
Deterministic enumeration of all minimum k-cut-sets in
hypergraphs for fixed k∗

Calvin Beideman Karthekeyan Chandrasekaran Weihang Wang

Abstract

We consider the problem of deterministically enumerating all minimum k-cut-sets in a given
hypergraph for any fixed k. The input here is a hypergraph G = (V,E) with non-negative hyperedge
costs. A subset F ⊆ E of hyperedges is a k-cut-set if the number of connected components in G− F is
at least k and it is a minimum k-cut-set if it has the least cost among all k-cut-sets. For fixed k, we call
the problem of finding a minimum k-cut-set as Hypergraph-k-Cut and the problem of enumerating
all minimum k-cut-sets as Enum-Hypergraph-k-Cut. The special cases of Hypergraph-k-Cut and
Enum-Hypergraph-k-Cut restricted to graph inputs are well-known to be solvable in (randomized as
well as deterministic) polynomial time [17,25,28,39]. In contrast, it is only recently that polynomial-time
algorithms for Hypergraph-k-Cut were developed [2,3,12]. The randomized polynomial-time algorithm
for Hypergraph-k-Cut that was designed in 2018 [3] showed that the number of minimum k-cut-sets
in a hypergraph is O(n2k−2), where n is the number of vertices in the input hypergraph, and that they
can all be enumerated in randomized polynomial time, thus resolving Enum-Hypergraph-k-Cut in
randomized polynomial time. A deterministic polynomial-time algorithm for Hypergraph-k-Cut was
subsequently designed in 2020 [2], but it is not guaranteed to enumerate all minimum k-cut-sets. In this
work, we give the first deterministic polynomial-time algorithm to solve Enum-Hypergraph-k-Cut
(this is non-trivial even for k = 2). Our algorithm is based on new structural results that allow for
efficient recovery of all minimum k-cut-sets by solving minimum (S, T)-terminal cuts. Our techniques
give new structural insights even for enumerating all minimum cut-sets (i.e., minimum 2-cut-sets) in a
given hypergraph.

∗University of Illinois, Urbana-Champaign. Email: {calvinb2, karthe, weihang3}@illinois.edu. Supported in part by
NSF grants CCF-1814613 and CCF-1907937.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2208

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

1 Introduction
A hypergraph G = (V,E) consists of a finite set V of vertices and a finite set E of hyperedges where each
hyperedge e ∈ E is a subset of V . We consider the problem of enumerating all optimum solutions to the
Hypergraph-k-Cut problem when k is a fixed constant. In Hypergraph-k-Cut, the input consists of
a hypergraph G = (V,E) with non-negative hyperedge-costs c : E → R+ and a positive integer k. The
objective is to find a minimum-cost subset of hyperedges whose removal results in at least k connected
components. We will call a subset of hyperedges whose removal results in at least k connected components
as a k-cut-set and a minimum-cost k-cut-set as a minimum k-cut-set ; for k = 2, we will refer to a 2-cut-set
as simply a cut-set and a minimum-cost cut-set as a minimum cut-set. The central problem of interest to
this work is that of enumerating all minimum k-cut-sets in a given hypergraph with non-negative hyperedge-
costs—we will denote this problem as Enum-Hypergraph-k-Cut. Throughout, we will consider k to be a
fixed constant integer (e.g., k = 2, 3, 4, ...). We will denote Hypergraph-k-Cut and Enum-Hypergraph-
k-Cut for graph inputs as Graph-k-Cut and Enum-Graph-k-Cut respectively. We note that the case of
k = 2 corresponds to global minimum cut which will be discussed shortly.

Partitioning formulation. There is a fundamental structural difference between Hypergraph-k-Cut
and Graph-k-Cut (even for k = 2), which is especially evident when attempting to enumerate all
optimum solutions. In order to illustrate this difference, we discuss an equivalent partitioning formulation
of Hypergraph-k-Cut. In this equivalent formulation, the objective is to find a partition of the vertex set
V into k non-empty sets V1, V2, . . . , Vk so as to minimize the cost of hyperedges that cross the partition. A
hyperedge e ∈ E is said to cross a partition V1, V2, . . . , Vk if it has vertices in at least two parts, that is,
there exist distinct i, j ∈ [k] such that e ∩ Vi 6= ∅ and e ∩ Vj 6= ∅. We will denote a partition of V into k
non-empty parts as a k-partition and a 2-partition as a cut. The cost of a k-partition is the sum of the cost
of hyperedges crossing the partition. A k-partition with minimum cost is said to be a minimum k-partition.
We will denote the cost of a 2-partition as its cut value and a minimum 2-partition as a minimum cut.

By definition, the number of minimum k-cut-sets is at most the number of minimum k-partitions.
Moreover, for a connected graph, the number of minimum k-partitions is O(nk), where n is the number of
vertices (i.e., the number of minimum k-partitions is polynomial since k is a constant) [18,22,28]. However,
for a connected1 hypergraph, the number of minimum k-partitions could be exponential while the number
of minimum k-cut-sets is only polynomial. For example, consider the spanning-hyperedge-example: this is
the n-vertex hypergraph G = (V,E) that consists of only one hyperedge e where e = V with the cost of
the hyperedge e being one. This hypergraph is connected and has only one minimum k-cut-set but Θ(kn)
minimum k-partitions (i.e., an exponential number of minimum k-partitions even for k = 2). Thus, if we are
hoping for polynomial-time algorithms to enumerate all optimum solutions to Hypergraph-k-Cut, then
we cannot aim to enumerate all minimum k-partitions (in contrast to connected graphs). This is the reason
for defining Enum-Hypergraph-k-Cut as the problem of enumerating all minimum k-cut-sets as opposed
to enumerating all minimum k-partitions. For connected graphs, the two definitions are indeed equivalent.

Graph-k-Cut for k = 2 is the minimum cut problem in graphs which is well-known to be solvable in
polynomial time. Although the minimum cut problem in graphs has been extensively studied, enumerating
all minimum cut-sets in a graph in deterministic polynomial time is already non-trivial. Dinitz, Karzanov,
and Lomonosov [11] constructed a compact representation for all minimum cuts in a connected graph (known
as the cactus representation) which showed that the number of minimum cuts in a connected graph is at most(
n
2

)
and that they can all be enumerated in deterministic polynomial time. For k ≥ 3, the number of minimum

k-partitions in a connected graph is O(nk)—this bound is tight and is a consequence of a recent improved
analysis of a random contraction algorithm to solve Graph-k-Cut [18,22,28]; the same random contraction
algorithm can also be used to enumerate all minimum k-partitions in connected graphs in randomized
polynomial time. Deterministic polynomial-time algorithms to enumerate all minimum k-partitions in
connected graphs are also known. We discuss other techniques—both randomized and deterministic—for
enumerating minimum cuts and minimum k-partitions in graphs in Section 1.2.

1A hypergraph is defined to be connected if every cut has at least one hyperedge crossing it.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2209

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Hypergraph-k-Cut is a natural generalization of Graph-k-Cut. Hypergraph-k-Cut for k = 2
is the minimum cut problem in hypergraphs which is well-known to be solvable in polynomial time [29].
Once again, enumerating all minimum cut-sets in a hypergraph in deterministic polynomial-time is already
non-trivial. There exists a compact representation of all minimum cut-sets in a hypergraph [6]—namely the
hypercactus representation—which also implies that the number of minimum cut-sets in a hypergraph is at
most

(
n
2

)
and that they can all be enumerated in deterministic polynomial time. To the best of the authors’

knowledge, this is the only known technique for efficient deterministic enumeration of all minimum cut-sets
in a hypergraph.

Hypergraph-k-Cut is a special case of Submodular-k-Partition (e.g., see [2,36,43,44]). Owing to
this connection, the complexity of Hypergraph-k-Cut for any fixed k ≥ 3 has been an intriguing open
question until recently. A randomized polynomial-time algorithm for Hypergraph-k-Cut was designed
in 2018 by Chandrasekaran, Xu, and Yu [3]. The analysis of this algorithm showed that the number of
minimum k-cut-sets is O(n2k−2), where n is the number of vertices in the input hypergraph (i.e., the number
of minimum k-cut-sets is polynomial), and that they can all be enumerated in randomized polynomial
time (also see [12]). Subsequently, Chandrasekaran and Chekuri designed a deterministic polynomial-time
algorithm for Hypergraph-k-Cut in 2020 [2]. However, their deterministic algorithm is guaranteed to
identify only one minimum k-cut-set and not all. The next natural question is whether all minimum k-cut-
sets can be enumerated in deterministic polynomial time—namely, can we solve Enum-Hypergraph-k-Cut
in deterministic polynomial time?

As mentioned earlier, the only known technique for Enum-Hypergraph-k-Cut for k = 2 is via the
hypercactus representation which does not seem to generalize to k ≥ 3 (in fact, it is unclear if cactus
representation generalizes to k ≥ 3 even in graphs). Moreover, all deterministic techniques for Enum-
Graph-k-Cut address the problem of enumerating all minimum k-partitions in connected graphs—see
Section 1.2; hence, all these techniques fail for Enum-Hypergraph-k-Cut (as seen from the spanning-
hyperedge-example). For hypergraphs, we necessarily have to work with minimum k-cut-sets as opposed
to minimum k-partitions. Working with minimum k-cut-sets as opposed to minimum k-partitions in the
deterministic setting is a technical challenge that has not been undertaken in any of the previous works (even
for graphs). We overcome this technical challenge in this work. We adapt Chandrasekaran and Chekuri’s
deterministic approach for Hypergraph-k-Cut and augment it with structural results for minimum k-cut-
sets to prove our main result stated below.

Theorem 1.1. There is a deterministic polynomial-time algorithm for Enum-Hypergraph-k-Cut for
every fixed k.

Although we chose to highlight the above algorithmic result in this introduction, we emphasize that the
structural theorems that form the backbone of the algorithmic result are our main technical contributions
(see Theorems 1.2 and 1.3). We discuss these structural theorems in the technical overview section. By
tightening the proof technique of one of our structural theorems for k = 2, we obtain an arguably elegant
structural explanation for the number of minimum cut-sets in a hypergraph being at most

(
n
2

)
—see Theorem

1.4. Theorem 1.4 leads to an alternative deterministic polynomial-time algorithm to enumerate all minimum
cut-sets in a hypergraph (that is relatively simpler than computing a hypercactus representation). We believe
that our structural theorems are likely to be of independent interest.

1.1 Technical overview and main structural results We focus on the unit-cost variant of Enum-
Hypergraph-k-Cut in the rest of this work for the sake of notational simplicity. Throughout, we will allow
multigraphs and hence, this is without loss of generality. Our algorithms extend in a straightforward manner
to arbitrary hyperedge costs. They rely only on minimum (s, t)-terminal cut computations and hence, they
are strongly polynomial-time algorithms.

A key algorithmic tool will be the use of terminal cuts. We need some notation. Let G = (V,E) be
a hypergraph. Throughout this work, n will denote the number of vertices in G and p :=

∑
e∈E |e| will

denote the representation size of G. We will denote a partition of the vertex set into h non-empty parts by
an ordered tuple (V1, . . . , Vh). For a non-empty proper subset U of vertices, we will use U to denote V \ U ,

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2210

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

δ(U) to denote the set of hyperedges crossing the 2-partition (U,U), and d(U) := |δ(U)|. We recall that
δ(U) = δ(U), so we will use d(U) to denote the cost of the cut (U,U). More generally, given a partition
P = (V1, V2, . . . , Vh), we denote the set of hyperedges crossing the partition by δ(V1, V2, . . . , Vh) (also by δ(P)
for brevity) and the number of hyperedges crossing the partition by cost(V1, V2, . . . , Vh) := |δ(V1, V2, . . . , Vh)|
(also by cost(P) for brevity). Let S, T be disjoint non-empty subsets of vertices. A 2-partition (U,U) is an
(S, T)-terminal cut if S ⊆ U ⊆ V \ T . Here, the set U is known as the source set and the set U is known
as the sink set. A minimum-cost (S, T)-terminal cut is known as a minimum (S, T)-terminal cut. Since
there could be multiple minimum (S, T)-terminal cuts, we will be interested in source minimal minimum
(S, T)-terminal cuts and source maximal minimum (S, T)-terminal cuts. For every pair of disjoint non-empty
subsets S and T of vertices, there exists a unique source minimal minimum (S, T)-terminal cut and it can
be found in deterministic polynomial time via standard maxflow algorithms; a similar result holds for source
maximal minimum (S, T)-terminal cuts.

Our algorithm is inspired by the divide and conquer approach introduced by Goldschmidt and Hochbaum
for Graph-k-Cut [17]. This approach was generalized by Kamidoi, Yoshida, and Nagamochi to solve
Enum-Graph-k-Cut [25] and by Chandrasekaran and Chekuri to solve Hypergraph-k-Cut [2], both in
deterministic polynomial time. The techniques of [17] and [25] are not applicable to Enum-Hypergraph-k-
Cut since they are tailored to graphs and do not extend to hypergraphs. We describe the details of the divide
and conquer approach for Hypergraph-k-Cut due to Chandrasekaran and Chekuri [2]. The goal here is to
identify one part of some fixed minimum k-partiton (V1, V2, . . . , Vk), say V1 without loss of generality, and
then recursively find a minimum (k−1)-partition in the subhypergraph G[V1], where G[V1] is the hypergraph
obtained from G by discarding the vertices in V1 and by discarding all hyperedges that intersect V1. Now,
how does one find such a part V1? Chandrasekaran and Chekuri proved a key structural theorem for this:
Suppose (V1, . . . , Vk) is a V1-maximal minimum k-partition—i.e., there is no other minimum k-partition
(V ′1 , . . . , V

′
k) such that V1 is a proper subset of V ′1 . Then, they showed that for every subset T ⊆ V1 such

that T ∩ Vj 6= ∅ for all j ∈ {2, . . . , k}, there exists a subset S ⊆ V1 of size at most 2k − 2 such that (V1, V1)
is the source maximal minimum (S, T)-terminal cut. A consequence of this structural theorem is that if we
compute the collection C consisting of the source side of the source maximal minimum (S, T)-terminal cut
for all possible pairs (S, T) of disjoint subsets of vertices S and T with |S| ≤ 2k−2 and |T | ≤ k−1, then the
set V1 will be in this collection C (by applying the structural theorem to a set T of size k−1 with |T ∩Vj | = 1
for all j ∈ {2, . . . , k}). Moreover, the size of the collection C is only O(n3k−3). Hence, recursing on G[U] for
each set U in the collection C will identify a minimum k-partition within a total run-time of nO(k2) source
maximal minimum (S, T)-terminal cut computations.

The limitation of the structural theorem of Chandrasekaran and Chekuri [2] is that it aims to recover a
minimum k-partition and in particular, a V1-maximal minimum k-partition. For the purposes of enumerating
all minimum k-cut-sets, this is insufficient as we have seen from the spanning-hyperedge-example. In
particular, their structural theorem cannot be used to even enumerate all minimum cut-sets in a hypergraph.
We prove two structural theorems that will help in enumerating minimum k-cut-sets. We describe these
structural theorems now.

Our goal is to deterministically enumerate a polynomial-sized family F of k-cut-sets such that F contains
all minimum k-cut-sets. Let F be an arbitrary minimum k-cut-set. Since F is a minimum k-cut-set, there
exists a minimum k-partition (V1, . . . , Vk) such that F = δ(V1, . . . , Vk). We note that d(V1) ≤ |F | by
definition of the hypergraph cut function d : 2V → R. We distinguish two cases:

Case 1. Suppose d(V1) < |F |. In order to identify minimum k-cut-sets F that have this property, we show
the following structural theorem.

Theorem 1.2. Let G = (V,E) be a hypergraph and let OPTk be the value of a minimum k-cut-set in G
for some integer k ≥ 2. Suppose (U,U) is a 2-partition of V with d(U) < OPTk. Then, for every pair of
vertices s ∈ U and t ∈ U , there exist subsets S ⊆ U \ {s} and T ⊆ U \ {t} with |S| ≤ 2k− 3 and |T | ≤ 2k− 3
such that (U,U) is the unique minimum (S ∪ {s}, T ∪ {t})-terminal cut in G.

The advantage of this structural theorem is that it allows for a recursive approach to enumerate a
polynomial-sized family of minimum k-cut-sets containing F under the assumption that d(V1) < |F | = OPTk

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2211

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

(similar to the approach of Chandrasekaran and Chekuri).
The drawback of this structural theorem is that it only addresses the case of d(V1) < |F |. It is possible

that the minimum k-cut-set F satisfies d(V1) = |F |. For example, consider the problem of enumerating all
minimum cut-sets in a hypergraph (i.e., Enum-Hypergraph-k-Cut for k = 2)—Theorem 1.2 does not help
in this case since there will be no cut (U,U) with d(U) < OPT2. This motivates the second case.

Case 2. Suppose d(V1) = |F |. In this case, we need to enumerate a polynomial-sized family of k-cut-
sets containing F , but we cannot hope to enumerate all minimum k-partitions (V ′1 , . . . , V

′
k) for which

F = δ(V ′1 , . . . , V
′
k) (e.g., again consider the spanning-hyperedge-example for k = 2 for which the unique

minimum cut-set F has |F | = d(V1) for exponentially many minimum cuts (V1, V2) and hence, we cannot
hope to enumerate all minimum cuts). We observe that if d(V1) = |F |, then the set F of hyperedges should
be equal to the set of hyperedges crossing (V1, V1), i.e., δ(V1) = F = δ(V1, . . . , Vk). We show the following
structural theorem to exploit this observation.

Theorem 1.3. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer, and P = (V1, . . . , Vk) be a minimum
k-partition such that δ(V1) = δ(P). Then, for all subsets T ⊆ V1 such that T ∩Vj 6= ∅ for all j ∈ {2, 3, . . . , k},
there exists a subset S ⊆ V1 with |S| ≤ 2k − 1 such that the source minimal minimum (S, T)-terminal cut
(A,A) satisfies δ(A) = δ(V1) and A ⊆ V1.

We recall that for fixed disjoint subsets S, T ⊆ V , the source minimal minimum (S, T)-terminal cut is
unique. We emphasize the main feature of Theorem 1.3: it aims to recover only the hyperedges crossing the
cut (V1, V1) but not the cut (V1, V1) itself. It shows the existence of a small-sized witness which allows us to
recover δ(V1)—namely a pair (S, T) with |S|, |T | = O(k) for which δ(V1) is the cut-set of the source minimal
minimum (S, T)-terminal cut. In this sense, Theorem 1.3 addresses the drawback of Theorem 1.2.

Theorems 1.2 and 1.3 can be used to design a recursive algorithm that enumerates all minimum k-cut-sets
in deterministic polynomial time (along the lines of the algorithm of Chandrasekaran and Chekuri described
above). Here, we describe a more straightforward non-recursive deterministic polynomial-time algorithm.
For each pair of subsets of vertices S, T of size at most 2k − 1, we compute the source minimal minimum
(S, T)-terminal cut VS,T ; if G − δ(VS,T) has at least k connected components, then we add δ(VS,T) to the
candidate family F ; otherwise, we add VS,T to the collection C. Next, we consider all possible k-partitions
(U1, . . . , Uk) of the vertex set where all sets U1, . . . , Uk are in the collection C and add the set δ(U1, . . . , Uk) of
hyperedges to the family F . We now sketch the argument to show that the family F contains the (arbitrary)
minimum k-cut-set F . Recall that there exists a minimum k-partition (V1, . . . , Vk) such that F is the set
of hyperedges crossing this k-partition, i.e., F = δ(V1, . . . , Vk). We have two possibilities: (1) if d(Vi) < |F |
for every i ∈ [k], then by Theorem 1.2, every set Vi is in the collection C (by applying Theorem 1.2 to
(U = Vi, U = Vi) and arbitrary vertices s ∈ Vi, t ∈ Vi), and hence F ∈ F ; (2) if d(Vi) = |F | for some
i ∈ [k], then by Theorem 1.3, one of the sets VS,T has δ(VS,T) = δ(Vi) = F and hence, once again F ∈ F .
We can prune the family F to return the subfamily of minimum k-cut-sets in it. The size of the collection
C is O(n4k−2) and the size of the family F is O(n4k

2

). The run-time is O(n4k−2)T (n, p) + O(n4k
2

), where
T (n, p) is the time complexity for computing the source minimal minimum (s, t)-terminal cut in a n-vertex
hypergraph of size p.

Additional consequence of Theorem 1.3. Theorem 1.3 is the technical novelty of this work. We
emphasize another structural consequence of Theorem 1.3 by using it to bound the number of minimum
cut-sets in a hypergraph. Let t be an arbitrary vertex in the hypergraph G = (V,E). Consider the sets

H := {U ⊆ V \ {t} : (U,U) is a minimum cut in G} and
M := {δ(U) : U ∈ H}.

We note that M is the family of all minimum cut-sets in the hypergraph. By applying Theorem 1.3 for
k = 2 and T = {t}, we obtain that for every set U ∈ H, there exists a subset S ⊆ U with |S| ≤ 3 such that
the source minimal minimum (S, {t})-terminal cut (A,A) satisfies δ(A) = δ(U). Consequently, the size of
the setM is at most the number of possible ways to choose a non-empty subset S ⊆ V \ {t} of size at most

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2212

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

3 which is
(
n−1
1

)
+
(
n−1
2

)
+
(
n−1
3

)
= O(n3), where n := |V |. Thus, we have concluded that the number of

minimum cut-sets in a n-vertex hypergraph is O(n3).
We recall that the number of minimum cut-sets in a n-vertex hypergraph is known to be at most(

n
2

)
[6, 15]. So, the O(n3) upper bound on the number of minimum cut-sets that we obtained above based

on Theorem 1.3 appears to be weak. We show the following strengthening of Theorem 1.3 for k = 2 to get
the tighter bound.

Theorem 1.4. Let G = (V,E) be a hypergraph and P = (V1, V2) be a minimum cut. Then, for all non-
empty subsets T ⊆ V2, there exists a subset S ⊆ V1 with |S| ≤ 2 such that the source minimal minimum
(S, T)-terminal cut (A,A) satisfies δ(A) = δ(V1) and A ⊆ V1.

By applying Theorem 1.4 for T = {t}, we obtain that for every set U ∈ H, there exists a subset S ⊆ U
with |S| ≤ 2 such that the source minimal minimum (S, {t})-terminal cut (A,A) satisfies δ(A) = δ(U). Hence,
the size of the setM is at most the number of possible ways to choose a non-empty subset S ⊆ V \ {t} of
size at most 2 which is

(
n−1
1

)
+
(
n−1
2

)
=
(
n
2

)
. Thus, we have obtained a structural explanation (based on

Theorem 1.4) for the number of minimum cut-sets in a hypergraph being at most
(
n
2

)
. Theorem 1.4 can

also be used to enumerate all minimum cut-sets in a given hypergraph using
(
n
2

)
source minimal minimum

(S, T)-terminal cut computations.
Theorem 1.4 should be compared with a similar-looking structural theorem for graphs that was shown

by Goemans and Ramakrishnan [16]. Goemans and Ramakrishnan showed that (Theorem 15 in [16]) if G
is a connected graph, then for every set U ∈ H, there exists a subset S ⊆ V1 with |S| ≤ 2 such that (U,U)
is the source minimal minimum (S, {t})-terminal cut. This leads to a structural explanation for the number
of minimum cuts in a connected graph being at most

(
n
2

)
. Our Theorem 1.4 can be seen as a counterpart

of Goemans and Ramakrishnan’s result for hypergraphs, but it differs from their result in two aspects: (1)
their result does not hold for hypergraphs—the number of minimum cuts in a connected hypergraph could be
exponential as we have seen from the spanning-hyperedge-example and (2) the proof of their result is based on
the submodular triple inequality which holds only for the graph cut function but fails for the hypergraph cut
function. So, our Theorem 1.4 is more general as it handles minimum cut-sets in hypergraphs and moreover,
needs a different proof technique compared to [16]. We mention that Goemans and Ramakrishnan’s result
for connected graphs was our inspiration for Theorem 1.4, which in turn, was our starting point for Theorem
1.3.

Organization. We discuss special cases of Enum-Hypergraph-k-Cut that have been addressed in the
literature in Section 1.2. In Section 1.3, we recall properties of the hypergraph cut function that will be
useful to prove our structural theorems. This section contains a strengthening of a partition uncrossing
theorem from [2] whose proof appears in Appendix A. In Section 2, we formally describe and analyze the
deterministic polynomial-time algorithm for Enum-Hypergraph-k-Cut that utilizes our two structural
theorems (Theorems 1.2 and 1.3). We prove Theorems 1.2 and 1.3 in Sections 3 and 4 respectively. We
prove the strengthening of Theorem 1.3 for k = 2—namely Theorem 1.4—in the full version of this work.
We conclude with a few open problems in Section 5.

1.2 Related work In this section, we discuss known techniques for the enumeration problem in the special
case of k = 2 and the special case of graphs along with challenges involved in adapting these techniques to
hypergraphs for k ≥ 3.

Enum-Graph-k-Cut for k = 2. Graph-k-Cut for k = 2 is the global minimum cut problem (denoted
Graph-MinCut) which has been extensively studied. However, efficient deterministic enumeration of all
minimum cut-sets in a given connected graph is already non-trivial. Dinitz, Karzanov, and Lomonosov [11]
showed that the number of minimum cuts in a connected graph is at most

(
n
2

)
, where n is the number of

vertices in the input graph, and they can all be enumerated in deterministic polynomial time. In particular,
they designed a compact data structure, namely a cactus graph, to represent all minimum cuts in a connected
graph. The upper bound of

(
n
2

)
on the number of minimum cuts in a connected graph is tight as illustrated by

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2213

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

the cycle-graph on n vertices. Using the seminal random contraction technique, Karger [26] showed a stronger
result that the number of α-approximate minimum cuts in a connected graph is O(n2α) and they can all be
enumerated in randomized polynomial time for constant α. Karger’s tree packing technique [27] also leads to a
deterministic polynomial-time algorithm to enumerate all α-approximate minimum cuts in a connected graph
for constant α. Nagamochi, Nishimura, and Ibaraki [34] tightened Karger’s bound for a particular value of α
via the edge splitting operation: the number of (4/3− ε)-approximate minimum cuts in a connected graph is
at most

(
n
2

)
for any ε > 0. This fact was also shown by Goemans and Ramakrishnan [16] via a structural result

(see discussion after Theorem 1.4 above). Henzinger and Williamson [24] extended Nagamochi, Nishimura,
and Ibaraki’s edge splitting technique to show that the number of (3/2− ε)-approximate minimum cuts in a
connected graph is O(n2) for any ε > 0. The results of Nagamochi, Nishimura, and Ibaraki, Goemans
and Ramakrishnan, and Henzinger and Williamson are all constructive and deterministic (i.e., lead to
deterministic polynomial-time algorithms to enumerate the respective approximate minimum cuts) and they
bound the number of minimum cuts in a connected graph (as opposed to minimum cut-sets).
Polynomial-delay algorithms. An alternative line of work aims to enumerate all cuts in hypergraphs in
non-decreasing order of cut value with polynomial time delay between outputs. Such algorithms are known
as polynomial-delay algorithms in the literature. Polynomial-delay algorithms have been designed based on
polynomial-time solvability of minimum (s, t)-terminal cut and using the Lawler-Murty schema [1,23,33,40].
Since we know that the number of minimum cuts in a connected graph is polynomial, the existence of a
polynomial-delay algorithm immediately implies a polynomial-time algorithm to solve Enum-Graph-k-Cut
for k = 2. This approach does not extend to Enum-Hypergraph-k-Cut for k = 2 since the number of
minimum cuts in a hypergraph can be exponential (e.g., recall the spanning-hyperedge-example).

Enum-Hypergraph-k-Cut for k = 2. Hypergraph-k-Cut for k = 2 is the global minimum cut
problem (denoted Hypergraph-MinCut) which has also been extensively studied. We note that the
number of minimum cuts in a connected hypergraph could be exponential (e.g., consider the spanning-
hyperedge-example). But, how about the number of minimum cut-sets? The number of minimum cut-sets
in a hypergraph is at most

(
n
2

)
via decomposition theorems of Cunningham and Edmonds [9], Fujishige [13],

and Cunningham [8] on submodular functions. Cheng [7] designed an explicit hypercactus representation for
all minimum cut-sets in a hypergraph. Chekuri and Xu [6] designed a faster deterministic polynomial-time
algorithm to obtain a hypercactus representation (along with all minimum cut-sets) of a given hypergraph.
Ghaffari, Karger, and Panigrahi [15] (also see [3, 12]) introduced a random contraction technique to solve
Hypergraph-MinCut which also implied that the number of minimum cut-sets in a hypergraph is at most(
n
2

)
and that they can all be enumerated in randomized polynomial time.
We mention that in contrast to graphs, the number of constant-approximate minimum cut-sets in a

hypergraph can be exponential. In fact, the number of (1+ ε)-approximate minimum cut-sets in a connected
hypergraph can be exponential2 for any ε ∈ (0, 1). Moreover, the techniques of Nagamochi, Nishimura, and
Ibaraki, Goemans and Ramakrishnan, and Henzinger and Williamson even when restricted to minimum cuts
(as opposed to approximate minimum cuts) cannot extend to hypergraphs: This is because, their techniques
are tailored to enumerate all minimum cuts in a connected graph as opposed to all minimum cut-sets; we
have already seen that the spanning-hyperedge-example has exponential number of minimum cuts and hence,
all of them cannot be enumerated in polynomial time.
Multiterminal variants for k-cut: We mention that Graph-k-Cut and Hypergraph-k-Cut have natural
variants involving separating specified terminal vertices s1, s2, . . . , sk. These variants are NP-hard for k ≥ 3
even in graphs and hence, these variants are not viable lines of attack for Graph-k-Cut and Hypergraph-
k-Cut. We refer the reader to [2] for a discussion of approximation algorithms for these variants.

Enum-Graph-k-Cut. Graph-k-Cut for k ≥ 3 has a rich literature with substantial recent work
[5,17–22,25,28,31,32,37–39]. Goldschmidt and Hochbaum (1988) [17] initiated the study on Graph-k-Cut
by showing that it is NP-hard when k is part of the input and that it is polynomial-time solvable when k

2Consider the n-vertex hypergraph G = (V,E) where E consists of all size-2 hyperedges each of cost δ = ε(
(n
2

)
− (1+ ε)(n−

1))−1 and a hyperedge e = V of cost 1. The cost of a minimum cut is λ := 1 + δ(n − 1). The cost of every cut is at most
1 + δ

(n
2

)
≤ (1 + ε)λ.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2214

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

is any fixed constant (polynomial-time solvability is not obvious even for k = 3). Recall that we consider k
to be a fixed constant throughout this work. Goldschmidt and Hochbaum introduced a divide-and-conquer
approach for Graph-k-Cut which resulted in a deterministic polynomial-time algorithm. However, their
result did not guarantee any bound on the number of minimum k-partitions or minimum k-cut-sets in
connected graphs. Karger and Stein [28] gave a randomized polynomial-time algorithm for Graph-k-Cut
via the random contraction technique. In addition, they showed that the number of minimum k-partitions in
a connected graph is O(n2k−2) and they can all be enumerated in randomized polynomial time. The bound
on the number of minimum k-partitions in a connected graph has recently been improved to O(nk) [18,22].
We mention that the upper bound of O(nk) on the number of minimum k-partitions in a connected graph
is tight as illustrated by the cycle-graph on n vertices.

There are two known approaches to solve Enum-Graph-k-Cut in deterministic polynomial time: (1)
Thorup [39] showed that the tree packing approach can be used to obtain a polynomial-time algorithm
for Graph-k-Cut; this approach also extends to solve Enum-Graph-k-Cut (also see [5]). (2) Kamidoi,
Yoshida, and Nagamochi [25] extended Goldschmidt and Hochbaum’s divide and conquer approach to solve
Enum-Graph-k-Cut.

Hypergraph-k-Cut. The complexity of Hypergraph-k-Cut was open since the work of Goldschmidt
and Hochbaum for Graph-k-Cut (1988) [17] until recently. Although certain special cases of Hypergraph-
k-Cut were known to be solvable in polynomial time [14,42], considerable progress on Hypergraph-k-Cut
happened only in the last 3 years. Chandrasekaran, Xu, and Yu (2018) [3] designed the first randomized
polynomial-time algorithm for Hypergraph-k-Cut; their Monte Carlo algorithm runs in Õ(pn2k−1) time
where p =

∑
e∈E |e| is the representation size of the input hypergraph. Fox, Panigrahi, and Zhang [12]

improved the randomized run-time to Õ(mn2k−2), where m is the number of hyperedges in the input
hypergraph. Both these randomized algorithms are based on random contraction of hyperedges and are
inspired partly by earlier work in [15] for Hypergraph-MinCut. These randomized algorithms also imply
that the number of minimum k-cut-sets is O(n2k−2) and that all of them can be enumerated in randomized
polynomial time. Chandrasekaran and Chekuri (2020) [2] designed a deterministic polynomial-time algorithm
for Hypergraph-k-Cut via a divide and conquer approach. We emphasize that their algorithm finds a
minimum k-partition and does not have the tools to find all minimum k-cut-sets.

A polynomial bound on the number of minimum k-cut-sets along with the existence of a randomized
polynomial-time algorithm to enumerate all of them raises the possibility of a deterministic algorithm for
Enum-Hypergraph-k-Cut. As we mentioned earlier, there are two deterministic approaches for Enum-
Graph-k-Cut—tree packing and divide-and-conquer. The tree packing approach does not seem to extend to
hypergraphs (even for Hypergraph-MinCut). This leaves the divide-and-conquer approach. Notably, this
approach also led to the first deterministic algorithm for Hypergraph-k-Cut in the work of Chandrasekaran
and Chekuri [2]. As mentioned earlier, we adapt Chandrasekaran and Chekuri’s divide-and-conquer approach
and augment it with structural results for minimum k-cut-sets to prove our main result stated in Theorem
1.1.

1.3 Preliminaries Let G = (V,E) be a hypergraph. Throughout, we will follow the notation mentioned
in the second paragraph of Section 1.1. We will repeatedly rely on the fact that the hypergraph cut function
d : 2V → R+ is symmetric and submodular. We recall that a set function f : 2V → R is symmetric if
f(U) = f(U) for all U ⊆ V and is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for all subsets
A,B ⊆ V .

We will need a partition uncrossing theorem that is a strengthening of a result from [2]. We state
the strengthened version below. See Figure 1 for an illustration of the sets that appear in the statement of
Theorem 1.5. We emphasize that the second conclusion in the statement of Theorem 1.5 is the strengthening.
The proof of the second conclusion is similar to the proof of the first conclusion which appears in [2]—we
present a proof of both conclusions for the sake of completeness in Appendix A.

Theorem 1.5. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer and ∅ 6= R (U (V . Let
S = {u1, . . . , up} ⊆ U \ R for p ≥ 2k − 2. Let (Ai, Ai) be a minimum ((S ∪ R) \ {ui}, U)-terminal cut.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2215

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Suppose that ui ∈ Ai \ (∪j∈[p]\{i}Aj) for every i ∈ [p]. Then, the following two hold:

1. There exists a k-partition (P1, . . . , Pk) of V with U (Pk such that

cost(P1, . . . , Pk) ≤ 1

2
min{d(Ai) + d(Aj) : i, j ∈ [p], i 6= j}.

2. Moreover, if there exists a hyperedge e ∈ E such that e intersects W := ∪1≤i<j≤p(Ai∩Aj), e intersects
Z := ∩i∈[p]Ai, and e is contained in W ∪ Z, then the inequality in the previous conclusion is strict.

Figure 1: Illustration of the sets that appear in the statement of Theorem 1.5.

2 Enumeration Algorithm
We will use Theorems 1.2 and 1.3 to design a deterministic polynomial-time algorithm for Enum-
Hypergraph-k-Cut in this section. We describe the formal algorithm in Figure 2. It enumerates nO(k)

source minimal minimum (S, T)-terminal cuts and considers the cut-set crossing each cut in this collection.
If the removal of the cut-set leads to at least k connected components, then it adds such a cut-set to the
candidate family F ; otherwise, it adds the source set of the cut into a candidate collection C. Next, the
algorithm considers all possible k-partitions that can be formed using the sets in the collection C and adds
the set of hyperedges crossing the k-partition to the family F . Finally, it prunes the family F to return all
minimum k-cut-sets in it. The run-time guarantee and the cardinality of the family of k-cut-sets returned
by the algorithm are given in Theorem 2.1. Theorem 1.1 follows from Theorem 2.1 by observing that the
source minimal minimum (S, T)-terminal cut in a hypergraph can be computed in deterministic polynomial
time—e.g., it can be computed in a n-vertex hypergraph of size p in O(np) time [6].

Theorem 2.1. Let G = (V,E) be a n-vertex hypergraph of size p and let k be an integer. Then, Algorithm
Enum-Cuts(G, k) in Figure 2 returns the family of all minimum k-cut-sets in G and it can be implemented
to run in O(n4k−2)T (n, p) +O(n4k

2−2kp) time, where T (n, p) denotes the time complexity for computing the
source minimal minimum (s, t)-terminal cut in a n-vertex hypergraph of size p. Moreover, the cardinality of
the family returned by the algorithm is O(n2k(2k−1)).

Proof. We begin by showing correctness. The last step of the algorithm considers only k-cut-sets in the
family F , so the algorithm returns a subfamily of k-cut-sets. We only have to show that every minimum
k-cut-set is in the family F ; this will also guarantee that every k-cut-set in the returned subfamily is indeed
a minimum k-cut-set.

Let F ⊆ E be a minimum k-cut-set in G and let (V1, . . . , Vk) be a minimum k-partition such that
F = δ(V1, . . . , Vk). We will show that F is in the family F . We know that d(Vi) ≤ OPTk for every i ∈ [k].
We distinguish two cases:

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2216

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Algorithm Enum-Cuts(G = (V,E), k)
Input: Hypergraph G = (V,E) and an integer k ≥ 2
Output: Family of all minimum k-cut-sets in G
Initialize C ← ∅, F ← ∅
For each pair (S, T) such that S, T ⊆ V with S ∩ T = ∅ and |S|, |T | ≤ 2k − 1

Compute the source minimal minimum (S, T)-terminal cut (U,U)
If G− δ(U) has at least k connected components
F ← F ∪ {δ(U)}

Else
C ← C ∪ {U}

For each k-partition (U1, . . . , Uk) of V with U1, . . . , Uk ∈ C
F ← F ∪ {δ(U1, . . . , Uk)}

Among all k-cut-sets in the family F , return the subfamily of cheapest ones

Figure 2: Algorithm to enumerate hypergraph minimum k-cut-sets

1. Suppose d(Vi) < OPTk for every i ∈ [k].

Consider an arbitrary part Vi where i ∈ [k]. By Theorem 1.2, there exist disjoint subsets S, T ⊆ V
with |S|, |T | ≤ 2k − 2 such that (Vi, Vi) is the unique minimum (S, T)-terminal cut. Hence, the set
Vi is in the collection C. Consequently, all parts V1, . . . , Vk are in the collection C. Hence, the set
F = δ(V1, . . . , Vk) is added to the family F in the second for-loop.

2. Suppose there exists i ∈ [k] such that d(Vi) = OPTk.

In this case, we have δ(Vi) = F = δ(V1, . . . , Vk). By Theorem 1.3, there exist disjoint subsets S, T ⊆ V
with |S|, |T | ≤ 2k − 1 such that the source minimal minimum (S, T)-terminal cut (A,A) satisfies
δ(A) = δ(Vi) = F . Therefore, the set F is added to the family F in the first for-loop.

Thus, in both cases, we have shown that the set F is contained in the family F . Since the algorithm returns
the subfamily of hyperedge sets in F that correspond to minimum k-cut-sets, the set F is in the family
returned by the algorithm.

Next, we bound the run time and the number of minimum k-cut-sets returned by the algorithm. The
first for-loop can be implemented using O(n4k−2) source minimal minimum (s, t)-terminal cut computations.
Moreover, the size of the collection C is O(n4k−2). The number of tuples (U1, . . . , Uk) ∈ Ck is O(n4k

2−2k).
Verifying if a tuple (U1, . . . , Uk) forms a k-partition takes O(n) time. For a tuple which forms a k-
partition, computing the hyperedges crossing that partition takes O(p) time. Thus, the second for-loop
can be implemented to run in time O(n4k

2−2kp). The size of the family F is O(n4k
2−2k). Each k-

cut-set in F has representation size at most p. Hence, computing the size of each k-cut-set in F and
returning the cheapest ones can be implemented to run in time O(n4k

2−2kp). Thus, the overall run-time is
O(n4k−2)T (n, p) +O(n4k

2−2kp).

3 Proof of Theorem 1.2
We prove Theorem 1.2 in this section. We will use the following theorem to prove Theorem 1.2.

Theorem 3.1. Let G = (V,E) be a hypergraph and let OPTk be the value of a minimum k-cut-set in G for
some integer k ≥ 2. Suppose (U,U) is a 2-partition of V with d(U) < OPTk. Then, for every vertex s ∈ U ,
there exists a subset S ⊆ U\{s} with |S| ≤ 2k − 3 such that (U,U) is the unique minimum (S ∪ {s}, U)-
terminal cut.

Proof. Let s ∈ U . Consider the collection

C := {Q ⊆ V \{s} : U (Q, d(Q) ≤ d(U)}.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2217

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Let S be an inclusion-wise minimal subset of U \ {s} such that S ∩ Q 6= ∅ for all Q ∈ C, i.e., the set S is
completely contained in U\{s} and is a minimal transversal of C. Proposition 3.1 and Lemma 3.1 complete
the proof of Theorem 3.1 for this choice of S.

Proposition 3.1. The 2-partition (U,U) is the unique minimum (S ∪ {s}, U)-terminal cut.

Proof. For the sake of contradiction, suppose (Y, Y) is a minimum (S ∪ {s}, U)-terminal cut with Y 6= U .
This implies that S ∪{s} ⊆ Y and U (Y . Moreover, we have d(Y) ≤ d(U) because (U,U) is a (S ∪{s}, U)-
terminal cut. Consequently, the set Y is in the collection C. Since S is a transversal of the collection C, we
have that S ∩ Y 6= ∅. This contradicts the fact that S is contained in Y .

Lemma 3.1. The size of the subset S is at most 2k − 3.

Proof. For the sake of contradiction, suppose |S| ≥ 2k−2. Our proof strategy is to show the existence of a k-
partition with cost smaller than OPTk, thus contradicting the definition of OPTk. Let S := {u1, u2, . . . , up}
for some p ≥ 2k−2. For each i ∈ [p], let (Ai, Ai) be the source minimal minimum ((S∪{s})\{ui}, U)-terminal
cut. The following claim will allow us to show that the cuts (Ai, Ai) satisfy the hypothesis of Theorem 1.5.

Claim 3.1. For every i ∈ [p], we have d(Ai) ≤ d(U) and ui ∈ Ai.

Proof. Let i ∈ [p]. Since S is a minimal transversal of the collection C, there exists a set Bi ∈ C such that
Bi ∩ S = {ui}. Hence, (Bi, Bi) is a ((S ∪ {s})\{ui}, U)-terminal cut. Therefore,

d(Ai) ≤ d(Bi) ≤ d(U).

We will show that Ai is in the collection C. By definition, Ai ⊆ V \ {s} and U ⊆ Ai. If Ai = U , then
the above inequalities are equations implying that (Bi, Bi) is a minimum ((S ∪ {s})\{ui}, U)-terminal cut,
and consequently, (Bi, Bi) contradicts source minimality of the minimum ((S ∪ {s})\{ui}, U)-terminal cut
(Ai, Ai). Therefore, U (Ai. Hence, Ai is in the collection C.

We recall that the set S is a transversal for the collection C and moreover, none of the elements of S\{ui}
are in Ai by definition of Ai. Therefore, the vertex ui must be in Ai.

Using Claim 3.1, we observe that the sets U , R := {s}, S, and the partitions (Ai, Ai) for i ∈ [p] satisfy
the conditions of Theorem 1.5. By the first conclusion of Theorem 1.5 and Claim 3.1, we obtain a k-partition
(P1, . . . , Pk) of V such that

cost(P1, . . . , Pk) ≤ 1

2
min{d(Ai) + d(Aj) : i, j ∈ [p], i 6= j} ≤ d(U) < OPTk.

The last inequality above is by the assumption in the theorem statement. Thus, we have obtained a k-
partition whose cost is smaller than OPTk, a contradiction.

Applying Theorem 3.1 to (U,U) yields the following corollary.

Corollary 3.1. Let G = (V,E) be a hypergraph and let OPTk be the value of a minimum k-cut-set in
G for some integer k ≥ 2. Suppose (U,U) is a 2-partition of V with d(U) < OPTk. Then, for every
vertex t ∈ U , there exists a subset T ⊆ U\{t} with |T | ≤ 2k − 3 such that (U,U) is the unique minimum
(U, T ∪ {t})-terminal cut.

We now restate Theorem 1.2 and prove it using Theorem 3.1 and Corollary 3.1.

Theorem 1.2. Let G = (V,E) be a hypergraph and let OPTk be the value of a minimum k-cut-set in G
for some integer k ≥ 2. Suppose (U,U) is a 2-partition of V with d(U) < OPTk. Then, for every pair of
vertices s ∈ U and t ∈ U , there exist subsets S ⊆ U \ {s} and T ⊆ U \ {t} with |S| ≤ 2k− 3 and |T | ≤ 2k− 3
such that (U,U) is the unique minimum (S ∪ {s}, T ∪ {t})-terminal cut in G.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2218

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Proof. Let s ∈ U and t ∈ U . By Theorem 3.1, there exists a subset S ⊆ U \ {s} such that |S| ≤ 2k − 3 and
(U,U) is the unique minimum (S ∪ {s}, U)-terminal cut. By Corollary 3.1, there exists a subset T ⊆ U such
that |T | ≤ 2k − 3 and (U,U) is the unique minimum (U, T ∪ {t})-terminal cut. We now show that (U,U) is
the unique minimum (S ∪ {s}, T ∪ {t})-terminal cut.

We now show that (U,U) is the unique minimum (S∪{s}, T∪{t})-terminal cut. Let (Y, Y) be a minimum
(S ∪ {s}, T ∪ {t})-terminal cut. Suppose Y 6= U . We have the following observations:

1. Since (U,U) is a (S ∪ {s}, T ∪ {t})-terminal cut, we have that d(U) ≥ d(Y).

2. Since (U ∩ Y,U ∩ Y) is a (S ∪ {s}, U)-terminal cut, we have that d(U ∩ Y) ≥ d(U).

3. Since (U ∪ Y,U ∪ Y) is a (U, T ∪ {t})-terminal cut, we have that d(U ∪ Y) ≥ d(U).

Moreover, since Y 6= U , we have that either U ∩ Y 6= U or U ∪ Y 6= U . Since (U,U) is the unique minimum
(S ∪ {s}, U)-terminal cut and also the unique minimum (U, T ∪ {t})-terminal cut, it follows that either
d(U ∩ Y) > d(U) or d(U ∪ Y) > d(U). These observations in conjunction with the submodularity of the
hypergraph cut function imply that

2d(U) ≥ d(U) + d(Y) ≥ d(U ∩ Y) + d(U ∪ Y) > 2d(U),

a contradiction. Hence, Y = U .

4 Proof of Theorem 1.3
We prove Theorem 1.3 in this section. We begin with the following useful containment lemma. Variants
of this containment lemma have appeared in the literature before under slightly different hypothesis (e.g.,
see [2, 10,17,36]).

Lemma 4.1. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer, P = (V1, . . . , Vk) be a minimum k-
partition such that δ(P) = δ(V1), and S ⊆ V1, T ⊆ V1 such that T ∩Vj 6= ∅ for all j ∈ {2, 3, . . . , k}. Suppose
that (U,U) is the source minimal minimum (S, T)-terminal cut. Then, U ⊆ V1 and (U,U) is a minimum
(S, V1)-terminal cut.

Proof. We note that S ⊆ U ∩ V1, so (U ∩ V1, U ∩ V1) is a (S, T)-terminal cut. Thus, we have

(4.1) d(U ∩ V1) ≥ d(U).

Figure 3: Uncrossing in the proof of Lemma 4.1.

Now consider P ′ = (W1 := U ∪ V1,W2 := V2 \ U, . . . ,Wk := Vk \ U) (see Figure 3). For each
i ∈ {2, 3, . . . , k}, we have ∅ 6= T ∩ Vi ⊆ Vi \ U , so P ′ is a k-partition. Since δ(P) = δ(V1), every hyperedge
which crosses P must intersect V1. Consequently, every hyperedge which crosses P ′ must intersect U ∪ V1.
Therefore

(4.2) d(U ∪ V1) = cost(P ′) ≥ cost(P) = d(V1).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2219

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

By submodularity of the hypergraph cut function and inequalities (4.1) and (4.2), we have that

d(U) + d(V1) ≥ d(U ∩ V1) + d(U ∪ V1) ≥ d(U) + d(V1).

Therefore, inequality (4.1) is in fact an equation and hence, (U ∩ V1, U ∩ V1) is a minimum (S, T)-terminal
cut. If U \ V1 6= ∅, then (U ∩ V1, U ∩ V1) contradicts source minimality of the minimum (S, T)-terminal cut
(U,U). Hence, U \ V1 = ∅ and consequently, U ⊆ V1.

Since U ⊆ V1, we have that (U,U) is a (S, V1)-terminal cut. Furthermore, since T ⊆ V1, every (S, V1)-
terminal cut is also a (S, T)-terminal cut. Therefore, every (S, V1)-terminal cut must have weight at least
d(U), and hence (U,U) is a minimum (S, V1)-terminal cut.

We now restate and prove Theorem 1.3.

Theorem 1.3. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer, and P = (V1, . . . , Vk) be a minimum
k-partition such that δ(V1) = δ(P). Then, for all subsets T ⊆ V1 such that T ∩Vj 6= ∅ for all j ∈ {2, 3, . . . , k},
there exists a subset S ⊆ V1 with |S| ≤ 2k − 1 such that the source minimal minimum (S, T)-terminal cut
(A,A) satisfies δ(A) = δ(V1) and A ⊆ V1.

Proof. Let us fix an arbitrary T ⊆ V1 such that T ∩ Vj 6= ∅ for all j ∈ {2, . . . , k}. For a subset X ⊆ V1, we
denote the source minimal minimum (X,T)-terminal cut by (HX , HX). By Lemma 4.1, for all X ⊆ V1 we
have that HX ⊆ V1 and d(HX) ≤ d(V1). If |V1| ≤ 2k − 1, then choosing S = V1 proves the theorem. So, we
will assume henceforth that |V1| > 2k− 1. We will show that there exists a subset S ⊆ V1 with |S| ≤ 2k− 1
such that the source minimal minimum (S, T)-terminal cut (HS , HS) satisfies δ(HS) = δ(V1). This suffices
since we have that HS ⊆ V1 for all subsets S ⊆ V1 (by Lemma 4.1).

For the sake of contradiction, suppose that for every S ⊆ V1 with |S| ≤ 2k − 1, the source minimal
minimum (S, T)-terminal cut (HS , HS) does not satisfy δ(HS) = δ(V1). Our proof strategy is to obtain a
cheaper k-partition than (V1, . . . , Vk), thereby contradicting the optimality of (V1, . . . , Vk).

Let S ⊆ V1 be a set of size 2k − 1 such that HS is maximal—i.e., there does not exist S′ ⊆ V1 of size
2k− 1 such that HS′) HS . Let S := {u1, u2, . . . , u2k−1}. By assumption, we have that δ(HS) 6= δ(V1), but
since (V1, V1) is a (S, T)-terminal cut, we have that d(HS) ≤ d(V1). Therefore, δ(V1) \ δ(HS) is non-empty.
Let us fix a hyperedge e ∈ δ(V1) \ δ(HS). Let u2k ∈ e ∩ V1. Let C := S ∪ {u2k} = {u1, . . . , u2k−1, u2k}. For
notational convenience we will use C − ui to denote C \ {ui} and C − ui − uj to denote C \ {ui, uj} for all
i, j ∈ [2k]. The choice of the hyperedge e is crucial to our proof—its properties will be used much later in
our proof. We summarize the properties of the hyperedge e here.

Observation 4.1. The hyperedge e has the following properties:

1. e ∩ V1 6= ∅,

2. u2k ∈ e, and

3. e ⊆ HS.

Our strategy to arrive at a cheaper k-partition than (V1, . . . , Vk) is to apply the second conclusion of
Theorem 1.5. The next few claims will set us up to obtain sets that satisfy the hypothesis of Theorem 1.5.

Claim 4.1. For every i ∈ [2k], we have ui 6∈ HC−ui
.

Proof. If i = 2k, then by Observation 4.1 we have u2k ∈ e and e ⊆ HS so u2k 6∈ HS = HC−u2k
. Suppose

i ∈ [2k − 1]. Our proof will rely on the choice of S.
Suppose for contradiction that ui ∈ HC−ui for some i ∈ [2k − 1]. Then, we have that S ⊆ HC−ui , so

(HC−ui
∩HS , HC−ui

∩HS) is a (S, T)-terminal cut. Therefore,

(4.3) d(HC−ui
∩HS) ≥ d(HS).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2220

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Also, since (HC−ui ∪HS , HC−ui ∪HS) is a (C − ui, T)-terminal cut, we have that

(4.4) d(HC−ui
∪HS) ≥ d(HC−ui

).

By submodularity of the hypergraph cut function and inequalities (4.3) and (4.4), we have that

d(HS) + d(HC−ui) ≥ d(HC−ui ∩HS) + d(HC−ui ∪HS) ≥ d(HS) + d(HC−ui).

Therefore, inequality (4.3) is an equation, and consequently, (HC−ui
∩HS , HC−ui

∩HS) is a minimum (S, T)-
terminal cut. If HC−ui

∩HS (HS , then (HC−ui
∩HS , HC−ui

∩HS) contradicts source minimality of the
minimum (S, T)-terminal cut (HS , HS). Therefore HC−ui

∩HS = HS and hence, HS ⊆ HC−ui
. Also, the

vertex u2k is in C − ui but not in HS and hence, HS (HC−ui
. However, |C − ui| = 2k − 1. Therefore, the

set C − ui contradicts the choice of S.

The following claim will help in showing that ui, uj 6∈ HC−ui−uj
, which in turn, will be used to show

that the hypothesis of Theorem 1.5 is satisfied by suitably chosen sets.

Claim 4.2. For every i, j ∈ [2k], we have HC−ui−uj
⊆ HC−ui

.

Proof. Wemay assume that i 6= j. We note that (HC−ui−uj∩HC−ui , HC−ui−uj ∩HC−ui) is a (C−ui−uj , T)-
terminal cut. Therefore

(4.5) d(HC−ui−uj
∩HC−ui

) ≥ d(HC−ui−uj
).

Also, (HC−ui−uj
∪HC−ui

, HC−ui−uj
∪HC−ui

) is a (C − ui, T)-terminal cut. Therefore

(4.6) d(HC−ui−uj
∪HC−ui

) ≥ d(HC−ui
).

By submodularity of the hypergraph cut function and inequalities (4.5) and (4.6), we have that

d(HC−ui−uj
) + d(HC−ui

) ≥ d(HC−ui−uj
∩HC−ui

) + d(HC−ui−uj
∪HC−ui

)

≥ d(HC−ui−uj
) + d(HC−ui

).

Therefore, inequality (4.5) is an equation, and consequently, (HC−ui−uj
∩ HC−ui

, HC−ui−uj
∩HC−ui

)
is a minimum (C − ui − uj , T)-terminal cut. If HC−ui−uj

\HC−ui
6= ∅, then

(HC−ui−uj
∩ HC−ui

, HC−ui−uj
∩HC−ui

) contradicts source minimality of the minimum (C − ui − uj , T)-
terminal cut (HC−ui−uj , HC−ui−uj). Hence, HC−ui−uj \HC−ui = ∅ and consequently, HC−ui−uj ⊆ HC−ui .

Claim 4.2 implies the following Corollary.

Corollary 4.1. For every i ∈ [2k], we have ui, uj 6∈ HC−ui−uj
.

Proof. By Claim 4.1, we have that ui 6∈ HC−ui
and uj 6∈ HC−uj

. Therefore, ui, uj 6∈ HC−ui
∩HC−uj

. By
Claim 4.2, HC−ui−uj ⊆ HC−ui and HC−ui−uj ⊆ HC−uj . Therefore, HC−ui−uj ⊆ HC−ui ∩HC−uj , and thus,
ui, uj 6∈ HC−ui−uj .

The next claim will help in controlling the cost of the k-partition that we will obtain by applying Theorem
1.5.

Claim 4.3. For every i, j ∈ [2k], we have d(HC−ui
) = d(V1) = d(HC−ui−uj

).

Proof. Let a, b ∈ [2k]. Since (V1, V1) is a (C − ua, T)-terminal cut, we have that d(HC−ua
) ≤ d(V1). Since

(HC−ua
, HC−ua

) is a (C − ua− ub, T)-terminal cut, we have that d(HC−ua−ub
) ≤ d(HC−ua

) ≤ d(V1). Thus,
in order to prove the claim, it suffices to show that d(HC−ua−ub

) ≥ d(V1).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2221

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Suppose for contradiction that d(HC−ua−ub
) < d(V1). Let ` ∈ [2k]\{a, b} be an arbitrary element (which

exists since k ≥ 2). Let R := {u`}, U := V1, S′ := C−ua−u`, and Ai := HC−ua−ui for every i ∈ [2k]\{a, `}.
We note that |S′| = 2k − 2. By Lemma 4.1, we have that (Ai, Ai) is a minimum (C − ua − ui, V1)-terminal
cut for every i ∈ [2k] \ {a, `}. Moreover, by Corollary 4.1, we have that ui ∈ Ai \ (∪j∈[2k]\{a,i,`}Aj) for every
i ∈ [2k] \ {a, `}. Hence, the sets U , R, and S′, and the cuts (Ai, Ai) for i ∈ [2k] \ {a, `} satisfy the conditions
of Theorem 1.5. Therefore, by the first conclusion of Theorem 1.5, there exists a k-partition P ′ with

cost(P ′) ≤ 1

2
min{d(HC−ua−ui

) + d(HC−ua−uj
) : i, j ∈ [2k] \ {a, `}}.

By assumption, d(HC−ua−ub
) < d(V1) and b ∈ [2k] \ {a, `}, so min{d(HC−ua−ui

) : i ∈ [2k] \ {a, `}} < d(V1).
Since (V1, V1) is a (C−ua−ui, T)-terminal cut, we have that d(HC−ua−ui) ≤ d(V1) for every i ∈ [2k]\{a, `}.
Therefore,

1

2
min{d(HC−ua−ui

) + d(HC−ua−uj
) : i, j ∈ [2k] \ {a, `}} < d(V1) = cost(P).

Thus, we have that cost(P ′) < cost(P), which is a contradiction, since P is a minimum k-partition.

The next two claims will help in arguing properties about the hyperedge e which will allow us to use
the second conclusion of Theorem 1.5. In particular, we will need Claim 4.5. The following claim will help
in proving Claim 4.5.

Claim 4.4. For every i, j ∈ [2k], we have

d(HC−ui ∩HC−uj) = d(V1) = d(HC−ui ∪HC−uj).

Proof. Since (HC−ui
∩HC−uj

, HC−ui
∩HC−uj

) is a (C − ui − uj , T)-terminal cut, we have that d(HC−ui
∩

HC−uj) ≥ d(HC−ui−uj). By Claim 4.3, we have that d(HC−ui−uj) = d(V1) = d(HC−ui). Therefore,

(4.7) d(HC−ui ∩HC−uj) ≥ d(HC−ui).

Since (HC−ui ∪HC−uj , HC−ui
∪HC−uj

) is a (C − uj , T)-terminal cut, we have that

(4.8) d(HC−ui ∪HC−uj) ≥ d(HC−uj).

By submodularity of the hypergraph cut function and inequalities (4.7) and (4.8), we have that

d(HC−ui
) + d(HC−uj

) ≥ d(HC−ui
∩HC−uj

) + d(HC−ui
∪HC−uj

) ≥ d(HC−ui
) + d(HC−uj

).

Therefore, inequalities (4.7) and (4.8) are equations. Thus, by Claim 4.3, we have that

d(HC−ui
∩HC−uj

) = d(HC−ui
) = d(V1),

and
d(HC−ui ∪HC−uj) = d(HC−uj) = d(V1).

Claim 4.5. For every i, j, ` ∈ [2k] with i 6= j, we have HC−u`
⊆ HC−ui

∪HC−uj
.

Proof. If ` = i or ` = j the claim is immediate. Thus, we assume that ` 6∈ {i, j}. Let Q :=
HC−u`

\ (HC−ui
∪ HC−uj

). We need to show that Q = ∅. We will show that (HC−u`
\ Q,HC−u`

\Q)
is a minimum (C − u`, T)-terminal cut. Consequently, Q must be empty (otherwise, HC−u`

\ Q (HC−u`

and hence, (HC−u`
\Q,HC−u`

\Q) contradicts source minimality of the minimum (C − u`, T)-terminal cut
(HC−u`

, HC−u`
)).

We now show that (HC−u`
\Q,HC−u`

\Q) is a minimum (C − u`, T)-terminal cut. Since HC−u`
\Q =

HC−u`
∩ (HC−ui

∪HC−uj
), we have that C − ui − uj − u` ⊆ HC−u`

\Q. We also know that ui and uj are

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2222

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

contained in bothHC−u`
andHC−ui∪HC−uj . Therefore, C−u` ⊆ HC−u`

\Q. Thus, (HC−u`
\Q,HC−u`

\Q)
is a (C − u`, T)-terminal cut. Therefore,

(4.9) d(HC−u`
∩ (HC−ui

∪HC−uj
)) = d(HC−u`

\Q) ≥ d(HC−u`
).

We also have that (HC−u`
∪ (HC−ui ∪ HC−uj), HC−u`

∪ (HC−ui
∪HC−uj

)) is a (C − ui, T)-terminal
cut. Therefore, d(HC−u`

∪ (HC−ui ∪ HC−uj)) ≥ d(HC−ui). By Claims 4.3 and 4.4, we have that
d(HC−ui) = d(V1) = d(HC−ui ∪HC−uj). Therefore,

(4.10) d(HC−u`
∪ (HC−ui

∪HC−uj
)) ≥ d(HC−ui

∪HC−uj
).

By submodularity of the hypergraph cut function and inequalities (4.9) and (4.10), we have that

d(HC−u`
) + d(HC−ui

∪HC−uj
) ≥ d(HC−u`

∩ (HC−ui
∪HC−uj

)) + d(HC−u`
∪ (HC−ui

∪HC−uj
))

≥ d(HC−u`
) + d(HC−ui

∪HC−uj
).

Therefore, inequalities (4.9) and (4.10) are equations, so (HC−u`
\Q,HC−u`

\Q) is a minimum (C − u`, T)-
terminal cut.

Let R := {u2k}, U := V1, and let (Ai, Ai) := (HC−ui
, HC−ui

) for every i ∈ [2k − 1]. By Lemma 4.1, we
have that (Ai, Ai) is a minimum (C − ui, V1)-terminal cut for every i ∈ [2k − 1]. Moreover, by Claim 4.1,
we have that ui ∈ Ai \ (∪j∈[2k−1]\{i}Aj). Hence, the sets U , R, and S, and the cuts (Ai, Ai) for i ∈ [2k − 1]
satisfy the conditions of Theorem 1.5. We will use the second conclusion of Theorem 1.5. We now show
that the hyperedge e that we fixed at the beginning of the proof satisfies the conditions mentioned in the
second conclusion of Theorem 1.5. We will use Claim 4.5 to prove this. Let W := ∪1≤i<j≤2k−1(Ai∩Aj) and
Z := ∩i∈[2k−1]Ai as in the statement of Theorem 1.5.

Claim 4.6. The hyperedge e satisfies the following conditions:

1. e ∩W 6= ∅,

2. e ∩ Z 6= ∅, and

3. e ⊆W ∪ Z.

Proof. 1. By Lemma 4.1, for every i ∈ [2k − 1] we have V1 ⊆ Ai, and therefore V1 ⊆ W . Thus, by
Observation 4.1, we have that ∅ 6= e ∩ V1 ⊆ e ∩W .

2. By definition, for every i ∈ [2k − 1], we have u2k ∈ HC−ui
= Ai, and therefore u2k ∈ Z. Thus, by

Observation 4.1, we have that e ∩ Z 6= ∅.

3. For every i ∈ [2k − 1], let Yi := Ai \ W . We note that (Y1, . . . , Y2k−1,W,Z) is a partition of V .
Therefore, in order to show that e ⊆ W ∪ Z, it suffices to show that e ∩ Yi = ∅ for every i ∈ [2k − 1].
By Observation 4.1, we know that e ⊆ HS . We will show that HS ∩Yi = ∅ for every i ∈ [2k− 1] which
implies that e ∩ Yi = ∅ for every i ∈ [2k − 1]. Let us fix an index i ∈ [2k − 1]. We note that

Yi = Ai \W = Ai \

 ⋃
1≤a<b≤2k−1

(Aa ∩Ab)

 = Ai \

 ⋃
1≤a<b≤2k−1

((Aa ∩Ab) ∩Ai)


= Ai \

 ⋃
j∈[2k−1]\{i}

(Aj ∩Ai)

 = Ai \

 ⋃
j∈[2k−1]\{i}

Aj

 = Ai ∩

 ⋃
j∈[2k−1]\{i}

Aj


= Ai ∩

 ⋂
j∈[2k−1]\{i}

Aj

 =

 ⋂
j∈[2k−1]\{i}

Aj

 \Ai.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2223

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Therefore,

Yi ∩HS =

 ⋂
j∈[2k−1]\{i}

Aj

 \Ai
 ∩HS =

 ⋂
j∈[2k−1]\{i}

Aj

 \Ai
 \HS

=

 ⋂
j∈[2k−1]\{i}

HC−uj

 \ (HC−ui ∪HC−u2k
) .

By Claim 4.5, we have that HC−uj
⊆ HC−ui

∪ HC−u2k
for every j ∈ [2k − 1] \ {i}. Therefore,

HC−uj \ (HC−ui ∪HC−u2k
) = ∅ for every j ∈ [2k − 1] \ {i}, and hence, ⋂
j∈[2k−1]\{i}

HC−uj

 \ (HC−ui
∪HC−u2k

) = ∅.

Thus, we have Yi ∩HS = ∅.

By Claim 4.6, the hyperedge e satisfies the conditions of the second conclusion of Theorem 1.5. Therefore,
by Theorem 1.5, there exists a k-partition P ′ with

cost(P ′) < 1

2
min{d(Ai) + d(Aj) : i, j ∈ [2k − 1], i 6= j}

= d(V1) (By Claim 4.3)
= cost(P). (By assumption of the theorem)

Thus, we have obtained a k-partition P ′ with cost(P ′) < cost(P), which is a contradiction since P is a
minimum k-partition.

5 Conclusion and Open Problems
Several works in the literature have approached global cut and partitioning problems via minimum (S, T)-
terminal cuts (e.g., see [2,4,16,17,25,30,35,41]). Our work adds to this rich literature by showing that Enum-
Hypergraph-k-Cut can be solved via minimum (S, T)-terminal cuts. As a special case, our approach leads
to a more straightforward approach to enumerate all minimum cut-sets in a given hypergraph. We mention a
couple of open questions raised by our work whose investigation is likely to lead to further structural results
on hypergraph cuts.

1. For a long time, the known upper bound on the number of minimum k-partitions in connected graphs
was O(n2k−2) [5, 28, 39] while the known lower bound was Ω(nk) (cycle), where n is the number of
vertices in the input graph. A recent result improved the upper bound to O(nk) which also resulted in
a faster randomized algorithm to solve Graph-k-Cut [18,22]. We currently know that the number of
minimum k-cut-sets in hypergraphs is O(n2k−2) and is Ω(nk) (the lower bound comes from graphs).
Can we improve the upper bound on the number of minimum k-cut-sets in hypergraphs to O(nk)?

2. Can we improve the deterministic run-time to solve Enum-Hypergraph-k-Cut? Our deterministic
algorithm for Enum-Hypergraph-k-Cut runs in time nO(k2)p, where p is the size of the input
hypergraph. In particular, the run-time of our algorithm has a quadratic dependence on k in the
exponent of n. In contrast, the number of optimum solutions is only O(n2k−2)—i.e., linear dependence
on k in the exponent of n. We note that Enum-Graph-k-Cut as well as Hypergraph-k-Cut can
be solved deterministically in nO(k)p time [2, 5, 39].

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2224

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Acknowledgements. We would like to thank Chandra Chekuri for feedback that helped improve the
introductory section of this work. Karthik would like to thank Michel Goemans for clarifying the proof of
Theorem 15 in [16] via email.

References

[1] H. Aissi, A. Mahjoub, T. McCormick, and M. Queyranne, Strongly polynomial bounds for multiobjective and
parametric global minimum cuts in graphs and hypergraphs, Mathematical Programming (Preliminary version
in IPCO 2014) 154 (2015), no. 1-2, 3–28.

[2] K. Chandrasekaran and C. Chekuri, Hypergraph k-cut for fixed k in deterministic polynomial time, Proceedings
of the 61st Annual Symposium on Foundations of Computer Science (FOCS), 2020, pp. 810–821.

[3] K. Chandrasekaran, C. Xu, and X. Yu, Hypergraph k-cut in randomized polynomial time, Mathematical
Programming (Preliminary version in SODA 2018) 186 (2019), 85–113.

[4] Karthekeyan Chandrasekaran and Chandra Chekuri, Min-max partitioning of hypergraphs and symmetric
submodular functions, Proceedings of the 32nd annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
2021, pp. 1026–1038.

[5] C. Chekuri, K. Quanrud, and C. Xu, LP relaxation and tree packing for minimum k-cut, SIAM Journal on
Discrete Mathematics 34 (2020), no. 2, 1334–1353.

[6] C. Chekuri and C. Xu, Minimum cuts and sparsification in hypergraphs, SIAM Journal on Computing 47 (2018),
no. 6, 2118–2156.

[7] E. Cheng, Edge-augmentation of hypergraphs, Math Programming 84 (1999), 443–465.
[8] W. Cunningham, Decomposition of submodular functions, Combinatorica 3 (1980), 53–68.
[9] W. Cunningham and J. Edmonds, A combinatorial decomposition theory, Canad. J. Math 32 (1980), 734–765.
[10] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis, The complexity of multiterminal

cuts, SIAM Journal on Computing 23 (1994), no. 4, 864–894.
[11] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov, On the structure of a family of minimum weighted cuts

in a graph, Studies in Discrete Optimization (A. A. Fridman, ed.), Nauka Publishers, 1976.
[12] K. Fox, D. Panigrahi, and F. Zhang,Minimum cut and minimum k-cut in hypergraphs via branching contractions,

Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2019, pp. 881–896.
[13] S. Fujishige, Canonical decompositions of symmetric submodular functions, Discrete Appl. Math. 5 (1983),

175–190.
[14] T. Fukunaga, Computing minimum multiway cuts in hypergraphs, Discrete Optimization 10 (2013), no. 4, 371–

382.
[15] M. Ghaffari, D. Karger, and D. Panigrahi, Random contractions and sampling for hypergraph and hedge

connectivity, Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2017,
p. 1101–1114.

[16] M. X. Goemans and V. S. Ramakrishnan, Minimizing submodular functions over families of sets, Combinatorica
15 (1995), 499–513.

[17] O. Goldschmidt and D. Hochbaum, A Polynomial Algorithm for the k-cut Problem for Fixed k, Mathematics of
Operations Research (Preliminary version in FOCS 1988) 19 (1994), no. 1, 24–37.

[18] A. Gupta, D. Harris, E. Lee, and J. Li, Optimal Bounds for the k-cut Problem, Preprint in arXiv: 2005.08301,
2020.

[19] A. Gupta, E. Lee, and J. Li, An FPT Algorithm Beating 2-Approximation for k-Cut, Proceedings of the 29th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2018, pp. 2821–2837.

[20] , Faster exact and approximate algorithms for k-cut, Proceedings of the 59th IEEE annual Symposium
on Foundations of Computer Science, FOCS, 2018, pp. 113–123.

[21] , The number of minimum k-cuts: improving the Karger-Stein bound, Proceedings of the 51st ACM
Symposium on Theory of Computing, STOC, 2019, pp. 229–240.

[22] , The Karger-Stein algorithm is optimal for k-cut, Proceedings of the 52nd Annual ACM Symposium on
Theory of Computing, STOC, 2020, pp. 473–484.

[23] J. W. Hamacher, J.-C. Picard, and M. Queyranne, Ranking the cuts and cut-sets of a network, North Holland
Mathematical Studies 95 (1984), 183–200.

[24] M. Henzinger and D. Williamson, On the number of small cuts in a graph, Information Processing Letters 59
(1996), 41–44.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2225

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[25] Y. Kamidoi, N. Yoshida, and H. Nagamochi, A Deterministic Algorithm for Finding All Minimum k-Way Cuts,
SIAM Journal on Computing 36 (2007), no. 5, 1329–1341.

[26] D. Karger, Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm, Proceedings of the
4th annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 1993, pp. 21–30.

[27] , Minimum cuts in near-linear time, Journal of the ACM 47 (2000), no. 1, 46–76.
[28] D. Karger and C. Stein, A new approach to the minimum cut problem, Journal of the ACM 43 (1996), no. 4,

601–640.
[29] E. Lawler, Cutsets and Partitions of Hypergraphs, Networks 3 (1973), 275–285.
[30] Jason Li and Debmalya Panigrahi, Deterministic min-cut in poly-logarithmic max-flows, Proceedings of the 61st

Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2020, pp. 85–92.
[31] D. Lokshtanov, S. Saurabh, and V. Surianarayanan, A Parameterized Approximation Scheme for Min k-Cut,

Proceedings of the 61st IEEE annual Symposium on Foundations of Computer Science, FOCS, 2020, pp. 798–
809.

[32] P. Manurangsi, Inapproximability of Maximum Biclique Problems, Minimum k-Cut and Densest At-Least-k-
Subgraph from the Small Set Expansion Hypothesis, Algorithms 11(1) (2018), 10.

[33] H. Nagamochi and T. Ibaraki, Algorithmic Aspects of Graph Connectivity, Cambridge University Press,
Cambridge, 2008.

[34] H. Nagamochi, K. Nishimura, and T. Ibaraki, Computing all small cuts in an undirected network, SIAM Journal
on Discrete Mathematics 10 (1997), no. 3, 469–481.

[35] M. Nägele, B. Sudakov, and R. Zenklusen, Submodular minimization under congruency constraints, Combina-
torica 39 (2019), 1351–1386.

[36] K. Okumoto, T. Fukunaga, and H. Nagamochi, Divide-and-conquer algorithms for partitioning hypergraphs and
submodular systems, Algorithmica 62 (2012), no. 3, 787–806.

[37] R. Ravi and A. Sinha, Approximating k-cuts using network strength as a lagrangean relaxation, European Journal
of Operational Research 186 (2008), no. 1, 77–90.

[38] H. Saran and V. Vazirani, Finding k Cuts within Twice the Optimal, SIAM Journal on Computing 24 (1995),
no. 1, 101–108.

[39] M. Thorup, Minimum k-way Cuts via Deterministic Greedy Tree Packing, Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, STOC, 2008, pp. 159–166.

[40] V. Vazirani and M. Yannakakis, Suboptimal cuts: Their enumeration, weight and number (extended abstract),
Proceedings of the 19th International Colloquium on Automata, Languages and Programming, ICALP ’92,
1992, pp. 366–377.

[41] M. Xiao, An Improved Divide-and-Conquer Algorithm for Finding All Minimum k-Way Cuts, Proceedings of
19th International Symposium on Algorithms and Computation, ISAAC, 2008, pp. 208–219.

[42] , Finding minimum 3-way cuts in hypergraphs, Information Processing Letters (Preliminary version in
TAMC 2008) 110 (2010), no. 14, 554–558.

[43] L. Zhao, Approximation algorithms for partition and design problems in networks, Ph.D. thesis, Graduate School
of Informatics, Kyoto University, Japan, 2002.

[44] L. Zhao, H. Nagamochi, and T. Ibaraki, Greedy splitting algorithms for approximating multiway partition
problems, Mathematical Programming 102 (2005), no. 1, 167–183.

A Proof of Theorem 1.5
We prove Theorem 1.5 in this section. We will need certain partition uncrossing and partition aggregation
results from [2] that rely on more careful counting of hyperedges than simply employing the submodularity
inequality. We begin with some notation that will help in such careful counting—our notation will be identical
to the notation in [2]. Let (Y1, . . . , Yp,W,Z) be a partition of V . We recall that cost(Y1, . . . , Yp,W,Z) denotes
the number of hyperedges that cross the partition. We define the following quantities:

1. Let cost(W,Z) := |{e | e ⊆ W ∪ Z, e ∩W 6= ∅, e ∩ Z 6= ∅}| be the number of hyperedges contained in
W ∪ Z that intersect both W and Z.

2. Let α(Y1, . . . , Yp,W,Z) be the number of hyperedges that intersect Z and at least two of the sets in
{Y1, . . . , Yp,W}.

3. Let β(Y1, . . . , Yp, Z) be the number of hyperedges that are disjoint from Z but intersect at least two
of the sets in {Y1, . . . , Yp}.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2226

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

For a partition (Y1, . . . , Yp,W,Z), we will be interested in the sum of cost(Y1, . . . , Yp,W,Z) with the three
quantities defined above which we denote as σ(Y1, . . . , Yp,W,Z), i.e.,

σ(Y1, . . . , Yp,W,Z) := cost(Y1, . . . , Yp,W,Z) + cost(W,Z) + α(Y1, . . . , Yp,W,Z) + β(Y1, . . . , Yp, Z).

The precise interpretation of the quantity σ(Y1, . . . , Yp,W,Z) will not be important for our purposes—see [2]
for the interpretation.

The following result from [2] shows that a collection of sets can be uncrossed to obtain a partition with
small σ-value. We note the similarity of the hypothesis of Lemma A.1 with the hypothesis of Theorem 1.5
and once again, refer to Figure 1 for an illustration of the sets that appear in the statement of Lemma A.1.

Lemma A.1. [2] Let G = (V,E) be a hypergraph and ∅ 6= R (U (V . Let S = {u1, . . . , up} ⊆ U \ R for
p ≥ 2. Let (Ai, Ai) be a minimum ((S ∪R) \ {ui}, U)-terminal cut. Suppose that ui ∈ Ai \ (∪j∈[p]\{i}Aj) for
every i ∈ [p]. Let

Z := ∩pi=1Ai, W := ∪1≤i<j≤p(Ai ∩Aj), and Yi := Ai −W ∀i ∈ [p].

Then, (Y1, . . . , Yp,W,Z) is a (p+ 2)-partition of V with

σ(Y1, . . . , Yp,W,Z) ≤ min{d(Ai) + d(Aj) : i, j ∈ [p], i 6= j}.

Moreover, if p = 2, then the above inequality is an equation.

The next lemma from [2] will help in aggregating the parts of a `-partition P where ` ≥ 2k to a k-partition
K while controlling the cost of K.

Lemma A.2. [2] Let G = (V,E) be a hypergraph, k ≥ 2 be an integer, and (Y1, . . . , Yp,W,Z) be a partition
of V for some integer p ≥ 2k − 2. Then, there exist distinct i1, . . . , ik−1 ∈ [p] such that

2cost
(
Yi1 , . . . , Yik−1

, V \ (∪k−1j=1Yij)
)
≤ cost(Y1, . . . , Yp,W,Z) + α(Y1, . . . , Yp,W,Z) + β(Y1, . . . , Yp, Z).

We now restate and prove Theorem 1.5.

Theorem 1.5. Let G = (V,E) be a hypergraph, k ≥ 2 be an integer and ∅ 6= R (U (V . Let
S = {u1, . . . , up} ⊆ U \ R for p ≥ 2k − 2. Let (Ai, Ai) be a minimum ((S ∪ R) \ {ui}, U)-terminal cut.
Suppose that ui ∈ Ai \ (∪j∈[p]\{i}Aj) for every i ∈ [p]. Then, the following two hold:

1. There exists a k-partition (P1, . . . , Pk) of V with U (Pk such that

cost(P1, . . . , Pk) ≤ 1

2
min{d(Ai) + d(Aj) : i, j ∈ [p], i 6= j}.

2. Moreover, if there exists a hyperedge e ∈ E such that e intersects W := ∪1≤i<j≤p(Ai∩Aj), e intersects
Z := ∩i∈[p]Ai, and e is contained in W ∪ Z, then the inequality in the previous conclusion is strict.

Proof. For the first conclusion of the theorem, we will use the same proof that appeared in [2]. We need the
details of this proof to prove the second conclusion of the theorem.

We begin by proving the first conclusion. By applying Lemma A.1, we obtain a (p + 2)-partition
(Y1, . . . , Yp,W,Z) such that

σ(Y1, . . . , Yp,W,Z) ≤ min{d(Ai) + d(Aj) : i, j ∈ [p], i 6= j}

and moreover, U ⊆ W , where Yi = Ai −W for all i ∈ [p], W = ∪1≤i<j≤p(Ai ∩ Aj), and Z = ∩i∈[p]Ai. We
recall that p ≥ 2k− 2. Hence, by applying Lemma A.2 to the (p+ 2)-partition (Y1, . . . , Yp,W,Z), we obtain

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2227

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

a k-partition (P1, . . . , Pk) of V such that W ∪ Z ⊆ Pk and

cost(P1, . . . , Pk) ≤ 1

2
(cost(Y1, . . . , Yp,W,Z) + α(Y1, . . . , Yp,W,Z) + β(Y1, . . . , Yp, Z))(A.1)

≤ 1

2
(cost(Y1, . . . , Yp,W,Z) + cost(W,Z) + α(Y1, . . . , Yp,W,Z) + β(Y1, . . . , Yp, Z))(A.2)

=
1

2
σ(Y1, . . . , Yp,W,Z)(A.3)

≤ 1

2
min{d(Ai) + d(Aj) : i, j ∈ [p], i 6= j}.(A.4)

We note that U is strictly contained in Pk since U ∪ Z ⊆W ∪ Z ⊆ Pk and Z is non-empty.
We now prove the second conclusion of the theorem. If there exists a hyperedge e ∈ E such that e

intersects W , e intersects Z, and e is contained in W ∪ Z, then cost(W,Z) > 0. Consequently, inequality
(A.2) in the above sequence of inequalities should be strict.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2228

D
ow

nl
oa

de
d

06
/0

6/
22

 to
 1

28
.1

74
.1

92
.1

37
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Technical overview and main structural results
	Related work
	Preliminaries

	Enumeration Algorithm
	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Conclusion and Open Problems
	Proof of Theorem 1.5

