithm only performs contractions and returns a random cut, all of which can be
done in polynomial time.

Now we analyze the success probability. Let Q,, := 2,% (g)_l. We will show that
the algorithm returns F with probability at least Q,. We prove this by induction on 7.
Let?d C X C V be afeasible set with §(X) = F. We first note that all vertices in X
must be feasible. Therefore, the cut X cannot be destroyed when all infeasible vertices
are contracted together. This means that if G has multiple infeasible vertices, they will
simply be contracted to yield a smaller hypergraph with at most one infeasible vertex
where F is still a node-budgeted b-multiobjective min-cut. Therefore, we will assume
without loss of generality that G contains at most one infeasible vertex.

For the base case, we consider n < r + 1. In this case, the algorithm returns §(X)
for a random X C V. There are 2" possible choices for X, and F for at least one of
them. Thus, the probability that the algorithm returns F is at least zin > 2,% > 0.

We now prove the induction step. Let n > r + 1 and assume that the theorem
holds for all hypergraphs with at most n — 1 vertices and rank at most ». We begin by
showing the following claim.

Cliam 3.1 The algorithm outputs F with probability at least the optimum value of the
following linear program.

-
minimize Z(Xj — ) On—j+1 (LP3)
X2 yeees Xpy Y2 5eens Yr .
j=2
subject to 0<yj<x;Vje{2,...,r}

Xr:xj' =1
Jj=2
r r
=Dy <Y j-x
j=2 j=2
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Proof Since n > r + 1, the algorithm will contract a randomly chosen hyperedge and

recurse. Let ¢’ be the random hyperedge chosen by the algorithm. If ¢’ ¢ F, then F

will still be a node-budgeted b-multiobjective min-cut in G /¢’. We observe that G /¢’

is a hypergraph with n — |e’| + 1 vertices and that the rank of G /e is at most the rank of

G. Therefore, if ¢’ ¢ F, the algorithm will output F with probability at least Q;,—|¢/|+1
Let

Ej:={ecE:|e|l =j},

C(Ej)
Xj = Pr[e/EEj]ZC(—E), and
prie € E; 0 Fl = SEI0F)
;= Pr ; = )
Ve s o(E)

We note that £ is the set of hyperedges of size j, x; is the probability of picking
a hyperedge of size j to contract, and y; is the probability of picking a hyperedge of
size j from F to contract. We know that

,
Pr{Algorithm returns the cut F] > Y "(x; — ;) Qn—j11 (12)
j=2

The values of x; and y; will depend on the structure of G. Nevertheless, we can
deduce some relationships between them. Since 0 < c(E; N F) < c¢(E;) for every
j €{2,...,r}, we know that

0<y;<x; forevery je{2,...,r}. (13)

Moreover, x; is the probability of picking a hyperedge of size j. Hence,

> xj=1 (14)
j=2

By the definition of a node-budgeted b-multiobjective min-cut, we have that c(F) <
c(8(X)) for every feasible set X with # # X C V. In particular, for every feasible
vertex v, we have that ¢(F) < ¢(8(v)). Since we have assumed that G has at most 1
infeasible vertex, it has at least n — 1 feasible vertices, and thus,

C(F) < Zv:visfeasible C(S(U)) < Zve\/ C(5(U)) _ ZeeE |€|C(€) _ Z;=2j .C(Ej)
= |{v: visfeasible}| — n—1 T oon—-1 n—1 '

Thus we have that,

r F 1 r
Zyj=Pr[e/eFJ=zEE;sn_IZj-x,-. (15)
j=2 j=2
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The minimum value of our lower bound in Eq. (12) over all choices of x; and y; that
satisfy inequalities (13), (14), and (15) is a lower bound on the probability that the
algorithm outputs F. O

Claim 3.1 tells us that the algorithm outputs F with probability at least the optimum
value of the linear program ((L P3)) from the claim. This linear program is exactly the
linear program (L P;) from Lemma 1.1 with y = n — 1 and f(n) := Q,. Since
n >r+1,wehave thatn > n — 1 > r 4 1. Therefore, we can apply Lemma 1.1 to
conclude that

Pr[Algorithm returns the cut F] > min <<1 — é) On_ j+1> .
j n—1—r+j

It remains to show that minjcp,. 1 ((1 — #M)Q"*j+1) > Q,. Let j €

,,,,,

{2, ..., r}). Then it suffices to show that Q"é{+l > ";l}fr” =1+ —f—. We have
Qu-je1 _ () _ -1 >< n )2:<1+ j—1 )2

On (Y =i+ D= T \n—j+1 n—j+1) "’
and

i1 2 2i —1 . .
1+J—. Zl+¥21++21+;-
n—j+1 n—j+1 n—j+1 n—1—-r

The last two inequalities follow from the fact that 2 < j < r. O
We now restate and prove the first part of Theorem 1.2. Atahigh level, our approach
will be similar to the proof of Theorem 1.1. We will modify the algorithm for NODE-
BUDGETED b- MULTIOBJECTIVE MIN- CUT to obtain Algorithm 5 which outputs a
collection € of r - O(n")-many cuts such that every node-budgeted multiobjective
min-cut is in ¥ with probability zi, . .Q(n—lz). The analysis has a few subtleties that
distinguish it from the edge-budgeted version, so we include the full details.

Theorem 3.2 The number of node-budgeted multiobjective min-cuts in an r-rank, n-
vertex hypergraph with t vertex-weight functions is O (r2"n'*1).

Proof Let G = (V, E) be an r-rank n-vertex hypergraph with vertex-weight functions
wi, ..., w1 V— Rso. We will denote w = (wq, ..., w;) and the hypergraph with
the vertex-weight functions by the tuple (G, w) for conciseness. We first show that
for any cut F € E which is a node-budgeted b-multiobjective min-cut in (G, w) for
some budget-vector b € R. , the cut F is among the cuts returned by Algorithm 5
with probability £2(27"n~2).

We will view Algorithm 4 from a different perspective. That algorithm alternates
between contracting together infeasible vertices and contracting random hyperedges
until the hypergraph has at most r + 1 vertices. We note that the probability that a given
hyperedge e is the next one contracted depends only on the cost of e relative to the other
hyperedges. In particular it does not depend on which infeasible vertices have been
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NODE- BUDGETED- MULTIOBJECTIVE- MIN- CUT- CONSTANT- RANK(G, 7, t, W, ¢):
Input: An r-rank hypergraph G = (V, E), a positive integer ¢,
a vector w of vertex-weight functions with w; : V. — R fori € [7],
and a cost functionc : E — Ry

7 < a permutation of E generated by repeatedly choosing a not yet
chosen hyperedge with probability proportional to c(e)
R0
T <0
Forn' =2,...,n:
G <G
Contract hyperedges from G’ in the order given by 7 until G’ has at most n’ vertices
For each x1, ..., x; such that x; = ¢; (v) for some v € G’ for all i € [¢]:
G// <« G/
Contract together all vertices v in G” which have ¢; (v) > x; for some i
Ifr+2>|V(G")| > 1and V(G") ¢ T:
S < arandom subset of V(G’) with# C S C V(G)
Add V(G toT
Add §(S) to R if it is not already present

Return R

Algorithm 5 NODE- BUDGETED MULTIOBJECTIVE MIN- CUT in constant-rank hypergraphs

contracted together. Therefore, we could modify Algorithm 4 so that it contracts ran-
dom hyperedges until the hypergraph resulting from contracting all infeasible vertices
together has at most r 4 1 vertices, at which point, it contracts all infeasible vertices
together and returns a random cut in the resulting hypergraph. This modified version
of the algorithm would retain the same success probability as the original version. In
this modified algorithm, the next contraction does not depend at all on the previous
contractions, so we can choose a uniform random permutation of the hyperedges at
the start of the algorithm and simply contract hyperedges from that permutation until
we can contract all infeasible vertices to obtain a hypergraph containing at most r + 1
vertices.

Let U be the set of all feasible vertices in G, and for each i € [f], let x; =
max,cy w;(u). Since all vertices in U are feasible, we know that for every u € U,
we have w;(u) < x; < b; for every i € [t]. Now consider an infeasible vertex v
in G. Since v violates the budget-vector b, there must be some i € [¢] such that
w; (v) > b; > x;. Therefore, if we wish to contract together all infeasible vertices in
G, it suffices to find, for each i € [t], the feasible vertex u; with maximum weight
under w;, and then contract together all vertices whose w; weight is greater than that
of u; for some i € [t]. In particular, we can further modify our modified version of
Algorithm 4 to use this method of contracting all infeasible vertices, and the success
probability will still remain £2(27"n~2).

Algorithm 5 is running exactly the version of the algorithm that we have just
described, with two additional modifications: (1) Instead of contracting hyperedges
from 7 until the contraction of infeasible vertices would yield a hypergraph with at
most r + 1 vertices, it simply tries all possible stopping points for the contraction
of hyperedges from 7, and (2) instead of choosing the values xi, ..., x; based on a
budget-vector b, it simply tries all possible values for xi, ..., x;. This means that,

@ Springer



C. Beideman et al.

for any budget-vector b, Algorithm 5 will try the values of n” and x1, ..., x; that the
modified version of Algorithm 4 would use.

Therefore, by Theorem 3.1, we know that for any fixed budget-vector b and every
fixed node-budgeted b-multiobjective min-cut F, the probability that F is among the
cuts output by the algorithm is £2(27"n~2).

Now we bound the number of cuts returned by the algorithm. We note that the
algorithm only adds a new cut to R if the set of vertices that the algorithm ends up
with after performing all contractions has size between 2 and r 4 1 and is different
from every set the algorithm has already obtained from previous combinations of
parameters. We will show that, for a fixed G and rr, the number of distinct sets of size
between 2 and r + 1 that we can obtain by contracting vertices in the way specified
by the algorithm is at most rn’.

There are at most n ways to choose the value of n’, and also at most n choices for
the values of x1, ..., x;—. For fixed values of n" and xy, ..., x;_1, the choice of x;
determines the final set of vertices after contraction. Decreasing x; can cause more
vertices to become contracted (because some new vertex v may now have w; (v) > x;),
but it cannot cause any vertex that was previously being contracted to no longer be
contracted. Thus, there are most r distinct sets of vertices of size between 2 and r + 1
that we could obtain by varying the value of x;. Therefore the total number of distinct
sets of size between 2 and r + 1 that could result from contracting vertices in the way
described in the algorithm is at most rn’.

To finish the proof, let N be the number of node-budgeted multiobjective min-cuts
in G. We have shown that our algorithm outputs £2 (ﬁ) of these cuts in expectation.
But since our algorithm outputs at most rn’ cuts, we conclude that the number N of
multiobjective min-cuts must be O (r2"n'*?). ]

3.2 Arbitrary-rank hypergraphs

In this section, we present a polynomial-time algorithm for node-budgeted b-
multiobjective min-cut in arbitrary-rank hypergraphs. The second part of Theorem 1.2
will follow from the correctness analysis of this algorithm.

We recall that global min-cut (without node-budgets) in arbitrary-rank hypergraphs
already requires the non-uniform random contraction technique. We extend the non-
uniform contraction technique of [4] for the node-budgeted variant. In addition, our
algorithm will use the non-uniform contraction algorithm for global min-cut by [4] as
a subroutine. We reproduce their algorithm for completeness in Algorithm 6 and state
its guarantee in Theorem 3.3.

Theorem 3.3 [4] Algorithm 6 runs in polynomial time and returns any fixed min-cut
of an n-vertex hypergraph G with hyperedge-cost function c with probability at least

-1
()

Now we describe our algorithm to solve node-budgeted b-multiobjective min-cut
in arbitrary-rank hypergraphs. We recall that a vertex v is feasible if w;(v) < b; for

all i € [t]. Let U be the set of all feasible vertices in G. We emphasize that U is the
set of all feasible vertices, but U may not be a feasible set—see Definition 3.1. Our
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HYPERGRAPH- MIN- CUT(G, c):
Input: A hypergraph G = (V, E), and a cost functionc : E — R

Compute B, := IVl\;llel - c(e) for every hyperedge ¢ € E

If B. = O for every hyperedge e € E(G), then return E(G)
e < arandom hyperedge of G chosen with probability proportional to 3,
Return HYPERGRAPH- MIN- CUT(G /e, ¢)

Algorithm 6 HYPERGRAPH MIN- CUT

algorithm chooses a hyperedge e to contract with probability proportional to

. = (|U| - |emU|> () = <|U\e|) cle)
< U] U '

and recurses on the contracted graph. Our algorithm performs an additional step of
contracting all infeasible vertices after each contraction step. The description of our
algorithm is presented in Algorithm 7. We summarize the correctness probability and
the run-time of Algorithm 7 in Theorem 3.4.

NODE- BUDGETED- b- MULTIOBJECTIVE- MIN- CUT- ARBITRARY- RANK(G, ¢, w, ¢, b):
Input: A hypergraph G = (V, E), a positive integer ¢,
a vector w of vertex-weight functions with w; : V.— R fori € [t],
a cost function ¢ : E — Ry, and a budget-vector b € RL

U <« {v € V: vis feasible}

IfU =¢:
Return INFEASIBLE
Compute o, 1= %}fl - c(e) for every hyperedge e € E

If @, = 0 for every hyperedge e € E:

If U is feasible:

Return §(U)

Return E
Contract together all infeasible vertices in G
If U is feasible:

Return HYPERGRAPH- MIN- CUT(G, ¢)
e < arandom hyperedge of G chosen with probability proportional to o,
Return NODE- BUDGETED- - MULTIOBJECTIVE- MIN- CUT- ARBITRARY- RANK(G, t, w, ¢, b)

Algorithm 7 NODE- BUDGETED b- MULTIOBJECTIVE MIN- CUT in arbitrary-rank hypergraphs.

Theorem 3.4 Let G = (V, E) be an n-vertex hypergraph, for some n > 2 with vertex-
weight functions wiy, ..., w; : V. — R, cost function c: E — R, and budget-
vector b € RL . Then Algorithm 7 outputs a fixed node-budgeted b-multiobjective
min-cut in G with probability at least

0, : 1 if n=2,
) i ezs

Moreover, the algorithm can be implemented to run in polynomial time.
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Proof We first analyze the run-time. Each recursive call in the algorithm reduces the
number of vertices, so the total number of recursive calls is at most n. Apart from the
recursion, the algorithm, verifies the feasibility of each vertex and of U, computes «,
for each hyperedge, and either performs a contraction or calls the algorithm for the
ordinary hypergraph min-cut problem. All of these can be done in polynomial time.

Now we analyze the correctness probability. Let ¢, be the set of all tuples
(G,t,w,c,b) where G is an n-vertex hypergraph, t € Zy, wy, ..., w; : V(G) —
R>p,c : E(G) — Ry, and b € R;O. That is, ¢, is the set of all valid inputs to
Algorithm 7 where the hypergraph has n vertices. For an input tuple 7" in the form
just described, let M (T') be the collection of h-multiobjective min-cuts for the input
instance. Define

gn '= min min Pr[Algorithm returns F on input T].
Te%, FeM(T)

We will show that g, > Q, for all n > 2. We proceed by induction on n. As a base
case, when n = 2, we have o, = 0 for every e, and the algorithm outputs the unique
cut with probability 1,s0 g2 = 1 = Q».

We now show the induction step. Let G be a hypergraph on n > 3 vertices with
associated costs, weights, and budgets, and let F' be a b-multiobjective min-cut in G.
Assume that g,; > Q, for 2 < n’ < n. We will show that the algorithm returns F

with probability at least Q,, = %("gl)_l.

Suppose o, = 0 for every e € E. This means that every hyperedge contains all of
the feasible vertices. Let # C X C V be a feasible set (one which does not violate the
budgets). Then, every vertex in X must be feasible. Since every hyperedge contains
all feasible vertices, §(X) will either be all of the hyperedges (if X does not contain
all feasible vertices) or all hyperedges which contain infeasible vertices (if X contains
all feasible vertices). The latter is cheaper, so if the set U of all feasible vertices is still
feasible, then we must have F' = §(U), and the algorithm always returns F'. Otherwise,
every feasible cut contains all hyperedges, so F' = E and again the algorithm always
returns F. We hereafter assume that o, > 0 for some hyperedge e.

We note that if G has multiple infeasible vertices, the algorithm will contract them
together to yield a hypergraph G’ with n’ < n vertices and only one infeasible vertex.
The probability that the algorithm returns F on input G will be the same as the
probability that the algorithm returns F on input G’. From our induction hypothesis
we know that this probability is at least O, > O,. We hereafter assume that G has at
most one infeasible vertex.

Next we consider the case where the set U is feasible. (We emphasize that although
wi(v) < b; for every v € U, i € [t], by the definition of feasible vertices, it need
not be the case that Zueu w;i(v) < b; for every i € [t]. So this case does not occur
always.) Since our vertex weights are all non-negative, if U is feasible, then every
subset of U must be feasible as well. Any cut can be written as 6 (X) = § (X) for some
X C V. Since G has at most one infeasible vertex, either X or X must be a subset of
U. This means that every cut in G must be feasible. Thus, in this case, the budgets are
irrelevant and finding a node-budgeted b-multiobjective min-cut is the same as just
finding an ordinary minimum cut with respect to the cost function c. In particular, this
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means that F is not only a node-budgeted b-multiobjective min-cut in G, but it is also
a regular min-cut as well. Therefore by Theorem 3.3, the algorithm for HYPERGRAPH

MIN- CUT (i.e., Algorithm 6) outputs F with probability at least (’;)71. Consequently,

Algorithm 7 outputs F with probability at least ('2’)7]. Since n > 3, we have that
—1 1 m—1—1

() =3(%) =0 o . o
Finally, suppose that G has at most one infeasible vertex and that U is not feasible in

G. Then, the algorithm contracts a hyperedge with probability proportional to «,. Let

¢’ be arandom variable for the contracted hyperedge. Using the induction hypothesis,
we obtain that

Pr[Algorithm returns F on input G]

= Z Pr[¢’ = e] - Pr[Algorithm returns F on input G/e]
ecE\F
Qe
= dn—lel+1
¢cE\F 2 per s

1
zZ = Z OleQn—|e|-‘r1~
ZeeE e

ecE\F
Now, Claims 3.2 and 3.3 complete the proof of the theorem. O

Cliam 3.2 For every hyperedge e € E\F, we have

Qe Qn—\e|+1 > c(e)Qy.

Proof Suppose |e] = n — 1. Then Q,_|¢|+1 = 1. Since U is not feasible, we know
that F must contain every hyperedge that spans U. Since e € E\F), it follows that
|U\e| > 0. Therefore, o, > cEl—e) We conclude that ae Qy—jej+1 = e > € >

> 7=

-l

L) =c@on 1
Next, suppose |e| < n — 1. Then Qp—j¢|+1 = %(";lel)_ , and we have

_ [U\ele(e) 1n—lel\™!
U On—lel+1 = o302
>M.l(n—|e|)—l.c(e)
- Ul 3\ 2
n—1—le 2 '

20T 3a—lebn—e—n @ Cineelllzn=D
2

2 30— Do) @
2

Z3n-nw-2

=c(e)On- ]
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Cliam 3.3

c(E\F) _

= >1
ZeeE e
Proof We consider the cutinduced by a uniformly random feasible vertex. A hyperedge

e belongs to such a cut with probability llljl?f‘ =1- |L|7[>f|. Thus, the expected value
[U\e|

of suchacutis 3, p(1 — Spr)c(e) = ¢(E) — 3, te. Since the value of the cut
induced by a random feasible vertex is an upper bound on the value of a node-budgeted
b-multiobjective min-cut, this means that ¢(F) < ¢(E) — ), p ®. Rewriting this
inequality gives ZeeE e < c(E) — c(F) = c(E\F), and the desired inequality
follows. O

4 Size-constrained min-k-cut in arbitrary-rank hypergraphs

In this section, we consider the problem of finding a minimum cost k-cut subject to
constant lower bounds on the weights of the partition classes and prove Theorem 1.3.
Throughout this section, we assume that k is a constant. We focus on the cardinality
case (i.e., unit-cost variant) for the sake of simplicity of exposition and mention that
our algorithm also extends to arbitrary non-negative hyperedge costs.

We begin by formally defining the terminology. Let G = (V, E) be a hypergraph.

For a weight function w : V — Z,, we call (G, w) a vertex-weighted hypergraph.
We now define our main object of study, namely size-constrained minimum cuts.

Definition 4.1 Let G = (V, E) be a hypergraph, w : V — Z, be a vertex-weight
function, k > 2 be an integer, and s € Z'j_ be a vector. A k-partition X of V is an s-size-
constrained k-partition if w(X;) > s; for every i € [k]. A set of hyperedges F' C E
is an s-size-constrained k-cut if F = §(X) for some s-size-constrained k-partition X.
An s-size-constrained k-cut of minimum cardinality is said to be an s-size-constrained
min-k-cut. We will refer to s as the size-constraint vector.

The following is the central problem of interest in this section.

s- SIZE- CONSTRAINED MIN- k- CUT

Given: A vertex-weighted hypergraph (G, w), a positive integer k, and a size-
constraint vector s € Zi.

Goal: An s-size-constrained min-k-cut.

We give a random contraction based algorithm for this problem. Given a hypergraph
G = (V, E) and a size-constraint vector s € Zﬁ, let n = |V|. We define o; :=

J
> iy si»and
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With these definitions, we solve s-size-constrained min-k-cut using Algorithm 8. We
prove Theorem 1.3 using this algorithm.

s- S1ZE- CONSTRAINED- MIN- k- CUT(G, k, s):
Input: An n-vertex hypergraph G = (V, E), an integer k > 2
and size-constraint vector s = (s, ..., 8) € Zﬁ

If n < max{20%_1, o}
Pick a random k-partition X of V and return 6(X)
S <« arandom subset of V of size 20y
Xi < W@forie{l,... k}
Foreachv € S:
Pick a random integer i € {1, ..., k} and add v to X;
X < X U(V\S)
X «— (X1,...,Xx)
If X is a k-partition of V:

R < §(X)
Else:
R <~ FE
n—le|
Compute o, := 415 forevery e € E

If ¢, = O for ever; hlyperedge e € E(G):
Return R
e < arandom hyperedge of G chosen with probability proportional to «,
R’ < s- S1ZE- CONSTRAINED- MIN- k- CUT(G /e, k, 5)
Return R with probability 1 and R’ with probability “=!

Algorithm 8 s- SIZE- CONSTRAINED MIN- k- CUT

Theorem 1.3 Let k > 2 be a fixed positive integer and let 1 < s1 < sy < --- < 5¢ be
fixed positive integers. Let G = (V, E) be an n-vertex hypergraph with hyperedge-
cost function ¢ : E — R. Then, there exists a polynomial-time algorithm that takes
(G, ¢) as input and returns a fixed w-weighted s-size-constrained min-k-cut for any
choice of vertex-weight function w : V. — Z4 with probability

1
§2 (nzak—l'f‘l ) ’

Proof We consider Algorithm 8. We first analyze its run-time. Each recursive call
reduces the number of vertices in the hypergraph. Thus, the algorithm makes at most
n recursive calls. Apart from the recursion steps, the algorithm only selects random
partitions and performs contractions, both of which can be implemented to run in
polynomial time.

where o1 1= Zf:ll Si.
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Now we analyze the success probability. Let ¢, be the set of all vertex-weighted n-
vertex hypergraphs which contain an s-size-constrained k-cut. For a vertex-weighted
hypergraph (G, w), let M (G, w) be the set of all s-size-constrained min-k-cuts in
(G, w). Define

¢n = min min  Pr[Algorithm returns F on input (G, w, k, s)], and
(G,w)e¥, FEM(G,w)
(kmaX{ZUk—l,G'k})71 if n <max{20%_1, 0%},
Oy = I } n -1
(kmax Ok—1.%k n(2ﬂk_|)) if n > max{20%_1, ox}.

We note that Q,, = £ (k~%-17%p2%-1~-1) 50 it suffices to show that ¢, > Q, for
all n > k (for smaller n, there are no k-cuts).

We proceed by induction on n. Let F' be an s-size-constrained min-k-cut in (G, w).
Let Y be an s-size-constrained k-partition with ' = §(Y). We assume that |Y| <
|Y2] < -+ < |Yk|. This assumption is without loss of generality because we can relabel
the parts of an s-size-constrained k-partition so that they are in increasing order of
size and the resulting partition will still be an s-size-constrained k-partition (since we
have assumed that the size vector s is in increasing order).

For the base case, suppose n < max{20x_1, ox}. In this case, the algorithm returns
8(X) where X is a k-partition of V chosen uniformly at random. Since F = §(Y),
the probability that F = §(X) for the X randomly chosen by the algorithm is at least
Pr[X = Y]. The number of k-partitions of V is at most k", the number of ways to
assign each of the n vertices to one of k labeled sets. Thus, Pr[X = Y] > k™" >
kfmax(2ak,1,ak) = Q,.

Now we will prove the induction step. Assume that n > max{20x_1, ox}. By the
induction hypothesis, we have ¢, > Q,/ foralln’ € {k,...,n — 1}. We will show
that g, > Q,.

Suppose |Yx| > n — 20x_1. Let T be an arbitrary subset of Yy of size n — 20%_1.

Consider the set S chosen by the algorithm. The probability that S is equalto V — T
is (202'71)_1. Next, consider the sets X; created by the algorithm. The probability
that X; = Y; for every i € [k] conditioned on S = V — T, is k~20%-1_ Thus,

the probability that the k partition X obtained in the algorithm is identical to Y is

at least k=2~ 1(20" 1) . Since the last step of the algorithm returns R = §(X)

with probability 1 / n, it follows that the algorithm returns F' with probability at least
20%—1, —

(nkmdx{ Ok—1 Uk}(ZaZ,l) — Qn

Henceforth, we assume that |Y;| < n — 20x_1. We will call a hyperedge large if it
contains at least n — 2031 vertices. Since Y is the largest part of the k-partition Y,
every large hyperedge must be contained in the k-cut F. In particular, if o, = O for a
hyperedge e, then (" Iell) = 0, which implies that n — |e| < o}_1, and hence e is large
and consequently, e cannot bein F.

Next, suppose that o, = 0 for every hyperedge e. Then every hyperedge is a large
hyperedge and therefore, FF = E. In this case, the algorithm will return R. We note
that R = E if X is not a k-partition. We lower bound the probability that X is not a
k-partition now. If all vertices in § are assigned to Xy, then X is not a k-partition. The
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probability that all vertices in S are assigned to X is k~2%-1. Thus, the probability
that the algorithm returns F = R = E is at least k201 > O,

Henceforth, we assume that o, > 0 for some hyperedge e € E. This means that the
algorithm will contract some hyperedge and then recurse on the resulting hypergraph.
Let ¢’ be a random variable for the hyperedge chosen to be contracted. Let w’ be the
weight function defined on the vertices of G /e’ as follows: w’(v) := w(v) for each
v e V\e and w'(v) := )., w(u) where v is the new vertex resulting from the
contraction. If ¢’ ¢ F, then F will be an s-size-constrained min-k-cut in (G /e’, w’).
Therefore, we have that

Pr[R’ = F oninput (G, k, 5)]

= Z Pr[¢’ = e] - Pr[Algorithm returns F on input (G /e, k, s)]
ecE\F
(o %
= Z ~ " 4dn—|e|+1-
¢cE\F 2 rer s

Let e be a hyperedge that is not in the k-cut F. Then, e cannot be a large hyperedge
and hence, |e| < n — 20y_1. Consequently, n — |e| + 1 > 20;_1 + 1 > k. Therefore,
by applying the induction hypothesis, we have g, —je|+1 > Qn—|e|+1. Hence,

Z Qe - Qn—\e|+1-

Pr[R' = F oninput (G, k, §)] > ————
ZfEE af ecE\F

We need the following two claims. We defer their proofs to complete the proof of the
theorem.

S

O

n—1"

Cliam 4.1 For every hyperedge e € E\F, we have ae Qp—je|+1 >

|E\F|

. . -
Cliam 4.2 ST 1

By Claim 4.1, we have that

Pr[R’ = F oninput (G, k, 5)] =

Z Qe - Qn—leI—H

ZfeE af ecE\F

. 1 nQp
2 rer s ccE\F ! -1
|[E\F|  nQn

B ZfeEaf n—1
Thus, Claim 4.2 implies that

nQy

n—1

Pr[R’ = F oninput (G, k, s)] >
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Finally, we note that since we have assumed n > max{20}_1, o} and o, > O for
some e, the probability that the algorithm returns R’ is (n — 1) /n. Thus, we conclude
that Pr[Algorithm returns F] > Q,. |

Proof of Claim 4.1 Let e € E\F. We recall that F contains all large hyperedges and
hence,
le] <n—20_1. (16)

First, suppose that n — |e|] + 1 < max{20x_1, ox}. Then, we have Q,_jo+1 =
k—max{20t-1.0t} We consider two subcases.

Case 1: Suppose n > 30y_1. Then

() On—lel+1 n -
Aop-1/ n—le max{20%—1,0k}
Coyoee =y = o)

Ok—1
nQy

— > —_—
|

The first inequality follows from inequality (16), and the last inequality follows
from the fact that ( akn,l) < (2 0:71) for n > 30%_1.

Case 2: Suppose n < 3oy—1. We recall that n > 203_;. By inequality (16),
n — le| > 20y—1. Letting n = 20;_1 4+ x for some x € {1, ...0r_1}, we have

() . (G5) _ eonto+or Hok Lt (1)

(Ukn_|) B (ZU(I;;ij—x) - (20'k_1 +X)!O'k_1! Zo'k 1+l - E

We also know that

n 71_ 2061 +x 71_ Qog—p)!x! 1—[ (! *
20%—1 o 2011 (20k 1+ x)! 2001 +1 — \2 ’

Therefore,

(lsz ) 1" On—lel+1 maxor o) {1 -1
On—tel+1 Z | 5 ) Dnterr1 Z - = |k Sl
(Uk—l) ( ) k—1

20%-1
nQy

= > -
" e

Next, suppose that n — |e| + 1 > max{20%_1, ox}. We have that

n—le|

(57

(Ukn 1)

() .

_ U/;l . T . ((n _ |e| + l)kmax{2ak,1,ok}>
(Uk—l) ( 20%—1 )

aeQn—\e|+1 = On— le|]+1
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_ (’;;Ii‘) 1 n n
~ " ’ (") n—le|+1 <20k_1> O

Ok — 20%_1
- (lg_\ell) ' 1 . ( n ) - nQy
T ) () N2/ -1

The following proposition completes the proof. We defer its proof to the appendix.

Proposition 4.1 For positive integersn, e, o withe > 2andn —e+1 > 20, we have

)

Proofof Claim4.2 Let Z = (Zy, ..., Zi) be arandom k-partition obtained by picking
disjoint sets Z1, . . ., Zx—1 with |Z;| = s; and setting Z; = V'\ U;‘;]l Z;.Sincen > oy
and every vertex has weight at least 1, the k-partition Z is an s-size-constrained k-
partition. Therefore, |§(Z)| is an upper bound on | F|. In particular,

|F| < E(8(2))) = ZPr(e € 8(2)).

ecE

Negating the inequality and adding | E| to both sides gives

|E\F| =) (1= Pr(e € §(2)))

ecE

=) Pr(e ¢ 8(2))

ecE

k
= Z ZPr(e C 7))
ecE i=1
(1)
z 7
geZE (0’1(_1)

~Y e

ecE

Thus, [E\F|/ Y jep oy = 1. O

Remark Since our algorithm does not even take the vertex-weights as input, it could
trivially be extended to handle a version of the problem where we have multiple weight
functions on the vertices (as in the previous sections) each with their own minimum
sizes. If we have t vertex-weight functions, wy, ..., w; : V — Z and each function
w; has an associated list of lower bounds s; 1, ..., sk, then we can find a min-k-
cut satisfying all of these lower-bound constraints with at least inverse polynomial
probability by simply running our algorithm with s; = max e[, s;,; forevery i € [k].
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5 Conclusion and open problems

In this work, we illustrated the versatility of the random contraction technique by
addressing multicriteria versions of min-cut and size-constrained min-k-cut problems.
There are several interesting open questions in this area. We conclude by stating a few:

1. For the number of pareto-optimal cuts and multiobjective min-cuts, there is still
a gap between our lower bound (which is £2(n")) and our upper bound (which is
0 (n3~1Y). Can we improve either of these bounds? We believe that improving
our bounds for the number of h-multiobjective min-cuts for a fixed budget-vector
b e R’;Ol would be a first-step towards this goal.

2. We gave a polynomial-time algorithm to solve the b-multiobjective min-cut prob-
lem in constant-rank hypergraphs. How about arbitrary-rank hypergraphs? Is the
b-multiobjective min-cut problem in arbitrary rank hypergraphs (even for ¢ = 2
criteria) solvable in polynomial-time or is it NP-hard?

Acknowledgements We thank Maurice Queyranne and R. Ravi for encouraging us to study multicriteria
min-cuts. We thank Rico Zenklusen for kindly agreeing to let us include his alternate proof of strongly
polynomial bound on the number of multiobjective min-cuts in constant rank hypergraphs. We also thank
the reviewers for their detailed review which helped improve the presentation of this work.

A Appendix
A.1 Comparison of parametric, pareto-optimal, and multiobjective cuts

We prove the containment relationship (1) here.

Proposition A.1 The following containment relationship holds, possibly with the con-
tainment being strict:

Parametric min-cuts C Pareto-optimal cuts C Multiobjective min-cuts.

Proof We first show that parametric min-cuts are pareto-optimal cuts: If a cut F’
dominates a cut F, then w(F') < w(F) for all positive multipliers, and therefore F
cannot be a parametric min-cut. On the other hand, not every pareto-optimal cut is a
parametric min-cut (see Fig. 2 for an example).

Next, we show that pareto-optimal cuts are multiobjective min-cuts: If a cut F is
pareto-optimal, then it is a b-multiobjective min-cut for the budget-vector b obtained

Fig.2 Thecutd(z)isa
pareto-optimal cut but not a
parametric min-cut
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Fig.3 For b = 2, the bold edge Q_Q _____________ O
is a b-multiobjective min-cut but 2,1) (1,1)

it is not a pareto-optimal cut

by setting b; := ¢; (F) foreveryi € [k—1]. On the other hand, not every multiobjective
min-cut is a pareto-optimal cut (see Fig. 3 for an example). O

A.2 Proof of Lemma 1.1

We restate and prove Lemma 1.1.

Lemma 1.1 Letr, y, n be positive integers withn >y >r+1 > 2. Let f : N — R,
be a positive-valued function defined over the natural numbers. Then, the optimum
value of the linear program (L Py) defined below ismins < j <, (1 — —L—) f (n— j+1).

y=r+j
.
minimize Z(xj —yj)fn—j+1) (LPr1)
X2eesXp Y20 Vr -
subject to 0<yj<xj Vjiel2,....r} @)
r
ij =1 (3)
j=2
r r
ODEDIIALY @
=2 =2

Proof Setting x, = 1 and the rest of the variables to zero gives a feasible solution to
the linear program (LP). Thus, the LP is feasible. Let j € {2,...,r}. Since y; > 0
and x; < I, we have that x; — y; < 1. Since f is positive valued, we have that
fm—j+1) >0forevery j € [2,r], so it follows that (x; — y;) f(n — j+ 1) <
f(n—j+1). Therefore, we have 3", (x; —y;) f(n—j+1) < 3, f(n—j+1).
Thus, the objective value of this LP is bounded. Since the LP is feasible and bounded,
there exists an extreme point optimum solution to this LP. The LP has 2r — 2 variables
and 2r equations, so every extreme point optimum will have at least 2r — 2 tight
constraints and at most 2 non-tight constraints.

We now show that constraint (4) is tight for every optimal solution (x, y). Let (x, y)

be an optimal solution. We first note that x; > 0 for some j € {2, ..., r}, by the third
constraint. Therefore it is impossible that y; = 0 for every j € {2, ..., r}, since, if
this were the case, we could choose some j € {2, ..., 7} such that x; > 0 and then

increase y; by a small amount to improve the value of the objective function without
violating any constraints, contradicting optimality. Now, since y > r 4 1, we have

r r r
yY yi = > Dy =Y gy
j=2 j=2 j=2
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This implies that we cannot have y; = x; for all j, otherwise (x, y) would violate
constraint (4). Hence, at least one of the y; < x; constraints must be slack. Let
J €{2,...,r} besuch that y; < x;. If constraint (4) was slack, increasing the value
of y; by a very small amount would improve the objective value of (x, y) without
violating any constraints. Therefore, since (x, y) is optimal, constraint (4) must be
tight.

Let (x, y) be an extreme point optimal solution. Since we know that Z;'=2 xj =1
andx; > Oforevery j € {2,...,r}, we have Z;zz J -x; > 0. Since constraint (4) is
tight for (x, y), we must have y Z;:z y;j > 0. This implies that there exists j € [2, r]
such that y; > 0. Thus, we conclude that the two slack constraints must be 0 < y i
and y;, < xj, for some ji, j» € {2,...,r}. We consider two cases.

Case I: Suppose ji = j2. Then we have that 0 < y; < x; = 1 for some
j€f2,....r},and xjr, yj = O forevery j' € {2,...,r}\{j}. Therefore, we can
simplify our LP to

minimize (1 —y;)f(n—j+1)
Yj

subjectto 0 <y; <1

Yyj=1J-

The only (and therefore optimal) solution to this LPis y; = %, which achieves an
objective value of

(1—i>f(n—j+1).
y

Case 2: Suppose ji # jo. Then we have that 0 < y;; = xj,and 0 = y;, < xj,.
We note that xj, = 1 — x;;, and therefore we can simplify the LP to

minimize (1 —x;)f(m—j2+1)
R
subjectto 0 <xj <1

yXj = j1-Xj +j2- (I —xj).

, and therefore our

. . . . R j2
Solving the second constraint for x;, yields x;, = IR

optimum value is

J2 :
l-— — 1).
( y—jl+jz>f(” G

We conclude that the optimum value of the LP is equal to the minimum of the
values from these two cases, that is,
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min{ min {(1—i)f(n—j+1)},
jel2,.r) y
. 2 .
min l—————)f(n— 2+1)>H.
J1.2€(2,..., f){( Yy—Ja+tn ! /
Since (1 — #12-&-12) is decreasing in j; and f(n — jo + 1) is always positive, we have
. )2 .
min l- — (n— 2+1)}
J1.j2€02,..., r}{( Yy — +]2) / g

. j .
= min 1— _— n — +1 .
je{z,m,r}{( y —r+j)f( / )}

Thus, since j < r, the optimum value of the LP is equal to

min {min{l—l,l—;',}f(n—j+1)}
] 14 y—r+j

. J .
= min - — n—j+1¢.
jef2,....r) {( Yy —r +]> A / )}

A.3 Proof of Proposition 4.1

We restate and prove Proposition 4.1.

Proposition 4.1 For positive integersn, e, o withe > 2andn —e+1 > 20, we have

Proof We note that

") 1 (i—oln—0)! (Qo)n—e—20+1)
() .(n_zfjl) T aln—e—o) n—e+1)!

_ ﬁ n—e—i ) (20)' (17)
- n—i 12!

0 ol —e+1—i)

To lower bound this expression, we case on the value of e.

Case 1: Suppose e > o. Then we can lower bound expression (17) by

1 (20)! __ (o) ( n )‘1-

- et D2 —c—0—0) 1% n—i) \20
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Case 2: Suppose e < o. We note that

e—2 . —
(20)! (20)! n—i n—i
201 = 201 11 n—20 —i <20> 1_[ Y
[T m—e+1-1i) [T =0 =0 i=0 "

i=0 i=0

Thus, expression (17) is equal to

() () (T 25 ):

Wewﬂlshowthat( 7 1" e ’)(]_[ 5 n—i )zl.Wenotethat

n—20—i

ﬁn—e—i ﬁ n—i _]_[;Tz_ol(n—e—i). 1
o n—i ) \gn=20-i) " L -0 TS0 —20—i)

i=0 1=
e+o—1 _
- iz =D NG

n—e+ D20 —20 —i)

We claim that expression (18) is minimized when e = 2. To see this, we note that

I—[(c+1)+0 1 — )

(n—(e+1)+1>n<"“” ~20 —i)
| faad Y —1i) S (n—e—o)n—e+1)
(n—e-i—l)]_[_o(n—Zo—i) (n—20—e+Dn—e)’

Since e < o, we know thatn — e — o > n — 20 + 1. From this, along with the

fact thatn — e + 1 > n — e, we conclude that %m > 1. This means

that expression (18) increases when we increment e. Thus
Mo i — i) . (n—o)n—o—1)
(n—e+DIT; 0(n—20—1) (n—1(n—20)
_ n?— Qo+ Dn+ (o + Do -
B — Qo+ DHn+20

The last inequality follows from the fact that o > 1.
Thus, we have shown that ( 7 1 n—e— ‘) (H o
combining the above inequalitles, we have that

=G

) > 1, and therefore,

n2c71
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