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Abstract

Diapause is a hormonally driven response which is triggered by environmental cues that signal impending 
adverse conditions and prompts metabolic, developmental, and behavioral changes to allow survival until 
the return of favorable conditions. Microbial symbionts have been shown to influence the metabolism, devel-
opment, and behavior of their host organisms, all of which are common diapause-associated characteristics. 
Surveys of bacterial components in relation to diapause have been examined in few systems, of which the spe-
cies are usually inactive during dormancy, such as eggs or pupae. This is specifically intriguing as adult female 
diapause in Culex pipiens (Diptera: Culicidae) can last between 4 and 7 mo and females remain mobile within 
their hibernacula. Furthermore, it is unknown how microbiota changes associated with prolonged dormancy 
are different between the lab and field for insect systems. This study aims to characterize how the microbiota 
of C. pipiens changes throughout diapause under both field and lab settings when provided identical food and 
water resources. Based on these studies, C. pipiens microbiota shifts as diapause progresses and there are 
considerable differences between field and lab individuals even when provided the same carbohydrate and 
water sources. Specific bacterial communities have more association with different periods of diapause, field 
and lab rearing conditions, and nutritional reserve levels. These studies highlight that diapausing mosquito mi-
crobiota studies ideally should occur in field mesocosms and at multiple locations, to increase applicability to 
wild C. pipiens as prolonged exposure to artificial rearing conditions could impact metrics related to diapause-
microbiome interactions. Additionally, these findings suggest that it would be worthwhile to establish if the 
microbiota shift during diapause impacts host physiology and whether this shift is critical to diapause success.
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Members of the plant and animal kingdoms are not considered to 
be stand-alone as they are in constant contact with microorgan-
isms including bacteria, fungi, and viruses (Kiers and Denison 2008, 
Rodriguez et  al. 2009, Mcfall-Ngai, 2013, Rey and Schornack 
2013). Some organisms are associated with obligate symbionts 
that are essential for the host’s survival; others harbor non-obligate 
symbionts that nonetheless improve or are critical to their host’s 
status (Marshall et al. 2006, Neufeld et al. 2011, Ridley et al. 2012, 
Coon et  al. 2014, Tapia et  al. 2016, Didion et  al. 2021). Within 
mosquitoes, bacterial residents have been implicated as impor-
tant modulators of various life traits such as vector capability and 
larval development (Shin et al. 2011, Boissière et al. 2012, Chu et al. 
2013, Nieuwdorp et al. 2014, Scully et al. 2014, Coon et al. 2016). 
Additionally, the microbiota has been linked to nutritional factors 

including lipid metabolism (Valzania et  al. 2018a, Valzania et  al. 
2018b, Didion et al. 2021). As mosquitoes act as vectors for disease-
causing pathogens, understanding how the microbiota influences 
their ability to survive, interact with the environment, and transmit 
these disease-causing agents is of the utmost importance (Cansado-
Utrilla et al. 2021, Guégan et al. 2018). Development of axenic or 
mosquitoes with reduced microbial communities has proven useful 
in establishing the role of bacterial residents in relation to mosquito 
biology (Correa et al. 2018, Steven et al. 2021, Romoli et al. 2021).

Unfortunately, these relationships are difficult to establish without 
a baseline understanding of bacterial communities that are typically 
present for a given physiological state. Diapause is an alternative bi-
ological state that is commonly entered by certain mosquito species, 
and many other insects, to survive adverse environmental conditions 

applyparastyle "fig//caption/p[1]" parastyle "FigCapt"
applyparastyle "fig" parastyle "Figure"

XX

XXXX

XXXX

Journal of Medical Entomology, 59(2), 2022, 648–658
https://doi.org/10.1093/jme/tjab184
Advance Access Publication Date: 8 November 2021
Research

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

e/article/59/2/648/6423232 by U
niv C

incinnati H
ealth Sciences Library user on 06 June 2022

https://orcid.org/0000-0002-4018-3513
mailto:szuterem@mail.uc.edu?subject=
mailto:szuterem@mail.uc.edu?subject=


649Journal of Medical Entomology, 2022, Vol. 59, No. 2

(Denlinger and Armbruster 2014). Undergoing diapause allows spe-
cific mosquito species to survive in temperate regions which are un-
favorable for year-round habitation, leading to rapid repopulation 
upon the return of favorable conditions (Denlinger and Armbruster 
2016). Diapause can be entered during the egg, larval, and adult stages 
in mosquitoes, though it is typically restrained to one life stage per 
species (Denlinger and Armbruster 2016). The link between diapause 
and the microbiota has not been well characterized in mosquitoes, 
or invertebrates in general, with few studies focusing on this subject 
and largely investigating early diapause (Almada et al. 2015, Liu et al. 
2016, Ferguson et al. 2018, Didion et al. 2021), with the only full sur-
veys of microbial changes during larval dormancy in the parasitoid 
wasp, Nasonia vitripennis (Hymenoptera: Pteromalidae), and during 
seasonal changes in adults for the cricket, Gryllus veletis (Orthoptera: 
Gryllidae) (Ferguson et al. 2018, Dittmer and Brucker 2021). Studies 
have shown that bacteria can influence host overwintering phys-
iology and bacterial communities can be influenced by cold tem-
peratures, whereas for mosquitoes little is known about how cold 
or overwintering may impact their microbiome. In some freeze-
intolerant insects, bacteria that act as ice nucleators are ejected before 
overwintering (Zachariassen 1985, Olsen and Duman 1997) to reduce 
the risk of freezing such as in the pyrochroid beetle larvae, Dendroides 
canadensis (Coleoptera: Pyrochroidae) (Olsen and Duman 1997). The 
supercooling point of insects can be directly influenced by bacteria, 
including ladybird beetles (Lee et  al. 1991), and stored grain pests 
(Lee et al. 1992). Microbiota transplants from cold reared Drosophila 
melanogaster (Diptera: Drosophilidae)  to high temperature reared 
conspecifics led to increased cold tolerance, suggesting a direct role 
of the insect microbiota in cold tolerance (Moghadam et al. 2018).

This study aims to enhance our understanding of the microbiome-
diapause relationship in the mosquito, Culex pipiens, throughout 
adult female diapause by monitoring the bacterial communities 
in lab-derived mosquitoes reared in both lab and field-mesocosm 
conditions. This comparison will provide valuable information on 
whether maintaining diapausing females within a lab colony influ-
ences their microbial composition as compared to a sister cohort 
in a field mesocosm even when provided the same sugar and water 
resources. Studies investigating the microbiome and diapause to date 
have largely focused on early diapause, in lab settings. One long-term 
lab study on diapausing wasp larvae, Nasonia vitripennis (Dittmer 
and Brucker 2021), recently revealed that wasps early in diapause 
had generally higher bacterial titers than under prolonged diapause 
and that the microbial composition changed as diapause progressed. 
Nasonia vitripennis diapause however is markedly different from 
that of C. pipiens as their diapause is maternally programmed, they 
overwinter as immobile fourth instar larvae that cannot imbibe food 
or water and are typically exposed to colder temperatures than oc-
curs for C.  pipiens. Microbial community changes are typical in 
aging animals (Hopkins et al. 2001, Guo et al. 2014, Langille et al. 
2014), and despite microbial communities changing in diapausing 
N. vitripennis larvae over time, it remains unclear whether the ex-
tension of life via adult diapause in C. pipiens will change similarly. 
Our previous studies have confirmed that that the microbiome is 
critical to lipid accumulation in early diapause for C. pipiens (Didion 
et al. 2021), but this only examined microbiome differences in the 
first two weeks of diapause preparation in C. pipiens. Age-associated 
microbial community changes can be important because they have 
been associated with morbidities and can lead to increased pathogen 
susceptibility in both vertebrate and invertebrate hosts (Tamboli 
et al. 2004, Turnbaugh et al. 2006, Lee and Lee 2014, Hegde et al. 
2015). Additionally, it is clear that microbial communities are im-
pacted by rearing location (Akorli et al. 2019) and abiotic factors 

such as temperature (Guégan et al. 2018) in nondiapausing mosqui-
toes but whether similar trends exist within the context of diapause 
remains unknown. Understanding how lab versus field rearing of 
mosquitoes, even when provided the same food and water resources, 
can impact microbiota composition is important as the underlying 
interest of most of these studies is to better understand and identify 
targets to more efficiently impact the natural world. This study is 
the first to assess how the microbiota of Culex pipiens pipiens fe-
males undergoing diapause in both field and lab conditions change 
throughout diapause.

Methods

Mosquito Rearing
Larvae were reared in water collected from a stream at the University 
of Cincinnati Center for Field Studies (39°17′07.5″ N, 84°44′36.4″ 
W) where C. pipiens larvae had previously been observed. Larvae 
were held in an 18°C incubator with a 9:15 light: dark cycle to in-
duce dormancy. Upon pupation in early November, the pupae were 
randomly assigned to either lab or field conditions. The lab-reared 
mosquitoes were stored under similar conditions as used to induce 
dormancy in the larvae. Lab and field-reared mosquitoes were pro-
vided the same water and sugar sources (10% sucrose) that were 
replenished twice per week, so that difference between the mosqui-
toes was not due to variation in the materials ingested and exam-
ining microbiome differences between water sources would provide 
very little insight. The field destined larvae were transported to the 
basement of the University of Cincinnati field station (Harrison, 
Ohio). Diapausing female C. pipiens have been observed at this lo-
cation in 2016–2017 and 2018–2019 in early (December) and late 
(March) winter, suggesting that this site represents a natural field 
location. To prevent escape, prevent predation, and limit water and 
sugar sources to only those provided, field mosquitoes were kept in a 
12- × 12-inch cage within a 6- × 6-foot cage (Bioquip). Temperature 
and humidity data at the field station were recorded using an Onset 
HOBO MX101 (Supp Fig. S1 [online only]).

Mosquito Sampling
To determine how the microbiota changed over time in the lab 
versus field-reared mosquitoes, 20 diapausing females were sampled 
from each group at 2 wk, 2 mo, 3 mo, 4 mo, and after exposure to 
conditions to terminate diapause. Diapause break in the lab was un-
able to be assessed as insufficient females were remaining at the end 
for the collection of these samples at 4 mo. Upon sampling at the 
specific time points mentioned, females were surface sterilized with 
70% ethanol for 5 min in a sterilized fume hood before placement 
into a 1.5 ml Eppendorf tube, which was then stored at −70°C until 
DNA extraction.

16S rRNA Sequencing and Bioinformatic Analysis
Samples were thawed before the addition of 200  µl sterile 1% 
PBS and sterilized Zirconium beads, which were then used to ho-
mogenize the samples using a BeadBlaster. Twenty microliters of 
ProtK was added to the sample, vortexed, and then allowed to in-
cubate at 56°C for 2 h to ensure complete lysation of the sample. 
DNA was then extracted using the QIAGEN DNeasy Blood and 
Tissue Kit (Qiagen) using a standard protocol. The concentra-
tion and quality of the extracted DNA were determined using 
a nanodrop2000 and amplified via PCR with bacteria-specific 
primers 515F (GTGYCAGCMGCCGCGGTAA) and 806R 
(GGACTACNVGGGTWTCTAAT) which target the 16S rRNA 
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V4 hypervariable region to ensure the presence of bacterial DNA 
(Caporaso et al. 2010, Apprill et al. 2015). Samples were sequenced 
by SeqMatic (Fremont, California) which utilized the Illumina 
MiSeq platform to generate 25 million overlapping, paired 251bp 
reads that were used in the downstream analyses. 16S rRNA datasets 
are available through NCBI (Accession: PRJNA742055)

Data Analysis
Sequences were analyzed by SeqMatic through the QIIME pipe-
line using Greenegenes as the reference database. In addition, raw 
sequences acquired from SeqMatic Illumina Miseq were also pro-
cessed using QIIME 16S FASTQ Paired end run type (v1.9.1) through 
Nephele (v2.6.0) with the following pipeline parameters (max_bad_
run: 3, max_n: 0, min_overlap: 10, otu_strategy: open, perc_max_
diff: 25, phred_offset: 33, phred_quality: 19, picrust: False, ref_db: 
sv99 (Caporaso et al. 2010, Kozich et al. 2013, Weber et al. 2018). 
Briefly, paired-end reads were combined using the join_paired_ends.
py command and then trimmed with screen.seqs to ensure each read 
was between 250bp and 263bp long. The command pick_open_ref-
erence_otus.py was then used to classify the sequences as operational 
taxonomic units (OTUs) followed by core_diversity_analyses.py to 
perform the analyses of core diversity. Assignment as Gram – and 
Gram + bacteria was determined by searching for representative at 
the bacterial family level through Google Scholar and if a specific 
family had members that were split (Gram + and Gram −) search 
was conducted at the genus level. To further examine differences be-
tween samples, Non-Metric Multidimensional Scaling (NMDS) plots 
were created using the metaMDS function from the R package vegan 
(Dixon 2003, Oksanen et al. 2017) based on the relative abundances 
of the specific OTUs. Analysis of similarities (ANOSIM, using the 
anosim from the R package vegan) tests was performed to test for sig-
nificant differences in the community assemblages between field and 
lab samples. Post-hoc comparison between samples was conducted 
by ANOSIM between individual samples to establish the specific lo-
cation and times that are significantly different.

Weighted Gene Co-Expression Network 
Analysis (WGCNA)
The WGCNA package in R (Langfelder and Horvath 2007) was used 
to create a correlation network in which the “expression,” or more 
accurately, the abundance of specific OTUs, was correlated with mi-
crobiota changes related to specific traits found in previous studies 
(Tong et al. 2013, Leite-Mondin et al. 2021). As insufficient mosqui-
toes were available to directly measure nutrition levels in this study, 
nutritional abundance data were used from a previous study on 
adult female C. pipiens (Benoit and Denlinger 2007). This incorpo-
rated proteins, lipids, and carbohydrates levels into discrete groups, 
high (2  wk), moderate (2–3 mo), or low (4 mo, diapause break) 
nutritional reserve  amounts that are associated with specific time 
points during C. pipiens dormancy. Based on our recent studies, the 
nutritional metrics from this previous study is similar to diapausing 
mosquitoes used in this study (Didion et  al. 2021), which are the 
same strain and reared under nearly identical conditions. These data 
were incorporated into an unsupervised WGCNA to assess whether 
nutritional availability correlated with microbial composition. Any 
OTUs with less than five detections were removed before analyses. 
The WGCNA includes network construction, detection of mod-
ules, and their correlation to the expression data was implemented 
as described previously (Zhang and Horvath 2005, Langfelder and 
Horvath 2007). A  scale-free topology threshold of 0.8 was used 
to identify the soft power of 12. Adjacency matrix was calculated 

for signed network construction to identify the specific modules of 
OTUs that correlated with specific treatment. Significance was de-
noted based on high levels of correlation with the specific trait to 
the module eigengene (ME), yielding a group of OTUs with similar 
detected levels. A correlation test P-value below P < 0.05 was con-
sidered to be significant between the trait and the specific ME that 
consists of the OTUs of interest.

Results

Microbial composition changes with rearing location and diapause 
length. Two analyses pipelines were used with trends being similar 
between methods of analysis. At the Phylum level, both pipeline/se-
quence database combinations (SeqMatic/Greengenes and Nephele/
SILVA) revealed similar compositions (Fig. 1). Proteobacteria dom-
inated field-reared mosquitoes throughout diapause, increasing 
marginally over time, peaking in mosquitoes exposed to diapause-
breaking conditions. Conversely, while 2-wk and 2-mo-old lab in-
dividuals were similar to field-reared, Proteobacteria abundance 
precipitously dropped with each subsequent time-point (Fig. 1). At 2 
mo of age, lab-reared mosquitoes saw an increase in Actinobacteria, 
whereas 3- and 4-mo-old individuals were dominated by Firmicutes.

The family level revealed differences between the two pipeline/
sequence database combinations, though the overall trends remained 
similar (Fig. 2). The Seqmatic/Greengenes (S/G) combination had 
Enterobacteriaceae within field-reared mosquitoes remaining con-
sistent throughout diapause representing on average between 30 
and 58% of the reads at each time point while QIIME/SILVA (Q/S) 
averaged 21–39%. Lab-reared mosquitoes on the other hand had 
less Enterobacteriaceae overall, starting at ≈27% and ≈22% (S/G) or 
≈12% and ≈20% (Q/S) in months 1 and 2, and dropping to ≈2% and 
≈0.3% (S/G) and ≈1% and ≈0.01% (Q/S) in subsequent time points. 
Bacillaceae were prevalent in late diapause (S/G—59%, 55%, Q/S—
68%, 85%) for lab-reared mosquitoes while Acetobacteraceae_
Asaia started high and decreased over diapause (S/G—36%, 50%, 
16%, 18%, Q/S—76%, 73%, 28%, 5%). In field-reared mosqui-
toes, an opposite trend was seen, where Acetobacteraceae composed 
only (S/G—5% and 0.4%, Q/S—2% and 20%) in 2-wk and 2-mo 
samples and increased in subsequent time points (S/G—36%, 38%, 
37%, Q/S—1%, 54%, 75%), of which most OTUs were associated 
with Asaia. The differences seen in microbial composition between 
the pipeline/database methods are likely due to the reference data-
base, but are useful to ensure thorough analyses. Greengenes is a 
smaller database and is not updated as frequently as SILVA; there-
fore, it is likely that the QIIME/SILVA analysis is more accurate 
(Schloss et al. 2009).

Most bacteria associated with the field-reared mosquitoes were 
gram-negative and became more so as diapause progressed, peaking 
when the mosquitoes were exposed to diapause breaking conditions. 
In lab-reared mosquitoes, most bacteria were gram-negative when sam-
pled at 2 wk and 2 mo of age. This changed significantly at 3- and 4-mo 
time-points where gram-positive bacteria represented ≈90% and ≈99% 
of the community, respectively (Table 1). This suggest that the number 
of observed species and alpha diversity decreased over diapause in both 
lab and field-reared mosquitoes though neither were significantly dif-
ferent (Fig. 3; Supp Data S2 [online only]). Weighted UniFrac distance 
metrics which consider the phylogenetic relationship of the microbiota 
present within each group were used to assess beta diversity similar-
ities within and between groups. Two sample t-tests were used to make 
these pairwise comparisons and were Bonferroni corrected. When con-
sidering the phylogenetic origin of the present bacteria the beta diver-
sity (Supp Data S2 [online only]) between samples within a group was 
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more diverse than between the groups (t = −6.1, P = 1.43E-06). The 
diversity measured within 2-mo-old field-reared mosquitoes was signif-
icantly greater than their lab-reared counterparts (t = 5.74, P = 0.02). 
This extends to when comparing the beta diversity between early di-
apause field-reared mosquitoes (2 wk and 2 mo) and early lab-reared 
diapause mosquitoes (t = 4.86, P = 0.022). The phylogeny informed 
beta diversity between early time point lab mosquitoes was also greater 
than that between late timepoints (3 and 4 mo; t = 11.8, P = 2.34E-10). 
Overall, the comparison between early field samples yielded the highest 
beta diversity and was significantly different from the late field derived 
samples. Within the lab samples, the late timepoints were so profoundly 
different in phylogeny informed beta diversity that the early time points 
clustered with late field samples rather than within their environmental 
treatment group, which was driven by the massive increase in Bacillus 
reads in the late lab samples.

When compared through the use of NMDS, there was a sig-
nificant variation between both the field and lab samples (Fig. 4; 
ANOSIM, R = 0.859, P = 1.43E-06). When field and lab samples 

were analyzed individually, significant differences were noted com-
munity composition between early (2 wk) and late (4 mo) diapause 
under both treatments, but intermediate points showed no signif-
icance. Of interest, the composition at two weeks was not signifi-
cantly different between field and lab reared mosquitoes (ANOSIM, 
R = 0.4128, P = 0.1698), but all samples at 2, 3, and 4 mo had noted 
composition differences (ANOSIM, P < 0.05 in all cases). Following 
the break in diapause, there was not a noted difference compared 
to field mosquitoes under extended diapause (4 mo, ANOSIM. 
R = −0.01984, P =0.408). These results highlight that even when a 
single mosquito strain is provided the same water and carbohydrate 
resources, significant divergence in bacterial composition occurs as 
diapause progresses.

WGCNA Reveals Putative Correlation With C. pipiens 
Diapause Traits and Microbial Communities
WGCNA supported our other methods of analysis by revealing 
significant differences (student asymptotic P-value for correlation) 

Fig. 1.  Whole body microbial composition at the phylum level of diapausing C. pipiens in lab and field conditions at different time points. Relative abundances 
of bacterial phyla associated with each sample (N = 3–6 per group). Midgut microbiota phyla distribution for field (F) and lab (L) samples at 2 wk (2wks), 2 mo 
(2M), 3 mo (3M), 4 mo (4M), and diapause break (DB). Data were assessed through two different pipeline/reference datasets: (A) SeqMatic-Greenegenes and (B) 
QIIME/SILVA. Both methods returned similar results at the phylum level (Supp Data S3 [online only]). See online version for color figure.
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between lab and field-reared mosquitoes (Fig. 5; Supp Data S4 [on-
line only]). Many slight differences between lab and field-reared 
mosquito microbial communities were noted, but the biggest un-
derlying separation was the abundance of Bacillus in the 3- and 
4-mo-old lab-reared mosquitoes. Late lab samples were specifically 
dominated by Bacillus sp. CPSM8 (P ≤ 0.01), levels of this bacteria 

were so high that late diapause was also significantly associated with 
this phylum ( P ≤ 0.01) and was negatively correlated with both 
field ( P ≤ 0.01) and early (P = 0.01) diapause mosquitoes. Several 
modules were associated with 2-wk field samples, which were par-
ticularly diverse. The brown ( P ≤ 0.01), red ( P ≤ 0.01), purple, 
and turquoise modules included highly expressed OTUs including 

Fig. 2.  Midgut family composition of diapausing C. pipiens at the family level of diapausing C. pipiens in lab and field conditions at different time points. Relative 
abundances of bacterial families associated with each sample (N = 3–6 per group). Midgut microbiota familial distribution for field (F) and lab (L) samples at 
2 wk (2wks), 2 mo (2M), 3 mo (3M), 4 mo (4M), and diapause break (DB). Families within a single phylum are assigned shades of the same color. Data were as-
sessed through two different pipeline/reference datasets: (A) SeqMatic-Greenegenes and (B) QIIME/SILVA. Both methods returned relatively similar results at 
the phylum level (Supp Data S3 [online only]). See online version for color figure.
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families Oxalobacteraceae, Chitinophagaceae, and Prevotellaceae, of 
which several modules were significantly associated with 2-wk-old 
and high nutrient reserve groups (red: P = 0.01, brown: P ≤ 0.01, 
turquoise: P ≤ 0.01).

Two-month-old field mosquitoes were significantly associ-
ated with the pink module ( P ≤ 0.01) which included families 
Bradyrhizobiaceae, Microbacteriaceae, and Comamonadaceae, 
with a particularly high abundance of Bradyrhizobiaceae. Three-
month-old field mosquitoes were significantly associated with blue 
( P ≤ 0.01), magenta ( P ≤ 0.01), and green modules ( P ≤ 0.01), 
of which Enterobacteriaceae and Pseudomonadaceae, were most 
highly abundant. Magenta was also significantly correlated with all 
field samples ( P ≤ 0.01), while blue was associated with the three-
month group (P  =  0.01). Supp Data S4 (online only) provides a 
complete table of module-associated OTUs, as well as correlation 
and P-values for all group-module correlations. Overall, specific 
modules correlated bacterial OTUs with specific rearing conditions 
and dormancy duration.

Discussion

Understanding microbial community composition and structure 
has become a topic of interest as researchers try to understand the 
relationship of microbial communities, host physiology, and envi-
ronmental influence (Spor et al. 2011, Parfrey et al. 2018, Brinker 
et al. 2019). Foundational studies, such as the current study, pro-
vide a general survey of microbial communities in various host 
physiological states. These surveys provide valuable information 
for future studies looking to understand dynamics between mi-
crobial community, host, and environmental factors in diapausing 
adult female C.  pipiens. The interplay between the microbiota, 
their host organism, and abiotic factors is intricate and often dif-
ficult to establish, specifically mosquitoes which do not have con-
sistent microbial communities. Abiotic factors that can influence 
host microbial communities include breeding/rearing site, season, 
and temperature (Akorli et al. 2016, Krajacich et al. 2018, Akorli 
et al. 2019, Thapa et al. 2019, Lemoine et al. 2020, Sepulveda and 
Moeller 2020), while important host factors include species, host 
DNA, age, sex, and diet (Gusmão et  al. 2007, Rani et  al. 2009, 
Dillon et al. 2010, Zouache et al. 2011, Minard et al. 2013, Wu et 
al. 2019). Insects that overwinter in temperate regions are exposed 
to long periods of cold and show drastic changes to their feeding 
habits, behavior, and physiology (Denlinger and Armbruster 2014, 
Denlinger and Armbruster 2016, Gill et al. 2017). The reduction 
of temperature seen during diapause likely not only impacts host 
physiology but may impact bacterial associations and community 
composition (Webster et  al. 2008, Lokmer and Wegner 2015). 
Notably, diapause extends their lifespans by several months and 
the microbiota tends to vary as organisms age. It is essential to 
characterize these host-microbe community shifts with host and 
environmental changes as they impact host phenotypes (Douglas 
et  al. 2011, Douglas et  al. 2015, Ferguson et  al. 2018), and the 

uniqueness of mobile dormancy in C.  pipiens necessitates a 
thorough study.

The current study revealed a high prevalence of Proteobacteria 
which increased throughout diapause, except for lab-reared mos-
quitoes in late diapause (months 3 and 4) which became domin-
ated by the phylum Firmicutes. Proteobacteria has been repeatedly 
associated with the diapause state in other organisms including 
wasp, Nasonia vitripennis (Dittmer and Brucker 2021), cricket, 
G. veletis (Ferguson et  al. 2018), where these bacteria increased 
with diapause duration and in the cabbage beetle, and Colaphellus 
bowringi (Coleoptera: Chrysomelidae) (Liu et al. 2016), in which it 
was associated with early diapause. It is of note that Proteobacteria 
increased in between nascent and seventeen day old Aedes 
albopictus (Diptera: Culicidae) (Wang et al. 2018), suggesting that 
Proteobacteria may simply form stronger associations in mosqui-
toes as mosquitoes age. Similar to what was found in the cabbage 
beetle (Liu et al. 2016), Firmicutes had a higher prevalence earlier 
in diapause at 2 wk of age (17%) in field-reared mosquitoes than 
at later time-points (0%). Lab-reared mosquitoes alternatively 
had a relatively low prevalence of Firmicutes in early diapause, 
increasing steadily with each subsequent time point, becoming the 
dominant species towards the end of diapause. Wolbachia abun-
dance during diapause thus far has been mixed with the prevalence 
within the cricket microbiota (Ferguson et al. 2018) increasing over 
time while a marked decrease was seen in the wasp (Dittmer and 
Brucker 2021). Wolbachia in C.  pipiens diapause was similar to 
that of the wasp, decreasing in prevalence as diapause progressed. 
In Drosophila, Wolbachia has been shown to increase with a 
sucrose diet (Serbus et  al. 2015) which may explain why it was 
found in higher abundance in early diapause samples and dwin-
dled throughout diapause, as sucrose consumption ceased, and 
mosquitos were relying on their lipid reserves. As intracellular bac-
teria with critical roles in relation to the biology of mosquitoes 
and others insects (Kaur et  al. 2021), the specific impact of this 
reduction throughout diapause may be of interest or only reflect a 
general decline due to lack activity in specific tissues.

Diapausing insects including wasps (Dittmer and Brucker. 
2021), crickets (Ferguson et al. 2018), and now C. pipiens in the 
current study have all shown changes in response to diapause 
duration. Alpha diversity and the overall number of OTUs pre-
sent generally decreased with diapause length in both field and 
lab samples, even though these changes were not significant. This 
lack of decrease may be from the fact that C. pipiens will contin-
ually drink water during diapause (Benoit and Denlinger 2007), 
which could allow for recolonization of new bacteria as others 
die off. Importantly, the water and sugar sources provided to 
both the lab and field mosquitoes were consistent and from the 
same source throughout diapause, indicating the microbiome dif-
ferences between field- and lab-reared mosquitoes are not solely 
due changes occurs in water between the locations due to pro-
longed cold exposure. When incorporating the bacterial lineage 
of the OTUs into diversity using a weighted-UniFrac, a general 

Table 1.  Proportion of Gram + and Gram − bacteria throughout the course of diapause in Culex pipiens

Field  
2 Weeks

Field  
2 Months

Field 3  
Months

Field 4  
Months

Field  
Breaks

Lab  
2 Weeks

Lab  
2 Months

Lab  
3 Months

Lab  
4 Months

Gram − 0.925 0.927 0.968 0.985 0.989 0.989 0.97 0.13 0.015
Gram + 0.075 0.073 0.032 0.015 0.011 0.011 0.03 0.87 0.985

Summary of gram − and gram + bacteria.
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decrease in beta diversity was seen as diapause progressed in 
both lab and field cohorts. In addition, NMDS analyses indicate 
significant differences between early (2 wk) and late (4 mo) dia-
pause. This decrease in beta diversity and other general changes 
late in diapause suggests that although new species are may be 
introduced, most likely via water consumption, the bacteria 
could phylogenetically similar or are unable to supplant current 
bacterial resident.

The roles of specific bacteria on host physiology are of great in-
terest. The impact of the microbiota in nutrient acquisition, storage, 
and utilization is well supported in both vertebrate and invertebrate 
systems (Akman et al. 2002, Bäckhed et al. 2004, Dillon and Dillon 

2004, Feldhaar et al. 2007, Hosokawa et al. 2010, Nieuwdorp et al. 
2014, Salem et al. 2014, Douglas 2017, Didion et al 2021). Identifying 
how specific microbial associates impact host physiology is compli-
cated. Bacterial communities may change due to an inability of some 
members to survive in the new host state while others may be inad-
vertently selected for due to benefits conferred to the host (Spor et al. 
2011). It has been suggested that Proteobacteria may play a role in 
lipid accumulation during diapause preparation (Liu et al. 2016) and 
a specific Proteobacteria, Escherichia coli, has been shown to impact 
lipid accumulation in larval fat bodies (Valzania et al. 2018a), due 
to induced hypoxia in the larval gut initiating insulin/insulin growth 
factor signaling (Valzania et al. 2018b). Similarly, some Asaia strains 
within the phylum Proteobacteria are speculated to assist in nutrient 
digestion or produce a metabolite to increase larval growth in mos-
quitoes (Chouaia et al. 2012, Mitraka et al. 2013) and are known 
to alter the expression of lipid metabolism genes in adults (Mancini 
et al. 2020). Asaia reads were present in the current study and in-
creased in abundance as diapause progressed in field-reared mos-
quitoes which bring into question whether they may be functioning 
similarly in diapausing C. pipiens. Proteobacteria, in general, were 
highly abundant in all field samples and some lab samples (2 wk 
and 2 mo), and several were associated with high nutritional reserve 
levels. WGCNA did not identify this association however because 
many different OTUs were associated with the genera Asaia. It is still 
possible that some of these significantly correlated Proteobacteria 
are involved in C. pipiens metabolism early on in diapause. This is 
supported by research showing the impact of the removal of the mi-
crobiota on diapause preparation, specifically impaired sugar metab-
olism and lower accumulation of lipids that leads to reduced survival 
(Didion et al. 2021).

After C.  pipiens undergoes diapause for 2 mo or longer in 
the field, microbial community composition does not seem to be 
significantly impacted by general host nutritional reserve status. 
The Bacillaceae species associated with late lab diapause are not 
generally found in mosquito species and are more typically as-
sociated with sources such as riverbeds (Maitra et  al. 2014)  or 

Fig. 3.  Alpha diversity metrics of diapausing C. pipiens in lab and field conditions at different time points. (A) Chao diversity and (B) Shannon diversity. Despite 
a general downward trend as diapause progressed, no significant differences were seen between groups (see Supp Data S1 [online only] for statistics). See 
online version for color figure.
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Fig. 4.  Comparison of bacterial communities between field and lab mos-
quitoes and across diapause. Nonmetric multidimensional scaling anal-
ysis  (NMDS) of proportional OTU abundance data using the Bray–Curtis 
dissimilarity matrix. The symbols indicate field and lab and coloration is 
based on duration within diapause. Large symbols represent mean of all 
samples. Small symbols represent each individual sample. See online ver-
sion for color figure.
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plant rhizomes (Gutiérrez-Mañero et al. 2001). They are faculta-
tively anaerobic, can form spores (Rooney et al. 2009), perform 
environmental nutrient cycling (Maitra et  al. 2014), and have 
been implicated in plant growth (Gutiérrez-Mañero et al. 2001). 
Their functionality, if any, within the late lab samples is unknown. 
A more focused look into specific nutritional reserves such as lipid, 

sugar, and protein content may reveal associations not revealed 
by the current study. Future studies should incorporate additional 
field and lab sites to ensure that the findings of this study are not 
idiosyncratic and provide additional insight into the impact the 
microbiota has on host metabolism and survival throughout dia-
pause in C. pipiens.

Fig. 5.  WGCNA reveals OTUs associated with diapausing C. pipiens in lab and field conditions at different time points and nutritional reserve levels. (A) OTU 
dendrogram of co-expressed OTU modules. (B) Heat map depicts the OTU modules positively (red) or negatively (blue) correlated with specific treatments. (C) 
Summary of group type, taxa, and highly expressed tax associated with each module color. The associated taxa listed were the three most abundant families 
associated with each module while highly expressed is taxa information for OTUs that had an average read total over 1000. Not all OTUs within a specific taxon 
were similarly expressed. See Supp Data S4 (online only) for all OTU-module associations. * denotes significance at 0.05, ** denotes significance at 0.01, and 
*** denotes significance at 0.001. See online version for color figure.
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Conclusions

Rearing location and diapause duration impact the microbial com-
position of C. pipiens, even when provided the same food and water 
sources. Like in other investigated diapausing species, Proteobacteria 
increased within mosquitoes undergoing diapause in the field which 
was different from lab-reared individuals that showed an increase 
in Firmicutes. Alpha diversity experienced a general decrease as di-
apause progressed, while beta diversity, which incorporated phylo-
genetic distance, decreased significantly. Through 2 wk of age, lab 
and field-reared mosquitoes maintained similar community com-
positions which diverged significantly after 2 mo old, even when 
provided the same water and sugar sources. These findings are sim-
ilar to results from some aging studies, though it is unclear whether 
C. pipiens undergoing diapause show signs of an aging microbiota. 
Future studies should take a more focused look at the factors causing 
the microbial community changes seen as diapause progresses in 
C. pipiens, as they do not appear to be significantly impacted by ge-
neral host nutritional reserve status.

Supplementary Data

Supplementary data are available at Journal of Medical Entomology online.
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