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Abstract
1.	 Predation on parasites is a common interaction with multiple, concurrent out-

comes. Free-living stages of parasites can comprise a large portion of some preda-
tors' diets and may be important resources for population growth. Predation can 
also reduce the density of infectious agents in an ecosystem, with resultant de-
creases in infection rates. While predator–parasite interactions likely vary with 
parasite transmission strategy, few studies have examined how variation in trans-
mission mode influences contact rates with predators and the associated changes 
in consumption risk.

2.	 To understand how transmission mode mediates predator–parasite interactions, 
we examined associations between an oligochaete predator Chaetogaster lim-
naei that lives commensally on freshwater snails and nine trematode taxa that 
infect snails. Chaetogaster is hypothesized to consume active (i.e. mobile), free-
living stages of trematodes that infect snails (miracidia), but not the passive infec-
tious stages (eggs); it could thus differentially affect transmission and infection 
prevalence of parasites, including those with medical or veterinary importance. 
Alternatively, when infection does occur, Chaetogaster can consume and re-
spond numerically to free-living trematode stages released from infected snails 
(cercariae). These two processes lead to contrasting predictions about whether 
Chaetogaster and trematode infection of snails correlate negatively (‘protective 
predation’) or positively (‘predator augmentation’).

3.	 Here, we tested how parasite transmission mode affected Chaetogaster–trematode 
relationships using data from 20,759 snails collected across 4 years from natu-
ral ponds in California. Based on generalized linear mixed modelling, snails with 
more Chaetogaster were less likely to be infected by trematodes that rely on active 
transmission. Conversely, infections by trematodes with passive infectious stages 
were positively associated with per-snail Chaetogaster abundance.

4.	 Our results suggest that trematode transmission mode mediates the net outcome 
of predation on parasites. For trematodes with active infectious stages, preda-
tory Chaetogaster limited the risk of snail infection and its subsequent pathology 
(i.e. castration). For taxa with passive infectious stages, no such protective effect 
was observed. Rather, infected snails were associated with higher Chaetogaster 
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1  | INTRODUC TION

Beyond their classical roles within hosts, parasite species are often 
involved in competitive, facilitative and predatory interactions with a 
diverse array of non-host taxa, highlighting their importance in eco-
systems and food webs (Tompkins et al., 2011). For instance, some 
parasites have complex, multi-host life cycles that include mass-
produced free-living infectious stages, many of which are consumed 
before reaching their intended hosts (Kaplan et  al.,  2009; McKee 
et  al.,  2020). Therefore, parasites function as important prey taxa 
and energy pools within some ecosystems (Preston et al., 2013). In 
freshwater systems, for example, cyclopoid copepods selectively 
consume free-living larval parasites, which have been documented 
as energetically valuable prey for invertebrate predators (McKee 
et al., 2020; Mironova et al., 2020). Indeed, parasites can comprise a 
large portion of some predators’ diets, enhancing individual growth 
rates and augmenting population sizes (Hopkins et al., 2013; Kagami 
et al., 2007). Taken together, such studies emphasize how predation 
on the infectious stages of parasites can alter consumptive interac-
tions and energy flows, thereby influencing both predator popula-
tions and food web structure (Johnson et al., 2010; Kuris et al., 2008; 
Lafferty et al., 2006).

Alongside energetic considerations, predator–parasite interac-
tions are also important for parasite transmission: predation on in-
fectious stages can reduce the density of parasite propagules and 
thus the risk of infection for hosts (Johnson et al., 2010; Thieltges 
et  al.,  2008). For example, through predation of trematode cer-
cariae, damselfly larvae reduced infection of frog hosts by 50% in 
laboratory trials (Orlofske et  al.,  2012). Similarly, in mesocosms, 
consumption of trematode infectious stages by intertidal crabs and 
shrimps reduced parasitic transmission to mollusc hosts by over 50% 
(Thieltges et al., 2008). Such predator–parasite interactions contrast 
with trophic transmission, in which predation of infected hosts ad-
vances the life cycle of the parasite (Choisy et  al.,  2003). That is, 
although both trophic transmission and predation of free-living 
stages provide predators with valuable energy (derived from hosts 
and/or parasites; Lafferty,  1992; McKee et  al.,  2020), the former 
promotes parasite life cycles and increases prevalence among hosts, 
while the latter terminates transmission and reduces prevalence. By 
limiting infection among potential hosts, predation on free-living 
infectious stages of parasites (or, ‘protective predation’) may have 

cascading impacts on host fitness and population densities (Johnson 
et al., 2010). Collectively, these observations suggest that predator–
parasite interactions are critical in shaping both ecological and epi-
demiological processes of ecosystems.

The occurrence and strength of predation on aquatic parasite 
stages is hypothesized to be mediated in part by life-history charac-
teristics of both parasites and predators that influence their contact 
rates and spatio-temporal overlap (e.g. Born-Torrijos et  al.,  2020; 
Kaplan et al., 2009). For parasites, these characteristics include the 
behaviour, life-form and habitat use of infectious stages (Thieltges, 
Jensen, et al., 2008). Among nematodes, for instance, the degree to 
which predation reduces infection depends on transmission mode 
(i.e. whether transmission relies on vectors, eggs or larvae): spe-
cies that use motile larvae for transmission are often consumed by 
invertebrate predators, while nematodes that rely on sessile eggs 
are not (Carvalho et al., 2009; d'Alexis et al., 2009; Wharton, 1980). 
Similarly, for trematodes, variation in predation risk can arise from 
species-level differences in cercarial space use (e.g. benthic vs. 
limnetic) and behaviour (e.g. swimming style and aggregation; 
Born-Torrijos et al., 2020, 2021; Selbach et al., 2019). Incorporating 
such trait-based information in laboratory experiments has greatly 
improved our understanding of variability in predator–parasite inter-
actions (Orlofske et al., 2015). Yet few studies have identified how 
life-history variability within parasite guilds mediates such interac-
tions in natural communities. Using observational data to quantify 
predator–parasite interactions in natural systems is thus needed to 
further elucidate the ecological roles of parasites within ecosystems.

Owing to their high biomass (Preston et  al.,  2013), trematode 
parasites are consumed by a diverse array of vertebrate and inver-
tebrate predators (e.g. Kaplan et al., 2009; Mironova et al., 2020). In 
some systems, trematode biomass can rival or eclipse that of major 
free-living species (Kuris et  al.,  2008; Thieltges, De Montaudouin, 
et al., 2008). Much of this biomass occurs within snails (Hechinger 
et  al.,  2009), which often function as first intermediate hosts for 
trematodes and from which abundant free-living cercariae emerge 
(Esch & Fernandez,  1994; Kuris et  al.,  2008). Infection by trema-
todes typically castrates snail hosts (Esch & Fernandez, 1994) and 
precipitates the conversion of host biomass into parasite biomass 
(Preston et al., 2013). Given the immense secondary production by 
trematodes within snail hosts, factors that limit infection of snails 
are especially influential in determining the role of trematodes in 

abundance, likely owing to the resource subsidy provided by cercariae. These find-
ings highlight the ecological and epidemiological importance of predation on free-
living stages while underscoring the influence of parasite life history in shaping 
such interactions.
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aquatic food webs. Importantly, trematodes infect snails in one 
of two ways: (a) active transmission by a swimming ciliated stage 
(miracidium) or (b) passive transmission via snail ingestion of trem-
atode eggs (Esch & Fernandez,  1994; Figure  1). These strategies 
vary across, but not within, trematode taxa. Among trematodes 
with active transmission, infection success may depend on the risk 
of consumption by predators, such as Chaetogaster limnaei limnaei 
(hereafter ‘Chaetogaster’)—an episymbiotic worm that occupies the 
head and mantle cavity of aquatic snails (Gruffydd, 1965). Previous 
research has emphasized the vulnerability of trematode miracidia 

to consumption by Chaetogaster worms, which can reduce infection 
success (Figure 1a; Khalil, 1961; Michelson, 1964; Wajdi, 1964). In 
contrast, passively transmitted eggs resting on the benthic habitat 
are much less likely to spatially overlap with (i.e. contact) Chaetogaster 
when being ingested by snails (Figure 1b; McKoy et al., 2011), sug-
gesting that the degree to which predation limits trematode infec-
tions in snails could depend on transmission mode (Ibrahim, 2007; 
McKoy et al., 2011; Rodgers et al., 2005).

In addition to limiting infection in snails (‘protective pre-
dation’), predator–parasite interactions in this system can also 

F I G U R E  1   Patterns of Chaetogaster and trematode co-occurrence reflect the dynamic interplay of transmission limitation and predator 
augmentation. Here, we provide graphical predictions of how unobserved interactions may shape observed relationships between 
Chaetogaster predators and trematode parasites, and how these relationships may vary based on parasite transmission mode. For trematodes 
with active transmission (a; in pink), predation of both miracidia (prior to infection) and cercariae (following infection) are predicted to act in 
concert and in opposite directions. First, during active transmission to snails (by miracidia), transmission limitation may produce a negative 
relationship between Chaetogaster abundance and trematode infections (protective effects). Then, during the release of cercariae (free-
living stages), the numerical response from consumption of cercariae may lead to a positive relationship between trematode infection and 
Chaetogaster abundance (predator augmentation). Thus, the observed outcome will depend on the relative strength of the two unobserved 
processes. Conversely, for trematodes with passive transmission (b; in blue), predation on eggs is rarely expected to occur, generating a null 
relationship between Chaetogaster abundance and trematode infection. Any observed positive relationship between trematode infection 
and Chaetogaster abundance should therefore primarily reflect predation on (and a numerical response to) cercariae
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result in predator augmentation (McKoy et  al.,  2011). Within in-
fected snails, trematodes reproduce asexually and release nu-
merous free-living infectious stages (cercariae; Figure  1; Esch & 
Fernandez,  1994). Relative to other trematode free-living stages 
(i.e. miracidia and eggs), cercariae are abundant and nutritious 
(Esch & Fernandez, 1994); they therefore represent an important 
food resource for a variety of invertebrate predators, including 
Chaetogaster (Figure  1; Hopkins et  al.,  2013; McKee et  al.,  2020; 
Preston et  al.,  2013). For instance, individual oligochaete mass 
and population sizes are linked to cercarial consumption (Schultz 
& Koprivnikar,  2021), and Chaetogaster populations can grow by 
65% in response to increased cercariae availability (Fernandez 
et al., 1991; Hopkins et al., 2013). Thus, alongside their role in pro-
tecting snails from initial trematode infection, Chaetogaster may 
also consume cercariae and respond numerically. Importantly, these 
two phenomena lead to potentially conflicting predictions about 
the expected relationship between predatory Chaetogaster and 
trematode infection among snails: if Chaetogaster consume invading 
miracidia and prevent infection in snails, we might expect predator 
protection, or a strong, negative association between Chaetogaster 
abundance and snail infection (Figure  1; ‘Transmission to snails’). 
Alternatively, if Chaetogaster feed primarily upon cercariae released 
by already-infected snails and derive a significant resource subsidy, 
we might expect predator augmentation, or a positive link between 
infected snails and Chaetogaster abundance (Figure  1; ‘Release of 
free-living stages’).

To understand the net effects of predator–parasite interactions 
for both transmission and predator abundance, we characterized 
relationships between trematode infection and Chaetogaster abun-
dance in an extensive dataset involving 20,759 examined snails and 
nine trematode taxa. Recognizing the potential for multiple forms of 
interaction between trematodes and Chaetogaster, we specifically 
sought to test the hypothesis that trematode transmission mode 
mediates the net outcome of interactions between Chaetogaster 
and trematodes in natural communities. Using data collected from 
79 ponds across 4 years in California, we tested how the net re-
lationship between Chaetogaster abundance and trematode in-
fection depended on transmission mode (actively vs. passively 
acquired infection). Importantly, for these observational data, the 
relationship between trematode infection and Chaetogaster abun-
dance is the product of predation on both miracidia and cercariae, 
which could be occurring simultaneously for some trematode 
taxa (Figure 1). Therefore, our approach evaluated which pattern 
emerged across an extensive dataset involving multiple sites, years 
and species, and assessed which process—‘protective predation’ 
or ‘predator augmentation’—was the predominant outcome. Our 
study thus offers insight into how parasite transmission mode me-
diates vulnerability to predators and modifies their roles as eco-
logical (i.e. as food resources) and epidemiological (i.e. as parasites) 
members of communities; it also provides a powerful empirical 
foundation for subsequent experiments that can robustly observe 
and quantify the predation of miracidia, eggs and diverse cercariae 
by Chaetogaster.

2  | MATERIAL S AND METHODS

2.1 | Study system

Between 2013 and 2016, we sampled freshwater snail populations 
within pond ecosystems of the Bay Area of California, USA. We sam-
pled a total of 120 ponds (range of ponds sampled per year: 79–97), 
most of which occurred on public lands (county and regional parks), 
were human constructed or modified (e.g. artificially deepened) and 
which served as water sources for grazing livestock. Ponds spanned 
broad ranges of perimeter, maximum depth, vegetation structure 
and water chemistry. Pulmonate snails of the genera Gyraulus, Radix, 
Lymnaea, Helisoma and Physa were present within our study area, 
although we focused on representatives from the last two genera 
owing to larger sample sizes (i.e. more snails dissected). The distribu-
tion of Helisoma and Physa snails varied among ponds: 73 ponds had 
both species, 27 had just Helisoma and 20 had just Physa. Helisoma 
and Physa host a diverse suite of digenean trematodes (Esch & 
Fernandez, 1994; McCaffrey & Johnson, 2017), most often as first in-
termediate hosts (i.e. the infections studied here) but also as second 
intermediate hosts for some trematode taxa (e.g. Echinostoma spp.). 
Evidence from field and laboratory studies suggests that Helisoma 
and Physa snails often use similar habitats (e.g. Harman, 1972; Turner 
& Chislock, 2010), though it is possible that differences in preferred 
habitat (e.g. benthic vs. vegetation substrate) could lead to differing 
rates of contact with trematode miracidia and eggs. Of the trema-
todes in this system, most are capable of infecting both Helisoma 
and Physa snails (Armatae morphotype, Brevifurcate-apharyngeate 
morphotype, Echinostoma spp., Halipegus spp., Strigeid morphotype, 
Zygocotyle lunata); however, Ribeiroia ondatrae and Clinostomum mar-
ginatum can infect only Helisoma, and Haematoloechus spp. can in-
fect only Physa (Ameel et al., 1949; Blair, 1974; Calhoun et al., 2020; 
Dronen Jr. & Lang, 1974; Fried et al., 2009; Ingles, 1933; Johnson 
et  al.,  2002; Lang,  1968; Olsen,  1986; Smyth & Smyth,  1980; 
Thomas, 1939).

2.2 | Field sampling

We visited each pond twice annually between May and August for 
snail collection. During visits, we collected snails with dip nets, seine 
nets and by hand. We targeted a sample size of 50 individuals per 
species per visit, although low snail densities sometimes precluded 
this goal. Between collection and dissection, snails were housed at 
~4℃ in 1-L containers specific to unique site × species combinations. 
Within 24–96  hr of collection, we dissected all snails (n  =  33,201 
total; Helisoma: 19,668; Physa: 13,533) after measuring shell width 
(Richgels et  al.,  2013). We dissected each snail under a dissecting 
microscope, first removing its shell and then examining each organ. 
We used forceps to carefully inspect the head and mantle of snails 
and estimate the number of observed Chaetogaster on the exterior of 
the snail; very few Chaetogaster were observed inside snail shells or 
organs but because it has been shown that this species can parasitize 
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snails (Smythe et al., 2015), future work on this system should quan-
tify precise Chaetogaster locations within snails. Because Chaetogaster 
abundance was often high and individuals were counted in situ (i.e. 
on snails), counts were often approximated to the nearest multiple of 
five. To confirm species identification of Chaetogaster limnaei limnaei, 
we examined wet mounts of Chaetogaster individuals under a com-
pound microscope. Some trematode taxa infect Chaetogaster as a 
second intermediate host via trophic transmission (e.g. Khalil, 1961); 
however, because no trematodes in this study system are known to 
infect Chaetogaster, predation is assumed to lead to cercariae death.

To quantify trematode infections, we dissected the snail go-
nadal tissue, which trematodes occupy and consume while under-
going several rounds of asexual reproduction prior to the release 
of cercariae (Schell,  1985). When infections were mature (i.e. 
cercariae-producing), we identified trematodes to the lowest possi-
ble taxonomic unit based primarily on cercaria morphology; in some 
cases, identification was aided by morphological traits of sporo-
cysts and rediae (larval trematode stages that give rise to cercariae; 
Schell, 1985). To incorporate transmission mode into our analyses, 
we categorized each trematode taxon as having either ‘active’ (i.e. 
miracidia penetration) or ‘passive’ (i.e. egg ingestion) transmission 
mode based on descriptions from previous research. In total, we 
identified trematodes of nine taxa—six taxa relied on active trans-
mission: Brevifurcate-apharyngeate morphotype (Ameel et al., 1949; 
Calhoun et al., 2020), Clinostomum marginatum (Ameel et al., 1949; 
Calhoun et  al.,  2020), Echinostoma spp. (Kanev,  1994), Ribeiroia 
ondatrae (Johnson et  al.,  2002), Strigeid morphotype (Blair,  1974) 
and Zygocotyle lunata (Fried et al., 2009); three taxa relied on pas-
sive transmission: Armatae morphotype (Dronen Jr. & Lang, 1974; 
Ingles,  1933; Lang,  1968; Smyth & Smyth,  1980), Haematoloechus 
spp. (Olsen, 1986; Smyth & Smyth, 1980) and Halipegus spp. (Smyth 
& Smyth,  1980; Thomas,  1939; see Appendix  S1 for more infor-
mation on trematode traits). Cases in which we detected rediae or 
sporocysts but no mature cercariae were classified as immature and 
omitted from analysis (n = 278).

2.3 | Statistical analysis

We used a GLMM to test for an association between Chaetogaster 
abundance and the probability of snail infection by trematodes—
and whether such a relationship varied by transmission mode (i.e. 
active- vs. passive-infecting trematodes). We limited our analy-
ses to pond  ×  year combinations that had at least one snail with 
Chaetogaster and at least one snail with a trematode infection. For 
this analysis, we used a ‘long data’ format, in which each dissected 
snail had multiple associated rows—one per trematode taxon capa-
ble of infecting that snail taxon—that indicated whether a snail was 
infected by a given trematode. Representatives of most trematode 
morphotypes/taxa were detected in both Helisoma and Physa snails, 
except for Ribeiroia ondatrae (Helisoma only), Clinostomum margina-
tum (Helisoma only) and Haematoloechus spp. (Physa only). We treated 
trematode infection as a binomial response (infected or uninfected) 

and specified fixed effects for snail species (Helisoma or Physa), snail 
size, day of year (as a numeric value), Chaetogaster abundance, trem-
atode transmission mode and a Chaetogaster ×  transmission mode 
interaction (to allow the effect of Chaetogaster on infection to vary 
by transmission mode). Day of year and Chaetogaster abundance 
were z-standardized prior to model inclusion. Individual snail size 
was a proxy for snail age (and thus cumulative exposure) and was 
z-standardized on a per-species basis by subtracting the mean size 
of that species and dividing by its standard deviation. Effectively, 
this allowed us to test whether there was an effect of snail size after 
accounting for snail species (as a fixed effect). We included random 
intercepts for snail individual (because each snail had nine associ-
ated rows of data), trematode taxon (to account for identity effects), 
site and collection event (e.g. 2013-event 1, 2013-event 2, 2014-
event 1, etc.). Including these random intercept terms accounted for 
any lack of independence within snail hosts, trematode taxa, sites 
and collection events (within- and among-year; Bolker et al., 2009). 
For fixed effects, we assessed the weight of evidence against a null 
model based on approximate p-values obtained from likelihood-ratio 
test (LRT) χ2 values (Bolker et al., 2009). To obtain p-values for the 
slopes describing the relationships between the probability of infec-
tion by passive and active trematodes and Chaetogaster abundance, 
we fit models with both active and passive specified as the refer-
ence level for the transmission factor. All statistical analyses were 
performed in the R programming environment (version 3.6.3; R Core 
Team, 2019) using the statistical analysis package glmmTMB (Brooks 
et al., 2017). Script to reproduce models and associated plots can be 
found in Appendix S2.

3  | RESULTS

Of the 120 sampled sites, 79 supported both Chaetogaster and trem-
atode infections in one or more years (annual range: 36–55). Within 
the 20,759 snails from these sites (Helisoma: 11,288; Physa: 9,471), 
we identified 2,515 mature trematode infections, including 2,134 in-
volving trematode taxa with active transmission and 381 involving 
taxa with passive transmission. Trematode infection prevalence was 
0.12 overall (i.e. among all snails) and varied widely between trans-
mission modes, between snail species and among trematode taxa 
(Table 1). Coinfections were exceedingly rare (<0.1%), as is typical in 
this study system (Richgels et al., 2013). We detected Chaetogaster 
within 38% of snails, with a mean count of 14.5 individuals per snail. 
The distribution of Chaetogaster among snails was highly aggregated, 
with many unoccupied snails and relatively few with high abun-
dance (maximum  =  109; variance-to-mean ratio  =  44.4; Figure  2). 
Mean Chaetogaster abundance was greatest on snails infected by 
trematodes with passive transmission (mean =  22.2), intermediate 
on uninfected snails (mean = 14.8) and lowest on snails infected by 
trematodes with active transmission (mean = 10.4; Figure 2).

The relationship between the probability of infection by trem-
atodes and Chaetogaster abundance depended strongly on trem-
atode transmission mode (i.e. active vs. passive; βscaled(Chaetogaster) × 
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transPassive ± SE = 0.50 ± 0.05; LRT: χ2 = 86, p < 0.0001). Snails har-
bouring more Chaetogaster were less likely to be infected by trema-
todes with active transmission (βscaled(Chaetogaster) ± SE = −0.24 ± 0.03; 
p < 0.0001); for every increase of 1 standard deviation in Chaetogaster 
abundance (25.4 individuals), the odds of trematode infection de-
creased by 21% (Figure  3a,b). In contrast, per-snail Chaetogaster 
abundance and infection by passively transmitted trematodes were 
positively associated (βscaled(Chaetogaster) ± SE = 0.26 ± 0.04; p < 0.0001); 
a 1 standard deviation increase in Chaetogaster abundance was asso-
ciated with 30% greater odds of infection (Figure 3c,d). Overall, the 
probability of infection by trematodes was greater for larger snails 

(βscaled(size) ± SE = 0.85 ± 0.02; LRT: χ2 = 1,384, p < 0.0001), collec-
tion events conducted later in the year (βscaled(doy) ± SE = 0.15 ± 0.04; 
LRT: χ2 = 11.4, p = 0.0007) and for Physa snails relative to Helisoma 
snails (βsnailPhysa ± SE = 0.17 ± 0.05; LRT: χ2 = 10.4, p = 0.001). Among 
random intercepts included in the model, the term for trematode 
taxon was associated with the most variance (1.49), followed by site 
(0.83), collection event (0.08) and individual snail identity (4.2 × 10–9). 
Collectively, these results reveal both negative and positive associ-
ations between Chaetogaster and trematodes, and indicate that the 
net observed outcome (‘protective predation’ vs. ‘predator augmen-
tation’) varied with transmission mode.

4  | DISCUSSION

Predation on free-living stages of parasites is a widespread eco-
logical interaction with multiple, potentially concurrent outcomes: 
consumption of free-living stages can inhibit parasite transmis-
sion (‘protective predation’) while also bolstering predator growth 
(‘predator augmentation’; d'Alexis et al., 2009; Johnson et al., 2010; 
Lafferty et al., 2006; Mironova et al., 2020; Thieltges et al., 2013). 
Yet, the ecological factors that mediate the outcomes of such in-
teractions remain poorly understood. Using an extensive dataset 
of predator–parasite co-occurrence that spanned multiple sites, 
years, host species and parasite taxa, we show that infection by 
trematodes was strongly linked to the abundance of predatory 
Chaetogaster worms, but that the direction of this relationship varied 
with parasite transmission mode. Specifically, greater Chaetogaster 
abundance was associated with a lower probability of snail infec-
tion by trematodes with active transmission (Figure 3a,b), suggesting 
that predation of infectious agents by Chaetogaster reduced infec-
tion of snail hosts by trematodes relying on active transmission (i.e. 
via swimming miracidia). Conversely, Chaetogaster abundance was 
positively associated with the probability of infection by trematodes 

Trematode group/taxa

Prevalence

Helisoma Physa Overall

Active transmission 0.053 (1,101) 0.050 (1,033) 0.103 (2,134)

Brevifurcate-apharyngeatea 0.001 (24) 0.002 (38) 0.003 (62)

Clinostomum marginatum 0.001 (13) NA 0.001 (13)

Echinostoma spp. 0.023 (477) 0.043 (884) 0.065 (1,361)

Ribeiroia ondatrae 0.015 (310) NA 0.015 (310)

Strigea spp. 0.011 (230) 0.005 (97) 0.016 (327)

Zygocotyle lunata 0.002 (47) 0.001 (14) 0.003 (61)

Passive transmission 0.013 (268) 0.005 (113) 0.018 (381)

Armataea 0.007 (148) 0.001 (28) 0.008 (176)

Haematoloechus spp. NA 0.003 (56) 0.003 (56)

Halipegus spp. 0.006 (120) 0.001 (29) 0.007 (149)

Overall 0.066 (11,288) 0.055 (9,471) 0.121 (20,759)

aMorphotype.

TA B L E  1   Trematode infection 
prevalence varied widely among 
transmission modes, trematode taxa 
and snail host species. Column labelled 
‘Overall’ contains the prevalence for all 
snails (Helisoma and Physa). Row labelled 
‘Overall’ contains prevalence values 
across all trematode taxa. All values were 
rounded to the nearest thousandth. 
Sample sizes (n) are shown in parentheses 
after prevalence values. Cells with ‘NA’ 
represent incompatible host–parasite 
combinations (i.e. a given parasite cannot 
use a given host)

F I G U R E  2   Chaetogaster abundance per snail was highly 
aggregated and varied with infection status. Raincloud plots 
depicting the distribution of Chaetogaster abundance among 
snails that were: uninfected (green), infected by trematodes with 
active transmission (pink) and infected by trematodes with passive 
invasion (blue). Boxplots depict median (zero for all), interquartile 
range (boxes) and full range of values (whiskers). Points depict 
individual observations (one point per snail) and have been jittered 
for visual clarity
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that relied on passive transmission (i.e. via ingestion of parasite eggs; 
Figure 3c,d). This suggests that while Chaetogaster are unlikely to af-
fect the transmission of eggs into their snail hosts, they likely do con-
sume and respond numerically to the trematode cercariae released 
from infected snails, as reported previously in laboratory studies 
(Fernandez et al., 1991; Hopkins et al., 2013). Our results thus high-
light the consequences and dependencies of predation on free-living 
parasite stages and contribute to a growing body of evidence that 
such interactions hold significance for both predator ecology and 
parasitic infection.

Predation on infectious trematode stages can have important 
consequences, but quantifying the magnitude of ‘protective preda-
tion’ by Chaetogaster in natural systems is challenged by confounding 
interactions. Specifically, when analysing field patterns (as we did 
here), the observed associations between Chaetogaster abundance 
and trematode infection are the product of unobserved predation 
on infectious stages entering the snail (miracidia and eggs) and cer-
cariae released from infected snails (Figure  1). Thus, if infectious 
stages evade Chaetogaster and successfully establish, then the nu-
merical response of Chaetogaster to subsequently released cercariae 
may partially obscure their protective role. It follows that our esti-
mate of Chaetogaster ‘protective predation’ against trematodes with 
active transmission is likely an underestimate. Conversely, because 
contact between Chaetogaster and trematode eggs is less likely, 
this confounding effect is weaker and we observed net predator 
augmentation. By demonstrating the importance of transmission 
mode in mediating the net outcome of Chaetogaster–trematode in-
teractions, our research helps clarify and unite prior findings. Many 
findings have documented evidence that Chaetogaster can par-
tially protect snails from trematode infections in both the labora-
tory (Michelson,  1964; Sankurathri & Holmes,  1976) and the field 
(Ibrahim, 2007; Rodgers et al., 2005). Yet, the absence of this pattern 

in other Chaetogaster–snail–trematode systems has generated uncer-
tainty about whether Chaetogaster predation is an important process 
for trematode infection more broadly (McKoy et al., 2011). McKoy 
et al.  (2011) speculated that the association between Chaetogaster 
abundance and trematode infection may vary with transmission 
mode, and our study provides quantitative, large-scale insights into 
when Chaetogaster is expected to inhibit transmission of trematodes 
to snail hosts. Given the ubiquity of snail–trematode–Chaetogaster 
interactions in freshwater habitats (e.g. Ibrahim, 2007), such insights 
can help improve understanding of parasite and disease dynamics in 
a range of systems.

Understanding when and to what degree ‘protective predation’ 
can reduce trematode transmission to snails has implications for 
snail population biology; energy flow through food webs; and pat-
terns of disease among humans, livestock and wildlife. Trematodes 
often occupy and consume the gonads of snails, thus castrating their 
hosts and eliminating the reproductive potential of infected snails 
(Esch & Fernandez,  1994). Thus, by helping to shape transmission 
risk and infection prevalence, Chaetogaster may affect snail popula-
tion dynamics, particularly where baseline trematode infection rates 
are high (Brown et  al.,  1988). Because snails are important herbi-
vores in aquatic systems (Rosemond et al., 1993), factors that alter 
trematode infection may also affect food web dynamics and produc-
tivity; such effects could manifest at both the individual scale (e.g. 
changes to snail behaviour) and the population scale (e.g. changes to 
snail population size; Morton & Silliman, 2019; Wood et al., 2007). 
The effects of limiting some trematode infections may extend be-
yond snails, which are typically just the first of several host taxa 
infected by trematodes. Downstream hosts—which can include hu-
mans, livestock and wildlife species of conservation concern—often 
suffer pathology and increased vulnerability to predation when in-
fected by trematodes. Indeed, in this system, trematode-induced 

F I G U R E  3   The observed relationship 
between Chaetogaster abundance 
and trematode infection depends on 
transmission mode. A GLMM revealed 
that Chaetogaster abundance was 
negatively associated with infection by 
trematodes with active transmission (a 
and b), suggesting a protective effect. 
Conversely, Chaetogaster abundance and 
infection by trematodes with passive 
transmission were positively associated (c 
and d), suggesting predator augmentation. 
The mean probability of infection also 
varied between Helisoma (a and c) and 
Physa (b and d) snails. Black lines depict 
the overall fixed effect of Chaetogaster 
while grey lines depict site-level random 
effects
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mortality of amphibians (second intermediate hosts) can exceed 
90% among populations (Wilber et al., 2020). Given that infection of 
second intermediate hosts (e.g. amphibians; Johnson et al., 2013) is 
tightly coupled to snail infection prevalence, reductions of infection 
among snails have potential consequences for a suite of host taxa. 
Moreover, reducing infection (and associated pathology) among in-
termediate hosts can affect transmission to the definitive hosts that 
serve as the source of eggs and miracidia that may ultimately infect 
snails (Lafferty & Morris, 1996). This suggests that cyclical dynamics 
could occur in which ‘protective predation’ generates local feedback 
cycles of decreasing infection and/or shifts in the relative abundance 
of parasite taxa with different transmission modes. Although such 
possibilities remain unexplored, the myriad consequences of ‘pro-
tective predation’ are potentially far-reaching.

Our results also reinforce the notion that parasites can be valu-
able food resources for predators and contribute to the growing rec-
ognition that life history helps shape the vulnerability of free-living 
stages to predation (Johnson et al., 2010). Previous work has shown 
that the consumption of free-living parasite stages can increase 
predator growth rates (Kagami et al., 2007) and even affect predator 
population dynamics (Hopkins et al., 2013); yet, detecting such out-
comes in natural communities is challenged by factors that obscure 
numerical responses. The positive association between Chaetogaster 
abundance and infection by trematodes with passive transmission 
suggests that Chaetogaster consume and respond numerically to 
emerging trematode cercariae (free-living stages). This corresponds 
with a previous finding that Chaetogaster densities on snails infected 
by Halipegus occidualis—which uses passive transmission—were sig-
nificantly greater than densities on uninfected snails (Fernandez 
et al., 1991). Yet, others have found that Chaetogaster populations 
increase dramatically in response to the cercariae of taxa with active 
transmission, such as Echinostoma spp. (Hopkins et al., 2013). In our 
observational study, potential numerical responses to Echinostoma 
spp. (and other taxa with active transmission) were numerically ob-
scured by ‘protective predation’ on miracidia. Beyond the impor-
tance of transmission mode, a key future question is to understand 
how functional traits of emerging cercariae affect their consumption 
risk for Chaetogaster. Cercariae traits such as size, mobility and di-
urnal timing of activity can influence vulnerability to predation by 
odonate larvae (Orlofske et al., 2015) and estuarine fishes (Kaplan 
et al., 2009). Given that Chaetogaster specialize on snails, show nu-
merical responses over short time windows and are poor dispersers 
among snails, this system offers an exciting opportunity to feasibly 
explore such questions in natural systems (Hopkins et al., 2015). For 
example, Chaetogaster have previously been found to consume cer-
cariae across a range of mobility values and body sizes, but direct 
comparisons of trait-mediated predation rates have not been made 
(e.g. Fernandez et al., 1991; Hopkins et al., 2013). An examination of 
such interactions among a broad range of predators, parasites and 
life stages will be especially helpful in better understanding how par-
asites affect energy flow in food webs.

The breadth of the current study (which spanned multiple taxa, 
sites and ecological conditions) suggests that our results represent 

a broad mean state of the system. Future experimental research 
may extend and validate our findings by examining dynamic in-
teractions between Chaetogaster and trematodes in a controlled 
setting. Notably, our statistical modelling of infection probabil-
ity implicitly assumed that Chaetogaster abundance at the time of 
dissection was proportional to abundance at the time of infection 
by trematodes. Chaetogaster could preferentially colonize infected 
snails to capitalize on the release of cercariae, although previous ex-
periments suggest this is unlikely (Hopkins et al., 2015). Similarly, if 
trematode infection alters snail conspecific attraction (e.g. Friesen 
& Detwiler, 2021), dispersal of Chaetogaster among snails could fur-
ther depend on trematode infection status. Even so, Chaetogaster 
populations are more likely to increase than decrease in the span 
between infection and dissection, owing to consumption of cer-
cariae and other prey (Hopkins et  al.,  2013). Thus, if Chaetogaster 
imperfectly protects against infection by miracidia and numerically 
responds when infection does occur, ‘protective predation’ would 
likely be obscured in observational data. We nevertheless observed 
a significant negative correlation between Chaetogaster abundance 
and the probability of infection by trematodes that rely on miracidia 
for transmission. Using this finding as a starting point, future exper-
iments could disentangle pre- and post-transmission dynamics of 
Chaetogaster populations, helping to further clarify the degree to 
which Chaetogaster can affect infection probability among snails. 
Such trials, by including multiple parasite taxa, could also conduct 
a detailed and controlled examination of how cercariae traits shape 
vulnerability and profitability to Chaetogaster. Our findings, based on 
robust observational data, thus provide motivation and groundwork 
for several avenues of future research that may offer insights rele-
vant to a range of ecologically, economically and medically important 
systems.
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