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Abstract. We consider the HYPERGRAPH-k-CUT problem. The input consists of a hypergraph
G � (V,E)with nonnegative hyperedge-costs c : E→ R+ and a positive integer k. The objec-
tive is to find a minimum cost subset F ⊆ E such that the number of connected components
in G – F is at least k. An alternative formulation of the objective is to find a partition of V
into k nonempty sets V1,V2, : : : ,Vk so as to minimize the cost of the hyperedges that cross
the partition. GRAPH-k-CUT, the special case of HYPERGRAPH-k-CUT obtained by restricting to
graph inputs, has received considerable attention. Several different approaches lead to a
polynomial-time algorithm for GRAPH-k-CUT when k is fixed, starting with the work of Gold-
schmidt and Hochbaum (Math of OR, 1994). In contrast, it is only recently that a randomized
polynomial time algorithm for HYPERGRAPH-k-CUT was developed (Chandrasekaran, Xu, Yu,
Math Programming, 2019) via a subtle generalization of Karger’s random contraction
approach for graphs. In this work, we develop the first deterministic algorithm for HYPER-

GRAPH-k-CUT that runs in polynomial time for any fixed k. We describe two algorithms both of
which are based on a divide and conquer approach. The first algorithm is simpler and runs in
nO(k2)m time while the second one runs in nO(k)m time, where n is the number of vertices and
m is the number of hyperedges in the input hypergraph. Our proof relies on new structural
results that allow for efficient recovery of the parts of an optimum k-partition by solvingmini-
mum (S,T)-terminal cuts. Our techniques give new insights even for GRAPH-k-CUT.

Funding: This workwas supported in part by the National Science Foundation [Grant CCF-1907937].
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1. Introduction
A hypergraph G � (V,E) consists of a finite set V of vertices and a finite set E of hyperedges where each e ∈ E is a
subset of V. In this work, we consider the HYPERGRAPH-k-CUT problem, in particular when k is a fixed constant.
The input to this problem consists of a hypergraph G � (V,E) with nonnegative hyperedge costs c : E→ R+ and a
positive integer k. The objective is to find a minimum-cost subset of hyperedges whose removal results in at least
k connected components. An equivalent partitioning formulation turns out to be quite important. In this formula-
tion, the objective is to find a partition of V into k nonempty sets V1,V2, : : : ,Vk so as to minimize the cost of the
hyperedges that cross the partition. A hyperedge e ∈ E crosses a partition (V1,V2, : : : ,Vk) if it has vertices in more
than two parts; that is, there exist distinct i, j ∈ [k] such that e ∩ Vi ≠ ∅ and e ∩ Vj ≠ ∅.

Cut and partitioning problems in graphs, hypergraphs, and related structures, including submodular func-
tions, are extensively studied in algorithms and combinatorial optimization literature for their theoretical impor-
tance and numerous applications. HYPERGRAPH-k-CUT is of interest for its applications and simplicity and also
because of its close connections to a special case, namely in graphs, and to a generalization, namely in submodu-
lar functions. For this reason, the complexity of HYPERGRAPH-k-CUT has been an intriguing open problem for sev-
eral years, with some important recent progress. First, we describe these closely related problems and some prior
work on them.

GRAPH-k-CUT: This is a special case of HYPERGRAPH-k-CUT where the input is a graph instead of a hypergraph.
When k � 2, GRAPH-k-CUT is the global minimum cut problem (GRAPH-MINCUT), which is a fundamental and well-
known problem. It is easy to see that GRAPH-MINCUT can be solved in polynomial time via reduction to min s-t
cuts; however, there is more structure in GRAPH-MINCUT, and this can be exploited to obtain faster deterministic
and randomized algorithms [23, 24, 33, 40]. The complexity of GRAPH-k-CUT for k ≥ 3 has also been extensively
investigated with substantial recent work. Goldschmidt and Hochbaum [16, 17] showed that GRAPH-k-CUT is
NP-Hard when k is part of the input and that it is polynomial-time solvable when k is any fixed constant (this is
not obvious even for k � 3). They used a divide-and-conquer approach for GRAPH-k-CUT that resulted in an
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algorithm with a running time of nO(k2). We will describe the technical aspects of this approach in more detail
later. This approach has been refined over several papers, culminating in an algorithm of Kamidoi et al. [22] that
ran in n(4+o(1))k time. Two very different approaches also give polynomial-time algorithms for fixed k. The random
contraction approach of Karger [23], via the improvement in Karger and Stein’s [24] work, led to a Monte Carlo
randomized algorithm with a running time of Õ(n2k−2). Very recently, Gupta and colleagues [20, 21] showed that
the Karger-Stein algorithm in fact runs in O(nk) time; n(1−o(1))k appears to be lower bound on the run-time via a
reduction from the problem of finding a maximum-weight clique of size k (see [28]). Another approach is via tree
packings, which was introduced by Karger for GRAPH-MINCUT. Thorup [41] showed that tree packings can also
be used to obtain a polynomial-time algorithm for GRAPH-k-CUT. Thorup’s [41] algorithm is deterministic and
runs in n2k+O(1) time and was clarified in [9] via an LP relaxation, and this also resulted in a slight improvement
in the runtime and currently yields the fastest deterministic algorithm. We defer discussion of polynomial-time
approximation algorithms for GRAPH-k-CUT, when k is part of the input, to the related work section.

Submodular Partition Problems: Graph and hypergraph cut functions are submodular, and one can view
GRAPH-k-CUT and HYPERGRAPH-k-CUT as special cases of a more general problem called SUBMODULAR-k-PARTITION

(abbreviated to SUBMOD-k-PART) that we define now. We recall that a real-valued set function f : 2V → R is sub-
modular iff f (A ∩ B) + f (A⋃

B) ≤ f (A) + f (B) for all A,B ⊆ V. Zhao et al. [43] defined SUBMOD-k-PART as follows;
given f specified via a value oracle and a positive integer k, partition V into nonempty sets V1,V2, : : : ,Vk so as to
minimize ∑k

i�1 f (Vi). A special case of SUBMOD-k-PART is SYM-SUBMOD-k-PART when f is symmetric (that is f (A) �
f (V\A) for all A ⊆ V). It is not hard to see that GRAPH-k-CUT is a special case of SYM-SUBMOD-k-PART. However,
HYPERGRAPH-k-CUT is not a special case of SYM-SUBMOD-k-PART, even though the hypergraph cut function is
itself symmetric.1 As observed in [34], one can reduce HYPERGRAPH-k-CUT to SUBMOD-k-PART. SUBMOD-k-PART and
SYM-SUBMOD-k-PART are very general problems. For k � 2, they can be solved in polynomial-time via submodular
function minimization. It is a very interesting open problem to decide whether they admit polynomial-time algo-
rithms for all fixed k. Okumoto et al. [34] showed that SUBMOD-k-PART is polynomial-time solvable for k � 3. They
generalized the work of Xiao [42], who showed that HYPERGRAPH-k-CUT is polynomial-time solvable for k � 3.
Queyranne [36] claimed, in 1999, a polynomial-time algorithm for SYM-SUBMOD-k-PART when k is fixed; however,
the claim was retracted subsequently. This is reported in [18], where it is also shown that SYM-SUBMOD-k-PART has
a polynomial-time algorithm for k ≤ 4.

Multiterminal variants: We also mention that GRAPH-k-CUT, HYPERGRAPH-k-CUT, and SUBMOD-k-PART have natural
variants involving separating specified terminal vertices s1, s2, : : : , sk. These versions are NP-hard for k ≥ 3. We
discuss approximation algorithms for these problems in the related work section.

HYPERGRAPH-k-CUT and main result: The complexity of HYPERGRAPH-k-CUT for fixed k has been open since the
work of Goldschmidt and Hochbaum [16] for graphs (1988). For k � 2, this is the HYPERGRAPH-MINCUT problem
and can be solved via reduction to min s-t cuts in directed graphs [27] or via other approaches that take advan-
tage of the submodularity structure of the hypergraph cut function (see [8] and references therein). For k ≥ 3 and
bounded rank hypergraphs, Fukunaga [14] generalized Thorup’s [41] tree-packing approach to solve HYPER-

GRAPH-k-CUT for fixed k — the run-time depends exponentially in the rank (rank is the maximum cardinality of a
hyperedge in the input hypergraph). It was also observed that Karger’s random contraction approach for graphs
easily extends to give a randomized algorithm for bounded rank hypergraphs. As we noted earlier, Xiao [42]
obtained a polynomial-time algorithm for HYPERGRAPH-k-CUT when k � 3. In fairly recent work, Chandrasekaran
et al. [5] obtained the first randomized polynomial-time algorithm for HYPERGRAPH-k-CUT for any fixed k; their
Monte Carlo algorithm runs in Õ(pn2k−1) time, where p �∑

e∈E |e| is the representation size of the input hyper-
graph. Subsequently, Fox et al. [13] improved the randomized runtime to Õ(mn2k−2), where m is the number of
hyperedges in the input hypergraph. Both these randomized algorithms are based on random contraction of
hyperedges and are inspired partly by earlier work in [15] for HYPERGRAPH-MINCUT.

The existence of a randomized algorithm for HYPERGRAPH-k-CUT raises the question of the existence of a deter-
ministic algorithm. Random contraction-based algorithms do not lend themselves naturally to derandomization.
Perhaps more pertinent is our interest in addressing the complexity of SUBMOD-k-PART. There is no natural ran-
dom contraction approach for this more general problem. For GRAPH-k-CUT, two distinct approaches lead to
deterministic algorithms, and among these, the tree-packing approach, like the random contraction approach,
does not appear to apply to SUBMOD-k-PART. This leaves the divide-and-conquer approach initiated in the papers
by Goldschmidt and Hochbaum [16, 17]. Is there a variant of this approach that works for HYPERGRAPH-k-CUT and
SUBMOD-k-PART? We discovered certain structural properties of HYPERGRAPH-k-CUT (that do not hold for other
submodular functions) to prove our main result stated below.

Theorem 1. There is a deterministic polynomial-time algorithm forHYPERGRAPH-k-CUT for any fixed k.
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We believe that our work gives additional impetus to finding a polynomial-time algorithm for SUBMOD-k-PART

when k is fixed.

1.1. Technical Overview and Structural Results
We focus on the unit-cost variant of the problem in the rest of this work for the sake of notational simplicity. We
note that this is without loss of generality since we allow multigraphs. All of our algorithms extend in a straight-
forward manner to arbitrary hyperedge costs. They rely only on minimum (s,t)-cut computations, and hence,
they are strongly polynomial-time algorithms.

A key algorithmic tool will be the use of terminal cuts. We need some notation. Let G � (V,E) be a hypergraph.
For a subset U of vertices, we will use U to denote V\U, δ(U) to denote the set of hyperedges crossing U and
d(U) :� |δ(U)| to denote the value of U. More generally, given a partition (V1,V2, : : : ,Vh), we denote the number
of hyperedges crossing the partition by cost(V1,V2, : : : ,Vh). Let S,T be disjoint subsets of vertices. A 2-partition
(U,U) is an (S,T)-terminal cut if S ⊆U ⊆ V\T. Here, the set U is known as the source set and the set U is known
as the sink set. A minimum valued (S,T)-terminal cut is known as a minimum (S,T)-terminal cut. Because there
could be multiple minimum (S,T)-terminal cuts, we will be interested in source maximal minimum (S,T)-terminal
cuts and source minimal minimum (S,T)-terminal cuts. These cuts are unique and can be found in polynomial-
time via standard maxflow algorithms. In fact, these definitions extend to general submodular functions. Given
f : 2V → R and disjoint sets S,T ⊆ V, we can define a minimum (S,T)-terminal cut for f as minU:S⊆U,T⊆U f (U).
Uniqueness of source maximal and source minimal (S,T)-terminal cuts follow from submodularity, and one can
also find these in polynomial time via submodular function minimization.

Our algorithm follows the divide-and-conquer approach that was first used by Goldschmidt and Hochbaum [16,
17] for GRAPH-k-CUT and in a more general fashion by Kamidoi et al. [22] to improve the running time for GRAPH-k-
CUT. The goal in this approach is to identify one part of some fixed optimum k-partition (V1,V2, : : : ,Vk), say V1

without loss of generality, and then recursively find a (k− 1) partition of V\V1. How do we find such a part? Gold-
schmidt and Hochbaum [16, 17] proved a key structural lemma for GRAPH-k-CUT. Suppose (V1,V2, : : : ,Vk) is an
optimum k-partition such that V1 is the part with the smallest cut value (i.e., |δ(V1)| ≤ |δ(Vi)| for all i ∈ [k]) and V1 is
maximal subject to this condition. Then, either |V1 | ≤ k− 2 or there exist disjoint sets S,T such that S ⊆ V1,T ⊆ V1

with |S| ≤ k− 1 and |T ∩ Vj | � 1 for every j ∈ {2, : : : , k} so that the source maximal minimum (S,T)-terminal cut is
(V1,V1). One can guess/enumerate all small-sized (S,T)-pairs to find an O(n2k−2)-sized collection of sets so that the
collection contains V1 and recursively finds an optimum (k− 1)-partition of V\U for each set U in the collection.
This leads to an nO(k2)-time algorithm for GRAPH-k-CUT.

Queyranne [36] claimed that a natural generalization of the preceding structural lemma holds in the more gen-
eral setting of SYM-SUBMOD-k-PART. However, as reported in Guinez and Queyranne [18], the claimed proof was
incorrect, and it was proved only for k � 3, 4. More importantly, as also noted in Guinez and Queyranne [18],
this structural lemma (even if true for arbitrary k) is not useful for SYM-SUBMOD-k-PART because one cannot recurse
on V\V1; the function f restricted to V\V1 is no longer symmetric. The reader might now wonder how the
approach works for GRAPH-k-CUT. Interestingly, GRAPH-k-CUT has the very nice property that the graph cut
function restricted to V\V1 is still symmetric.

However, HYPERGRAPH-k-CUT, the problem of interest here, is not a special case of SYM-SUBMOD-k-PART. Neverthe-
less, we are able to prove a strong structural characterization that we state below. We consider the partition view-
point of HYPERGRAPH-k-CUT. We will denote a k-partition by an ordered tuple. A k-partition is a minimum
k-partition if it has the minimum number of crossing hyperedges among all possible k-partitions. Because there
could be multiple minimum k-partitions, we will be interested in the k-partition (V1, : : : ,Vk) for which V1 is maximal;
formally, we define a minimum k-partition (V1, : : : ,Vk) to be a maximal minimum k-partition if there is no other mini-
mum k-partition (V′

1, : : : ,V
′
k) such that V1 is strictly contained in V′

1. The following is our main structural result.

Theorem 2. Let G � (V,E) be a hypergraph, and let (V1, : : : ,Vk) be a maximal minimum k-partition in G for an integer
k ≥ 2. Suppose |V1| ≥ 2k− 2. Then, for every subset T ⊆ V1 such that T intersects Vj for every j ∈ {2, : : : ,k}, there exists a
subset S ⊆ V1 of size 2k− 2 such that (V1,V1) is the source maximal minimum (S, T)-terminal cut.

Some important remarks regarding the preceding theorem are in order. First, this is surprising; for instance, if
the optimum k-partition V1, : : : ,Vk is unique, then the theorem allows us to find any part Vi of the optimum
k-partition V1, : : : ,Vk by solving minimum (S,T)-terminal cuts for S and T of bounded sizes (by noting that the
reordered k-partition (Vi,V1, : : : ,Vi−1,Vi+1, : : : ,Vk) is also a maximal minimum k-partition due to uniqueness and
by applying Theorem 2 to this reordered k-partition). Such a result was not known even for graphs. Secondly,
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our structural theorem differs crucially from the structural lemma of Goldschmidt and Hochbaum [17] for
GRAPH-k-CUT in that it does not rely on V1 being the part with the smallest cut value. This also explains why we
need S to be of size 2k− 2 instead of k – 1; one can show that 2k− 2 is tight for our structural theorem if we want
to identify an arbitrary part even when considering GRAPH-k-CUT. Third, our structural theorem does not hold for
general submodular functions. The theorem statement was partly inspired by experiments on small-sized
instances, and the proof is partly inspired by a structural theorem in Kamidoi et al. [22] for graphs.

Theorem 2 implies, relatively easily, an nO(k2)m-time algorithm for HYPERGRAPH-k-CUT, where n and m are the
number of vertices and hyperedges in the input hypergraph. We improve the running time to nO(k)m using a simi-
lar but more involved structural result that allows us to recover the union of k=2 parts of an optimum k-partition.
This high-level approach of recovering the union of k=2 parts of an optimum k-partition was developed in Kamidoi
et al. [22] for GRAPH-k-CUT. As we already mentioned in the preceding paragraph, a proof of a key structural lemma
in Kamidoi et al. [22] was an inspiration for our proofs, although the precise statement of our structural theorem is
different from the structural lemma of Kamidoi et al. [22] and more subtle. We clarify this subtlety; the structural
lemma in Kamidoi et al. [22] for graphs is that any 2-partition whose cut value is strictly smaller than half the opti-
mum k-cut value can be recovered as a minimum (S,T)-terminal cut for S and T of sizes at most k – 1. In contrast,
our structural theorem (Theorem 2) states that V1 — whose cut value need not necessarily be smaller than half the
optimum k-cut value — can be recovered as a minimum (S,T)-terminal cut for S and T of sizes at most 2k− 2. We
emphasize that the factor 2 in the conclusion of our structural result (i.e., in the size of S) is not simply a consequence
of weakening the hypothesis by a factor of 2 compared with that of Kamidoi et al. [22].

1.1.1. Organization. In Section 2, we formally describe and analyze the basic recursive algorithm that utilizes our
main structural theorem (Theorem 2). We prove an important uncrossing property of the hypergraph cut func-
tion in Section 3 and use it to prove Theorem 2 in Section 4. In Section 5, we prove a refined structural theorem
and use it in Section 6 to derive a faster algorithm based on divide-and-conquer.

1.2. Other Related Work
Our main focus is on HYPERGRAPH-k-CUT and GRAPH-k-CUT when k is fixed. As we mentioned already, GRAPH-k-CUT is
NP-hard when k is part of the input [16]. A 2(1− 1=k) approximation is known for GRAPH-k-CUT [39]; several other
approaches also give a 2-approximation (see [9, 35] and references therein). Manurangsi [31] showed that there is no
polynomial-time (2− ε)-approximation for any constant ε > 0 assuming the small set expansion hypothesis [37]. In con-
trast, HYPERGRAPH-k-CUT was shown [7] to be at least as hard as the densest k-subgraph problem. Combined with
results in Manurangsi [30], this shows that HYPERGRAPH-k-CUT is unlikely to have a subpolynomial factor approxima-
tion ratio and illustrates that HYPERGRAPH-k-CUT differs significantly from GRAPH-k-CUT when k is part of the input.

As we mentioned earlier, terminal versions of SUBMOD-k-PART and its special cases such as Multiway-Cut in
graphs have been studied extensively. The most general version here is SUBMOD-MULTIWAY-CUT; given a submod-
ular function f : 2V → R (by value oracle) and terminals {s1, s2, : : : , sk} ⊂ V, the goal is to find a partition
(V1, : : : ,Vk) to minimize ∑k

i�1 f (Vi) subject to the constraint that si ∈ Vi for every i ∈ [k]. These problems are
NP-hard even for k � 3, and the main focus has been on approximation algorithms. We refer the reader to [2, 6,
12, 43] for further references. We mention that for nonnegative f and fixed k, the best approximation algorithms
for SUBMOD-k-PART and SYM-SUBMOD-k-PART are via the terminal versions, a (1:5− 1=k) for SYM-SUBMOD-k-PART and a
2(1− 1=k)-approximation for SUBMOD-k-PART [6, 12].

Fixed parameter tractability of GRAPH-k-CUT has also been investigated. It is known that GRAPH-k-CUT is
W[1]-hard (and hence, not likely to be FPT) parameterized by k [11], whereas it is FPT when parameterized by k
and the solution size [26]. We observed, via a simple reduction from a result of Marx [32] on vertex separators,
that HYPERGRAPH-k-CUT is W[1] hard even when parameterized by k and the solution size. This also demonstrates
that HYPERGRAPH-k-CUT differs in complexity from GRAPH-k-CUT. A recent work [29] (also see [19, 25]) has shown
that GRAPH-k-CUT admits a fixed-parameter approximation scheme when parameterized by k. A fixed-parameter
approximation scheme is also known for min-max graph k-cut2 when parameterized by k [4].

Another problem closely related to HYPERGRAPH-k-CUT is the HYPERGRAPH-k-PARTITION problem. The input to
HYPERGRAPH-k-PARTITION is a hypergraph G � (V,E) and a positive integer k, and the goal is to partition V into k
nonempty sets V1, : : : ,Vk, but the objective is to minimize ∑k

i�1 |δG(Vi)|; this means that a hyperedge e that crosses
h ≥ 2 parts pays h instead of only once (as is the case in HYPERGRAPH- k-CUT). HYPERGRAPH-k-PARTITION is a special
case of SYM-SUBMOD-k-PART, and its complexity status for fixed k ≥ 5 is open. HYPERGRAPH-k-PARTITION in constant
rank hypergraphs is solvable in polynomial-time by relying on the fact that the number of constant-approximate
minimum k-cuts in a constant rank hypergraph is polynomial.
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2. Recursive Algorithm
Theorem 2 allows us to design a recursive algorithm for HYPERGRAPH-k-CUT. We need some notation in order to
describe the recursive algorithm. For a hypergraph G � (V,E) and for a subset U ⊆ V, let G[U] denote the hyper-
graph obtained from G by discarding the vertices in U and by discarding all hyperedges e ∈ E that intersect U.
The formal algorithm is described in Figure 1. It follows the high-level outline given in the technical overview. It
enumerates nO(k) minimum (S,T)-terminal cuts, one of which is guaranteed to identify one part of an optimum
k-partition, and then recursively finds an optimum (k− 1)-partition after removing the found part. The runtime
guarantee is given in Theorem 3. Theorem 1 follows from Theorem 3 by observing that the source maximal mini-
mum (s,t)-terminal cut in a hypergraph can be computed in deterministic polynomial time; for example, it can be
computed in time O(np logn) �O(n2m logn), where n, m, and p are the number of vertices, hyperedges, and the
size of the hypergraph respectively [8].

Theorem 3. Let G � (V,E) be a n-vertex hypergraph of size p, and let k ≥ 1 be an integer. Then, algorithm CUT(G, k)
given in Figure 1 returns a partition corresponding to a minimum k-cut in G, and it can be implemented to run in
nO(k2)T(n,p) time, where T(n, p) denotes the time complexity for computing the source maximal minimum (s, t)-terminal
cut in a n-vertex hypergraph of size p.

Proof. We first show the correctness of the algorithm. All candidates considered by the algorithm correspond to
a k-partition, so we have to show only that the algorithm returns a k-partition corresponding to a minimum k-
cut. We show this by induction on k. The base case of k � 1 is trivial. We show the induction step. Assume that
k ≥ 2. Let (V1, : : : ,Vk) be a maximal minimum k-partition with cost OPTk. By Theorem 2, the 2-partition (V1,V1) is
in C. By induction hypothesis, the algorithm will return a minimum (k− 1)-partition (Q1, : : : ,Qk−1) of G[V1].
Hence,

costG[V1 ](Q1, : : : ,Qk−1) ≤ costG[V1 ](V2, : : : ,Vk):
Therefore, the cost of the k-partition (V1,Q1, : : : ,Qk−1) is

d(V1) + costG[V1 ](Q1, : : : ,Qk−1) ≤ d(V1) + costG[V1 ](V2, : : : ,Vk) �OPTk:

Moreover, the k-partition (V1,Q1, : : : ,Qk−1) is in R. Hence, the algorithm returns a k-partition with cost at most
OPTk.

Next, we bound the runtime of the algorithm. Let N(k, n) denote the number of source maximal minimum
(s,t)-terminal cut computations executed by the algorithm CUT(G, k) on an n-vertex hypergraph G. We note that
|R| � |C| �O(n3k−3). Therefore,

N(k,n) ≤O(n3k−3)(1+N(k− 1,n)) and
N(1,n) �O(1):

Hence, N(k,n) �O(n3k(k−1)=2). The total runtime is dominated by the time to implement these minimum (s,t)-terminal
cuts, and hence, it isO(n3k(k−1)=2)T(n,p). w

Figure 1. Algorithm to compute minimum k-cut in hypergraphs.
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3. Uncrossing Properties of the Hypergraph Cut Function
In this section, we show the following uncrossing theorem, which will be useful to prove the main structural the-
orem. See Figure 2 for an illustration of the sets that appear in the statement of Theorem 4. The motivation for
the statement of this uncrossing theorem will be clearer in the proof of Theorem 2. The reader may want to skip
the rather long and technical proof of the uncrossing theorem in the first reading and come back to it after seeing
its use in the proof of Theorem 2.

Theorem 4. Let G � (V,E) be a hypergraph, k ≥ 2 be an integer, and ∅≠ R(U(V. Let S � {u1, : : : ,up} ⊆U\R for
p ≥ 2k− 2. Let (Ai ,Ai) be a minimum ((S⋃R)\{ui},U)-terminal cut. Suppose that ui ∈ Ai\(⋃j∈[p]\{i}Aj) for every i ∈ [p].
Then, there exists a k-partition (P1, : : : ,Pk) of V with U ( Pk such that

cost(P1, : : : ,Pk) ≤ 1
2
min d(Ai) + d(Aj) : i, j ∈ [p], i≠ j

{ }
:

The rest of the section is devoted to the proof of Theorem 4. We begin with some background on the hypergraph
cut function. Let G � (V,E) be a hypergraph. For a subset A of vertices, we recall that d(A) denotes the number of
hyperedges that intersect both A and A. The function d : 2V → R+ is known as the hypergraph cut function. The
hypergraph cut function is symmetric, that is,

d(A) � d(A) for all A ⊆ V,

and submodular, that is,

d(A) + d(B) ≥ d(A ∩ B) + d(A⋃
B) for all subsets A,B ⊆ V:

For our purposes, it will help to count the hyperedges more accurately than employ the submodularity inequal-
ity. We define some notation that will help in more accurate counting. Let (Y1, : : : ,Yp,W,Z) be a partition of V.
We recall that cost(Y1, : : : ,Yp,W,Z) denotes the number of hyperedges that cross the partition; when considering
these hyperedges, it is convenient to visualize each part of the partition as a single vertex obtained by contracting
the part. We define the following quantities:

1. Let cost(W,Z) � |{e | e ⊆W
⋃

Z, e ∩W ≠ ∅, e ∩ Z≠ ∅}| be the number of hyperedges contained in W
⋃

Z that
intersect bothW and Z.

2. Let α(Y1, : : : ,Yp,W,Z) be the number of hyperedges that intersect Z and at least two of the sets in
{Y1, : : : ,Yp,W}.

3. Let β(Y1, : : : ,Yp,Z) be the number of hyperedges that are disjointed from Z but intersect at least two of the sets
in {Y1, : : : ,Yp}.

For a partition (Y1, : : : ,Yp,W,Z), we will be interested in the sum of cost(Y1, : : : ,Yp,W,Z) and the three quanti-
ties defined above, which we denote as σ(Y1, : : : ,Yp,W,Z), that is,

σ(Y1, : : : ,Yp,W,Z) :� cost(Y1, : : : ,Yp,W,Z) + cost(W,Z) + α(Y1, : : : ,Yp,W,Z) + β(Y1, : : : ,Yp,Z):
We note that σ(Y1, : : : ,Yp,W,Z) counts every hyperedge that crosses the partition twice, except for those hyper-
edges that intersect exactly one of the sets in {Y1, : : : ,Yp} and exactly one of the sets in {W,Z} that are counted
exactly once (see Figure 3).

Figure 2. Illustration of the sets that appear in Theorem 4 and Lemma 2.
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The motivation behind considering the function σ(Y1, : : : ,Yp,W,Z) comes from Proposition 1. We emphasize
that the interpretation for σ(Y1, : : : ,Yp,W,Z) given in the proposition holds only for p � 2.

Proposition 1. Let (Y1,Y2,W,Z) be a partition of V, and let A1 :� Y1
⋃
W and A2 :� Y2

⋃
W. Then,

d(A1) + d(A2) � σ(Y1,Y2,W,Z):

Proof. We show the equality by a counting argument. We prove that each hyperedge is counted the same num-
ber of times in LHS and RHS. We note that both LHS and RHS count only hyperedges that cross the partition
(Y1,Y2,W,Z). Let e be a hyperedge that crosses the partition (Y1,Y2,W,Z). Figure 4 can be used to verify the
equality. Formally we have the following cases:

1. Suppose e intersects Z and exactly one of the sets in {Y1,Y2,W}.
(a) Suppose e intersects W. Then, e is counted twice in the LHS: by both d(A1) and d(A2). Moreover, e is

counted twice in the RHS: by cost(Y1,Y2,W,Z) and by cost(W,Z).
(b) Suppose e intersects exactly one of the sets in {Y1,Y2}. Then, e is counted once in the LHS: by exactly one

of d(A1) and d(A2). Moreover, e is counted exactly once in the RHS: by cost(Y1,Y2,W,Z).
2. Suppose e intersects Z and at least two of the sets in {Y1,Y2,W}. Then, e is counted twice in the LHS: by both

d(A1) and d(A2). Moreover, e is counted twice in the RHS: by cost(Y1,Y2,W,Z) and by α(Y1,Y2,W,Z).
3. Suppose e is disjointed from Z and intersects both Y1 and Y2. Then, e is counted twice in the LHS: by both d(A1)

and d(A2). Moreover, e is counted twice in the RHS: by cost(Y1,Y2,W,Z) and by β(Y1,Y2,Z).
4. Suppose e is disjointed from Z and intersects exactly one of the sets in {Y1,Y2}. Because e is crossing the parti-

tion (Y1,Y2,W,Z), it has to intersectW. Then, e is counted once in the LHS: by exactly one of d(A1) and d(A2). More-
over, e is counted exactly once in the RHS: by cost(Y1,Y2,W,Z). w

The next lemma will help in obtaining a (p+ 3)-partition from a (p+ 2)-partition while controlling the increase
in σ-value. This will be used in a subsequent inductive argument. See Figure 5 for an illustration of the sets
appearing in the statement of the lemma. Our proof of Lemma 1 is through case analysis. Currently, we do not
know how to prove this lemma without a somewhat laborious case analysis. We remark that this is partly
because of the fact that hyperedges can have different cardinalities as well as because of the fact that we cannot
rely only on submodularity of the hypergraph cut function.

Lemma 1. Let G � (V,E) be a hypergraph, and let (X1, : : : ,Xp,W0,Z0) be a partition for some integer p ≥ 1. Let Q ⊂ V be
a set such that

Yi :� Xi −Q≠ ∅ ∀i ∈ [p], Yp+1 :�Q ∩ Z0 ≠ ∅, Z :� Z0 −Q≠ ∅, and W :�W0
⋃ (Q\Z0)≠ ∅:

Then, (Y1, : : : ,Yp,Yp+1,W,Z) is a partition of V such that

σ(Y1, : : : ,Yp,Yp+1,W,Z) ≤ σ(X1, : : : ,Xp,W0,Z0) + d(Q) − d(W0 ∩Q):

Figure 3. Hyperedges counted By σ(Y1, : : : ,Yp,W,Z).

Notes. The dashed hyperedges are counted only by cost(Y1, : : : ,Yp,W,Z). The rest of the hyperedges are counted twice in σ(Y1, : : : ,Yp,W,Z):
once by the term cost(Y1, : : : ,Yp,W,Z) and once more by the indicated term.
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Proof. By definition, (Y1, : : : ,Yp,Yp+1,W,Z) is a partition of V.
We rewrite the required inequality in the following form as it becomes convenient to prove:

σ(X1, : : : ,Xp,W0,Z0) − σ(Y1, : : : ,Yp,Yp+1,W,Z) ≥ d(W0 ∩ Q) − d(Q): (1)

For a hyperedge e ∈ E, let λ0
e ∈ {0, 1, 2} and λ1

e ∈ {0, 1, 2} be the number of times that e is counted by σ(X1, : : : ,
Xp,W0,Z0) and σ(Y1, : : : ,Yp,Yp+1,W,Z), respectively, and let λQ

e ∈ {0, 1} and λW0∩Q
e ∈ {0, 1} be the number of times

that e is counted by d(Q) and d(W0 ∩Q) respectively.
Let ℓe :� λ0

e −λ1
e and re :� λW0∩Q

e −λQ
e . Thus, ℓe and re denote the number of times the hyperedge e is counted in

the LHS and RHS of inequality (1), respectively, and moreover, ℓe ∈ {0,61,62} and re ∈ {0,61} for every hyper-
edge e ∈ E. Let

Positives(ℓ) :� ∑
e∈E:ℓe≥1

ℓe,

Negatives(ℓ) :� ∑
e∈E:ℓe≤−1

ℓe,

Positives(r) :� ∑
e∈E:re�1

re, and

Negatives(r) :� ∑
e∈E:re�−1

re:

Claims 1 and 2 complete the proof of the lemma. w

Figure 4. Pictorial representation of hyperedges counted by σ(Y1,Y2,W,Z).

Notes. Contract each part to a single vertex. Left: hyperedges that are counted once; right: all the rest that are counted twice. Edges are shown as
lines, and hyperedges of size ≥ 3 are shown in dashed lines. One can verify that only hyperedges that are counted once in d(A1) + d(A2) corre-
spond to precisely those on the left.

Figure 5. Sets appearing in Lemma 1; unshaded portion corresponds toW.
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Claim 1.
Positives(ℓ) ≥ Positives(r):

Proof. Let e be a hyperedge such that re � 1. Then, e is counted by d(W0 ∩Q) but not d(Q). This means that
e ⊆Q, e ∩ (W0 ∩Q)≠ ∅, and e ∩ (Q\W0)≠ ∅. Thus, e intersects W0 ∩Q and at least one of the sets in {X1 ∩Q, : : : ,
Xp ∩Q,Z0 ∩Q}. It suffices to show that ℓe ≥ 1. We consider different cases for e below and show that ℓe ≥ 1 in all cases.

1. Suppose e intersects Z0 ∩Q.
(a) Suppose e is disjointed from X1 ∩Q, : : : ,Xp ∩Q. Then, λ0

e � 2 because e is counted by both
cost(X1, : : : ,Xp,W0,Z0) and by cost(W0,Z0). However, λ1

e � 1 because e is counted only by cost(Y1, : : : ,
Yp+1,W,Z). Hence, ℓe � λ0

e −λ1
e ≥ 1.

(b) Suppose e intersects at least one of the sets in {X1 ∩Q, : : : ,Xp ∩Q}. Then, λ0
e � 2, because e is counted by

both cost(X1, : : : ,Xp,W0,Z0) and by α(X1, : : : ,Xp,W0,Z0). However, λ1
e � 1 because e is counted only by

cost(Y1, : : : ,Yp+1,W,Z). Hence, ℓe � λ0
e −λ1

e ≥ 1.
2. Suppose e is disjointed from Z0 ∩Q. Then, e has to intersect at least one of the sets in {X1 ∩Q, : : : ,Xp ∩Q}.

(a) Suppose e intersects exactly one of the sets in {X1 ∩Q, : : : ,Xp ∩Q}. Then, λ0
e � 1 because e is counted only

by cost(X1, : : : ,Xp,W0,Z0). However, λ1
e � 0 because e does not cross the partition (Y1, : : : ,Yp+1,W,Z). Hence,

ℓe � λ0
e −λ1

e ≥ 1.
(b) Suppose e intersects at least two of the sets in {X1 ∩Q, : : : ,Xp ∩Q}. Then, λ0

e � 2 because e is counted by
both cost(X1, : : : ,Xp,W0,Z0) and by β(X1, : : : ,Xp,Z0). However, λ1

e � 0 because e does not cross the partition
(Y1, : : : ,Yp+1,W,Z). Hence, ℓe � λ0

e −λ1
e � 2 ≥ 1. w

Claim 2.
Negatives(ℓ) ≥ Negatives(r):

Proof. Let e be a hyperedge such that ℓe ≤ −1, that is, λ1
e ≥ λ0

e + 1. Then, λ1
e ≥ 1, and hence, e crosses the partition

(Y1, : : : ,Yp+1,W,Z). It suffices to show that re ≤ ℓe, that is, λQ
e ≥ λW0∩Q

e +λ1
e −λ0

e . We consider different cases for e
below, and for each case, we show that either λQ

e ≥ λW0∩Q
e +λ1

e −λ0
e or the case is impossible.

1. Suppose e is disjointed from Z. Then, e intersects at least one of the sets in {Y1, : : : ,Yp+1} because e crosses the
partition (Y1, : : : ,Yp+1,W,Z).

(a) Suppose e intersects exactly one of the sets in {Y1, : : : ,Yp+1}, say Yi for some i ∈ [p+ 1]. Then, e intersects
W and consequently, λ1

e � 1 because e is counted only by cost(Y1, : : : ,Yp+1,W,Z). Because 1 � λ1
e ≥ λ0

e + 1, it fol-
lows that λ0

e � 0. This implies that e does not cross the partition (X1, : : : ,Xp,W0,Z0). Therefore, i ∈ [p] and e ⊆ Xi

with e intersecting Xi ∩Q and Yi � Xi\Q. Consequently, λQ
e � 1 and λW0∩Q

e � 0. Hence, λQ
e ≥ λW0∩Q

e +λ1
e −λ0

e .
(b) Suppose e intersects at least two of the sets in {Y1, : : : ,Yp+1}. Then, λ1

e � 2 because e is counted by both
cost(Y1, : : : ,Yp+1,W,Z) as well as β(Y1, : : : ,Yp+1,Z).

i. Suppose e intersects at least two of the sets in {Y1, : : : ,Yp}. If e intersects Z0, then λ0
e � 2 because e is

counted by both cost(X1, : : : ,Xp,W0,Z0) and α(X1, : : : ,Xp,W0,Z0). If e is disjointed from Z0, then again
λ0
e � 2 because e is counted by both cost(X1, : : : ,Xp,W0,Z0) and β(X1, : : : ,Xp,W0,Z0). In both cases, we

have 2 � λ1
e ≥ λ0

e + 1 � 3, a contradiction.
ii. Suppose e intersects Yp+1 and exactly one of the sets in {Y1, : : : ,Yp}, say Yi for some i ∈ [p]. Then, λ0

e ≥ 1
because e crosses the partition (X1, : : : ,Xp,W0,Z0). Because 2 � λ1

e ≥ λ0
e + 1, it follows that λ0

e � 1. This
implies that none of cost(W0,Z0), α(X1, : : : ,Xp,W0,Z0), and β(X1, : : : ,Xp,Z0) count e. Therefore, e is dis-
jointed from W0, and e intersects Yp+1 � Z0 ∩Q and Yi � Xi\Q. Thus, e is counted by d(Q) but not
d(W0 ∩Q). Consequently, λQ

e � 1 and λW0∩Q
e � 0. Hence, λQ

e ≥ λW0∩Q
e +λ1

e −λ0
e .

2. Suppose e intersects Z. Then, e intersects at least one of the sets in {Y1, : : : ,Yp+1,W} because e crosses the parti-
tion (Y1, : : : ,Yp+1,W,Z).

(a) Suppose e intersects exactly one of the sets in {Y1, : : : ,Yp+1,W}.
i. Suppose e is disjointed from W. Then, e intersects exactly one of the sets in {Y1, : : : ,Yp+1}. Hence, e is

counted only by cost(Y1, : : : ,Yp+1,W,Z), and consequently, λ1
e � 1. Because 1 � λ1

e ≥ λ0
e + 1, we have that

λ0
e � 0. This implies that e does not cross the partition (X1, : : : ,Xp,W0,Z0). Hence, e can only intersect Yp+1.

Thus, e ⊆ Z0 � Z
⋃
Yp+1 with e intersecting Z � Z0\Q and Yp+1 � Z0 ∩Q. Thus, e is counted by d(Q) but not

d(W0 ∩Q). Consequently, λQ
e � 1 and λW0∩Q

e � 0. Hence, λQ
e ≥ λW0∩Q

e +λ1
e −λ0

e .
ii. Suppose e intersects W. Then, e ⊆W

⋃
Z, and e intersects W and e intersects Z. In particular, e is

counted by cost(Y1, : : : ,Yp+1,W,Z) and by cost(W,Z) and hence, λ1
e � 2. Because λ1

e ≥ λ0
e + 1, we have that
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λ0
e ≤ 1. We also note that e crosses the partition (X1, : : : ,Xp,W0,Z0), and therefore, λ0

e ≥ 1. Thus, λ0
e � 1.

This implies that none of cost(W0,Z0), α(X1, : : : ,Xp,W0,Z0), and β(X1, : : : ,Xp,Z0) count e and moreover, e
intersects Xi\Yi for some i ∈ [p], with e being contained in (Xi\Yi)⋃Z. Consequently, e intersects
Xi\Yi � Xi ∩Q, and e intersects Z, which implies that e is counted by d(Q). Because e is contained in
(Xi\Yi)⋃Z, it follows that e is disjointed from W0, and hence, e is not counted by d(W0 ∩Q). Conse-
quently, λQ

e � 1 and λW0∩Q
e � 0. Hence, λQ

e ≥ λW0∩Q
e +λ1

e −λ0
e .

(b) Suppose e intersects at least two of the sets in {Y1, : : : ,Yp+1,W}. Then, λ1
e � 2 because e is counted by both

cost(Y1, : : : ,Yp+1,W,Z) and α(Y1, : : : ,Yp+1,W,Z).
i. Suppose e intersects at least two of the sets in {Y1, : : : ,Yp}. Then λ0

e � 2 because e is counted by
cost(X1, : : : ,Xp,W0,Z0) as well as α(X1, : : : ,Xp,W0,Z0). Thus, 2 � λ1

e ≥ λ0
e + 1 � 3, a contradiction.

ii. Suppose e intersects exactly one of the sets in {Y1, : : : ,Yp}, say Yi for some i ∈ [p], and e intersects Yp+1
but is disjointed from W. Then, λ0

e ≥ 1 because e crosses the partition (X1, : : : ,Xp,W0,Z0). Because
2 � λ1

e ≥ λ0
e + 1, it follows that λ0

e � 1. This implies that none of cost(W0,Z0), α(X1, : : : ,Xp,W0,Z0), and
β(X1, : : : ,Xp,Z0) counts e and hence, e is contained in Yi

⋃
Z0 ⊆ Xi

⋃
Z0, with e intersecting Yp+1 � Z0 ∩Q

and Yi � Xi\Q. Thus, e is counted by d(Q) but not d(W0 ∩Q). Consequently, λQ
e � 1 and λW0∩Q

e � 0. Hence,
λQ
e ≥ λW0∩Q +λ1

e −λ0
e .

iii. Suppose e intersects exactly one of the sets in {Y1, : : : ,Yp}, say Yi for some i ∈ [p], and e intersects W
but is disjointed from Yp+1. Then, λ0

e ≥ 1 because e crosses the partition (X1, : : : ,Xp,W0,Z0). Because
2 � λ1

e ≥ λ0
e + 1, it follows that λ0

e � 1. This implies that none of cost(W0,Z0), α(X1, : : : ,Xp,W0,Z0), and
β(X1, : : : ,Xp,Z0) counts e. Therefore, e is contained in Xi

⋃
Z, and e intersects Xi ∩Q because e has to inter-

sect W. Moreoever, e intersects Yi � Xi\Q. Thus, e is counted by d(Q) but not d(W0 ∩Q). Consequently,
λQ
e � 1 and λW0∩Q

e � 0. Hence, λQ
e ≥ λW0∩Q

e +λ1
e −λ0

e .
iv. Suppose e is disjointed from Y1, : : : ,Yp and intersects both Yp+1 andW.

A. Suppose e intersects at least two of the sets in {X1 ∩Q, : : : ,Xp ∩Q}. Then, λ0
e � 2 because e is

counted by cost(X1, : : : ,Xp,W0,Z0) as well as α(X1, : : : ,Xp,W0,Z0). Thus, 2 � λ1
e ≥ λ0

e + 1 � 3, a
contradiction.

B. Suppose e does not intersect X1 ∩Q, : : : ,Xp ∩Q. Then, e intersects W0 because e is counted by
both cost(Y1, : : : ,Yp+1,W,Z) and α(Y1, : : : ,Yp+1,W,Z) (recall that we are in case (b)). Moreoever,
e ⊆W0

⋃
Z0. Therefore, λ0

e � 2 because e is counted by cost(X1, : : : ,Xp,W0,Z0) as well as cost(W0,Z0).
Thus, 2 � λ1

e ≥ λ0
e + 1 � 3, a contradiction.

C. Suppose e intersects exactly one of the sets in {X1 ∩Q, : : : ,Xp ∩Q}, say Xi ∩Q for some i ∈ [p],
and e intersects W0 ∩Q. Then, λ0

e � 2 because e is counted by both cost(X1, : : : ,Xp,W0,Z0) and
α(X1, : : : ,Xp,W0,Z0). Thus, 2 � λ1

e ≥ λ0
e + 1 � 3, a contradiction.

D. Suppose e intersects exactly one of the sets in {X1 ∩Q, : : : ,Xp ∩Q}, say Xi ∩Q for some i ∈ [p],
and e is disjointed from W0 ∩Q. Then, λ0

e ≥ 1 because e crosses the partition (X1, : : : ,Xp,W0,Z0).
Because 2 � λ1

e ≥ λ0
e + 1, it follows that λ0

e � 1. This implies that none of cost(W0,Z0), α(X1, : : : ,
Xp,W0,Z0), and β(X1, : : : ,Xp,Z0) counts e. Therefore, e is contained in (Xi ∩Q)⋃Z0, and e intersects
Yp+1 � Z0 ∩Q and Z � Z0\Q. Thus, e is counted by d(Q) but not d(W0 ∩Q). Consequently, λQ

e � 1
and λW0∩Q

e � 0. Hence, λQ
e ≥ λW0∩Q

e +λ1
e −λ0

e . w

The next lemma will help in uncrossing a collection of sets to obtain a partition with small σ-value. See Figure 2
for an illustration of the sets that appear in the statement of the lemma.

Lemma 2. Let G � (V,E) be a hypergraph and ∅≠ R(U(V. Let S � {u1, : : : ,up} ⊆U\R for p ≥ 2. Let (Ai ,Ai) be a min-
imum ((S⋃R)\{ui},U)-terminal cut. Suppose that ui ∈ Ai\(⋃j∈[p]\{i}Aj) for every i ∈ [p]. Let

Z :� ∩p
i�1 Ai , W :�⋃

1≤i<j≤p(Ai ∩ Aj), and Yi :� Ai −W ∀i ∈ [p]:
Then, (Y1, : : : ,Yp,W,Z) is a (p+ 2)-partition of V with

σ(Y1, : : : ,Yp,W,Z) ≤min{d(Ai) + d(Aj) : i, j ∈ [p], i≠ j}:
Proof. For every i ∈ [p], the set Yi is nonempty because ui ∈ Yi. The set W is nonempty because U ⊆W. The set Z
is nonempty because R ⊆ Z. By definition, the sets Y1, : : : ,Yp,W,Z are all disjointed, and their union contains all
vertices. Hence, (Y1, : : : ,Yp,W,Z) is a partition of V. Without loss of generality, let d(A1) ≤ d(A2) ≤ : : : ≤ d(Ap). We
bound the σ-value of the partition by induction on p.

The base case of p � 2 follows from Proposition 1. We show the induction step. Suppose that the statement
holds for p � q. We prove that it holds for p � q+ 1. Consider R0 :� R

⋃{uq+1} and S0 :� S\{uq+1}. Then, (Ai ,Ai) is
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still a minimum ((S0⋃R0)\{ui},U)-terminal cut for every i ∈ [q], and moreover, ui ∈ Ai\⋃j∈[q]\{i}Aj for every
i ∈ [q]. By induction hypothesis, we get that for the sets

Z0 :�∩q
i�1 Ai , W0 :�⋃

1≤i<j≤q(Ai ∩ Aj), and Xi :� Ai −W ∀i ∈ [q],
we have

σ(X1, : : : ,Xq,W0,Z0) ≤ d(A1) + d(A2):
The partition (X1, : : : ,Xq,W0,Z0) and the set Q :� Aq+1 satisfy the conditions of Lemma 1. By Lemma 1, we obtain
that

σ(Y1, : : : ,Yq,Yq+1,W,Z) ≤ σ(X1, : : : ,Xq,W0,Z0) + d(Aq+1) − d(W0 ∩ Aq+1):
Because (W0 ∩ Aq+1 ,W0 ∩ Aq+1) is a feasible ((S⋃R)\{uq+1},U)-terminal cut, we have that d(Aq+1) ≤ d(W0 ∩ Aq+1).
Hence,

σ(Y1, : : : ,Yq,Yq+1,W,Z) ≤ σ(X1, : : : ,Xq,W0,Z0) ≤ d(A1) + d(A2): w

The next lemma will help in aggregating the parts of a 2k-partition P to a k-partition K so that the cost of K is at
most half the σ-value of P.

Lemma 3. Let G � (V,E) be a hypergraph, k ≥ 2 be an integer, and (Y1, : : : ,Yp,W,Z) be a partition of V for some integer
p ≥ 2k− 2. Then, there exists distinct i1, : : : , ik−1 ∈ [p] such that

2cost Yi1 , : : : ,Yik−1 ,V\(⋃k−1
j�1 Yij)

( )
≤ cost(Y1, : : : ,Yp,W,Z) + α(Y1, : : : ,Yp,W,Z)
+ β(Y1, : : : ,Yp,Z) − cost(W,Z):

Proof. Suppose that the lemma is false. Pick a counterexample hypergraph G � (V,E) such that |V| + |E| is mini-
mum. Hence, for every distinct i1, : : : , ik−1 ∈ [p], we have

2cost Yi1 , : : : ,Yik−1 ,V\(⋃k−1
j�1 Yij)

( )
> cost(Y1, : : : ,Yp,W,Z) + α(Y1, : : : ,Yp,W,Z)
+ β(Y1, : : : ,Yp,Z) − cost(W,Z):

Minimality of the counterexample implies that |Yi | � 1 for every i ∈ [p] and |W| � 1 � |Z| (otherwise, we can obtain
a smaller counterexample by contracting the corresponding subset). If there exists a hyperedge e ⊆W

⋃
Z with e

intersecting both W and Z, then discarding e would still preserve the counterexample property because e is not
counted in both LHS and RHS, and hence, no such hyperedge exists in G, that is, cost(W,Z) � 0. For similar rea-
sons, if there exists a hyperedge e that is double counted by RHS (see Figure 3), then discarding this hyperedge
would still preserve the counterexample property. Minimality of the counterexample implies that no such hyper-
edge can exist. Consequently, all hyperedges present in the hypergraph G are in fact edges with one end-vertex
in Yi for some i ∈ [p] and another end-vertex inW or Z. Thus,

RHS � cost(Y1, : : : ,Yp,W,Z) �∑p
i�1

d(Yi):

Without loss of generality, let d(Y1) ≤ d(Y2) ≤ : : : ≤ d(Yp). Then,

2cost Y1, : : : ,Yk−1,V\(⋃ k−1
j�1Yij)

( )
� 2

∑k−1
i�1

d(Yi) ≤
∑p
i�1

d(Yi) � RHS:

The inequality above is because p ≥ 2(k− 1). Thus, G cannot be a counterexample. w

Remark 1. Lemma 3 can also be proved by picking a random subset of k – 1 sets among {Y1, : : : ,Yp}. The proof
that we have given above illustrates that the tight case for the lemma is in fact a graph and not necessarily a
hypergraph.

We now restate and prove the main uncrossing theorem of this section.
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Theorem 4. Let G � (V,E) be a hypergraph, k ≥ 2 be an integer, and ∅≠ R(U(V. Let S � {u1, : : : ,up} ⊆U\R for
p ≥ 2k− 2. Let (Ai ,Ai) be a minimum ((S⋃R)\{ui},U)-terminal cut. Suppose that ui ∈ Ai\(⋃j∈[p]\{i}Aj) for every i ∈ [p].
Then, there exists a k-partition (P1, : : : ,Pk) of V with U(Pk such that

cost(P1, : : : ,Pk) ≤ 1
2
min d(Ai) + d(Aj) : i, j ∈ [p], i≠ j

{ }
:

Proof. By applying Lemma 2, we obtain a (p+ 2)-partition (Y1, : : : ,Yp,W,Z) such that

σ(Y1, : : : ,Yp,W,Z) ≤min{d(Ai) + d(Aj) : i, j ∈ [p], i≠ j},
and moreover, U ⊆W. We recall that p ≥ 2k− 2. Hence, by applying Lemma 3 to the (p+ 2)-partition (Y1, : : : ,
Yp,W,Z), we obtain a k-partition (P1, : : : ,Pk) of V such thatW

⋃
Z ⊆ Pk and

cost(P1, : : : ,Pk) ≤ 1
2
σ(Y1, : : : ,Yp,W,Z) ≤ 1

2
min d(Ai) + d(Aj) : i, j ∈ [p], i≠ j

{ }
:

We note that U is strictly contained in Pk because U
⋃
Z ⊆W

⋃
Z ⊆ Pk, and Z is nonempty. w

Remark 2. The lower-bound condition on p (i.e., p ≥ 2k− 2) in the statement of Theorem 4 is tight. In particular,
the conclusion of the theorem does not hold for p � 2k− 3, as illustrated by the graph in Figure 6.

Remark 3. A natural counterpart of Theorem 4 for (symmetric) submodular functions is false. For a submodular
function f : 2V → R+, by defining fsym(U) :� f (U) + f (U) to be the value of the 2-partition (U,U), and assuming
the conditions of the theorem, it is tempting to conjecture that there exists a k-partition (P1, : : : ,Pk) such that

∑k
i�1

f (Pi) ≤ 1
2
min fsym(Ai) + fsym(Aj) : i, j ∈ [p], i≠ j

{ }
:

Here is a counterexample. Consider the function f (S) :� 1 if ∅≠ S(V, f (∅) :� 0, and f (V) :� 0. Then, for any
k-partition (P1, : : : ,Pk), we have ∑k

i�1 f (Pi) � k. However, the RHS in the above inequality is only 2. We note that
this example is an instance of HYPERGRAPH-k-PARTITION.

4. Proof of Theorem 2
In this section, we prove Theorem 2. We start with a useful containment property captured by the next lemma.

Figure 6. An edge-weighted graph showing the necessity of the condition p ≥ 2k− 2 in Theorem 4 (where ε is a small positive
constant).

Notes. We consider U � {r,u1,u2, : : : ,u2k−3} and R � r. Then, the RHS of the theorem is 2k− 3− ε, whereas the cost of any k-cut is at least
2k− 2−O(ε).
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Lemma 4. Let G � (V,E) be a hypergraph, (V1, : : : ,Vk) be a maximal minimum k-partition in G for an integer k ≥ 2, and
S ⊆ V1, T ⊆ V1 such that T ∩ Vj ≠ ∅ for every j ∈ {2, : : : ,k}. Suppose (U,U) is a minimum (S, T)-terminal cut. Then,
U ⊆ V1.

Proof. For the sake of contradiction, suppose U\V1 ≠ ∅. We will obtain another minimum k-partition that will
contradict the maximality of V1 in the minimum k-partition (V1, : : : ,Vk). We observe that

d(U) ≤ d(U ∩ V1) (2)

because (U ∩ V1,U ∩ V1) is a (S,T)-terminal cut. We need the following claim:

Claim 3.

d(V1) ≤ d(U ⋃
V1):

Proof. For the sake of contradiction, suppose d(U⋃
V1) < d(V1). Then, consider thatW1 :�U

⋃
V1 andWj :� Vj\U

for every j ∈ {2, : : : , k} (see Figure 7). We have d(W1) < d(V1). Because S ⊆W1 and T ∩Wj ≠ ∅ for every
j ∈ {2, : : : , k}, we have that (W1, : : : ,Wk) is a k-partition. We will show that cost(W1, : : : ,Wk) is strictly smaller than
cost(V1, : : : ,Vk), thus contradicting the optimality of the k-partition (V1, : : : ,Vk).

We recall that for a subset A of vertices, the graph G[A] is obtained from G by discarding the vertices in A and
by discarding the hyperedges that intersect A. With this notation, we can write

costG(W1, : : : ,Wk) � d(W1) + costG[W1 ](W2, : : : ,Wk) and
costG(V1, : : : ,Vk) � d(V1) + costG[V1 ](V2, : : : ,Vk):

Moreover, every hyperedge that is disjointed from W1 �U
⋃
V1 but crosses the (k− 1)-partition (W2 � V2\U, : : : ,

Wk � Vk\U) is also disjointed from V1 but crosses the (k− 1)-partition (V2, : : : ,Vk). Hence, costG[W1 ](W2, : : : ,
Wk) ≤ costG[V1 ](V2, : : : ,Vk). We also have d(W1) < d(V1). Therefore,

cost(W1, : : : ,Wk) < cost(V1, : : : ,Vk),
a contradiction to optimality of the k-partition (V1, : : : ,Vk). w

By inequality (2), Claim 3, and submodularity of the hypergraph cut function, we have that

d(U) + d(V1) ≤ d(U ∩ V1) + d(U ⋃
V1) ≤ d(U) + d(V1):

Therefore, the inequality in Claim 3 should in fact be an equation, that is,

d(V1) � d(U ⋃
V1):

Going through the proof of Claim 3 with this additional fact, we obtain that the k-partition (U⋃
V1,

V2\U, : : : ,Vk\U) has cost at most that of (V1, : : : ,Vk). Hence, the k-partition (U⋃
V1,V2\U, : : : ,Vk\U) is also a min-

imum k-partition, and it contradicts the maximality of V1. w

Remark 4. Lemma 4 also holds for SUBMOD-k-PART. That is, for a submodular function f : 2V → R+ with
(V1, : : : ,Vk) being a maximal minimum k-partition for an integer k ≥ 2, subsets S ⊆ V1 and T ⊆ V1 such that T ∩
Vj ≠ ∅ for every j ∈ {2, : : : , k}, and (U,U) being an S,T-separating 2-partition with minimum f (U) + f (U) among

Figure 7. Uncrossing in the proof of Claim 3.
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all S,T-separating 2-partitions, we have that U ⊆ V1. This can be shown using the proof of Theorem 5 in Okumoto
et al. [34].

Remark 5. Lemma 4 also applies to SUBMOD-MULTIWAY-CUT. We recall that the input here is a submodular function f :
2V → R (by value oracle) and terminals {s1, : : : , sk} ⊂ V, and the goal is to find a partition (V1, : : : ,Vk) to minimize∑k

i�1 f (Vi) subject to the constraint that si ∈ Vi for every i ∈ [k]. Let (V1, : : : ,Vk) be an optimum solution so that there is
no other optimum solution (V′

1, : : : ,V
′
k), with V1 being strictly contained in V′

1. Suppose (U,U) is a minimum
({s1}, {s2, : : : , sk})-terminal cut. Then,U ⊆ V1. This was shown implicitly for graph multiway cut by Dahlhaus et al. [10].

We now restate and prove Theorem 2.

Theorem 2. Let G � (V,E) be a hypergraph, and let (V1, : : : ,Vk) be a maximal minimum k-partition in G for an integer
k ≥ 2. Suppose |V1 | ≥ 2k− 2. Then, for every subset T ⊆ V1 such that T intersects Vj for every j ∈ {2, : : : ,k}, there exists a sub-
set S ⊆ V1 of size 2k− 2 such that (V1,V1) is the source maximal minimum (S, T)-terminal cut.

Proof. For the sake of contradiction, suppose that the theorem is false for some subset T ⊆ V1 such that T ∩ Vj ≠ ∅
for all j ∈ {2, : : : ,k}. Our proof strategy is to obtain a cheaper k-partition than (V1, : : : ,Vk), thereby contradicting the
optimality of (V1, : : : ,Vk). For a subset X ⊆ V1, let (VX,VX ) be the source maximal minimum (X, T)-terminal cut.

Among all possible subsets of V1 of size 2k− 2, pick a subset S such that d(VS) is maximum. By Lemma 4 and
assumption, we have that VS (V1. By source maximality of the minimum (S,T)-terminal cut (VS,VS), we have
that d(VS) < d(V1). Let u1, : : : ,u2k−2 be the vertices in S. Because VS (V1, there exists a vertex u2k−1 ∈ V1\VS. Let
C :� {u1, : : : ,u2k−1} � S

⋃{u2k−1}. For i ∈ [2k− 1], let (Bi,Bi) be the source maximal minimum (C− {ui},T)-terminal
cut. We note that (B2k−1,B2k−1) � (VS,VS) and the size of C− {ui} is 2k− 2 for every i ∈ [2k− 1]. By Lemma 4 and
assumption, we have that Bi (V1 for every i ∈ [2k− 1]. Hence, we have

d(Bi) ≤ d(VS) < d(V1) and Bi (V1 for every i ∈ [2k− 1]: (3)

The next claim will set us up to apply Theorem 4.

Claim 4. For every i ∈ [2k− 1], we have that ui ∈ Bi .

Proof. The claim holds for i � 2k− 1 by choice of u2k−1. For the sake of contradiction, suppose ui ∈ Bi for some
i ∈ [2k− 2]. Then, the 2-partition (VS ∩ Bi,VS ∩ Bi) is a (S,T)-terminal cut, and hence,

d(VS ∩ Bi) ≥ d(VS):
We also have that

d(VS
⋃
Bi) ≥ d(VS)

because (VS
⋃
Bi,VS

⋃
Bi) is a (S,T)-terminal cut. Thus,

2d(VS) ≥ d(VS) + d(Bi) (By choice of S)
≥ d(VS

⋃
Bi) + d(VS ∩ Bi) (By submodularity)

≥ 2d(VS):
Therefore, d(VS) � d(VS

⋃
Bi). Moreover, Bi\VS is nonempty because the vertex u2k−1 ∈ Bi\VS. Hence, the 2-partition

(VS
⋃
Bi,VS

⋃
Bi) is a minimum (S,T)-terminal cut. However, this contradicts source maximality of the minimum

(S,T)-terminal cut (VS,VS) because u2k−1 ∈ Bi and u2k−1 ∉ VS. w

We note that for every i ∈ [2k− 1], the 2-partition (Bi,Bi) is a minimum (C− {ui},V1)-terminal cut becauseV1 ⊆ Bi .

We will now apply Theorem 4. We consider U :� V1, R :� {u2k−1} ⊆U, S � {u1, : : : ,u2k−2} ⊆U\R. Let p :� 2k− 2,
and let (Ai ,Ai) :� (Bi,Bi) for every i ∈ [p]. The 2-partition (Ai ,Ai) is a minimum ((S⋃R)\{ui},U)-terminal cut for
every i ∈ [p]. By Claim 4, we have that ui ∈ Ai for every i ∈ [p]. Because (Bj,Bj) is a (C− {uj},T)-terminal cut, we
have that ui ∉ Bj for every distinct i, j ∈ [p]. Thus, ui ∈ Ai\(⋃j∈[p]\{i}Aj) for every i ∈ [p]. Therefore, the sets U, R, S
and the 2-partitions (Ai ,Ai) for i ∈ [p] satisfy the conditions of Theorem 4. By Theorem 4, symmetry of the cut
function, and statement (3), we obtain a k-partition (P1, : : : ,Pk) of V such that

cost(P1, : : : ,Pk) ≤ 1
2
min d(Ai) + d(Aj) : i, j ∈ [p], i≠ j

{ }

� 1
2
min d(Bi) + d(Bj) : i, j ∈ [p], i≠ j

{ }
< d(V1) ≤OPTk:

Thus, we have obtained a k-partition whose cost is smaller than OPTk, a contradiction. w
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Remark 6. The proof techniques in this section relied only on the submodularity of the hypergraph cut function
and the use of Theorem 4. The proof of Theorem 4 relied heavily on the properties of the hypergraph cut func-
tion. As we remarked in Section 3, there does not seem to be a counterpart of Theorem 4 for general submodular
functions.

5. Structural Theorem for Divide and Conquer
We need a slightly stronger structural theorem to design a faster algorithm that is based on divide and conquer.
We remark again that the proof techniques in this section will rely only on the submodularity of the hypergraph
cut function and the use of Theorem 4.

We note that the source maximal minimum (S,T)-terminal cut is identical to the sink minimal minimum (S,T)-
terminal cut. We define a 2-partition (U,U) to be a balanced minimum k-partition split if there exists a minimum k-
partition (V1, : : : ,Vk) such that U �⋃�k=2


i�1 Vi. Because there could be multiple balanced minimum k-partition
splits, we will be interested in a minimal balanced minimum k-partition split; a balanced minimum k-partition
split (U,U) is minimal if there does not exist another balanced minimum k-partition split (U′,U′ ) such that U′ is
strictly contained in U.

We need the following two theorems. We defer their proofs to Sections 5.1 and 5.2, respectively.

Theorem 5. Let G � (V,E) be a hypergraph, and let OPTk be the value of a minimum k-cut in G for some integer k ≥ 2.
Suppose (U,U) is a 2-partition of V with d(U) ≤OPTk. Then, there exists a subset S ⊆U with |S| ≤ 2k− 2 such that
(U,U) is the source maximal minimum (S,U)-terminal cut in G.

Theorem 6. Let G � (V,E) be a hypergraph, and let (U,U) be a minimal balanced minimum k-partition split in G for some
integer k ≥ 2. Then, for every vertex u0 ∈U, there exists a subset S ⊆U\{u0} with |S| ≤ 2k− 3 such that (U,U) is the
unique minimum (S⋃{u0},U)-terminal cut in G.

We now state and prove the structural theorem that facilitates the faster divide-and-conquer algorithm.

Theorem 7. Let G � (V,E) be a hypergraph, and let (U,U) be a minimal balanced minimum k-partition split in G for some
integer k ≥ 2. Then, for every vertex u0 ∈U, there exist subsets S ⊆U\{u0} and T ⊆U with |S| ≤ 2k− 3 and |T| ≤ 2k− 2
such that (U,U) is the source minimal minimum (S⋃{u0},T)-terminal cut in G.

Proof. Let u0 ∈U. Applying Theorem 6 to (U,U) with respect to vertex u0 ∈U, we obtain a set S ⊆U with |S| ≤
2k− 3 such that (U,U) is the unique minimum (S⋃{u0},U)-terminal cut in G.

Applying Theorem 5 to (U,U), we obtain a set T ⊆U with |T| ≤ 2k− 2 such that (U,U) is a source maximal
minimum (T, U) cut in G. Hence, by interchanging source and sink, (U,U) is the source minimal minimum (U, T)
cut in G.

We will show that (U,U) is the source minimal minimum (S⋃{u0},T)-terminal cut in G. We first show that
(U,U) is a minimum (S⋃{u0},T)-terminal cut. Let (X,X) be a minimum (S⋃{u0},T)-terminal cut. Then,

d(U) ≥ d(X)
because (U,U) is a (S⋃{u0},T)-terminal cut. Because (X ∩U,X ∩U) is a (S⋃{u0},U)-terminal cut, we have

d(X ∩U) ≥ d(U):
Because (X⋃

U,X
⋃
U) is a (U, T)-terminal cut, we have

d(X ⋃
U) ≥ d(U):

The above three inequalities in conjunction with the submodularity of the cut function imply that

2d(U) ≥ d(X) + d(U) ≥ d(X ∩ U) + d(X ⋃
U) ≥ 2d(U):

Hence, all of the above inequalities should be equations, and therefore, d(U) � d(X).
Next, we show that (U,U) is the source minimal minimum (S⋃{u0},T)-terminal cut. For the sake of contradic-

tion, suppose (X,X) is the source minimal minimum (S⋃{u0},T)-terminal cut with X ≠U. We have the following
cases.

Case 1. Suppose X)U. Then, (U,U) contradicts source minimality of the minimum (S⋃{u0},T)-terminal cut
(X,X).
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Case 2. Suppose X(U. Then, (X,X) is also a minimum (S⋃{u0},U)-terminal cut, a contradiction since the
choice of S implies that (U,U) is unique minimum (S⋃{u0},U)-terminal cut.

Case 3. Suppose X\U ≠ ∅ and X\U ≠ ∅. Then, we have

d(X ∩U) ≥ d(X)
because (X ∩U,X ∩U) is a (S⋃{u0},T)-cut. We also have

d(X ⋃
U) ≥ d(X)

because (X⋃
U,X

⋃
U) is a (S⋃{u0},T)-cut. The above two inequalities in conjunction with the submodularity of

the cut function imply that

2d(X) � d(X) + d(U) ≥ d(X ∩U) + d(X ⋃
U) ≥ 2d(X):

Therefore, d(X ∩U) � d(X). Thus, the 2-partition (X ∩U,X ∩U) contradicts source minimality of the minimum
(S⋃{u0},T)-terminal cut (X,X). w

5.1. Proof of Theorem 5
We restate and prove Theorem 5 in this section.

Theorem 5. Let G � (V,E) be a hypergraph, and let OPTk be the value of a minimum k-cut in G for some integer k ≥ 2.
Suppose (U,U) is a 2-partition of V with d(U) ≤OPTk. Then, there exists a subset S ⊆U with |S| ≤ 2k− 2 such that
(U,U) is the source maximal minimum (S,U)-terminal cut in G.

Proof. For the sake of contradiction, suppose that the theorem is false. Our proof strategy is to obtain a cheaper
k-partition with cost strictly less than OPTk, thereby contradicting optimality. For a subset X ⊆U, let (VX,VX ) be
the source maximal minimum (X,U)-terminal cut.

Let X be an arbitrary subset of Uwith |X| � 2k− 2. Because we are assuming that the theorem is false, it follows
that VX ≠U. By definition, we have that VX (U. By source maximality of the minimum (X,U)-terminal cut
(VX,VX ), we have that d(VX) < d(U).

Among all possible subsets of U of size 2k− 2, pick a subset S such that d(VS) is maximum. Then, VS (U and

d(VX) ≤ d(VS) < d(U) for every X ⊆U with |X| � 2k− 2:

The rest of the proof is identical to the proof of Theorem 2. Let u1, : : : ,u2k−2 be the vertices in S. Since VS (U,
there exists a vertex u2k−1 ∈U\VS. Let C :� {u1, : : : ,u2k−1 � S

⋃{u2k−1}. Also, let (Bi,Bi) be the source maximal mini-
mum (C− {ui},U)-terminal cut for every i ∈ [2k− 1]. We note that (B2k−1,B2k−1) � (VS,VS), and the size of C− {ui}
is 2k− 2 for every i ∈ [2k− 1]. Hence, we have

d(Bi) ≤ d(VS) < d(U) and Bi (U for every i ∈ [2k− 1]: (4)

The next claim will set us up to apply Theorem 4.

Claim 5. For every i ∈ [2k− 1], we have that ui ∈ Bi .

Proof. The claim holds for i � 2k− 1 by choice of u2k−1. For the sake of contradiction, suppose ui ∈ Bi for some
i ∈ [2k− 2]. Then, the 2-partition (VS ∩ Bi,VS ∩ Bi) is a (S,U)-terminal cut, and hence,

d(VS ∩ Bi) ≥ d(VS):
We also have

d(VS
⋃
Bi) ≥ d(VS)

because (VS
⋃
Bi,VS

⋃
Bi) is a (S,U)-terminal cut. Thus,

2d(VS) ≥ d(VS) + d(Bi) (By choice of S)
≥ d(VS

⋃
Bi) + d(VS ∩ Bi) (By submodularity)

≥ 2d(VS):
Therefore, d(VS) � d(VS

⋃
Bi). Moreover, Bi\VS is nonempty because the vertex u2k−1 ∈ Bi\VS. Hence, the 2-partition

(VS
⋃
Bi,VS

⋃
Bi) is a minimum (S,U)-terminal cut, and it contradicts source maximality of the minimum (S,U)-

terminal cut (VS,VS). w
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Let p :� 2k− 2. Using Claim 5, we observe that the sets U, R :� {u2k−1}, S � {u1, : : : ,u2k−2}, and the partitions
(Ai ,Ai) :� (Bi,Bi) for i ∈ [p] satisfy the conditions of Theorem 4. By Theorem 4, symmetry of the cut function, and
statement (4), we obtain a k-partition (P1, : : : ,Pk) of V such that

cost(P1, : : : ,Pk) ≤ 1
2
min d(Ai) + d(Aj) : i, j ∈ [p], i≠ j

{ }
� 1
2
min d(Bi) + d(Bj) : i, j ∈ [p], i≠ j

{ }
< d(U)
≤OPTk:

Thus, we have obtained a k-partition whose cost is smaller than OPTk, a contradiction. w

5.2. Proof of Theorem 6
We restate and prove Theorem 6 in this section.

Theorem 6. Let G � (V,E) be a hypergraph, and let (U,U) be a minimal balanced minimum k-partition split in G for some
integer k ≥ 2. Then, for every vertex u0 ∈U, there exists a subset S ⊆U\{u0} with |S| ≤ 2k− 3 such that (U,U) is the
unique minimum (S⋃{u0},U)-terminal cut in G.

Proof. Let u0 ∈U, and let OPTk be the value of a minimum k-cut in G. Consider the collection

C :� {Q ⊆ V\{u0} : U (Q, d(Q) ≤ d(U)}:
Let S ⊆U\{u0} be an inclusion-wise minimal transversal of the collection C; that is, S is an inclusion-wise minimal
subset of U\{u0} such that S ∩Q≠ ∅ for all Q ∈ C. Proposition 2 and Lemma 5 complete the proof of the theorem
for this choice of S. w

Proposition 2. The 2-partition (U,U) is the unique minimum (S⋃{u0},U)-terminal cut in G.

Proof. For the sake of contradiction, suppose (X,X) is a minimum (S⋃{u0},U)-terminal cut in G such that
X ≠U. Then, d(X) ≤ d(U) because (U,U) is a feasible (S⋃{u0},U)-terminal cut. By definition, U (X ⊆ V\{u0}.
Hence, the set X is in the collection C. Because S is a transversal of the collection C, we have that S ∩ X ≠ ∅. This
contradicts the fact that S is contained in X. w

Lemma 5. The size of the transversal S is at most 2k− 3.

Proof. For the sake of contradiction, suppose |S| ≥ 2k− 2. We will construct a balanced minimum k-partition split
in G that contradicts the minimality of the balanced minimum k-partition split (U,U). Let S � {u1, : : : ,up} for
p ≥ 2k− 2. For each i ∈ [p], let (Ai ,Ai) be the source minimal minimum ((S⋃{u0})\{ui},U)-terminal cut.

Claim 6. For every i ∈ [p], we have that d(Ai) ≤ d(U) and ui ∈ Ai.

Proof. Let i ∈ [p]. Because S is a minimal transversal for the collection C, there exists a set Bi ∈ C such that
Bi ∩ S � {ui}. Hence, (Bi ,Bi) is a feasible (S⋃{u0}\{ui},U)-terminal cut. Therefore,

d(Ai) ≤ d(Bi) ≤ d(U):
We will show that Ai is in the collection C. By definition, Ai ⊆ V\{u0} and U ⊆ Ai. If U � Ai, then the above
inequalities are equations implying that (Bi,Bi) is a minimum ((S⋃{u0})\{ui},U)-terminal cut, and consequently,
(Bi,Bi) contradicts source minimality of the minimum ((S⋃{u0})\{ui},U)-terminal cut (Ai ,Ai). Therefore, U (Ai.
Hence, Ai is in the collection C.

We recall that the set S is a transversal for the collection C, and none of the elements of S\{ui} are in Ai. Hence,
the element ui must be in Ai. w

Using Claim 6, we observe that the sets U, R :� {u0}, S, and the partitions (Ai ,Ai) for i ∈ [p] satisfy the condi-
tions of Theorem 4. By Theorem 4 and Claim 6, we obtain k-partition (P1, : : : ,Pk) of V such that U ( Pk and

cost(P1, : : : ,Pk) ≤ 1
2
min d(Ai) + d(Aj) : i, j ∈ [p], i≠ j

{ } ≤ d(U) ≤OPTk:

Thus, we have obtained a minimum k-partition (P1, : : : ,Pk) such that U ( Pk. Now, consider U′ :�⋃�k=2

i�1 Pi. We

observe that (U′,U′ ) is a balanced minimum k-partition split such that U′ is strictly contained in U, a contradic-
tion to minimality of the balanced minimum k-partition split (U,U). w
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6. Divide-and-Conquer Algorithm
In this section, we design a faster algorithm based on divide and conquer with a runtime of nO(k) source minimal
minimum (S,T)-terminal cut computations. We describe the algorithm in Figure 8 and its runtime guarantee in
Theorem 8. We recall that the source maximal minimum (s,t)-terminal cut in a hypergraph can be computed in
deterministic polynomial time. To recap from the introduction, the high-level idea is to use minimum (S,T)-
terminal cuts to find a balanced minimum k-partition split (U,U); the balance helps in cutting the recursion
depth that results in savings in the overall runtime.

Theorem 8. Let G � (V,E) be a n-vertex hypergraph of size p, and let k be an integer. Then, algorithm DIVIDE-AND-
CONQUER-CUT(G, k) given in Figure 8 returns a partition corresponding to a minimum k-cut in G, and it can be
implemented to run in O(n8kT(n,p)) time, where T(n, p) denotes the time complexity for computing the source minimal
minimum (S, T)-terminal cut in a n-vertex hypergraph of size p.

Proof. We first show the correctness of the algorithm. All candidates considered by the algorithm correspond to
a k-partition, so we only have to show that the algorithm returns a k-partition corresponding to a minimum k-
cut. We show this by induction on k. The base case of k � 1 is trivial. We show the induction step. Let (P1, : : : ,Pk)
be a minimum k-partition in G such that for p � �k=2
, the 2-partition (U0 :�⋃p

i�1 Pi,U0 �⋃k
i�p+1 Pi) is a minimal

balanced minimum k-partition split. Let OPTk denote the value of a minimum k-partition in G.
We observe that |U0 | ≥ p and |U0 | ≥ k− p. By Theorem 7, the 2-partition (U0,U0) is in R. By induction hypothe-

sis, the algorithm will return a p-partition PU0 � (Q1, : : : ,Qp) of U0 and a (k− p)-partition PU0
� (Qp+1, : : : ,Qk) of

U0 such that

costG[U0](Q1, : : : ,Qp) ≤ costG[U0](P1, : : : ,Pp) and
costG[U0 ](Qp+1, : : : ,Qk) ≤ costG[U0](Pp+1, : : : ,Pk):

Hence, the cost of the partition (Q1, : : : ,Qk) returned by the algorithm is

d(U0) + costG[U0](Q1, : : : ,Qp) + costG[U0 ](Qp+1, : : : ,Qk)
≤ d(U0) + costG[U0](P1, : : : ,Pp) + costG[U0 ](Pp+1, : : : ,Pk)
� costG(P1, : : : ,Pk)
�OPTk:

Next, we prove the runtime bound. We will derive an upper bound N(k, n) on the number of source minimal
minimum (S,T)-terminal cut computations executed by the algorithm, where we assume that N(k, n) is an
increasing function of k and n. We know that N(1,n) �O(1). We have

N(k,n) �O(n4k−4) 1+N
⌈
k
2

⌉
,n

( )
+N

⌊
k
2

⌋
,n

( )( )
:

By substitution, it can be verified that N(k,n) �O(n8k). The running time is dominated by the number of terminal
cut computations, and this yields the desired time bound on the algorithm. w

Figure 8. Divide-and-conquer algorithm to computeminimum k-cut hypergraphs.
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7. Concluding Remarks
Our work generalizes the approach pioneered by Goldschmidt and Hochbaum [16, 17] for GRAPH-k-CUT to HYPER-

GRAPH-k-CUT with new insights along the way. The main open problem is to resolve the complexity of SUBMOD-k-
PART and SYM-SUBMOD-k-PART for fixed k. We note that there is a simple reduction of SUBMOD-k-PART to the special
case of monotone submodular functions. The complexity of the special case of SYM-SUBMOD-k-PART where the
input submodular function is a hypergraph cut function, termed as HYPERGRAPH-k-PARTITION, is also open for any
fixed k ≥ 5. A natural approach to attack these problems is via minimum S-T terminal cuts, like we did in this
work. Although this approach is able to address some special cases, such as the rank function of matroids, as
well as other objectives for submodular k-partition [3], there are limitations when applying directly to SUBMOD-k-
PART. Some of these results and observations will appear in a future article. The approximability of these parti-
tioning problems when k is part of the input is also an interesting avenue of research, and we refer the reader to
Chekuri and Li [7] and Santiago [38] for pointers.

Random contraction-based algorithms for HYPERGRAPH-k-CUT [5] also yield, as a corollary, that there are
O(n2k−2) distinct hyperedge subsets that cross some optimum k-cut, and moreover, these can be enumerated in
randomized polynomial time with high probability. We note that the number of distinct k-partitions that are opti-
mal can be exponential in n even for k � 2; a simple example is a hypergraph with a single spanning hyperedge.
Our algorithmic approach is based on partitions, and hence, it does not yield a deterministic algorithm for enu-
merating all hyperedge subsets that cross some optimum k-cut. In an upcoming work, Beideman et al. [1],
strengthened Theorem 4 and used it to obtain an algorithm that enumerates all hyperedge sets that cross some
optimum k-cut in deterministic polynomial time.

In a companion paper [3] following this work, we have used the minimum (S,T)-terminal cut approach to also
solve the min-max symmetric submodular k-partition problem. The input here is a finite ground set V, a symmet-
ric submodular function f : 2V → R (provided by an evaluation oracle) and a fixed integer k, and the goal is to
partition V into k nonempty parts V1, : : : ,Vk to minimize maxki�1 f (Vi). We note that if f is not symmetric, then the
problem is NP-hard even for k � 2.
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Endnotes
1 SYM-SUBMOD-k-PART when the input function f is the cut function of a hypergraph is known as HYPERGRAPH-k-PARTITION in the literature [34,
43]. We emphasize that the objective in HYPERGRAPH-k-PARTITION is different from the objective in HYPERGRAPH-k-CUT.
2 In min-max graph k-cut, the input is a graph G � (V,E)with edge weights w : E→ R+ and an integer k, and the goal is to partition the vertex
set V into k nonempty parts V1, : : : ,Vk to minimize maxki�1w(δ(Vi)).
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