
CAUCHY PROBLEM OF A SYSTEM OF PARABOLIC CONSERVATION

LAWS ARISING FROM THE SINGULAR KELLER-SEGEL MODEL IN

MULTI-DIMENSIONS

DEHUA WANG, ZHIAN WANG, AND KUN ZHAO

Abstract. In this paper, we study the qualitative behavior of solutions to the Cauchy problem

of a system of parabolic conservation laws, derived from a Keller-Segel type chemotaxis model

with singular sensitivity, in multiple space dimensions. Assuming H2 initial data, it is shown

that under the assumption that only some fractions of the total energy associated with the

initial perturbation around a prescribed constant ground state are small, the Cauchy problem

admits a unique global-in-time solution, and the solution converges to the prescribed ground

state as time goes to infinity. In addition, it is shown that solutions of the fully dissipative model

converge to that of the corresponding partially dissipative model with certain convergence rates

as a specific system parameter tends to zero.

1. Introduction

Chemotaxis, the movement of an organism in response to a chemical stimulus, has been

an important mechanism of various biological phenomena/processes, such as aggregation of

bacteria, slime mould formation, fish pigmentation, tumor angiogenesis, blood vessel formation,

wound healing (cf. [29]). The prototypical chemotaxis model, known as Keller-Segel model due

to their pioneering works of [14, 15, 16], read in its general form as

(1.1)

{
pt = ∇ · (D∇p− χp∇φ(q)),

qt = ε∆q + g(p, q),

where p(x, t) and q(x, t) denote the cell density and chemical (signal) concentration at posi-

tion x ∈ Rn and time t, respectively. The function φ(q) is called the chemotactic sensitivity

accounting for the signal response mechanism and g(p, q) is the chemical kinetics (growth and

degradation). D > 0 and ε ≥ 0 are cell and chemical diffusion coefficients, respectively. χ 6= 0

is referred to as the chemotactic coefficient, where the chemotaxis is said to be attractive if

χ > 0 and repulsive if χ < 0. The model (1.1) has generic applications depending on the specific

forms of φ(q) and g(p, q). There are two major classes of chemotactic response function: lin-

ear response φ(q) = q and logarithmic response φ(q) = ln q. The former was originally used by

Keller and Segel in [15, 16] to model the self-aggregation of Dictyostelium discoideum in response

to cyclic adenosine monophosphate (cAMP) secreted by themselves whilst the latter in [14] to

model the wave propagation of bacterial chemotaxis. The prototypical Keller-Segel model with

logarithmic sensitivity reads as:

(1.2)

{
pt = ∇ · (D∇p− χp∇ ln q),

qt = ε∆q − µpqk − σq,
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where µ ∈ R and σ ≥ 0 are constants. As χ, µ > 0, 0 ≤ k < 1 and σ = 0, the model

(1.2) was proposed by Keller-Segel in [14] to explain the wave band propagation observed in

the experiment by Adler [1]. Later the same model with k = 1 was used in [18] to describe

the dynamical interactions between vascular endothelial cells and signaling molecules vascular

endothelial growth factor in the onset of tumor angiogenesis. It was particularly mentioned in

[18] that the chemical diffusion coefficient ε was small or negligible since it is far less important

than the interaction between vascular endothelial cells and vascular endothelial growth factors.

As χ, µ < 0, σ > 0, the model (1.2) was derived in [17, 30] to model the chemotactic movement

of reinforced random walkers (denoted by p) which deposit a non-diffusive or slowly moving (i.e.

0 ≤ ε � 1) signal q that modifies the local environment for succeeding passages. If χ > 0 and

µ < 0, the model will exhibit blow-up behavior even in one dimension [17, 40]. In this paper we

are concerned with the case χµ > 0.

Though the logarithmic sensitivity plays an indispensable role in generating traveling wave

solutions (cf. [14]) which can be obtained directly from the model (1.2), its singularity at

q = 0 sets up a great obstacle to further understanding of the model dynamics such as stability

of traveling wave solutions, well-posedness of the model and so on. Therefore the results of

the Keller-Segel model (1.2) with logarithmic sensitivity are much less compared to the linear

sensitivity (e.g. see [2, 9, 10, 32]). However in the case k = 1, the logarithmic singularity can

be resolved by the following Cole-Hopf type transformation ([17, 26]):

q = −
√
χµ

µ
∇ ln(exp(σt)q) = −

√
χµ

µ

∇q
q
,

which converts the model (1.2) into a non-singular system of conservation laws:

(1.3)

{
pt −∇ · (pq) = ∆p,

qt −∇(p− ε
χ |q|

2) = ε
D∆q,

where we have used the temporal-spatial re-scalings t̃ = χµ
D t, x̃ =

√
χµ
D x and then dropped tildes

for convenience. Though the transformed system (1.3) has no singularity and appears to be

easier to analyze than (1.2), it creates a quadratic nonlinearity (i.e. ε∇|q|2) resembling the

nonlinearity in the Navier-Stokes equations and brings various difficulties for analysis. Many

results have been obtained for the transformed system (1.3) in one dimension (to be recalled

later), but the results in multi-dimensions are very limited, in particular the existence of large-

data solutions of (1.3) in multi-dimensions still remains open. Moreover, the parameter ε, which

is the diffusion coefficient in the original Keller-Segel model, now acts as coefficient of both

diffusion and advection. Since ε is small/negligible in applications mentioned above, the limit

of solutions as ε → 0 is a relevant but delicate question due to the dual role of ε. These

features distinguish the transformed system (1.3) from other known hyperbolic systems (e.g.

see [3, 11, 33]). The purpose of this paper is to establish the global existence of solutions to

the transformed model (1.3) in multi-dimensions with very mild smallness assumptions on the

initial data and show the convergence of solutions as ε→ 0. For brevity we assume that χ = −1

and D = 1 since their specific values are not of importance in our analysis. That is we consider

the following system of parabolic conservation laws:

(1.4)

{
∂tp−∇ · (pq) = ∆p,

∂tq−∇(p+ ε|q|2) = ε∆q.
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The one-dimensional version of (1.4) has been well-studied in the literature, and we recall the

pertaining results below:

• explicit and numerical solutions on finite intervals [17],

• shock wave formation for the Riemann problem on R [35],

• global well-posedness and long-time behavior of small-amplitude classical solutions on

finite intervals [41],

• local nonlinear stability of one-dimensional traveling wave solutions on R [13, 23, 24, 25,

26, 27],

• global well-posedness of large-amplitude classical solutions on R [7],

• global well-posedness of large-amplitude classical solutions on finite intervals [5],

• long-time behavior and chemical diffusion limit of large-amplitude classical solutions on

finite intervals [21, 22, 34, 37],

• long-time behavior, chemical diffusion limit and spatial analyticity of large-amplitude

classical solutions on R [28, 20],

• boundary layer formation and characterization of large-amplitude classical solutions on

finite intervals [12, 21].

Next, we point out the facts that motivate the current work, and state the specific goals to

be achieved in this paper.

Motivation and Goals. The current work is primarily motivated by the energy criticality

of the model due to dimensionality. Let us first take a look at the scaling invariant property

enjoyed by the model. Indeed, by a direct calculation, we can show that (1.4) holds its form

under the scaling

(p,q)→ (pλ,qλ) :=
(
λ2p(λx, λ2t), λq(λx, λ2t)

)
.

Under this scaling, when the initial data are perturbed around the zero ground state, it holds

that

‖pλ0‖2L2(Rn) = λ4−n‖p0‖2L2(Rn) and ‖qλ0‖2L2(Rn) = λ2−n‖q0‖2L2(Rn),

which reveals that norm-inflation (especially for the q-component) is possible only when n = 1.

Next, we note that the weak Lyapunov functional associated with (1.4) reads :

d

dt

(∫
Rn

E(p, p̄)dx + ‖q‖2L2(Rn)

)
+

∫
Rn

|∇p|2

p
dx + ε‖∇q‖2L2(Rn) = ε

∫
Rn

|q|2∇ · q dx,

where p̄ > 0 is a constant ground state and the “entropy expansion” is defined by

E(p, p̄) = [p ln(p)− p]− [p̄ ln(p̄)− p̄]− ln(p̄)(p− p̄),

which has been observed in many works dealing with the one-dimensional version of (1.4).

Because of the scaling property of the q-component and the fact that the right hand side of the

weak Lyapunov functional is zero only when n = 1, from the point of view of energy criticality

we then see that the global well-posedness of large-data solutions to (1.4) is sub-critical when

n = 1, critical when n = 2, and super-critical when n ≥ 3. The observation partially explains

why the model is globally well-posed in one space dimension, as was observed in many previous

works, while the problem is still widely open in the multi-dimensional case.

To the authors’ knowledge, the following results are established for the Cauchy problem of

(1.4) in Rn (n ≥ 2):

• local well-posedness and blowup criteria of large-amplitude classical solutions [6, 19],
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• global well-posedness and long-time behavior of small-amplitude classical solutions [8,

19],

• global well-posedness of classical solutions when only ‖p0− p̄‖L2(R3) +‖q0‖H1(R3) is small,

and long-time behavior when ‖p0 − p̄‖H2(R3) + ‖q0‖H1(R3) is small [4],

• global well-posedness, long-time behavior and chemical diffusion limit of classical solu-

tions when only ‖(p0 − p̄,q0)‖L2(R3) is small [31],

• global well-posedness, long-time behavior and chemical diffusion limit of strong solutions

when only ‖(p0 − p̄,q0)‖H1(Rn) (n = 2, 3) is small [36],

• global generalized (weak) solutions to on bounded domains in R2 with Neumann bound-

ary conditions [38], followed with a work addressing the eventual smoothness of solutions

[39].

where p̄ > 0 is a constant.

A close inspection shows that although the above list of results provides useful information

for the understanding of the global well-posedness, long-time behavior and diffusion limit of

solutions to (1.4) in multi-dimensional spaces, none of them gives a positive answer to such

questions when the initial data carry potentially large L2 norm of the zeroth frequency of the

perturbation.

Throughout this paper, we consider the Cauchy problem of (1.4) subject to the initial condi-

tion

(1.5) (p,q)(x, 0) = (p0,q0)(x), x ∈ Rn, n = 2, 3.

The primary goal of this paper is to settle the aforementioned issue by constructing global-in-

time solutions to (1.4) & (1.5) under minimal smallness requirements on the initial data, and

studying their long-time behavior and zero diffusion limits. To be precise, let us recall the

entropic energy:

(1.6)

∫
Rn

{[p ln(p)− p]− [p̄ ln(p̄)− p̄]− ln(p̄)(p− p̄)} dx +
1

2
‖q‖2L2(Rn).

We will establish the global well-posedness of strong solutions to (1.4) & (1.5) in the following

situations:

• in R2 when (1.6) is small and ε > 0,

• in R3 when (1.6) is small and ε ≥ 0.

We remark that assuming the smallness of the spatial integral of the first order Taylor expansion

of the anti-logarithmic function of p allows the usual Sobolev norm of the perturbation to

be potentially large, see Remark 2.2. As a consequence of the global well-posedness, we also

identify the long-time behavior of the solutions, and study the zero chemical diffusion limits and

convergence rate of solutions as ε→ 0. In addition, we prove the similar results for the case:

• in R2 when ‖(p0 − p̄,q0)‖L2(R2) + ‖p0 − p̄‖L4(R2) is small and ε ≥ 0,

which has not been studied before.

We achieve the goals by developing Lp-based energy methods. Since we only assume the

smallness of individual components of the total Sobolev norm of the initial data, the major

technical difficulty consists in closing the energy estimates for each individual frequency of the

solution, without combining low and high frequencies. Because of the lack of the Poincaré’s

inequality in the whole space, the energy estimates for the zeroth frequency part of the solu-

tion is challenging, especially when the zeroth frequency part is allowed to be potentially large.
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Moreover, because the Gagliardo-Nirenberg interpolation inequalities generate less powers of

high frequencies of a function in R2 than in R3, the proof in the two-dimensional case is consid-

erably more complicated than the three-dimensional case. We break the walls by terminating

low frequencies through creating higher order nonlinearities, taking full advantage of the dissipa-

tion mechanisms and the smallness assumptions on individual frequencies, and utilizing various

Gagliardo-Nirenberg interpolation inequalities.

The rest part of this paper is organized as follows. In Section 2, we state and remark on

the main results. We then prove the main results in Sections 3-4. The paper ends with some

concluding remarks.

2. Statement of Main Results

We first state the common assumptions to be satisfied by the initial functions:

• For n = 2 or 3, we assume universally that

(2.1) (p0 − p̄,q0) ∈ H2(Rn),

where p̄ > 0 is a constant.

• Because p represents the cell density, and q = ∇ ln q, we assume

(2.2) p0(x) ≥ 0 and ∇× q0(x) = 0,

for any x ∈ Rn.

• We assume that one of the following quantities:

• 2

∫
Rn

[(p0 ln p0 − p0)− (p̄ ln p̄− p̄)− ln p̄ (p0 − p̄)] dx + ‖q0‖2L2(Rn),(2.3)

• ‖p0 − p̄‖2L2(Rn) + ‖p0 − p̄‖4L4(Rn) + ‖q0‖2L2(Rn)(2.4)

is sufficiently small.

Remark 2.1. We underline that in the assumption (2.3), ‖p0 − p̄‖L2 can be potentially large

due to the following inequality:

‖p0 − p̄‖2L2 ≥
p̄

2

∫
Rn

[(p0 ln p0 − p0)− (p̄ ln p̄− p̄)− ln p̄ (p0 − p̄)] dx.

Indeed, let us consider the function

F (w) = (w − p̄)2 − p̄

2
[(w lnw − w)− (p̄ ln p̄− p̄)− ln p̄ (w − p̄)] , w ≥ 0.

It is straightforward to check that

F (p̄) = 0, F ′(p̄) = 0, F ′′(w) = 2− p̄

2w
,

which imply that F (w) ≥ 0 for w ∈
[ p̄

4 ,∞
)
. Moreover, since F (0) = (p̄)2

2 , F ( p̄4) =
(

3
16 + ln 4

8

)
(p̄)2

and F ′′(w) < 0 for w ∈ [0, p̄4), it holds that F (w) > 0 for w ∈
[
0, p̄4
)
. Therefore, F (w) ≥ 0

for all w ∈ [0,∞). In the Appendix, we provide explicit examples of initial functions whose

p-component can have arbitrarily small entropic energy, but arbitrarily large H2 energy.
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2.1. Small Initial Entropy. The first result addresses the global well-posedness and long-time

behavior of solutions to (1.4) & (1.5) when the initial entropy is small.

Theorem 2.1. Let n = 2, 3 and consider the Cauchy problem (1.4) & (1.5). Suppose the

initial data satisfy (2.1) and (2.2), and the initial entropy (2.3) is sufficiently small, where the

smallness depends on the other components of the H2 norm of the initial functions. Then there

exists a unique solution to (1.4) & (1.5), such that

• when n = 2, for any fixed value of ε > 0, it holds that

∗ ‖(p− p̄)(t)‖2L2 + p̄‖q(t)‖2L2 +

∫ t

0

(
‖∇p(τ)‖2L2 + ε p̄ ‖∇ · q(τ)‖2L2

)
dτ ≤ C1,

∗ ‖∇p(t)‖2H1 + p̄‖∇ · q(t)‖2H1 +

∫ t

0

(
‖∇p(τ)‖2H2 + ε p̄ ‖∇ · q(τ)‖2H2

)
dτ ≤ C2,

where the time-independent constant C1 depends only on ‖p0‖, ‖q0‖ and p̄, while C2

depends on ‖p0‖H2 , ‖q0‖H2 , p̄ and 1/ε, and C2 →∞ as ε→ 0;

• when n = 3, for any fixed value of ε ≥ 0, it holds that

∗ ‖(p− p̄)(t)‖2H2 + p̄‖q(t)‖2H2 +

∫ t

0

(
‖∇p(τ)‖2H2 + ε p̄ ‖∇ · q(τ)‖2H2

)
dτ ≤ C3,

∗
∫ t

0
‖∇ · q(τ)‖2H1dτ ≤ C4(1 + ε),

where the constants C3 and C4 depend only on ‖p0 − p̄‖H2, ‖q0‖H2 and p̄.

In addition, the following convergence

(2.5) lim
t→∞

(
‖(p− p̄)(t)‖2L∞ + ‖q(t)‖2L∞ + ‖∇p(t)‖2H1 + ‖∇ · q(t)‖2H1

)
= 0

holds for both cases.

Remark 2.2. We remark that the smallness of the quantities in (2.3)-(2.4) depends (relatively)

on the other components of the H2-norm of the initial functions. As the conditions are lengthy,

we refer to the proofs for details. However, the reader will see from the proofs that we require

the products of individual frequencies of the initial functions to be smaller than some absolute

constants. Roughly speaking, this parallels to a scenario in which one assumes the product of

two positive numbers to be sufficiently small, while allowing either one to be potentially large.

The second theorem establishes the consistency and convergence rate between the chemically

diffusible and non-diffusible models in R3.

Theorem 2.2. Let n = 3, and let (pε,qε) and (p0,q0) be the solutions to (1.4) & (1.5) obtained

in Theorem 2.1 with ε > 0 and ε = 0, respectively, for the same initial data. Then, there are

positive constants di (i = 1, ..., 4) such that for any t > 0,

(2.6)
∗ ‖(pε − p0)(t)‖2L2 + ‖(qε − q0)(t)‖2L2 ≤ d1 t e

d2t ε2,

∗ ‖(∇pε −∇p0)(t)‖2L2 + ‖(∇ · qε −∇ · q0)(t)‖2L2 ≤ d3e
d4t(1 + tε)ε,

where the constants di depend only on ‖p0 − p̄‖H2, ‖q0‖H2 and p̄.
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2.2. Small Initial Energy. In [31], the global well-posedness, long-time behavior and diffusion

limit of classical solutions to (1.4) & (1.5) is established in R3 when (p0 − p̄,q0) ∈ H3, under

the assumption that ‖(p0 − p̄,q0)‖L2 is small. Next, we establish a similar result in R2 under

lower regularity requirements on the initial data.

Theorem 2.3. Let n = 2 and consider the Cauchy problem (1.4) & (1.5). Suppose that the

initial data satisfy (2.1) and (2.2), and the initial energy (2.4) is sufficiently small, where the

smallness depends on the other components of the H2 norm of the initial functions. Then there

exists a unique solution to (1.4) & (1.5), such that for any fixed value of ε ≥ 0, it holds that

∗ ‖(p− p̄)(t)‖2H1 + ‖q(t)‖2H1 +

∫ t

0

(
‖∇p(τ)‖2H1 + ε p̄ ‖∇ · q(τ)‖2H1

)
≤ C5,

∗ ‖∆p(t)‖2 + ‖∆q(t)‖2 +

∫ t

0

(
‖∇∆p(τ)‖2 + ε p̄ ‖∆∇ · q(τ)‖2

)
≤ C6(1 + ε),

∗
∫ t

0
‖∇ · q(τ)‖2H1 ≤ C7(1 + ε),

where the constants C5, C6 and C7 depend only on ‖p0 − p̄‖H2, ‖q0‖H2 and p̄. In addition,

similar results as those recorded in (2.5) and (2.6) hold.

Remark 2.3. We finally remark that the global well-posedness, long-time behavior and chemical

diffusion limit of strong solutions to (1.4) & (1.5) with small initial entropy in R2 is still elusive

when ε = 0, which can not be proved by using the energy method developed in this paper. We

leave the investigation for the future.

Notation 2.1. Throughout the rest part of the paper, we use ‖ · ‖ to denote ‖ · ‖L2. Unless

specified, we use c to denote a generic constant which is independent of the unknown functions,

t, ε and initial data. The value of the constant may vary line by line according to the context.

3. Small Entropic Solutions

In this section, we shall present the proofs for Theorems 2.1-2.2. To this end, we first set

p̃ = p− p̄ and reformulate the Cauchy problem of (1.4) with initial data satisfying (2.1)-(2.2) as

(3.1)


∂tp−∇ · (pq)− p̄∇ · q = ∆p, x ∈ Rn, t > 0,

∂tq−∇p = ε∆q− ε∇(|q|2), ε > 0;

(p0,q0) ∈ H2(Rn), p0 + p̄ ≥ 0, ∇× q0 = 0,

where we have suppressed tilde for simplicity. In the sequel, (p,q) always denotes the perturba-

tion of original solution around (p̄,0) unless otherwise specified.

First we note that by the initial conditions and maximum principle, one can show that the

function p + p̄ ≥ 0. In addition, because of the initial curl free condition and the equation

∂t(∇ × q) = ε∆(∇ × q), the function q is curl free as time evolves. Hence, it suffices to deal

with the divergence of q, i.e. ∇ · q, in order to estimate the spatial derivatives of q. Moreover,

under the curl free condition, we have ∆q = ∇(∇ · q). The existence of local solutions of (3.1)

can be obtained by the standard argument (see e.g. [36]).

Lemma 3.1 (Local existence). There is a T0 = T0(‖p0‖H2(Rn), ‖q0‖H2(Rn)) such that the Cauchy

problem (3.1) has a unique solution (p,q) ∈ C
(
[0, T0);H2(Rn)

)
with p+ p̄ ≥ 0 and ∇× q = 0.
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To extend the local solution to a global one, it suffices to derive the a priori estimates for the

solution obtained in Lemma 3.1.

3.1. Global Well-posedness in 2D. To this end, we first make a priori assumption by as-

suming for some finite T > 0 the following holds true:

(3.2)

sup
0≤t≤T

‖q(t)‖2 ≤ δ1,

sup
0≤t≤T

‖p(t)‖2 ≤M1,

where δ1,M1 > 0 are constants to be determined later. Next we shall derive the a priori

estimates to obtain the global solution and show that the obtained solution satisfies the above

a priori assumption.

Lemma 3.2. Let the solution (p,q) of (3.1) with n = 2 satisfy (3.2). Suppose that the initial

data satisfy (2.1) and (2.2), and the initial entropy (2.3) is sufficiently small. Then for any

given constant M1 > 0 and any fixed value of ε > 0, if δ1 is suitably small, there are positive

constants γi (i = 1, 2) which are independent of t, such that

∗ ‖p(t)‖2 + p̄‖q(t)‖2 +

∫ t

0

(
‖∇p(τ)‖2 + ε p̄ ‖∇ · q(τ)‖2

)
dτ ≤ γ1,

∗ ‖∇p(t)‖2H1 + p̄‖∇ · q(t)‖2H1 +

∫ t

0

(
‖∇p(τ)‖2H2 + ε p̄ ‖∇ · q(τ)‖2H2

)
dτ ≤ γ2,

and γ1 depends only on ‖p0‖, ‖q0‖ and p̄, while γ2 depends on ‖p0‖H2 , ‖q0‖H2 , p̄ and 1/ε, and

γ2 →∞ as ε→ 0.

We shall proceed to prove Lemma 3.2 and close the a priori assumption (3.2) (i.e. the

realization of (3.2)) where appropriate along the proof. The proof consists of four estimates

given in the following Sections 3.1.1–3.1.4.

3.1.1. Entropy Estimate. Testing the first equation of (3.1) by ln(p+ p̄)− ln(p̄) and the second

equation by q, then adding the results, we can show that

(3.3)

d

dt

(∫
R2

[
η(p+ p̄)− η(p̄)− η′(p̄)p

]
dx +

1

2
‖q‖2

)
+

∫
R2

|∇p|2

p+ p̄
dx + ε ‖∇ · q‖2

= ε

∫
R2

|q|2(∇ · q) dx,

where η(z) = z ln z − z, and the right-hand side (RHS) of (3.3) can be estimated by using the

Gagliardo-Nirenberg inequality: ‖f‖2L4 . ‖f‖L2‖∇f‖L2 , as∣∣∣∣ε∫
R2

|q|2(∇ · q) dx

∣∣∣∣ ≤ ε ‖q‖2L4‖∇ · q‖

≤ c ε ‖q‖‖∇ · q‖2

≤ c ε δ
1
2
1 ‖∇ · q‖

2.

Hence, when δ1 is smaller than some absolute constant, we update (3.3) as

d

dt

(∫
R2

[
η(p+ p̄)− η(p̄)− η′(p̄)p

]
dx +

1

2
‖q‖2

)
+

∫
R2

|∇p|2

p+ p̄
dx +

ε

2
‖∇ · q‖2 ≤ 0,
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which implies∫
R2

[
η(p+ p̄)− η(p̄)− η′(p̄)p

]
dx +

1

2
‖q‖2 +

∫ t

0

(∫
R2

|∇p|2

p+ p̄
dx +

ε

2
‖∇ · q‖2

)
dτ

≤
∫
R2

[
η(p0 + p̄)− η(p̄)− η′(p̄)p0

]
dx +

1

2
‖q0‖2.

In particular, we have

(3.4) ‖q(t)‖2 + ε

∫ t

0
‖∇ · q(τ)‖2dτ ≤ 2

∫
R2

[
η(p0 + p̄)− η(p̄)− η′(p̄)p0

]
dx + ‖q0‖2.

Therefore, we can realize the smallness of δ1 by choosing the right hand side of (3.4) to be

sufficiently small. Next, we go through the regular energy estimates.

3.1.2. L2-Estimate. Taking the L2 inner products of the equations in (3.1) with the targeting

functions and applying the same Gagliardo-Nirenberg inequality as above, we end up with

(3.5)

1

2

d

dt

(
‖p‖2 + p̄ ‖q‖2

)
+ ‖∇p‖2 + ε p̄ ‖∇ · q‖2

= −
∫
R2

p(q · ∇p)dx + ε p̄

∫
R2

|q|2∇ · q dx

≤ ‖p‖L4‖q‖L4‖∇p‖+ ε ‖q‖2L4‖∇ · q‖

≤ c
(
‖p‖

1
2 ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∇p‖

3
2 + ε p̄ ‖q‖‖∇ · q‖2

)
≤ c

(
(δ1M1)

1
4 ‖∇ · q‖

1
2 ‖∇p‖

3
2 + ε p̄ δ

1
2
1 ‖∇ · q‖

2

)
≤ c (δ1M1)

1
4

(
ε

4
‖∇ · q‖2 +

3

4 ε
1
3

‖∇p‖2
)

+ c ε p̄ δ
1
2
1 ‖∇ · q‖

2

≤ c ε p̄

(
(δ1M1)

1
4

4 p̄
+ δ

1
2
1

)
‖∇ · q‖2 + c (δ1M1)

1
4

3

4 ε
1
3

‖∇p‖2.

Hence, when δ1M1 and δ1 are smaller than some absolute constants (depending on ε), there

holds that

d

dt

(
‖p‖2 + p̄ ‖q‖2

)
+ ‖∇p‖2 + ε p̄ ‖∇ · q‖2 ≤ 0,

which yields, after integrating with respect to time,

(3.6) ‖p(t)‖2 + p̄ ‖q(t)‖2 +

∫ t

0

(
‖∇p(τ)‖2 + ε p̄ ‖∇ · q(τ)‖2

)
dτ ≤ ‖p0‖2 + p̄ ‖q0‖2, ∀ t ∈ [0, T ].

Thus, we can realize the second assumption of (3.2) by choosing

M1 = ‖p0‖2 + p̄ ‖q0‖2 + 1.

Next, we shall estimate the first order spatial derivatives of the solution.
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3.1.3. H1-Estimate. Taking the L2 inner products of the equations in (3.1) with −∆ of the

targeting functions, we have

(3.7)

1

2

d

dt

(
‖∇p‖2 + p̄ ‖∇ · q‖2

)
+ ‖∆p‖2 + ε p̄ ‖∆q‖2

= −
∫
R2

∇ · (pq)∆p dx + ε p̄

∫
R2

∇(|q|2)∆q dx

≤ ‖p‖L4‖∇ · q‖L4‖∆p‖+ ‖∇p‖L4‖q‖L4‖∆p‖+ 2 ε p̄ ‖q‖L4‖∇q‖L4‖∆q‖,

where the first term on the RHS can be estimated as

(3.8)

‖p‖L4‖∇ · q‖L4‖∆p‖ ≤ c ‖p‖
1
2 ‖∇p‖

1
2 ‖∇ · q‖

1
2 ‖∆q‖

1
2 ‖∆p‖

≤ 1

4
‖∆p‖2 + c ‖p‖‖∇p‖‖∇ · q‖‖∆q‖

≤ 1

4
‖∆p‖2 +

ε p̄

4
‖∆q‖2 +

c

ε p̄
‖p‖2‖∇p‖2‖∇ · q‖2

≤ 1

4
‖∆p‖2 +

ε p̄

4
‖∆q‖2 +

cM1

ε p̄
‖∇p‖2‖∇ · q‖2.

For the second term on the right-hand side of (3.7), we have

(3.9)

‖∇p‖L4‖q‖L4‖∆p‖ ≤ c ‖∇p‖
1
2 ‖∆p‖

3
2 ‖q‖

1
2 ‖∇ · q‖

1
2

≤ 1

4
‖∆p‖2 + c ‖∇p‖2‖q‖2‖∇ · q‖2

≤ 1

4
‖∆p‖2 + c δ1‖∇p‖2‖∇ · q‖2.

In a completely similar fashion, we can show that

(3.10)

2 ε p̄ ‖q‖L4‖∇q‖L4‖∆q‖ ≤ 2 ε p̄ c ‖q‖
1
2 ‖∇ · q‖‖∆q‖

3
2

≤ ε p̄

4
‖∆q‖2 + c ε p̄ ‖q‖2‖∇ · q‖4

≤ ε p̄

4
‖∆q‖2 + c ε p̄ δ1‖∇ · q‖2‖∇ · q‖2.

Feeding (3.8)-(3.10) into (3.7), we have

d

dt

(
‖∇p‖2 + p̄ ‖∇ · q‖2

)
+ ‖∆p‖2 + ε p̄ ‖∆q‖2

≤
(
cM1

ε p̄
+ c δ1

)
‖∇p‖2‖∇ · q‖2 + c ε p̄ δ1‖∇ · q‖2‖∇ · q‖2.

When δ1 is smaller than some absolute constant, it holds that

(3.11)

d

dt

(
‖∇p‖2 + p̄ ‖∇ · q‖2

)
+ ‖∆p‖2 + ε p̄ ‖∆q‖2

≤
(
cM1

ε p̄
+ 1

)
‖∇p‖2‖∇ · q‖2 + ε p̄ ‖∇ · q‖2‖∇ · q‖2

≤ 1

p̄

(
cM1

ε p̄
+ 1

)(
‖∇p‖2 + ε p̄ ‖∇ · q‖2

) (
‖∇p‖2 + p̄ ‖∇ · q‖2

)
.

Applying the Gronwall inequality to (3.11) and using (3.6), we have

(3.12) ‖∇p(t)‖2 + p̄ ‖∇ · q(t)‖2 ≤M2,
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where

M2 =
(
‖∇p0‖2 + p̄ ‖∇ · q0‖2

)
exp

{
1

p̄

(
cM1

ε p̄
+ 1

)(
‖p0‖2 + p̄ ‖q0‖2

)}
.

Plugging (3.12) into (3.11), then integrating the result with respect to t, we have

(3.13)

∫ t

0

(
‖∆p(τ)‖2 + ε p̄ ‖∆q(τ)‖2

)
dτ

≤
(
‖∇p0‖2 + p̄ ‖∇ · q0‖2

)
+
M2

p̄

(
cM1

ε p̄
+ 1

)∫ t

0

(
‖∇p(τ)‖2 + ε p̄ ‖∇ · q(τ)‖2

)
dτ

≤
[
M2

p̄

(
cM1

ε p̄
+ 1

)
+ 1

] (
‖∇p0‖2 + p̄ ‖∇ · q0‖2

)
,

where we have used (3.6). It is clear that the energy bounds in (3.12) and (3.13) are not uniform

in ε. Indeed, they will blow up as ε → 0. This explains why the vanishing chemical diffusion

coefficient limit can not be realized in the 2D case.

3.1.4. H2-Estimate. Next, we estimate the second order spatial derivatives of the solution. Tak-

ing the spatial gradient of the first equation and the spatial divergence of the second equation

of (3.1), we get

(3.14)

{
∂t∇p−∇(∇ · (pq))− p̄∇(∇ · q) = ∇∆p,

∂t∇ · q−∆p = ε∆(∇ · q)− ε∆(|q|2).

Computing the L2 inner products of the first equation of (3.14) with −∇∆p and the second one

with −p̄∆(∇ · q), respectively, we have

(3.15)

1

2

d

dt

(
‖∆p‖2 + p̄ ‖∆q‖2

)
+ ‖∇∆p‖2 + ε p̄ ‖∆(∇ · q)‖2

=−
∫
R2

∇ (∇ · (pq)) · ∇(∆p) dx + ε p̄

∫
R2

∆(|q|2)∆(∇ · q) dx.

The first term on the RHS of (3.15) can be estimated, by means of Hölder, Gagliardo-Nirenberg

and Young’s inequalities, as∣∣∣∣−∫
R2

∇ (∇ · (pq)) · ∇(∆p) dx

∣∣∣∣
≤ (‖p‖L4‖∆q‖L4 + ‖∇p‖L4‖∇ · q‖L4 + ‖∆p‖L4‖q‖L4) ‖∇∆p‖

≤ c
(
‖p‖

1
2 ‖∇p‖

1
2 ‖∆q‖

1
2 ‖∆∇ · q‖

1
2 + ‖∇p‖

1
2 ‖∆p‖

1
2 ‖∇ · q‖

1
2 ‖∆q‖

1
2 +

‖∆p‖
1
2 ‖∇∆p‖

1
2 ‖q‖

1
2 ‖∇ · q‖

1
2
)
‖∇∆p‖

≤ 1

2
‖∇∆p‖2 + c

(
‖p‖‖∇p‖‖∆q‖‖∆∇ · q‖+ ‖∇p‖‖∆p‖‖∇ · q‖‖∆q‖+ ‖∆p‖2‖q‖2‖∇ · q‖2

)
≤ 1

2
‖∇∆p‖2 +

ε p̄

4
‖∆(∇ · q)‖2 +

c

ε p̄
M1‖∇p‖2‖∆q‖2 + c

(
‖∇p‖2‖∆p‖2 + ‖∇ · q‖2‖∆q‖2

)
+

c δ1‖∆p‖2‖∇ · q‖2

≤ 1

2
‖∇∆p‖2 +

ε p̄

4
‖∆(∇ · q)‖2 + cM2

(
1 +

δ1

p̄

)
‖∆p‖2 +

cM2

εp̄2

(
M1

ε
+ 1

)
ε p̄ ‖∆q‖2,
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where we used (3.2) and (3.12). For the second term on the RHS of (3.15), we can show that∣∣∣∣ε p̄ ∫
R2

∆(|q|2)∆(∇ · q) dx

∣∣∣∣
≤ 2 ε p̄

(
‖∇ · q‖2L4 + ‖q‖L4‖∆q‖L4

)
‖∆(∇ · q)‖

≤ c ε p̄
(
‖∇ · q‖‖∆q‖+ ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∆q‖

1
2 ‖∆∇ · q‖

1
2

)
‖∆∇ · q‖

≤ ε p̄

4
‖∆(∇ · q)‖2 + c ε p̄

(
‖∇ · q‖2‖∆q‖2 + ‖q‖2‖∇ · q‖2‖∆q‖2

)
≤ ε p̄

4
‖∆(∇ · q)‖2 +

cM2

p̄
(1 + δ1) ε p̄ ‖∆q‖2.

Plugging the above estimates into (3.15), we have

(3.16)
d

dt

(
‖∆p‖2 + p̄ ‖∆q‖2

)
+ ‖∇∆p‖2 + ε p̄ ‖∆(∇ · q)‖2 ≤M3

(
‖∆p‖2 + ε p̄ ‖∆q‖2

)
,

where

M3 = 2 max

{
cM2

(
1 +

δ1

p̄

)
,
cM2

εp̄2

(
M1

ε
+ 1

)
+
cM2

p̄
(1 + δ1)

}
.

Integrating (3.16) with respect to time and using (3.13), we get

(3.17)

‖∆p(t)‖2 + p̄ ‖∆q(t)‖2 +

∫ t

0

(
‖∇∆p(τ)‖2 + ε p̄ ‖∆(∇ · q)‖2

)
dτ

≤ ‖∆p0‖2 + p̄ ‖∆q0‖2 +M3

[
M2

p̄

(
cM1

ε p̄
+ 1

)
+ 1

] (
‖∇p0‖2 + p̄ ‖∇ · q0‖2

)
.

This completes the proof of Lemma 3.2, and hence the global well-posedness of (3.1) when n = 2

and ε > 0. Next, we prove a similar result for the 3D case when ε ≥ 0.

3.2. Global Well-posedness in 3D. Similar to 2D, we first assume the following holds true

for some finite T > 0:

(3.18)

sup
0≤t≤T

‖q(t)‖2 ≤ δ2,

sup
0≤t≤T

‖p(t)‖2 ≤ N1,

sup
0≤t≤T

(
‖∇p(t)‖2 + ‖∇ · q(t)‖2

)
≤ N2,

sup
0≤t≤T

(
‖∆p(t)‖2 + ‖∆q(t)‖2

)
≤ N3,

where δ2, N1, N2, N3 > 0 are constants to be determined later.

We shall prove the following a priori estimates for the solution of (3.1) when n = 3.

Lemma 3.3. Let the solution (p,q) of (3.1) with n = 3 satisfy (3.18), and assume that the

initial entropy (2.3) is sufficiently small. Then for any constants Ni (i = 1, 2, 3) > 0 and any

fixed value of ε ≥ 0, if δ2 is suitably small, there are positive constants γi (i = 3, 4) which are
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independent of t and ε, such that

∗ ‖p(t)‖2H2 + p̄‖q(t)‖2H2 +

∫ t

0

(
‖∇p(τ)‖2H2 + ε p̄ ‖∇ · q(τ)‖2H2

)
≤ γ3,

∗
∫ t

0
‖∇ · q(τ)‖2H1 ≤ γ4(1 + ε),

and γ3 and γ4 depend only on ‖p0‖H2, ‖q0‖H2 and p̄.

Next we shall prove Lemma 3.3 in the following sections where the realization of the a priori

assumption (3.18) will be discussed when appropriate along the estimates.

3.2.1. Entropy Estimate. Note that we still have the entropy estimate as in Section 3.1.1:

(3.19)

d

dt

(∫
R3

[
η(p+ p̄)− η(p̄)− η′(p̄)p

]
dx +

1

2
‖q‖2

)
+

∫
R3

|∇p|2

p+ p̄
dx + ε ‖∇ · q‖2

= ε

∫
R3

|q|2(∇ · q) dx,

where the RHS can be estimated by using Gagliardo-Nirenberg interpolation inequality as∣∣∣∣ε∫
R3

|q|2(∇ · q) dx

∣∣∣∣ ≤ ε‖q‖L3‖q‖L6‖∇ · q‖

≤ c ε ‖q‖
1
2 ‖∇ · q‖

1
2 ‖∇ · q‖2

≤ c ε (δ2N2)
1
4 ‖∇ · q‖2.

Hence, when δ2N2 is smaller than some absolute constant, we update (3.19) as

d

dt

(∫
R3

[
η(p+ p̄)− η(p̄)− η′(p̄)p

]
dx +

1

2
‖q‖2

)
+

∫
R3

|∇p|2

p+ p̄
dx +

ε

2
‖∇ · q‖2 ≤ 0,

which implies that∫
R3

[
η(p+ p̄)− η(p̄)− η′(p̄)p

]
dx +

1

2
‖q‖2 +

∫ t

0

(∫
R3

|∇p|2

p+ p̄
dx +

ε

2
‖∇ · q‖2

)
dτ

≤
∫
R3

[
η(p0 + p̄)− η(p̄)− η′(p̄)p0

]
dx +

1

2
‖q0‖2.

In particular, we have

(3.20) ‖q(t)‖2 ≤ 2

∫
R3

[
η(p0 + p̄)− η(p̄)− η′(p̄)p0

]
dx + ‖q0‖2,

from which we can realize the smallness of δ2 by choosing the RHS of (3.20) to be sufficiently

small. Next, we carry out regular energy estimates for the individual frequencies of the solution

for up to the second order. We remark that the energy estimates in this section rely heavily

on the Gagliardo-Nirenberg-Sobolev inequality: ‖f‖L6 . ‖∇f‖, which enables us to obtain the

global well-posedness result for all values of ε ≥ 0 and establish the consistency between the

chemically diffusible and non-diffusible models in the process of vanishing diffusion limit. This

is one of the main features distinguishing the problems in the 2D and 3D cases.
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3.2.2. L2-Estimate. By testing the equations in 3.1 with the targeting functions and using

Gagliardo-Nirenberg interpolation inequalities in R3, we have

1

2

d

dt

(
‖p‖2 + p̄ ‖q‖2

)
+ ‖∇p‖2 + ε p̄ ‖∇ · q‖2

= −
∫
R3

p(q · ∇p)dx + ε p̄

∫
R3

|q|2∇ · q dx

≤ ‖p‖L6‖q‖L3‖∇p‖+ ε p̄ ‖q‖L3‖q‖L6‖∇ · q‖

≤ c
(
‖∇p‖‖∇ · q‖

1
2 ‖q‖

1
2 ‖∇p‖+ ε p̄ ‖∇ · q‖

1
2 ‖q‖

1
2 ‖∇ · q‖2

)
≤ c (δ2N2)

1
4
(
‖∇p‖2 + ε p̄ ‖∇ · q‖2

)
.

Therefore, when δ2N2 is smaller than some absolute constant, we get

(3.21)
d

dt

(
‖p‖2 + p̄ ‖q‖2

)
+ ‖∇p‖2 + ε p̄ ‖∇ · q‖2 ≤ 0,

which yields

(3.22) ‖p(t)‖2 + p̄ ‖q(t)‖2 +

∫ t

0

(
‖∇p(τ)‖2 + ε p̄ ‖∇ · q(τ)‖2

)
dτ ≤ ‖p0‖2 + p̄ ‖q0‖2.

Hence, we can realize the second a priori assumption in (3.18) by choosing

N1 = ‖p0‖2 + p̄ ‖q0‖2 + 1.

Next, we estimate the first order spatial derivatives of the solution.

3.2.3. H1-Estimate. Taking the L2 inner products of the equations in 3.1 with the −∆ of the

targeting functions and using Hölder, Gagliardo-Nirenberg and Young inequalities, we can show

that

(3.23)

1

2

d

dt

(
‖∇p‖2 + p̄ ‖∇ · q‖2

)
+ ‖∆p‖2 + ε p̄ ‖∆q‖2

= −
∫
R3

∇ · (pq)∆p dx + ε p̄

∫
R3

∇(|q|2) ·∆q dx

≤ ‖p‖L6‖∇ · q‖L3‖∆p‖+ ‖∇p‖L6‖q‖L3‖∆p‖+ 2 ε p̄ ‖q‖L3‖∇q‖L6‖∆q‖

≤ c
(
‖∇p‖‖q‖

1
4 ‖∆q‖

3
4 ‖∆p‖+ ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∆p‖2 + ε p̄ ‖∇ · q‖

1
2 ‖q‖

1
2 ‖∆q‖2

)
≤
(

1

4
+ c (δ2N2)

1
4

)
‖∆p‖2 + c (δ2(N3)3)

1
4 ‖∇p‖2 + c ε p̄ (δ2N2)

1
4 ‖∆q‖2.

Hence, when δ2N2 and δ2(N3)3 are smaller than some absolute constants, there holds that

(3.24)
d

dt

(
‖∇p‖2 + ‖∇ · q‖2

)
+ ‖∆p‖2 + ε‖∆q‖2 ≤ ‖∇p‖2.

Integrating (3.24) with respect to time, we see that

(3.25)

‖∇p(t)‖2 + p̄ ‖∇ · q(t)‖2 +

∫ t

0

(
‖∆p(τ)‖2 + ε p̄ ‖∆q(τ)‖2

)
dτ

≤ ‖∇p0‖2 + p̄ ‖∇ · q0‖2 +

∫ t

0
‖∇p(τ)‖2dτ

≤ ‖∇p0‖2 + p̄ ‖∇ · q0‖2 +
(
‖p0‖2 + p̄ ‖q0‖2

)
,
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where we have used (3.22). Hence, we can realize the third a priori assumption in (3.18) by

choosing

N2 = (1 + 1/p̄)
(
‖p0‖2H1 + p̄ ‖q0‖2H1

)
+ 1.

Next, we move on to the estimate of the second order spatial derivatives of the solution.

3.2.4. H2-Estimate. Computing the second order L2 inner products, we can show that

(3.26)

1

2

d

dt

(
‖∆p‖2 + p̄ ‖∆q‖2

)
+ ‖∇∆p‖2 + ε p̄ ‖∆(∇ · q)‖2

=−
∫
R3

∇ (∇ · (pq)) · ∇(∆p) dx + ε p̄

∫
R3

∆(|q|2)∆(∇ · q) dx.

For the first term on the RHS of (3.26), by using the Hölder, Gagliardo-Nirenberg and Young

inequalities, we deduce that∣∣∣∣−∫
R3

∇ (∇ · (pq)) · ∇(∆p) dx

∣∣∣∣
≤ (‖p‖L∞‖∆q‖+ ‖∇p‖L3‖∇q‖L6 + ‖∆p‖L6‖q‖L3) ‖∇∆p‖

≤ c
(
‖∇p‖

1
2 ‖∆p‖

1
2 ‖∆q‖+ ‖∇p‖

1
2 ‖∆p‖

1
2 ‖∆q‖+ ‖∇∆p‖‖q‖

1
2 ‖∇ · q‖

1
2

)
‖∇∆p‖

≤
(

1

4
+ c (δ2N2)

1
4

)
‖∇∆p‖2 + c ‖∇p‖‖∆p‖‖∆q‖2

≤
(

1

4
+ c (δ2N2)

1
4

)
‖∇∆p‖2 + c

(
‖∇p‖2 + ‖∆p‖2

)
‖∆q‖2,

where we interpolated ‖p‖L∞ as ‖p‖L∞ . ‖∆p‖
1
2

L2‖p‖
1
2

L6 . ‖∆p‖
1
2

L2‖∇p‖
1
2

L2 . In a similar fashion,

we can show that∣∣∣∣ε p̄ ∫
R3

∆(|q|2)∆(∇ · q) dx

∣∣∣∣
≤ 2 ε p̄

(
‖∇q‖L3‖∇q‖L6 + ‖q‖L3‖∇2q‖L6

)
‖∆(∇ · q)‖

≤ c ε p̄
(
‖∇ · q‖

1
2 ‖∆q‖

3
2 + ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∆(∇ · q)‖

)
‖∆(∇ · q)‖

≤ ε p̄

(
1

4
+ c (δ2N2)

1
4

)
‖∆(∇ · q)‖2 + c ε p̄ ‖∇ · q‖‖∆q‖‖∆q‖2

≤ ε p̄

(
1

4
+ c (δ2N2)

1
4

)
‖∆(∇ · q)‖2 + c

(
ε p̄ ‖∇ · q‖2 + ε p̄ ‖∆q‖2

)
‖∆q‖2.

Hence, when δ2N2 is smaller than some absolute constant, there holds that

(3.27)

d

dt

(
‖∆p‖2 + p̄ ‖∆q‖2

)
+ ‖∇∆p‖2 + ε p̄ ‖∆(∇ · q)‖2

≤ c

p̄

(
‖∇p‖2 + ‖∆p‖2 + ε p̄ ‖∇ · q‖2 + ε p̄ ‖∆q‖2

) (
‖∆p‖2 + p̄ ‖∆q‖2

)
.

Applying Gronwall’s inequality to (3.27) and using (3.22) and (3.25), we have

(3.28) ‖∆p(t)‖2 + p̄ ‖∆q(t)‖2 ≤ exp

{
c

p̄

(
‖p0‖2H1 + p̄ ‖q0‖2H1

)} (
‖∆p0‖2 + p̄ ‖∆q0‖2

)
.

Therefore, we can realize the fourth a priori assumption in (3.18) by choosing

N3 = (1 + 1/p̄) exp

{
c

p̄

(
‖p0‖2H1 + p̄ ‖q0‖2H1

)} (
‖∆p0‖2 + p̄ ‖∆q0‖2

)
+ 1.
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In addition, by plugging (3.28) into (3.27), we can show that

(3.29)

∫ t

0

(
‖∇∆p(τ)‖2 + ε p̄ ‖∆(∇ · q)‖2

)
dτ

≤
(
‖∆p0‖2 + p̄ ‖∆q0‖2

)
+
cN3

p̄

(
‖p0‖2H1 + p̄ ‖q0‖2H1

)
,

where the constant on the right hand side is independent of t and ε.

3.2.5. Uniform Temporal Integrability for q. From previous estimates (3.22), (3.25) and (3.29),

we see that the temporal integral of the spatial derivatives of q is inversely proportional to ε.

In this section, we derive the ε-independent temporal integrability for the spatial derivatives of

q, which will be used later for proving the zero chemical diffusion limit result. For this purpose,

we take the divergence of the second equation of (3.1), and combine the result with the first

equation to get

(3.30) ∂t(∇ · q) + p̄∇ · q = ε∆(∇ · q) + ∂tp− ε∆(|q|2)−∇ · (pq).

Taking the L2 inner product of (3.30) with ∇ · q, we have

(3.31)

1

2

d

dt
‖∇ · q‖2 + p̄ ‖∇ · q‖2 + ε ‖∆q‖2

=

∫
R3

(∂tp)(∇ · q)dx− ε
∫
R3

∆(|q|2)(∇ · q)dx−
∫
R3

(∇ · (pq)) (∇ · q)dx.

We note that∫
R3

(∂tp)(∇ · q)dx =
d

dt

∫
R3

p(∇ · q)dx−
∫
R3

p(∂t∇ · q)dx

=
d

dt

∫
R3

p(∇ · q)dx−
∫
R3

p(∆p)dx−
∫
R3

p
(
ε∆(∇ · q)− ε∆(|q|2)

)
dx

=
d

dt

∫
R3

p(∇ · q)dx + ‖∇p‖2 −
∫
R3

p
(
ε∆(∇ · q)− ε∆(|q|2)

)
dx,

where we have used the second equation of (3.1). Then we update (3.31) as

(3.32)

d

dt

(
1

2
‖∇ · q‖2 −

∫
R3

p(∇ · q)dx

)
+ p̄ ‖∇ · q‖2 + ε ‖∆q‖2

= ‖∇p‖2 − ε
∫
R3

∆(|q|2)(∇ · q)dx−
∫
R3

(∇ · (pq)) (∇ · q)dx−∫
R3

p
(
ε∆(∇ · q)− ε∆(|q|2)

)
dx

= ‖∇p‖2 + ε

∫
R3

∇(|q|2) · (∆q)dx−
∫
R3

(∇ · (pq)) (∇ · q)dx+∫
R3

∇p ·
(
ε∇(∇ · q)− ε∇(|q|2)

)
dx.

For the second term on the RHS of (3.32), according to (3.23), we have the following estimate∣∣∣∣ε∫
R3

∇(|q|2) · (∆q)dx

∣∣∣∣ ≤ c ε ‖q‖ 1
2 ‖∇ · q‖

1
2 ‖∆q‖2 ≤ c ε (δ2N2)

1
4 ‖∆q‖2.
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Using similar arguments as in (3.23), we estimate the third term on the RHS of (3.32) as∣∣∣∣−∫
R3

(∇ · (pq)) (∇ · q)dx

∣∣∣∣ ≤ c(‖∇p‖ 1
2 ‖∆p‖

1
2 ‖∇ · q‖2 + ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∆p‖‖∇ · q‖

)
≤ c

p̄

(
‖∇p‖‖∆p‖‖∇ · q‖2 + ‖∆p‖2‖q‖‖∇ · q‖

)
+
p̄

2
‖∇ · q‖2

≤ c

p̄

(
N1‖∇p‖‖∆p‖+

√
δ2N2 ‖∆p‖2

)
+
p̄

2
‖∇ · q‖2

≤ c

p̄

(
N1‖∇p‖2 +N1‖∆p‖2 +

√
δ2N2 ‖∆p‖2

)
+
p̄

2
‖∇ · q‖2.

For the fourth term on the RHS of (3.32), we can show that∣∣∣∣∫
R3

∇p ·
(
ε∇(∇ · q)− ε∇(|q|2)

)
dx

∣∣∣∣ ≤ ε ‖∇p‖‖∇(∇ · q)‖+ 2 ε ‖∇p‖‖q‖L3‖∇q‖L6

≤ 2 ε ‖∇p‖2 +
ε

4
‖∆q‖2 + ε ‖q‖2L3‖∇q‖2L6

≤ 2 ε ‖∇p‖2 +
ε

4
‖∆q‖2 + c ε ‖q‖‖∇ · q‖‖∆q‖2

≤ 2 ε ‖∇p‖2 +
ε

4
‖∆q‖2 + c ε (δ2N2)‖∆q‖2.

Hence, when δ2N2 is smaller than some absolute constant, we update (3.32) as

(3.33)

d

dt

(
1

2
‖∇ · q‖2 −

∫
R3

p(∇ · q)dx

)
+
p̄

2
‖∇ · q‖2 +

ε

2
‖∆q‖2

≤ ‖∇p‖2 +
c

p̄

(
N1‖∇p‖2 +N1‖∆p‖2 + ‖∆p‖2

)
+ 2 ε ‖∇p‖2.

Multiplying (3.21) by 2, then adding the result to (3.33), we find

(3.34)

d

dt
[E(t)] +

p̄

2
‖∇ · q‖2 +

ε

2
‖∆q‖2 + ‖∇p‖2 + 2 ε p̄ ‖∇ · q‖2

≤ c

p̄

(
N1‖∇p‖2 +N1‖∆p‖2 + ‖∆p‖2

)
+ 2 ε ‖∇p‖2.

where

E(t) =
1

2
‖∇ · q‖2 −

∫
R3

p(∇ · q)dx + 2 ‖p‖2 + 2 p̄ ‖q‖2

=
1

4
‖∇ · q‖2 +

∫
R3

(
1

2
∇ · q− p

)2

dx + ‖p‖2 + 2 p̄ ‖q‖2.

Integrating (3.34) with respect to time and using (3.22) and (3.25), we get, in particular, that

(3.35)

p̄

2

∫ t

0
‖∇ · q(τ)‖2dτ

≤ E(0) +

∫ t

0

(
c

p̄

(
N1‖∇p‖2 +N1‖∆p‖2 + ‖∆p‖2

)
+ 2 ε ‖∇p‖2

)
dτ

≤ E(0) +

(
cN1

p̄
+ 2ε

)(
‖p0‖2 + p̄‖q0‖2

)
+
c

p̄
(N1 + 1)

(
‖p0‖2H1 + p̄‖q0‖2H1

)
,

where the bound on the RHS is independent of t, and is finite for any fixed ε ≥ 0. In a similar

fashion, we can show that the temporal integral of ‖∇(∇ · q)‖2 is bounded by a constant which

is independent of t, and is finite for any fixed ε ≥ 0. The results obtained in this subsection

allow us to take the zero chemical diffusion limit of the solution.
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3.3. Long-time Behavior. In this section, we derive the long-time behavior of the solution

obtained from previous sections. First, we would like to recall a fact: if f(t) ∈W 1,1(0,∞), then

f(t) → 0 as t → ∞. In what follows, we use such a fact, together with the energy estimates

obtained in the previous subsections, to establish the decay estimate stated in Theorem 2.1.

For brevity, we only present the proof for the decay of the first order spatial derivatives of the

solution, in order to illustrate the main idea. The proof for the second order derivatives is in a

completely similar fashion and we omit the details. In addition, we only present the proof for

the 2D case, and the 3D case follows exactly in the same fashion.

First, we note that for any fixed ε > 0, it follows from (3.6) that

(3.36) ‖∇p(t)‖2 + ‖∇ · q(t)‖2 ∈ L1(0,∞).

Second, by following the arguments in the previous section, cf. (3.11), we can show that

(3.37)

∣∣∣∣ ddt (‖∇p‖2 + p̄ ‖∇ · q‖2
)∣∣∣∣

. ‖∆p‖2 + ε p̄ ‖∆q‖2 +
(
‖∇p‖2 + ε p̄ ‖∇ · q‖2

) (
‖∇p‖2 + ‖∇ · q‖2

)
. ‖∆p‖2 + ε p̄ ‖∆q‖2 + ‖∇p‖2 + ε p̄ ‖∇ · q‖2,

where we have applied (3.12) for the uniform-in-time estimates of ‖∇p‖2 and ‖∇·q‖2. Integrating

(3.37) with respect to t and applying (3.6) and (3.13), we see that

d

dt

(
‖∇p(t)‖2 + p̄ ‖∇ · q(t)‖2

)
∈ L1(0,∞).

Combining (3.36) and (3.37), we conclude that

‖∇p(t)‖2 + p̄ ‖∇ · q(t)‖2 ∈W 1,1(0,∞),

which implies

lim
t→∞

(
‖∇p(t)‖2 + p̄ ‖∇ · q(t)‖2

)
= 0.

By the same argument, we can use (3.13), (3.16) and (3.17) to show that

lim
t→∞

(
‖∆p(t)‖2 + p̄ ‖∆q(t)‖2

)
= 0.

By the Gagliardo-Nirenberg inequality ‖f‖L∞(R2) . ‖f‖
1
2

L2(R2)
‖∆f‖

1
2

L2(R2)
, and noting that p is a

perturbation of the original variable around p̄, we get (2.5) for the two dimensional case (n = 2).

Using the results in Section 3.2 for the three dimensional case (n = 3), and the same argument

as above for the two dimensional case, we can obtain the same result for the 3D case for ε ≥ 0.

3.4. Diffusion Limit in 3D. In the last part of Section 3, we prove the chemical diffusion

limit and identify the convergence rate for the solution obtained in Theorem 2.1 when n = 3.

For this purpose, we let (pε,qε) and (p0,q0) be the solutions to (3.1) with ε > 0 and ε = 0,

respectively, for the same initial data, and set p̃ = pε−p0 and q̃ = qε−q0. Then (p̃, q̃) satisfies

(3.38)


∂tp̃−∇ · q̃ = ∆p̃+∇ · (p̃qε + p0q̃),

∂tq̃−∇p̃ = ε∆qε − ε∇
(
|qε|2

)
;

(p̃0, q̃0) = (0,0),

where for simplicity, we took p̄ = 1. We begin with the zeroth frequency estimate.
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Step 1. Taking the L2 inner products, we find

(3.39)

1

2

d

dt

(
‖p̃‖2 + ‖q̃‖2

)
+ ‖∇p̃‖2

= −
∫
R3

(p̃qε + p0q̃) · ∇p̃ dx +

∫ [
ε∆qε − ε∇

(
|qε|2

)]
· q̃ dx.

For the first term on the RHS of (3.39), by applying Young’s inequality, we have

(3.40)

∣∣∣∣−∫
R3

(p̃qε + p0q̃) · ∇p̃ dx
∣∣∣∣ ≤ 1

2
‖∇p̃‖2 + ‖qε‖2L∞‖p̃‖2 + ‖p0‖2L∞‖q̃‖2

≤ 1

2
‖∇p̃‖2 + c

(
‖qε‖2H2‖p̃‖2 + ‖p0‖2H2‖q̃‖2

)
≤ 1

2
‖∇p̃‖2 + L1

(
‖p̃‖2 + ‖q̃‖2

)
,

where we applied Sobolev embedding and the constant L1 is independent of t and ε according

to Lemma 3.3. The second term on the RHS of (3.39) is estimated as

(3.41)

∣∣∣∣∫ [ε∆qε − ε∇
(
|qε|2

)]
· q̃ dx

∣∣∣∣ ≤ 1

2
‖q̃‖2 + ε2 ‖∆qε‖2 + 4 ε2 ‖q̃ε‖2L∞‖∇qε‖2

≤ 1

2
‖q̃‖2 + L2 ε

2,

where again we applied Sobolev embedding and the constant L2 is independent of t and ε

according to Lemma 3.3. Plugging (3.40) and (3.41) into (3.39), we have

(3.42)
d

dt

(
‖p̃‖2 + ‖q̃‖2

)
+ ‖∇p̃‖2 ≤ 2L1

(
‖p̃‖2 + ‖q̃‖2

)
+ 2L2 ε

2.

Applying Gronwall’s inequality to (3.42), we have

‖p̃(t)‖2 + ‖q̃(t)‖2 ≤
(
2L2 t e

2L1 t
)
ε2.

Next, we consider the convergence of the first order spatial derivatives of the perturbation.

Step 2. Taking the L2 inner products of the first two equations in (3.38) with the −∆ of the

targeting functions, we deduce

(3.43)

1

2

d

dt

(
‖∇p̃‖2 + ‖∇ · q̃‖2

)
+ ‖∆p̃‖2

= −
∫
R3

[
∇ · (p̃qε + p0q̃)

]
∆p̃ dx + ε

∫
R3

(∆∇ · qε)(∇ · q̃)dx− ε
∫
R3

∆
(
|qε|2

)
(∇ · q̃)dx.

For the first term on the right hand side of (3.43), by applying the Young’s inequality, we have

(3.44)

∣∣∣∣−∫
R3

[
∇ · (p̃qε + p0q̃)

]
∆p̃ dx

∣∣∣∣ ≤ 1

2
‖∆p̃‖2 +

1

2
‖∇ · (p̃qε + p0q̃)‖2,

where the second term on the RHS can be estimated as

1

2
‖∇ · (p̃qε + p0q̃)‖2

≤ 2
(
‖∇p̃ · qε‖2 + ‖p̃(∇ · qε)‖2 + ‖∇p0 · q̃‖2 + ‖p0(∇ · q̃)‖2

)
≤ 2

(
‖∇p̃‖2‖qε‖2L∞ + ‖p̃‖2L6‖∇ · qε‖2L3 + ‖∇p0‖2L3‖q̃‖2L6 + ‖p0‖2L∞‖∇ · q̃‖2

)
≤ c

(
‖∇p̃‖2‖qε‖2H2 + ‖∇ · q̃‖2‖p0‖2H2

)
≤ L3

(
‖∇p̃‖2 + ‖∇ · q̃‖2

)
,
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where we applied various Gagliardo-Nirenberg and Sobolev inequalities and the constant L3 is

independent of t and ε according to Lemma 3.3. So we update (3.44) as

(3.45)

∣∣∣∣−∫
R3

[
∇ · (p̃qε + p0q̃)

]
∆p̃ dx

∣∣∣∣ ≤ 1

2
‖∆p̃‖2 + L3

(
‖∇p̃‖2 + ‖∇ · q̃‖2

)
.

For the second and third terms on the RHS of (3.43), in a similar fashion, we can show that

(3.46)

∣∣∣∣ε∫
R3

(∆∇ · qε)(∇ · q̃)dx− ε
∫
R3

∆
(
|qε|2

)
(∇ · q̃)dx

∣∣∣∣
≤ 1

2
‖∇ · q̃‖2 + ε2 ‖∆∇ · qε‖2 + ε2

∥∥∆
(
|qε|2

)∥∥2

≤ 1

2
‖∇ · q̃‖2 + ε2 ‖∆∇ · qε‖2 + c ε2

(
‖∆qε‖2‖qε‖2L∞ + ‖∇qε‖4L4

)
≤ 1

2
‖∇ · q̃‖2 + ε2 ‖∆∇ · qε‖2 + c ε2 ‖qε‖4H2

≤ 1

2
‖∇ · q̃‖2 + ε2‖∆∇ · qε‖2 + L4 ε

2,

where the constant L4 is independent of t and ε according to Lemma 3.3. Plugging (3.45) and

(3.46) into (3.43), we find

d

dt

(
‖∇p̃‖2 + ‖∇ · q̃‖2

)
+ ‖∆p̃‖2 ≤ 2L3

(
‖∇p̃‖2 + ‖∇ · q̃‖2

)
+ 2 ε2 ‖∆∇ · qε‖2 + 2L4 ε

2.

Applying Gronwall’s inequality to (3.42), we deduce

‖∇p̃(t)‖2 + ‖∇ · q̃(t)‖2 ≤ e2L3 t

(
2 ε

∫ t

0
ε ‖∆∇ · qε(τ)‖2dτ + 2L4 t ε

2

)
≤ L5 e

2L3 t (1 + t ε) ε,

where the constant L5 is independent of t and ε according to Lemma 3.3.

3.5. Proof of Theorem 2.1 and Theorem 2.2. Collecting the results obtained in Sections

3.1-3.3, we prove Theorem 2.1. Theorem 2.2 is a consequence of results in Section 3.4.

4. Small Energetic Solutions

In this section, we are devoted to proving Theorem 2.3. Similarly, we first assume for some

finite time T > 0 that:

(4.1)

sup
0≤t≤T

(
‖p(t)‖2 + ‖q(t)‖2

)
≤ δ3,

sup
0≤t≤T

(
‖∇p(t)‖2 + ‖∇ · q(t)‖2

)
≤ K1,

sup
0≤t≤T

(
‖∆p(t)‖2 + ‖∆q(t)‖2

)
≤ K2,

where δ3,K1,K2 > 0 are constants to be determined later.

Then we have the following a priori estimates for the solutions of (3.1).
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Lemma 4.1. Let the solution (p,q) of (3.1) with n = 2 satisfy (4.1), and the initial energy

(2.4) be sufficiently small. Then for any given constants Ki (i = 1, 2) > 0, if δ3 is suitably small,

there are positive constants γi (i = 5, 6, 7) which are independent of t and ε, such that

∗ ‖p(t)‖2H1 + ‖q(t)‖2H1 +

∫ t

0

(
‖∇p(τ)‖2H1 + ε p̄ ‖∇ · q(τ)‖2H1

)
≤ γ5,

∗ ‖∆p(t)‖2 + ‖∆q(t)‖2 +

∫ t

0

(
‖∇∆p(τ)‖2 + ε p̄ ‖∆∇ · q(τ)‖2

)
≤ γ6(1 + ε),

∗
∫ t

0
‖∇ · q(τ)‖2H1 ≤ γ7(1 + ε),

and γ5, γ6 and γ7 depend only on ‖p0‖H2, ‖q0‖H2 and p̄.

In the following subsections, we prove Lemma 4.1 and realize a priori assumption (4.1) where

appropriate along the proof.

4.1. L2-Estimate. Testing the equations in (3.1) by the targeting functions, we have

(4.2)

1

2

d

dt

(
‖p‖2 + p̄ ‖q‖2

)
+ ‖∇p‖2 + ε p̄ ‖∇ · q‖2

= −
∫
R2

p(q · ∇p)dx + ε p̄

∫
R2

|q|2∇ · q dx.

We remark that at the current stage of energy estimates if one directly works on the RHS of

(4.2) as in deriving (3.5), then the inverse of ε will inevitably enter the energy bound, which

is not desirable for the study of zero chemical diffusion limit. This is due to the Gagliardo-

Nirenberg interpolation inequality in 2D: ‖f‖2L4 . ‖f‖‖∇f‖, does not generate enough powers

of ‖∇p‖ such that the first term on the RHS of (4.2) can be absorbed by the dissipation term

on the LHS under the smallness assumption on ‖q‖2. On the other hand, since the smallness of

‖p‖2 is assumed in (4.1), we can improve the energy estimate by taking advantage of such an

assumption. The idea is to cancel the “bad” term and create higher order nonlinearities through

carrying out Lp (p > 2) level energy estimates. We begin the process by taking the L2 inner

product of the first equation in (3.1) with −p2 to get

(4.3) −1

6

d

dt

(∫
R2

p3dx

)
−
∫
R2

p|∇p|2dx =

∫
R2

p(q · ∇p)dx +

∫
R2

p2(q · ∇p)dx.

Taking the L2 inner product of the first equation in (3.1) with p3, we have

(4.4)
1

12

d

dt

(∫
R2

p4dx

)
+

∫
R2

p2|∇p|2dx = −
∫
R2

p2(q · ∇p)dx−
∫
R2

p3(q · ∇p)dx.

Summing up (4.2), (4.3) and (4.4), we obtain

(4.5)

d

dt

(∫
R2

(
p2

2
− p3

6
+
p4

12

)
dx +

p̄

2
‖q‖2

)
+∫

R2

(
|∇p|2 − p|∇p|2 + p2|∇p|2

)
dx + ε p̄ ‖∇ · q‖2

= −
∫
R2

p3(q · ∇p)dx + ε p̄

∫
R2

|q|2∇ · q dx,

where ∫
R2

(
p2

2
− p3

6
+
p4

12

)
dx =

1

36
‖3p− p2‖2 +

1

4
‖p‖2 +

1

18
‖p‖4L4 ,
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and ∫
R2

(
|∇p|2 − p|∇p|2 + p2|∇p|2

)
dx =

1

2
‖∇p‖2 +

1

2
‖∇p− p∇p‖2 +

1

2
‖p∇p‖2.

In addition, by applying the Gagliardo-Nirenberg interpolation inequalities in 2D:

(4.6) ‖F‖L8 . ‖∇F‖
3
4 ‖F‖

1
4 , ‖F‖L4 . ‖∇F‖

1
2 ‖F‖

1
2 ,

we can show that∣∣∣∣−∫
R2

p3(q · ∇p)dx
∣∣∣∣ ≤ ‖p‖2L8‖q‖L4‖p∇p‖

≤ c ‖∇p‖
3
2 ‖p‖

1
2 ‖∇ · q‖

1
2 ‖q‖

1
2 ‖p∇p‖

≤ c ‖∇p‖‖p‖‖∇p‖2 + c ‖∇ · q‖‖q‖‖p∇p‖2

≤ c (δ3K1)
1
2
(
‖∇p‖2 + ‖p∇p‖2

)
,

and ∣∣∣∣ε p̄ ∫
R2

|q|2∇ · q dx

∣∣∣∣ ≤ ε p̄ ‖q‖2L4‖∇ · q‖

≤ c ε p̄ ‖q‖‖∇ · q‖2

≤ c ε p̄ (δ3)
1
2 ‖∇ · q‖2.

Hence, when δ3K1 is smaller than some absolute constant, we update (4.5) as

(4.7)

d

dt

(
1

36
‖3p− p2‖2 +

1

4
‖p‖2 +

1

18
‖p‖4L4 +

p̄

2
‖q‖2

)
+

1

4
‖∇p‖2 +

1

2
‖∇p− p∇p‖2 +

1

4
‖p∇p‖2 +

ε p̄

2
‖∇ · q‖2 ≤ 0.

By integrating (4.7) with respect to time, we obtain

(4.8)

(
1

36
‖3p− p2‖2 +

1

4
‖p‖2 +

1

18
‖p‖4L4 +

p̄

2
‖q‖2

)
(t)+∫ t

0

(
1

4
‖∇p‖2 +

1

2
‖∇p− p∇p‖2 +

1

4
‖p∇p‖2 +

ε p̄

2
‖∇ · q‖2

)
(τ)dτ ≤ E0,

where

E0 =
1

36
‖3p0 − p2

0‖2 +
1

4
‖p0‖2 +

1

18
‖p0‖4L4 +

p̄

2
‖q0‖2.

Since E0
∼= ‖p0‖2 + ‖p0‖4L4 + ‖q0‖2, the smallness of δ3 can be realized by choosing ‖p0‖2 +

‖p0‖4L4 +‖q0‖2 to be sufficiently small. Next, we deal with the estimate of the first order spatial

derivatives of the solution.

4.2. H1-Estimate. Testing the equations in (3.1) by the −∆ of the targeting functions, we

have
1

2

d

dt

(
‖∇p‖2 + p̄ ‖∇ · q‖2

)
+ ‖∆p‖2 + ε p̄ ‖∆q‖2

= −
∫
R2

∇ · (pq)∆p dx + ε p̄

∫
R2

∇(|q|2) · (∆q) dx

= −
∫
R2

[p(∇ · q) +∇p · q] ∆p dx + ε p̄

∫
R2

∇(|q|2) · (∆q) dx,
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which is equivalent to

(4.9)

d

dt

(
‖∇p‖2 + p̄ ‖∇ · q‖2

)
+ 2 ‖∆p‖2 + 2 ε p̄ ‖∆q‖2

= −
∫
R2

[2 p (∇ · q) + 2∇p · q] ∆p dx + 2 ε p̄

∫
R2

∇(|q|2) · (∆q) dx.

We remark that the first term on the RHS of (4.9) is again a “trouble maker”, due to the

deficiency of the Gagliardo-Nirenberg interpolation inequalities in 2D. To terminate such a term,

we multiply the first equation in (3.1) by p∆p to get

(4.10)
∆p

2
∂t(p

2) = p(∆p) [∆p+∇ · (pq) + p̄∇ · q] .

Taking ∆ to the first equation in (3.1), then multiplying the resulting equation by p2/2, we get

(4.11)
p2

2
∂t(∆p) =

p2

2
∆ [∆p+∇ · (pq) + p̄∇ · q] .

Summing up (4.10) and (4.11), then integrating the resulting equation over R2, we have

(4.12)

1

2

d

dt

∫
R2

p2∆p dx

=

∫
R2

p∆p [∆p+∇ · (pq) + p̄∇ · q] dx +

∫
R2

p2

2
∆ [∆p+∇ · (pq) + p̄∇ · q] dx.

After integrating the second integral on the RHS of (4.12) by parts twice, we get∫
R2

p2

2
∆ [∆p+∇ · (pq) + p̄∇ · q] dx =

∫
R2

(
p∆p+ |∇p|2

)
[∆p+∇ · (pq) + p̄∇ · q] dx.

Then we update (4.12) as

(4.13) − d

dt

∫
R2

p|∇p|2 dx =

∫
R2

(
2p∆p+ |∇p|2

)
[∆p+∇ · (pq) + p̄∇ · q] dx,

where we have integrated the LHS by parts.

In a completely same fashion, we can show that

(4.14)
1

p̄

d

dt

∫
R2

p2|∇p|2dx = −2

p̄

∫
R2

(
p2∆p+ p|∇p|2

)
[∆p+∇ · (pq) + p̄∇ · q] dx.

Multiplying (4.9) by p̄, then adding the result with (4.13) and (4.14), we can show that

(4.15)

d

dt

(
p̄ ‖∇p‖2 −

∫
R2

p|∇p|2 dx +
1

p̄

∫
R2

p2|∇p|2dx + (p̄)2 ‖∇ · q‖2
)

+

2 p̄ ‖∆p‖2 − 2

∫
R2

p(∆p)2dx +
2

p̄
‖p∆p‖2 + 2 ε (p̄)2‖∆q‖2 = H(t),
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where

H(t) = −2 p̄

∫
R2

(∇p · q)∆p dx + 2

∫
R2

p∆p∇ · (pq) dx +

∫
R2

|∇p|2∆p dx+∫
R2

|∇p|2∇ · (pq) dx + p̄

∫
R2

|∇p|2∇ · q dx− 2

p̄

∫
R2

p2∆p∇ · (pq) dx−

2

∫
R2

p2∆p∇ · q dx− 2

p̄

∫
R2

p|∇p|2∆p dx− 2

p̄

∫
R2

p|∇p|2∇ · (pq) dx−

2

∫
R2

p|∇p|2∇ · q dx + 2 ε (p̄)2

∫
R2

∇(|q|2) · (∆q) dx

≡
11∑
k=1

Ik(t).

Next, we carry out energy estimates for H(t). For I1(t), by using the second interpolation

inequality in (4.6), we can show that

(4.16)

|I1(t)| = 2 p̄

∣∣∣∣∫
R2

(∇p · q)∆p dx

∣∣∣∣
≤ 2 p̄ ‖∇p‖L4‖q‖L4‖∆p‖

≤ c p̄ ‖∇p‖
1
2 ‖∆p‖

3
2 ‖q‖

1
2 ‖∇ · q‖

1
2

≤ p̄

12
‖∆p‖2 + c p̄ ‖∇p‖2‖q‖2‖∇ · q‖2

≤ p̄

12
‖∆p‖2 + c p̄ δ3K1 ‖∇p‖2.

For I2(t), by using the second interpolation inequality in (4.6) and the following:

(4.17) ‖F‖L∞ . ‖F‖
1
2 ‖∆F‖

1
2 ,

we can show that

(4.18)

|I2(t)| = 2

∣∣∣∣∫
R2

p∆p∇ · (pq) dx

∣∣∣∣
= 2

∣∣∣∣∫
R2

p∆p (p∇ · q + q · ∇p) dx

∣∣∣∣
≤ 2

(
‖∆p‖‖p‖2L∞‖∇ · q‖+ ‖∆p‖‖p‖L∞‖q‖L4‖∇p‖L4

)
≤ c

(
‖∆p‖2‖p‖‖∇ · q‖+ ‖∆p‖2‖p‖

1
2 ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∇p‖

1
2

)
≤ c (δ3K1)

1
2 ‖∆p‖2.

For I3(t), by using (4.17) and the interpolation inequality:

‖∇F‖L4 . ‖F‖
1
2
L∞‖∆F‖

1
2 ,
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we can show that

(4.19)

|I3(t)| =
∣∣∣∣∫

R2

|∇p|2∆p dx

∣∣∣∣
≤ ‖∇p‖2L4‖∆p‖

≤ c ‖p‖L∞‖∆p‖2

≤ c ‖p‖
1
2 ‖∆p‖

1
2 ‖∆p‖2

≤ c (δ3K2)
1
4 ‖∆p‖2.

For I4(t), using similar arguments as those in (4.18) and using (4.17), we can show that

(4.20)

|I4(t)| =
∣∣∣∣∫

R2

|∇p|2∇ · (pq) dx

∣∣∣∣
= 2

∣∣∣∣∫
R2

(∇p ·H(p)) · (pq) dx

∣∣∣∣
≤ 2 ‖∆p‖‖p‖L∞‖∇p‖L4‖q‖L4

≤ c ‖∆p‖2‖p‖
1
2 ‖∇p‖

1
2 ‖q‖

1
2 ‖∇ · q‖

1
2

≤ c (δ3K1)
1
2 ‖∆p‖2,

where H(p) denotes the Hessian matrix of p. For I5(t), by using the second interpolation

inequality in (4.6), we can show that

(4.21)

|I5(t)| = p̄

∣∣∣∣∫
R2

|∇p|2∇ · q dx

∣∣∣∣
≤ p̄ ‖∇p‖2L4‖∇ · q‖
≤ c p̄ ‖∇p‖‖∆p‖‖∇ · q‖

≤ p̄

12
‖∆p‖2 + c p̄K1 ‖∇p‖2.

For I6(t), similar to the estimate of I2(t), we can show that

(4.22)

|I6(t)| = 2

p̄

∣∣∣∣∫
R2

p2∆p∇ · (pq) dx

∣∣∣∣
=

2

p̄

∣∣∣∣∫
R2

p2∆p (p∇ · q + q · ∇p) dx

∣∣∣∣
≤ 2

p̄

(
‖p∆p‖‖p‖2L∞‖∇ · q‖+ ‖p∆p‖‖p‖L∞‖q‖L4‖∇p‖L4

)
≤ c

p̄

(
‖p∆p‖‖∆p‖‖p‖‖∇ · q‖+ ‖p∆p‖‖∆p‖‖p‖

1
2 ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∇p‖

1
2

)
≤ c

p̄
(δ3K1)

1
2
(
‖p∆p‖2 + ‖∆p‖2

)
.
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For I7(t), we can show that

(4.23)

|I7(t)| = 2

∣∣∣∣∫
R2

p2∆p∇ · q dx

∣∣∣∣
≤ 2 ‖p‖2L∞‖∆p‖‖∇ · q‖

≤ c ‖p‖‖∇ · q‖‖∆p‖2

≤ c (δ3K1)
1
2 ‖∆p‖2.

For I8(t), similar to the estimate of I3(t), we can show that

(4.24)

|I8(t)| = 2

p̄

∣∣∣∣∫
R2

p|∇p|2∆p dx

∣∣∣∣
≤ 2

p̄
‖∇p‖2L4‖p∆p‖

≤ c

p̄
‖p‖L∞‖∆p‖‖p∆p‖

≤ c

p̄
‖p‖

1
2 ‖∆p‖

1
2 ‖∆p‖‖p∆p‖

≤ c

p̄
(δ3K2)

1
4
(
‖∆p‖2 + ‖p∆p‖2

)
.

For I9(t), similar to the estimate of I4(t), we can show that

(4.25)

|I9(t)| = 2

p̄

∣∣∣∣∫
R2

p|∇p|2∇ · (pq) dx

∣∣∣∣
=

2

p̄

∣∣∣∣∫
R2

|∇p|2∇p · (pq)dx + 2

∫
R2

p (∇p ·H(p)) · (pq) dx

∣∣∣∣
≤ c

p̄

(
‖∇p‖3L4‖p‖L∞‖q‖L4 + ‖p‖2L∞‖∆p‖‖∇p‖L4‖q‖L4

)
≤ c

p̄

(
‖∆p‖2‖p‖

1
2 ‖∇p‖

3
2 ‖q‖

1
2 ‖∇ · q‖

1
2 + ‖∆p‖2‖p‖‖∇p‖

1
2 ‖∆p‖

1
2 ‖q‖

1
2 ‖∇ · q‖

1
2

)
≤ c

p̄

[
(δ3)

1
2K1 + (δ3)

3
4 (K1)

1
2 (K2)

1
4

]
‖∆p‖2.

For For I10(t), similar to the estimate of I5(t), we can show that

(4.26)

|I10(t)| = 2

∣∣∣∣∫
R2

p|∇p|2∇ · q dx

∣∣∣∣
≤ 2 ‖p‖L∞‖∇p‖2L4‖∇ · q‖

≤ c ‖p‖
1
2 ‖∇p‖‖∆p‖

3
2 ‖∇ · q‖

≤ p̄

12
‖∆p‖2 +

c

(p̄)3
‖p‖2‖∇p‖4‖∇ · q‖4

≤ p̄

12
‖∆p‖2 +

c

(p̄)3
δ3(K1)3‖∇p‖2.
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For I11(t), by using the second interpolation inequality in (4.6), we can show that

(4.27)

|I11(t)| = 2 ε (p̄)2

∣∣∣∣∫
R2

∇(|q|2) · (∆q) dx

∣∣∣∣
≤ 2 ε (p̄)2 ‖q‖L4‖∇q‖L4‖∆q‖

≤ c ε (p̄)2 ‖q‖
1
2 ‖∇ · q‖‖∆q‖

3
2

≤ ε (p̄)2 ‖∆q‖2 + c ε (p̄)2 ‖q‖2‖∇ · q‖4

≤ ε (p̄)2 ‖∆q‖2 + c ε (p̄)2 δ3K1 ‖∇ · q‖2.

Combining (4.16), (4.18)–(4.27), we can show that when δ3K1, δ3K2 and δ3(K1)2 are smaller

than some absolute constants, it holds that

(4.28)
|H(t)| ≤ p̄

2
‖∆p‖2 +

1

2 p̄
‖p∆p‖2 + c

[
p̄ (1 +K1) +

(K1)2

(p̄)3

]
‖∇p‖2+

ε (p̄)2 ‖∆q‖2 + ε (p̄)2 ‖∇ · q‖2.

Plugging (4.28) into (4.15), we obtain

(4.29)

d

dt

(
p̄ ‖∇p‖2 −

∫
R2

p|∇p|2 dx +
1

p̄

∫
R2

p2|∇p|2dx + (p̄)2 ‖∇ · q‖2
)

+

3 p̄

2
‖∆p‖2 − 2

∫
R2

p(∆p)2dx +
3

2 p̄
‖p∆p‖2 + ε (p̄)2‖∆q‖2

≤ c

[
p̄ (1 +K1) +

(K1)2

(p̄)3

]
‖∇p‖2 + ε (p̄)2 ‖∇ · q‖2.

We observe that in (4.29),

(4.30)

X1(t) ≡ p̄ ‖∇p‖2 −
∫
R2

p|∇p|2 dx +
1

p̄

∫
R2

p2|∇p|2dx + (p̄)2 ‖∇ · q‖2

≥ p̄

2
‖∇p‖2 + (p̄)2 ‖∇ · q‖2 +

1

2 p̄

∫
R2

p2|∇p|2dx,

Y1(t) ≡ 3 p̄

2
‖∆p‖2 − 2

∫
R2

p(∆p)2dx +
3

2 p̄
‖p∆p‖2

≥ p̄

2
‖∆p‖2 +

1

2 p̄
‖p∆p‖2.

After integrating (4.29) with respect to time, we find that

(4.31)

X1(t) +

∫ t

0

(
Y1(τ) + ε (p̄)2‖∆q(τ)‖2

)
dτ

≤ X1(0) + c

[
p̄ (1 +K1) +

(K1)2

(p̄)3

] ∫ t

0
‖∇p(τ)‖2dτ + p̄

∫ t

0
ε p̄ ‖∇ · q(τ)‖2dτ

≤ X1(0) + 4E0

(
c

[
p̄ (1 +K1) +

(K1)2

(p̄)3

]
+ p̄

)
,

where we have used (4.8). In view of (4.30), we see that

p̄

2
‖∇p‖2 + (p̄)2 ‖∇ · q‖2 ≤ X1(0) + 4E0

(
c

[
p̄ (1 +K1) +

(K1)2

(p̄)3

]
+ p̄

)
,
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which implies

‖∇p‖2 + ‖∇ · q‖2 ≤
(

2

p̄
+

1

(p̄)2

){
X1(0) + 4E0

(
c

[
p̄ (1 +K1) +

(K1)2

(p̄)3

]
+ p̄

)}
.

Hence, we can fulfill the second line of (4.1) by choosing

K1 =

(
2

p̄
+

1

(p̄)2

)(
X1(0) + 1

)
+ 1,

and E0 to be sufficiently small, such that

(4.32) 4E0

(
c

[
p̄ (1 +K1) +

(K1)2

(p̄)3

]
+ p̄

)
≤ 1.

In addition, we see from (4.30), (4.31) and (4.32) that∫ t

0

( p̄
2
‖∆p(τ)‖2 + ε (p̄)2‖∆q(τ)‖2

)
dτ ≤ X1(0) + 1,

which implies

(4.33)

∫ t

0

(
‖∆p(τ)‖2 + ε p̄ ‖∆q(τ)‖2

)
dτ ≤ 2

p̄
(X1(0) + 1) .

Thus the H1-estimate is completed.

4.3. H2-Estimate. We proceed to estimate the second order spatial derivatives of the solution.

Applying ∆ to the equations in (3.1), then taking the L2 inner products of the resulting equations

with ∆ of the targeting functions, we obtain

(4.34)

1

2

d

dt

(
‖∆p‖2 + p̄ ‖∆q‖2

)
+ ‖∇∆p‖2 + ε p̄ ‖∆(∇ · q)‖2

=−
∫
R2

∇ (∇ · (pq)) · (∇∆p) dx + ε p̄

∫
R3

∆(|q|2)∆(∇ · q) dx

≤ (‖p‖L∞‖∆q‖+ ‖∇p‖L4‖∇q‖L4 + ‖∆p‖L4‖q‖L4) ‖∇∆p‖+

2 ε p̄
(
‖∇q‖2L4 + ‖q‖L4‖∇2q‖L4

)
‖∆(∇ · q)‖.

Note that, by Gagliardo-Nirenberg and Young inequalities, it holds that

‖∇p‖L4‖∇q‖L4‖∇∆p‖ ≤ c ‖∇p‖
1
2 ‖∆p‖

1
2 ‖∇ · q‖

1
2 ‖∆q‖

1
2 ‖∇∆p‖

≤ c

p̄
‖∇p‖2‖∆p‖2‖∇ · q‖2 +

(p̄)
1
3

8
‖∆q‖

2
3 ‖∇∆p‖

4
3

≤ c (K1)2

p̄
‖∆p‖2 +

p̄

24
‖∆q‖2 +

1

12
‖∇∆p‖2.
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Similarly, we can show that

• ‖∆p‖L4‖q‖L4‖∇∆p‖ ≤ c ‖∆p‖
1
2 ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∇∆p‖

3
2

≤ c ‖∆p‖2‖q‖2‖∇ · q‖2 +
1

12
‖∇∆p‖2

≤ c δ3K1 ‖∆p‖2 +
1

12
‖∇∆p‖2;

• 2 ε p̄ ‖∇q‖2L4‖∆(∇ · q)‖ ≤ c ε p̄ ‖∇ · q‖‖∆q‖‖∆(∇ · q)‖

≤ c ε p̄ ‖∇ · q‖2‖∆q‖2 +
ε p̄

4
‖∆(∇ · q)‖2

≤ c ε p̄K1‖∆q‖2 +
ε p̄

4
‖∆(∇ · q)‖2;

• 2 ε p̄ ‖q‖L4‖∇2q‖L4‖∆(∇ · q)‖ ≤ c ε p̄ ‖q‖
1
2 ‖∇ · q‖

1
2 ‖∆q‖

1
2 ‖∆(∇ · q)‖

3
2

≤ c ε p̄ ‖q‖2‖∇ · q‖2‖∆q‖2 +
ε p̄

4
‖∆(∇ · q)‖2

≤ c ε p̄ δ3K1 ‖∆q‖2 +
ε p̄

4
‖∆(∇ · q)‖2.

When δ3K1 is smaller than some absolute constant, we update (4.34) as

(4.35)

1

2

d

dt

(
‖∆p‖2 + p̄ ‖∆q‖2

)
+

5

6
‖∇∆p‖2 +

ε p̄

2
‖∆(∇ · q)‖2

≤ ‖p‖L∞‖∆q‖‖∇∆p‖+
p̄

24
‖∆q‖2 + c

[
(K1)2

p̄
+ 1

]
‖∆p‖2 + c (K1 + 1) ε p̄ ‖∆q‖2.

In order to control the terms involving ‖∆q‖2 on the RHS of (4.35), we refer to (3.30):

(4.36) ∂t(∇ · q) + p̄∇ · q = ε∆(∇ · q) + ∂tp− ε∆(|q|2)−∇ · (pq).

By working with (4.36), we can show that

(4.37)

d

dt

(
1

2
‖∆q‖2 −

∫
R2

∇p ·∆q dx

)
+ p̄ ‖∆q‖2 + ε‖∆(∇ · q)‖2

= ‖∆p‖2 −
∫
R2

∇ (∇ · (pq)) ·∆q dx + ε

∫
R2

∆(|q|2) ∆(∇ · q)dx−

ε

∫
R2

∆p∆(∇ · q)dx− ε
∫
R2

∆p∆(|q|2)dx,
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where the RHS can be estimated as follows. First of all, we have∣∣∣∣−∫
R2

∇ (∇ · (pq)) ·∆q dx

∣∣∣∣
≤ (‖p‖L∞‖∆q‖+ ‖∇p‖L4‖∇q‖L4 + ‖∆p‖L4‖q‖L4) ‖∆q‖

≤ ‖p‖L∞‖∆q‖2 + c
(
‖∇p‖

1
2 ‖∆p‖

1
2 ‖∇ · q‖

1
2 ‖∆q‖

3
2 + ‖∆p‖

1
2 ‖∇∆p‖

1
2 ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∆q‖

)
≤
(
‖p‖L∞ +

5 p̄

24

)
‖∆q‖2 +

c

(p̄)3
‖∇p‖2‖∆p‖2‖∇ · q‖2 +

c

p̄
‖q‖‖∇ · q‖‖∇∆p‖‖∆p‖

≤
(
‖p‖L∞ +

5 p̄

24

)
‖∆q‖2 +

c

(p̄)3
‖∇p‖2‖∆p‖2‖∇ · q‖2 +

c

(p̄)2
‖∆p‖2 + ‖q‖2‖∇ · q‖2‖∇∆p‖2

≤
(
‖p‖L∞ +

5 p̄

24

)
‖∆q‖2 + c

(
(K1)2

(p̄)3
+

1

(p̄)2

)
‖∆p‖2 + δ3K1 ‖∇∆p‖2.

Secondly, similar to the last line of (4.35), we can show that∣∣∣∣ε∫
R2

∆(|q|2) ∆(∇ · q)dx

∣∣∣∣ ≤ c (K1 + δ3K1) ε ‖∆q‖2 +
ε

4
‖∆(∇ · q)‖2.

Thirdly, by using the Young’s inequality, we can show that∣∣∣∣−ε∫
R2

∆p∆(∇ · q)dx

∣∣∣∣ ≤ ε ‖∆p‖2 +
ε

4
‖∆(∇ · q)‖2.

Lastly, we can show that∣∣∣∣−ε∫
R2

∆p∆(|q|2)dx

∣∣∣∣
≤ 2 ε

(
‖∆p‖L4‖q‖L4‖∆q‖+ ‖∆p‖‖∇q‖2L4

)
≤ c ε

(
‖∆p‖

1
2 ‖∇∆p‖

1
2 ‖q‖

1
2 ‖∇ · q‖

1
2 ‖∆q‖+ ‖∆p‖‖∇ · q‖‖∆q‖

)
≤ ‖∆p‖‖∇∆p‖‖q‖‖∇ · q‖+ ‖∆p‖2‖∇ · q‖2 + c ε2 ‖∆q‖2

≤ 1

12
‖∇∆p‖2 + 3 ‖q‖2‖∇ · q‖2‖∆p‖2 + ‖∆p‖2‖∇ · q‖2 + c ε2 ‖∆q‖2

≤ 1

12
‖∇∆p‖2 + (3 δ3 + 1)K1 ‖∆p‖2 + c ε2 ‖∆q‖2.

Plugging the above estimates into (4.37), we have

(4.38)

d

dt

(
1

2
‖∆q‖2 −

∫
R2

∇p ·∆q dx

)
+

19 p̄

24
‖∆q‖2 +

ε

2
‖∆(∇ · q)‖2

≤ ‖p‖L∞‖∆q‖2 +

(
1

12
+ δ3K1

)
‖∇∆p‖2+[

c

(
(K1)2

(p̄)3
+

1

(p̄)2

)
+ ε+ (3 δ3 + 1)K1

]
‖∆p‖2 + c (K1 + δ3K1 + ε) ε ‖∆q‖2.
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Combining (4.35) and (4.38), we find that

(4.39)

d

dt
X2(t) + Y2(t) ≤‖p‖L∞

(
‖∆q‖‖∇∆p‖+ ‖∆q‖2

)
+

(
1

12
+ δ3K1

)
‖∇∆p‖2+[

c

(
(K1)2

(p̄)3
+

1

(p̄)2

)
+ ε+ (3 δ3 + 1)K1 + c

(
(K1)2

p̄
+ 1

)]
‖∆p‖2+(

c

p̄
(K1 + δ3K1 + ε) + c (K1 + 1)

)
ε p̄ ‖∆q‖2,

where

(4.40)
X2(t) =

1

2
‖∆p‖2 +

p̄

2
‖∆q‖2 +

1

2
‖∆q‖2 −

∫
R2

∇p ·∆q dx,

Y2(t) =
5

6
‖∇∆p‖2 +

3 p̄

4
‖∆q‖2 +

ε

2
(p̄+ 1) ‖∆(∇ · q)‖2.

Since ‖p‖L∞ ≤ c (δ3K2)
1
4 due to (4.17), when δ3K2 and δ3K1 are smaller than some absolute

constants, we update (4.39) and (4.40) as

(4.41)

d

dt
X2(t) + Y3(t) ≤

[
c

(
(K1)2

(p̄)3
+

1

(p̄)2

)
+ ε+ 1 +K1 + c

(
(K1)2

p̄
+ 1

)]
‖∆p‖2+(

c

p̄
(K1 + 1 + ε) + c (K1 + 1)

)
ε p̄ ‖∆q‖2,

where

Y3(t) =
1

2
‖∇∆p‖2 +

p̄

2
‖∆q‖2 +

ε

2
(p̄+ 1) ‖∆(∇ · q)‖2.

We note that by definition, X2(t) may not be positive (cf. (4.40)). However, by combining

(4.41) with (4.29)×2
p̄ , we obtain

(4.42)

d

dt
X3(t) + Y4(t) ≤

[
c

(
(K1)2

(p̄)3
+

1

(p̄)2

)
+ ε+ 1 +K1 + c

(
(K1)2

p̄
+ 1

)]
‖∆p‖2+(

c

p̄
(K1 + 1 + ε) + c (K1 + 1)

)
ε p̄ ‖∆q‖2+

c

[
1 +K1 +

(K1)2

(p̄)4

]
‖∇p‖2 + ε p̄ ‖∇ · q‖2,

where

X3(t) = X2(t) + 2 ‖∇p‖2 − 2

p̄

∫
R2

p|∇p|2 dx +
2

(p̄)2

∫
R2

p2|∇p|2dx + 2 p̄ ‖∇ · q‖2

≥ 1

2
‖∆p‖2 +

p̄

2
‖∆q‖2 +

1

2
‖∇p‖2 + 2 p̄ ‖∇ · q‖2,

Y4(t) = Y3(t) + 3 ‖∆p‖2 − 4

p̄

∫
R2

p(∆p)2dx +
3

(p̄)2
‖p∆p‖2

≥ 1

2
‖∇∆p‖2 +

p̄

2
‖∆q‖2 +

ε

2
(p̄+ 1) ‖∆(∇ · q)‖2 + ‖∆p‖2.
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Integrating (4.42) with respect to time and using (4.8) and (4.33), we obtain

1

2
‖∆p(t)‖2 +

p̄

2
‖∆q(t)‖2 +

∫ t

0

(
1

2
‖∇∆p(τ)‖2 +

ε

2
(p̄+ 1) ‖∆(∇ · q)(τ)‖2

)
dτ

≤ X3(0) +

[
c

(
(K1)2

(p̄)3
+

1

(p̄)2

)
+ ε+ 1 +K1 + c

(
(K1)2

p̄
+ 1

)]
2

p̄
(X1(0) + 1) +(

c

p̄
(K1 + 1 + ε) + c (K1 + 1)

)
2

p̄
(X1(0) + 1) + 2 cE0

[
1 +K1 +

(K1)2

(p̄)4

]
≡ K̃2,

which yields

‖∆p(t)‖2 + ‖∆q(t)‖2 ≤ 2 (1 + 1/p̄) K̃2 ≡ K2.

Thus, the H2-estimate is completed.

4.4. Proof of Theorem 2.3. First we obtain Lemma 4.1 by combining the results in Sections

4.1-4.3. Then the global existence of solutions to (3.1) with n = 2 asserted in Theorem 2.3

results from Lemma 3.1 and Lemma 4.1. In addition, by working with (4.36) and arguing in a

similar way as in Section 3.2.5, we can show that ‖∇ ·q‖2H1 is uniformly integrable with respect

to time. Then, by repeating the arguments in Section 3.3 and Section 3.4, we can establish the

long-time behavior and diffusion limit results for solutions with small initial energy in 2D. We

omit the details for brevity. This completes the proof for Theorem 2.3.

5. Conclusion

We have studied the qualitative behavior of solutions to the Cauchy problem of a system of

parabolic conservation laws (1.4) in multiple space dimensions. Utilizing energy methods, we

first showed that for any fixed value of ε > 0, the Cauchy problem is globally (with respect to

time) well-posed provided that either the initial entropy or initial energy around a constant state

is sufficiently small, and the smallness of the specific frequency depends on the other components

in the energy spectrum. Moreover, the solution converges to the constant state as time goes to

infinity. Second, we showed that similar results hold in 3D for small initial entropy and in 2D

for small initial energy when ε = 0. Based on this, we established the convergence of solutions

with ε > 0 toward those with ε = 0 and identified the convergence rate for each case. Finally we

note that the questions of global well-posedness and long-time behavior of solutions in 2D for

small initial entropy when ε = 0 are still open at the present time. We leave the investigation

for the future.

Appendix A. Explicit Examples

In this appendix, we provide some explicit examples of initial data that fulfill the requirements

of the main results in this paper.

A.1. Small Entropy in 2D. First, we recall the a priori assumptions made in Section 3.1:

sup
0≤t≤T

‖q(t)‖2 ≤ δ1,

sup
0≤t≤T

‖p(t)− p̄‖2 ≤M1.
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As the proof proceeded, we obtained the following estimates and choices of constants (see Sec-

tions 3.1.1-3.1.2):

• sup
0≤t≤T

‖q(t)‖2 ≤ 2

∫
R2

[(p0 ln(p0)− p0)− (p̄ ln(p̄)− p̄)− ln(p̄)(p0 − p̄)] dx + ‖q0‖2,

• M1 = ‖p0‖2 + p̄ ‖q0‖2 + 1,

and we required that δ1 and δ1M1 to be smaller than some absolute constants.

Now, let us consider the following initial data:

(A.1)

p0(x) =

m
[
sin
(
r − π

2

)
+ 1
]

+ f(m), 2π ≤ r ≤ 4π,

f(m), r ∈ (−∞, 2π) ∪ (4π,∞);

q0(x) =


[
sin
(
f(m) r − π

2

)
+ 1
]√

f(m)
· x
r
, 2π ≤ r ≤ 4π,

0, r ∈ (−∞, 2π) ∪ (4π,∞),

where m ∈ N, r = |x| and m < f(m) ≡ p̄ ∈ N is to be determined later. It is straightforward to

check that (p0,q0) ∈ H2(R2) and ∇× q0 = 0. By direct calculations, we can show that

‖p0 − p̄‖2 ∼= m2, ‖q0‖2 ∼=
1

f(m)
.

In addition, we can show that∫
R2

[(p0 ln(p0)− p0)− (p̄ ln(p̄)− p̄)− ln(p̄)(p0 − p̄)] dx

=

∫
R2

1

2 p∗
(p0 − p̄)2dx ≤ 1

2f(m)
‖p0 − p̄‖2,

where p∗ is between p0 and p̄. Hence, by taking

δ1 = 2

∫
Ω

[(p0 ln(p0)− p0)− (p̄ ln(p̄)− p̄)− ln(p̄)(p0 − p̄)] dx + ‖q0‖2,

we have that δ1 . m2/f(m). Moreover, there holds that δ1M1 . m4/f(m). Then it is easy to

see that δ1 → 0 and δ1M1 → 0 as m → ∞, provided that f(m) = O(m4+ε) for some ε > 0.

Therefore, the smallness of δ1 and δ1M1 can be realized as long as m ≥ m0 for some m0 ∈ N.

Furthermore, from (A.1) we can show that ‖p0 − p̄‖2H2 = O(m2) and ‖∇ · q0‖2 = O(f(m)) and

‖∆q0‖2 = O(f3(m)) for large m.

A.2. Small Entropy in 3D. First, we recall the a priori assumptions made in Section 3.2:

sup
0≤t≤T

‖q(t)‖2 ≤ δ2,

sup
0≤t≤T

‖p(t)− p̄‖2 ≤ N1,

sup
0≤t≤T

(
‖∇p(t)‖2 + ‖∇ · q(t)‖2

)
≤ N2,

sup
0≤t≤T

(
‖∆p(t)‖2 + ‖∆q(t)‖2

)
≤ N3.
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As the proof proceeded, we got the following estimates and choices of constants (see Sections

3.2.1-3.2.4):

• sup
0≤t≤T

‖q(t)‖2 ≤ 2

∫
R3

[(p0 ln(p0)− p0)− (p̄ ln(p̄)− p̄)− ln(p̄)(p0 − p̄)] dx + ‖q0‖2,

• N2 = (1 + 1/p̄)
(
‖p0‖2H1 + p̄ ‖q0‖2H1

)
+ 1,

• N3 = (1 + 1/p̄) exp

{
c

p̄

(
‖p0‖2H1 + p̄‖q0‖2H1

)} (
‖∆p0‖2 + p̄ ‖∆q0‖2

)
+ 1,

and we required that δ2N2 and δ2(N3)3 to be smaller than some absolute constants.

Now, let us consider the following initial functions:

p0(x) =

m
[
sin
(
r − π

2

)
+ 1
]

+ g(m), 2π ≤ r ≤ 4π,

g(m), r ∈ (−∞, 2π) ∪ (4π,∞);

q0(x) =


m
[
sin
(
r − π

2

)
+ 1
]√

g(m)
· x
r
, 2π ≤ r ≤ 4π,

0, r ∈ (−∞, 2π) ∪ (4π,∞),

where m ∈ N, r = |x| and p̄ ≡ g(m) > m is to be determined later. It is straightforward to

check that (p0,q0) ∈ H2(R3) and ∇× q0 = 0. By direct calculations, we can show that

(A.2)

• ‖p0 − p̄‖2 ∼= m2, ‖q0‖2 ∼=
1

g(m)
m2;

• ‖∇p0‖2 ∼= m2, ‖∇ · q0‖2 ∼=
1

g(m)
m2;

• ‖∆p0‖2 ∼= m2, ‖∆q0‖2 ∼=
1

g(m)
m2,

which imply

N2
∼=
(

1 +
1

g(m)

)
n2 + 1 ≡ g1(m) + 1,

N3
∼= exp

{
cm2

g(m)

}(
1 +

1

g(m)

)
m2 + 1 ≡ g2(m)eg3(m) + 1.

In addition, we can show that∫
R3

[(p0 ln(p0)− p0)− (p̄ ln(p̄)− p̄)− ln(p̄)(p0 − p̄)] dx

=

∫
R3

1

2 p∗
(p0 − p̄)2dx ≤ 1

2g(m)
‖p0 − p̄‖2,

where p∗ is between p0 and p̄. Hence, by taking

δ2 = 2

∫
R3

[(p0 ln(p0)− p0)− (p̄ ln(p̄)− p̄)− ln(p̄)(p0 − p̄)] dx + ‖q0‖2,

we have that δ ∼= m2/f(m). Moreover, there hold that

δ2N2
∼=

m2

g(m)
· (g1(m) + 1) ≡ g4(m),

δ2(N3)3 ∼=
m2

g(m)
·
(

[g2(m)]3e3g3(m) + 3[g2(m)]2e2g3(m) + 3g2(m)eg3(m) + 1
)
≡ g5(m),
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from which we see that g4(m) → 0 and g5(m) → 0 as m → ∞, provided that g(m) = O(m8+ε)

for some ε > 0. Therefore, the smallness of δ2N2 and δ2(N3)3 can be realized as long as m ≥ m0

for some m0 ∈ N. Furthermore, from (A.2) we see that ‖p0 − p̄‖H2 = O(m) for large m, while

‖q0‖H2 → 0 as m→∞.

A.3. Small Energy in 2D. First, let us recall the a priori assumptions made at the beginning

of Section 4.1:

sup
0≤t≤T

(
‖p(t)− p̄‖2 + ‖q(t)‖2

)
≤ δ3,

sup
0≤t≤T

(
‖∇p(t)‖2 + ‖∇ · q(t)‖2

)
≤ K1,

sup
0≤t≤T

(
‖∆p(t)‖2 + ‖∆q(t)‖2

)
≤ K2.

During the proof of Theorem 2.3, we required δ3K1, δ3, δ3K2, δ3(K1)2 and δ3(K1)3 to be smaller

than some absolute constants.

Next, let us consider the following initial functions

p0(x) =

m−
3
2

[
sin
(
mr − π

2

)
+ 1
]

+A, 2π ≤ r ≤ 4π,

A, r ∈ (−∞, 2π) ∪ (4π,∞);

q0(x) =

m−
3
2

[
sin
(
mr − π

2

)
+ 1
]
· x
r
, 2π ≤ r ≤ 4π,

0, r ∈ (−∞, 2π) ∪ (4π,∞),

where A > 0 is any fixed constant, m ∈ N and r = |x|. Then direct calculations show that

(p0,q0) ∈ H2(R2), ∇× q0 = 0, and

(A.3)

• ‖p0 −A‖2 ∼= m−3, ‖q0‖2 ∼= m−3,

• ‖∇p0‖2 ∼= m−1, ‖∇ · q0‖2 ∼= m−1,

• ‖∆p0‖2 ∼= m, ‖∆q0‖2 ∼= m.

As the proof of Theorem 2.3 proceeded, we obtained the following qualitative relations:

(A.4)

• δ3
∼= E0

∼= ‖p0 −A‖2 + ‖p0 −A‖4L4 + ‖q0‖2,

• X1(0) ∼= ‖∇p0‖2 + ‖(p0 − p̄)∇p0‖2 + ‖∇ · q0‖2,
• K1

∼= X1(0) + 1,

• E0(K1 + 1)2 � 1,

• K2
∼= ‖∆p0‖2 + ‖∆q0‖2 +X1(0) + (K1 + 1)2(X1(0) + E0 + 1).

From (A.3) we see that

δ3
∼= E0

∼= m−3, K1
∼= 1, K2

∼= m+ 1,

from which we see that when m ∈ N is sufficiently large, the quantities δ3K1, δ3, δ3K2, δ3(K1)2

and δ3(K1)3 are all small, and the fourth inequality in (A.4) can be realized.
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