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ABSTRACT. In this paper, we study the qualitative behavior of solutions to the Cauchy problem
of a system of parabolic conservation laws, derived from a Keller-Segel type chemotaxis model
with singular sensitivity, in multiple space dimensions. Assuming H? initial data, it is shown
that under the assumption that only some fractions of the total energy associated with the
initial perturbation around a prescribed constant ground state are small, the Cauchy problem
admits a unique global-in-time solution, and the solution converges to the prescribed ground
state as time goes to infinity. In addition, it is shown that solutions of the fully dissipative model
converge to that of the corresponding partially dissipative model with certain convergence rates
as a specific system parameter tends to zero.

1. INTRODUCTION

Chemotaxis, the movement of an organism in response to a chemical stimulus, has been
an important mechanism of various biological phenomena/processes, such as aggregation of
bacteria, slime mould formation, fish pigmentation, tumor angiogenesis, blood vessel formation,
wound healing (cf. [29]). The prototypical chemotaxis model, known as Keller-Segel model due
to their pioneering works of [14, 15, 16], read in its general form as

{ pt =V - (DVp — xpVe(q)),
qt = eAq+ g(p, ),
where p(z,t) and ¢(x,t) denote the cell density and chemical (signal) concentration at posi-

tion x € R™ and time t, respectively. The function ¢(q) is called the chemotactic sensitivity
accounting for the signal response mechanism and ¢(p, q) is the chemical kinetics (growth and

(1.1)

degradation). D > 0 and € > 0 are cell and chemical diffusion coefficients, respectively. x # 0
is referred to as the chemotactic coefficient, where the chemotaxis is said to be attractive if
X > 0 and repulsive if x < 0. The model (1.1) has generic applications depending on the specific
forms of ¢(q) and g(p,q). There are two major classes of chemotactic response function: lin-
ear response ¢(q) = ¢ and logarithmic response ¢(q) = Ing. The former was originally used by
Keller and Segel in [15, 16] to model the self-aggregation of Dictyostelium discoideum in response
to cyclic adenosine monophosphate (cAMP) secreted by themselves whilst the latter in [14] to
model the wave propagation of bacterial chemotaxis. The prototypical Keller-Segel model with
logarithmic sensitivity reads as:

(12) { pe =V (DVp—xpVing),
G = eAq — ppg" — oq,
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where ¢ € R and ¢ > 0 are constants. As x,u > 0,0 < kK < 1 and ¢ = 0, the model
(1.2) was proposed by Keller-Segel in [14] to explain the wave band propagation observed in
the experiment by Adler [1]. Later the same model with £ = 1 was used in [18] to describe
the dynamical interactions between vascular endothelial cells and signaling molecules vascular
endothelial growth factor in the onset of tumor angiogenesis. It was particularly mentioned in
[18] that the chemical diffusion coefficient € was small or negligible since it is far less important
than the interaction between vascular endothelial cells and vascular endothelial growth factors.
As x,pu < 0,0 > 0, the model (1.2) was derived in [17, 30] to model the chemotactic movement
of reinforced random walkers (denoted by p) which deposit a non-diffusive or slowly moving (i.e.
0 < e < 1) signal ¢ that modifies the local environment for succeeding passages. If y > 0 and
p < 0, the model will exhibit blow-up behavior even in one dimension [17, 40]. In this paper we
are concerned with the case xp > 0.

Though the logarithmic sensitivity plays an indispensable role in generating traveling wave
solutions (cf. [14]) which can be obtained directly from the model (1.2), its singularity at
q = 0 sets up a great obstacle to further understanding of the model dynamics such as stability
of traveling wave solutions, well-posedness of the model and so on. Therefore the results of
the Keller-Segel model (1.2) with logarithmic sensitivity are much less compared to the linear
sensitivity (e.g. see [2, 9, 10, 32]). However in the case k = 1, the logarithmic singularity can
be resolved by the following Cole-Hopf type transformation ([17, 26]):

q= —i”;WVln(eXp(ot)Q) = _7&#@’

g

which converts the model (1.2) into a non-singular system of conservation laws:

(1.3) pe— V- (pa) = Ap,
' at— V(p - £lal*) = 5Aq,
where we have used the temporal-spatial re-scalings t = %t, T = @w and then dropped tildes

for convenience. Though the transformed system (1.3) has no singularity and appears to be
easier to analyze than (1.2), it creates a quadratic nonlinearity (i.e. £V|q|?) resembling the
nonlinearity in the Navier-Stokes equations and brings various difficulties for analysis. Many
results have been obtained for the transformed system (1.3) in one dimension (to be recalled
later), but the results in multi-dimensions are very limited, in particular the existence of large-
data solutions of (1.3) in multi-dimensions still remains open. Moreover, the parameter e, which
is the diffusion coefficient in the original Keller-Segel model, now acts as coefficient of both
diffusion and advection. Since ¢ is small/negligible in applications mentioned above, the limit
of solutions as ¢ — 0 is a relevant but delicate question due to the dual role of . These
features distinguish the transformed system (1.3) from other known hyperbolic systems (e.g.
see [3, 11, 33]). The purpose of this paper is to establish the global existence of solutions to
the transformed model (1.3) in multi-dimensions with very mild smallness assumptions on the
initial data and show the convergence of solutions as ¢ — 0. For brevity we assume that y = —1
and D = 1 since their specific values are not of importance in our analysis. That is we consider
the following system of parabolic conservation laws:

{&sp — V- (pq) = Ap,

(1.4) y
da—V(p+elgl”) = cAq.
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The one-dimensional version of (1.4) has been well-studied in the literature, and we recall the
pertaining results below:

e explicit and numerical solutions on finite intervals [17],

e shock wave formation for the Riemann problem on R [35],

e global well-posedness and long-time behavior of small-amplitude classical solutions on
finite intervals [41],

local nonlinear stability of one-dimensional traveling wave solutions on R [13, 23, 24, 25,
26, 27],

global well-posedness of large-amplitude classical solutions on R [7],

global well-posedness of large-amplitude classical solutions on finite intervals [5],
long-time behavior and chemical diffusion limit of large-amplitude classical solutions on
finite intervals [21, 22, 34, 37],

long-time behavior, chemical diffusion limit and spatial analyticity of large-amplitude

classical solutions on R [28, 20],

boundary layer formation and characterization of large-amplitude classical solutions on
finite intervals [12, 21].

Next, we point out the facts that motivate the current work, and state the specific goals to
be achieved in this paper.
Motivation and Goals. The current work is primarily motivated by the energy criticality
of the model due to dimensionality. Let us first take a look at the scaling invariant property
enjoyed by the model. Indeed, by a direct calculation, we can show that (1.4) holds its form
under the scaling

(pa) = (@) == (Np(Ax, A*t), Aa(Ax, A*1)) .
Under this scaling, when the initial data are perturbed around the zero ground state, it holds
that

A2 4— 2 A2 2— 2
126122y = A" "IP0llZ2 ey and  [lagllzo@ny = A" lQ0llZ2gn)
which reveals that norm-inflation (especially for the q-component) is possible only when n = 1.
Next, we note that the weak Lyapunov functional associated with (1.4) reads:

d B Vp|?
( / E<p,p>dx+HqH%Q(Rn))+ / VB i+ 2923 g = 2 / a?V - q dx,
dt R Rn P R”

where p > 0 is a constant ground state and the “entropy expansion” is defined by

E(p,p) = [pln(p) — p| — [PIn(p) — p] — In(p)(p — p),

which has been observed in many works dealing with the one-dimensional version of (1.4).

Because of the scaling property of the gq-component and the fact that the right hand side of the
weak Lyapunov functional is zero only when n = 1, from the point of view of energy criticality
we then see that the global well-posedness of large-data solutions to (1.4) is sub-critical when
n = 1, critical when n = 2, and super-critical when n > 3. The observation partially explains
why the model is globally well-posed in one space dimension, as was observed in many previous
works, while the problem is still widely open in the multi-dimensional case.

To the authors’ knowledge, the following results are established for the Cauchy problem of
(1.4) in R™ (n > 2):

e local well-posedness and blowup criteria of large-amplitude classical solutions [6, 19],
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e global well-posedness and long-time behavior of small-amplitude classical solutions [8,
19,

e global well-posedness of classical solutions when only |[po —pl| 223 +/dol| g1 (rs) is small,
and long-time behavior when [|pg — pl| g2(rs) + [ Qo 1 (rs) is small [4],

e global well-posedness, long-time behavior and chemical diffusion limit of classical solu-
tions when only [|(po — P, qo)||z2(rs3) is small [31],

e global well-posedness, long-time behavior and chemical diffusion limit of strong solutions
when only [|(po — P, qo)|| 1 (rn) (n = 2,3) is small [36],

e global generalized (weak) solutions to on bounded domains in R? with Neumann bound-
ary conditions [38], followed with a work addressing the eventual smoothness of solutions
[39].

where p > 0 is a constant.

A close inspection shows that although the above list of results provides useful information
for the understanding of the global well-posedness, long-time behavior and diffusion limit of
solutions to (1.4) in multi-dimensional spaces, none of them gives a positive answer to such
questions when the initial data carry potentially large L? norm of the zeroth frequency of the
perturbation.

Throughout this paper, we consider the Cauchy problem of (1.4) subject to the initial condi-
tion

(1.5) (p,q)(x,0) = (po,qo)(x), x€R" n=23.

The primary goal of this paper is to settle the aforementioned issue by constructing global-in-
time solutions to (1.4) & (1.5) under minimal smallness requirements on the initial data, and
studying their long-time behavior and zero diffusion limits. To be precise, let us recall the
entropic energy:

(1.6) [ 1) =)= [p1n(r) = 71 = W) — )b dx+ ey

We will establish the global well-posedness of strong solutions to (1.4) & (1.5) in the following
situations:

e in R? when (1.6) is small and & > 0,
e in R3 when (1.6) is small and & > 0.

We remark that assuming the smallness of the spatial integral of the first order Taylor expansion
of the anti-logarithmic function of p allows the usual Sobolev norm of the perturbation to
be potentially large, see Remark 2.2. As a consequence of the global well-posedness, we also
identify the long-time behavior of the solutions, and study the zero chemical diffusion limits and
convergence rate of solutions as € — 0. In addition, we prove the similar results for the case:

e in R? when ||(po — P, Qo) z2®2) + [P0 — Pl La(re) is small and € > 0,
which has not been studied before.

We achieve the goals by developing LP-based energy methods. Since we only assume the
smallness of individual components of the total Sobolev norm of the initial data, the major
technical difficulty consists in closing the energy estimates for each individual frequency of the
solution, without combining low and high frequencies. Because of the lack of the Poincaré’s
inequality in the whole space, the energy estimates for the zeroth frequency part of the solu-
tion is challenging, especially when the zeroth frequency part is allowed to be potentially large.
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Moreover, because the Gagliardo-Nirenberg interpolation inequalities generate less powers of
high frequencies of a function in R? than in R3, the proof in the two-dimensional case is consid-
erably more complicated than the three-dimensional case. We break the walls by terminating
low frequencies through creating higher order nonlinearities, taking full advantage of the dissipa-
tion mechanisms and the smallness assumptions on individual frequencies, and utilizing various
Gagliardo-Nirenberg interpolation inequalities.

The rest part of this paper is organized as follows. In Section 2, we state and remark on
the main results. We then prove the main results in Sections 3-4. The paper ends with some
concluding remarks.

2. STATEMENT OF MAIN RESULTS

We first state the common assumptions to be satisfied by the initial functions:

e For n = 2 or 3, we assume universally that

(2.1) (po — P, o) € H*(R™),

where p > 0 is a constant.
e Because p represents the cell density, and q = VIn¢q, we assume

(2.2) po(x) >0 and V xqo(x)=0,

for any x € R™.
e We assume that one of the following quantities:

(2.3) . 2/ [(poInpo — po) — (PInp — p) —np (po — )] dx + || dol|72(zny
(2.4) o lIpo = PlZ2@ny + [P0 = Bllza@ny + ol Z2gn)
is sufficiently small.

Remark 2.1. We underline that in the assumption (2.3), ||po — P||r2 can be potentially large
due to the following inequality:

lpo — pll72 > Z/Rn [(poInpo — po) — (PInp —p) —Inp (po — p)] dx.
Indeed, let us consider the function
F(w) = (w-p)* =5 [(whw—w) - (plnp—p) —np(w—p), w=>0.
1t is straightforward to check that
F(p) =0, F()=0, F'(w)=2-2

which imply that F(w) > 0 forw € [2,00). Moreover, since F(0) = @, FB) = (& + 1%4) (p)?
and F"(w) < 0 for w € [0,%), it holds that F(w) > 0 for w € [0,8). Therefore, F(w) > 0
for all w € [0,00). In the Appendiz, we provide explicit examples of initial functions whose

p-component can have arbitrarily small entropic energy, but arbitrarily large H? energy.
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2.1. Small Initial Entropy. The first result addresses the global well-posedness and long-time
behavior of solutions to (1.4) & (1.5) when the initial entropy is small.

Theorem 2.1. Let n = 2,3 and consider the Cauchy problem (1.4) & (1.5). Suppose the
initial data satisfy (2.1) and (2.2), and the initial entropy (2.3) is sufficiently small, where the
smallness depends on the other components of the H? norm of the initial functions. Then there
exists a unique solution to (1.4) & (1.5), such that

e when n =2, for any fixed value of ¢ > 0, it holds that
t
* (0 = p) D172 + plla®)ll7 +/O (IVe()72 +ep IV - a(r)|[72) dr < Cn,

t
« [Vp(®)IF + 5V - a3 +/0 (V)2 + eIV - a(7)|[Fr2) dr < Co,

where the time-independent constant Cy depends only on ||pol|, ||dol| and p, while Cs
depends on ||po|lg2, |qol| gz, P and 1/e, and Cy — oo as e — 0;
e when n =3, for any fized value of € > 0, it holds that

* [0 = p) ()32 + pllal®) I +/0 (IVp(n) 32 +ep IV - a(n)F2) dr < Cs,

t
" / IV - a(r)[2ndr < Ca(1 +¢),
0

where the constants Cs and Cy depend only on ||po — pll g2, ||Qollz2 and p.

In addition, the following convergence
(2.5) Jlim ([(p = p)(B)I7= + la®)l[7e + VO 7 + 1V - a®)]7) =0
holds for both cases.

Remark 2.2. We remark that the smallness of the quantities in (2.3)-(2.4) depends (relatively)
on the other components of the H?-norm of the initial functions. As the conditions are lengthy,
we refer to the proofs for details. However, the reader will see from the proofs that we require
the products of individual frequencies of the initial functions to be smaller than some absolute
constants. Roughly speaking, this parallels to a scenario in which one assumes the product of
two positive numbers to be sufficiently small, while allowing either one to be potentially large.

The second theorem establishes the consistency and convergence rate between the chemically
diffusible and non-diffusible models in R3.

Theorem 2.2. Let n = 3, and let (p°,q°) and (p°,q°) be the solutions to (1.4) & (1.5) obtained
in Theorem 2.1 with € > 0 and € = 0, respectively, for the same initial data. Then, there are
positive constants d; (i = 1,...,4) such that for any t > 0,

10" =) (O72 + I(@” = a”) (D)7 < dite®™ e,

(2.6)
x [(Vp" = Vo) Oll72 + (V- @ = V-a")(B)[|72 < dge™ (1 + te)e,

where the constants d; depend only on ||po — || g2, |Qol|z2 and p.
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2.2. Small Initial Energy. In [31], the global well-posedness, long-time behavior and diffusion
limit of classical solutions to (1.4) & (1.5) is established in R® when (pg — p,qo) € H?, under
the assumption that ||(po — P, qo)||z2 is small. Next, we establish a similar result in R? under
lower regularity requirements on the initial data.

Theorem 2.3. Let n = 2 and consider the Cauchy problem (1.4) & (1.5). Suppose that the
initial data satisfy (2.1) and (2.2), and the initial energy (2.4) is sufficiently small, where the
smallness depends on the other components of the H? norm of the initial functions. Then there
exists a unique solution to (1.4) & (1.5), such that for any fized value of € > 0, it holds that

« 0 = D)l + lla®)llzn +/0 (VPO +eplIV - a(n)lzn) < Cs,
« [[Ap®)1* + | Aa(®)]* + /0 (IVAp(T)I? +ep AV - a(n)]?) < Co(1 +¢),

t
" / IV - ()2 < Cr(1+2),
0

where the constants Cs, Cg and C7 depend only on ||po — Dllg2, l|Qollgz end p. In addition,
similar results as those recorded in (2.5) and (2.6) hold.

Remark 2.3. We finally remark that the global well-posedness, long-time behavior and chemical
diffusion limit of strong solutions to (1.4) & (1.5) with small initial entropy in R? is still elusive
when € = 0, which can not be proved by using the energy method developed in this paper. We
leave the investigation for the future.

Notation 2.1. Throughout the rest part of the paper, we use || - || to denote || - ||;2. Unless
specified, we use ¢ to denote a generic constant which is independent of the unknown functions,
t, € and initial data. The value of the constant may vary line by line according to the context.

3. SMALL ENTROPIC SOLUTIONS

In this section, we shall present the proofs for Theorems 2.1-2.2. To this end, we first set
p = p — p and reformulate the Cauchy problem of (1.4) with initial data satisfying (2.1)-(2.2) as

atp_v(pq)_ﬁvq:Apa XGRnat>Oa
(3.1) g — Vp = eAq —eV(|q[?), e >0
(po, o) € H*(R™), po+p >0, V xqo=0,

where we have suppressed tilde for simplicity. In the sequel, (p, q) always denotes the perturba-
tion of original solution around (p,0) unless otherwise specified.

First we note that by the initial conditions and maximum principle, one can show that the
function p + p > 0. In addition, because of the initial curl free condition and the equation
0(V x q) = eA(V x q), the function q is curl free as time evolves. Hence, it suffices to deal
with the divergence of q, i.e. V -(q, in order to estimate the spatial derivatives of q. Moreover,
under the curl free condition, we have Aq = V(V - q). The existence of local solutions of (3.1)
can be obtained by the standard argument (see e.g. [36]).

Lemma 3.1 (Local existence). There is a To = To(||pol| g2 (mn), |90/l g2mny) such that the Cauchy
problem (3.1) has a unique solution (p,q) € C ([0, Ty); H*(R™)) with p+p >0 and V x q = 0.
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To extend the local solution to a global one, it suffices to derive the a priori estimates for the
solution obtained in Lemma 3.1.

3.1. Global Well-posedness in 2D. To this end, we first make a priori assumption by as-
suming for some finite 7" > 0 the following holds true:

sup |lq(t)]|* < 61,
o<t<T

(3.2) )
sup |[|p(¢)[|” < M,
0<t<T

where 01, M7 > 0 are constants to be determined later. Next we shall derive the a priori
estimates to obtain the global solution and show that the obtained solution satisfies the above
a priori assumption.

Lemma 3.2. Let the solution (p,q) of (3.1) with n = 2 satisfy (3.2). Suppose that the initial
data satisfy (2.1) and (2.2), and the initial entropy (2.3) is sufficiently small. Then for any
giwen constant My > 0 and any fized value of € > 0, if 61 is suitably small, there are positive
constants v; (i = 1,2) which are independent of t, such that

t
* ||p(t)H2+ﬁH01(t)|2+/0 (IVp()I? + eIV -a(n)|?) dr <,

t
V@)l + 2V - a®)llF, +/0 (IVp(n) 32 + BV - a(n)l72) dr < 72,

and 1 depends only on ||pol|, ||qo|| and p, while 72 depends on ||pol| g2, ||dol| g2, P and 1/e, and
Y2 — 00 as € — 0.

We shall proceed to prove Lemma 3.2 and close the a priori assumption (3.2) (i.e. the
realization of (3.2)) where appropriate along the proof. The proof consists of four estimates
given in the following Sections 3.1.1-3.1.4.

3.1.1. Entropy Estimate. Testing the first equation of (3.1) by In(p + p) — In(p) and the second
equation by q, then adding the results, we can show that

d _ _ ]/ — 1 2 ’vp‘2 2
— [n(p + ) —n(p) — ' (P)p] dx + S llall* ) + —dx +¢ ||V - q|
dt R2 2 R2 D =+ P
(3.3)
=c | |aP(V-aq) dx,
R2
where 7(z) = zInz — z, and the right-hand side (RHS) of (3.3) can be estimated by using the

Gagliardo-Nirenberg inequality: || f[|24 < ||l 22V fllz2, as

[ JaP(V-a) dx| < <[l -al

< cellgll|V - gl
1
<ced?|V-al*.

Hence, when ¢; is smaller than some absolute constant, we update (3.3) as

d _ _ Iy 1 2 / ‘VPP € 2
— — — — - — . <
7 (/Rz [n(p+ D) — n(p) — ' (P)p] dx + 5 llall ) + y p+pdx+ 5 IV -al® <0,



A SYSTEM OF PARABOLIC CONSERVATION LAWS IN MULTI-DIMENSIONS 9

which implies
1 t |Vp|? £
————’-d2//d SIv-ql?)d
/Rz[n(erp) n(p) = (p)p] dx + S [lal* + N\ S p gt lVeal)dr

< [ oo +5) = 00) =/ G)m] dx-+ 5 el

In particular, we have
2 ! 2 2
B4 a0+ [ 19 a@Par <2 [ o+ )~ ) = @] dx+ el

Therefore, we can realize the smallness of §; by choosing the right hand side of (3.4) to be
sufficiently small. Next, we go through the regular energy estimates.

3.1.2. L%-Estimate. Taking the L? inner products of the equations in (3.1) with the targeting
functions and applying the same Gagliardo-Nirenberg inequality as above, we end up with

Ld
2dt
= —/ p(q'Vp)derEp/ |a’V - q dx

R2 R2
Ipllzallall 41901 + € llall3 19 - al

1 1 1 3 _ 2
¢ (IpI*llall* 1V - all 1 9p]* + &5 lallV - al)

IpI? + 5 llall®) + Vel +ep |V - gl

IN

IA

IN

P 1
c ((51M1>i||v Vel +epa v q\z)

IN

1 (€ 3 1
¢ (6, My)7 <4\|V'q\l2+4 1||VpH2> +cepdE||V-qlf
€3

(@) 5
<(11)+512> IV - al® + ¢ (5:M,)7 = | Vp|*
D 4des

N

AN
o
™
s

Hence, when 0;M; and 0; are smaller than some absolute constants (depending on ¢), there
holds that

d ) )
= (Ipl* +pllal®) + [VpI* +ep]1V - al* <0,

which yields, after integrating with respect to time,

2 2 ' 2 2 2 2
(3.6) lp@I"+pla@®)] +/0 (IVp(I* +eplIV-a(n)I?) dr < Ipol*+pllaol®, V€ [0, T].
Thus, we can realize the second assumption of (3.2) by choosing

My = |lpoll* + P llqol|* + 1.

Next, we shall estimate the first order spatial derivatives of the solution.
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3.1.3. H'-Estimate. Taking the L? inner products of the equations in (3.1) with —A of the
targeting functions, we have

1d

5 (

(3.7) _ _/ V- (pq)Ap dx+€p/ V(lal*)Aq dx
R2 R?

< pleallV - all all Apll + Vel allall e | Apll + 22 pllall 24 Vall 24 | Agll,

where the first term on the RHS can be estimated as

1 1 1 1
12l L2 IV - allalApl < ellpl2 (VR - all2 [ Agl[> | Apll

IVpll> + 5|V - all?) + |1Ap[* + e p[|Aq|?

1
< L 1apl + cllplIIVRlIV - all|Ad]

(3.8) 1 €D c
< Z|lAp|IZ + == |AqlIZ + — |Ip|I2IIVplI2V - ql?
_4|| pll” + 1 |Aql| +5;3”p” IVpl*[IV - q|
1 EP c M
< Z|Ap|Z + == |Aql]? + ——||VplI?|V - ql|%.
_4|| pll* + 1 |Aq|” + 5 IVpl*IV - ql|

For the second term on the right-hand side of (3.7), we have
IVpll cellall el Apl < ¢ [ Vpl2 [ AplZ a2V - qll2

(39) < 1 18] + ¢ V| al?]V - ql?

< 2 I8pIP + ¢8|IV -
In a completely similar fashion, we can show that

2¢ 7 |lall 4| Val 4l Adll < 2epellall2 |V - qll| Agl 2

(3.10) < =L )aa)? +czpllal?V - qf*
< LAl + ccpal|V a9 -ql”

Feeding (3.8)-(3.10) into (3.7), we have

d _ _
2 VPl + 51V -al?) + [Ap|* +ep [ Adl?

< (B cs ) IVBIPIV -l + c2pallV - al?I9 -l
When §; is smaller than some absolute constant, it holds that

% (IVpl* + 21V - all?) + [|1Ap)* + ep[|Aq|?
(3.11) < ng\gl + 1> IVPIPIV -al* +ep V- ql*|V - gl

Vpl?+epIV-al®) (IVPl? + 511V -all?) .

< 1, <CM - 1> (
b\ ¢€p
Applying the Gronwall inequality to (3.11) and using (3.6), we have
(3.12) IV + 51V - a(®)]|* < M,
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where

1 (ecM
M = (19 + 19 - aol?) exp {3 (S22 1) (ol + ol |

Plugging (3.12) into (3.11), then integrating the result with respect to ¢, we have

/0 ([|Ap(T)||> +ep || Aa(r)|]?) dr

_ M, (¢ M ! _
313) < (9l 4219 al?) + 52 (21 [Tl +epl 9 -atnlP) ar
My (¢ M _
<[22 ( 1) w1 (9wl 4219 - al?).
p Ep

where we have used (3.6). It is clear that the energy bounds in (3.12) and (3.13) are not uniform
in €. Indeed, they will blow up as € — 0. This explains why the vanishing chemical diffusion
coefficient limit can not be realized in the 2D case.

3.1.4. H?-Estimate. Next, we estimate the second order spatial derivatives of the solution. Tak-
ing the spatial gradient of the first equation and the spatial divergence of the second equation
of (3.1), we get

{ HVp—V(V-(pq) —pV(V-q)=VAp,
(3.14)

4V -q—Ap=eA(V-q) —cA(|qf?).

Computing the L? inner products of the first equation of (3.14) with —VAp and the second one
with —pA(V - q), respectively, we have

|

(Iapl* +pllAgl?) + [[VAD[* +ep AV - @)

N
QU

t

= [ V(Y- (pa) V(Ap) dx+ P / AlaP)A(V - q) dx.
R2 R2

(3.15)

The first term on the RHS of (3.15) can be estimated, by means of Holder, Gagliardo-Nirenberg

and Young’s inequalities, as

- [V ) V() ax

(Ipllzell Al zs + VPl alV - allze + [ Apll e lallz2) [V Apl|

c (P2 Vpll2 | Adl|Z AV - qll2 + Vo[ 2| Ap] 2|V - all 2 | Aq] 2 +
AP [V Ap|2 [lal|2 [V - al|2) |V Apl|

INIA

IN

1
5 IVARIE + e (el VPl Aal|AY - all + [ VeI ApIIY - al|Adll + | Ap] lal*[V - all)

IN

1 EP c
3 IV Ap|* + - AV a)* + 5 M| V|| Aal® + ¢ ([ VplP[|Apl* + IV - al*|Agl?) +

¢ || AplI*|IV - q?

IN

1 ED 1) cMs (M
IV 80P+ L IAT P +caty (142 ) g + 22 (22

T |+t 1) epllAgl?,
ep £
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where we used (3.2) and (3.12). For the second term on the RHS of (3.15), we can show that

o7 [, AaPIAT -q) dx
2ep (IIV - alfs + llall ]| Aall14) AV - Q)|
1 1 1 1
<cep (Hv -qll||Ag] + llal|Z[|V - ql|Z||Ag||Z | AV - q||2) 1AV - qf

IA

N

IN

Ep _
1AV -a)* +cep (IV - al*|Adl* + lal*|V - al*Aal?)

ED cM _
1 1AV @)+ ==+ ) e pllAal”

IN

Plugging the above estimates into (3.15), we have

d _ _ _
(3:16) = (1Ap]* + 51 Aal®) + IVAPI* + 25 AV - @)l|* < Ms ([|Ap]* +ep | Aal?)

where

ep? \ €

My (M M.
Ms :2max{cM2 (1—1—%), e (1—1-1) —|—Cp2(1+51)}.

Integrating (3.16) with respect to time and using (3.13), we get

IAp@)I1* + 5 | Aa(®)]* + /0 (IVAR(D) | + e BIA(V - @)[|?) dr

M2 <CM1

(3.17)
< 1 Apo]® + | Ado® + M; [ !
D EP

+1> + 1} (190l + 51V - ao?) -

This completes the proof of Lemma 3.2, and hence the global well-posedness of (3.1) when n = 2
and € > 0. Next, we prove a similar result for the 3D case when € > 0.

3.2. Global Well-posedness in 3D. Similar to 2D, we first assume the following holds true
for some finite 7' > 0:

sup [la(t)]|* < 02,
0<t<T
Ogtlnglp(t)H2 < Ny,
(3.18) S
sup (|Vp(®)|* + |V - a(t)]|?) < N,
0<t<T

sup ([|Ap(t)]1* + | Aa(t)|?) < N,
0<t<T
where d9, N1, No, N3 > 0 are constants to be determined later.

We shall prove the following a priori estimates for the solution of (3.1) when n = 3.

Lemma 3.3. Let the solution (p,q) of (3.1) with n = 3 satisfy (3.18), and assume that the
initial entropy (2.3) is sufficiently small. Then for any constants N; (i = 1,2,3) > 0 and any
fized value of € > 0, if dy is suitably small, there are positive constants ~y; (i = 3,4) which are
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independent of t and €, such that
2 2 ! 2 2
()12 + pllalt) e +/0 VP2 +ep IV - alr)llz2) < s,

t
" / IV - a2 < (1 +e),
0
and 3 and 4 depend only on ||pol g2, |dollx2 and p.

Next we shall prove Lemma 3.3 in the following sections where the realization of the a priori
assumption (3.18) will be discussed when appropriate along the estimates.

3.2.1. Entropy Estimate. Note that we still have the entropy estimate as in Section 3.1.1:
d Vpl?

dt p) = n(p) —n'(p X 2 al? PP dx+ ||V - ql?
(3.19) dt </]R3 [1(p +p) —n(p) —n'(P)p] d +2Hq”>+/]g3p+pd +e|V-q

= E/ lq*(V - q) dx,
R3

where the RHS can be estimated by using Gagliardo-Nirenberg interpolation inequality as

<elalzsllallzs IV - dll

e / (V- q) dx
R3

1 1
< cellallZ IV all2[V - af?
1
< ce (02N2) 1]V - .
Hence, when 02Ny is smaller than some absolute constant, we update (3.19) as

d _ _ = 1 2 |vp‘2 € 2
— — — d — —d — . <
pr </RS [n(p+p) —n(p) —n'(p)p] X+2”q”>+/Rsp+p x+5V-dl” <0,

which implies that

[ 1045 1)~ @p] ax+ Ll + [ t ( / VL 4 v q|!2> ar
R3 2 0 R3P+D 2

< /RS [n(po + ) — n(B) —1'(P)po] dx + % lqoll*.

In particular, we have

(3.20) la®IF <2 [ o+ 7) = 5) = o/ G)] dx -+ ol

from which we can realize the smallness of d2 by choosing the RHS of (3.20) to be sufficiently
small. Next, we carry out regular energy estimates for the individual frequencies of the solution
for up to the second order. We remark that the energy estimates in this section rely heavily
on the Gagliardo-Nirenberg-Sobolev inequality: || |16 S ||V f||, which enables us to obtain the
global well-posedness result for all values of € > 0 and establish the consistency between the
chemically diffusible and non-diffusible models in the process of vanishing diffusion limit. This
is one of the main features distinguishing the problems in the 2D and 3D cases.
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3.2.2. L?-Estimate. By testing the equations in 3.1 with the targeting functions and using
Gagliardo-Nirenberg interpolation inequalities in R3, we have

Ld
2 dt
= —/ p(q-Vp)dX+615/ [a’V - q dx
R3 R3
Il cellalls | Vol + e o llallzsllall s |V - ]
1 1 _ 1 1
c (IIVPIHIV -qll2(lq)|2|[Vp| + 2|V - dl|2]|q]|2]|V - q||2)
1 _
c(62N2)7 (I Vpl> +ep |V -al?).

Therefore, when d5No is smaller than some absolute constant, we get

lpl® +pllall?) + [IVpl* +ep [V - all?

INIA

IN

d _ _
(3.21) 7 (Ipl* +2llall*) + VPl + 25V - al* <0,

which yields

t
(3.22) )1 + 5 lla®)|? +/0 (VPP +ep IV - a(n)[?) dr < [lpol* + pllaoll*.
Hence, we can realize the second a priori assumption in (3.18) by choosing
N1 = [lpol® + B llqol* + 1.
Next, we estimate the first order spatial derivatives of the solution.

3.2.3. H'-Estimate. Taking the L? inner products of the equations in 3.1 with the —A of the
targeting functions and using Holder, Gagliardo-Nirenberg and Young inequalities, we can show
that

1d
2 dt
— [V adpdx+ep [ V(a?) - sadx
R3 R3
1Pl IV - all s Apll + VPl collall sl Ap] + 2P lalls [ Valls | Adll
1 3 1 1 _ 1 1
¢ (HVpHHqH‘* 1Al * [ Apll + lall2 [V - all|Ap]* + e 5[V - a2 |ql| HAQHQ)

IVPI*+ 21V - al*) + [ Apl* + 25 [ Aqll*

IN

(3.23)

IN

IN

1
(5 -+ (@00} ) 18pIP + e TP + c2p02Va)} | Aal?

Hence, when doNo and 52(]\73)3 are smaller than some absolute constants, there holds that
d

(3.24) T (IVel? + 1V -dl?) + 1Ap]1? + el Adl® < Vo[>

Integrating (3.24) with respect to time, we see that

VeI + 511V - a(®)]* + /0 (IAp(T)[1? + e pllAa(7)|?) dr

3.25 B t
(3.25) < IVpol® +BIIV - qol® + /0 IVp(r)|2dr

< [Vpol> + 2V - aoll® + (lpoll® + P llaoll?) ,
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where we have used (3.22). Hence, we can realize the third a priori assumption in (3.18) by
choosing

No = (1+1/p) (lpollzz: + P llaoll7n) + 1.

Next, we move on to the estimate of the second order spatial derivatives of the solution.
3.2.4. H?-Estimate. Computing the second order L? inner products, we can show that

Ld
2dt
—— [ V7 w) V(&) dxtep [ A(aPIAT -q) .

R R

For the first term on the RHS of (3.26), by using the Holder, Gagliardo-Nirenberg and Young
inequalities, we deduce that

- [ V7)) T(ap) dx
(Ipllz=llAal + Vel | Valls + |1 Ap] sllal2) |V Ap)

1 1 1 1 1 1
¢ (IVplI2)1ap]* [ adl + V0] [Ap]3| Ad] + IVAR|llall* [V - all ) IVA]

1ApI1* + pllAdl?) + IV AP[? + AV - @)
(3.26)

<
<

i

IN

(1 + ¢ (62N3)

1 >IIVAPII2+C\VZOIIHAPIIIIAqII2

i

1
< <4+c(52N2) >||mp||2+c (I9pl1” + 1 Ap]1%) | Al

1 1 1 1
where we interpolated [|p||z as [|p[[re S [|Apl72llpll;e S I1API;-[VPll;2- In a similar fashion,
we can show that

o5 [ Ala)AT -q) dx
225 (IIValalIVal s + lall 221 V2al 1) |A(Y - q)

1 3 1 1
< cep (IV-allb|Aal® + all 3V - alF AT - a)]) AV - @)

VAN VAN

=

IN

1
o <4 T elaz) ) JACY - Q)2 + eV - all[Aql|Ag]?

=

1
<ep <4 + ¢ (62NN2) > 1AV -@)|* + ¢ (ep]IV - al* + e p[|Ag]?) [ Aglf*.

Hence, when do N5 is smaller than some absolute constant, there holds that

d _ _

— (1Apl* + 211 AGl?) + VAP +ep AV - q)|?
(3.27) Cclt 2 2 2 2 2 2
< 5 (IVpll® + [|Ap)* + eplIV - all* + e pllAgl®) ([|[Ap]° + 2 l|Aq]]?) .

Applying Gronwall’s inequality to (3.27) and using (3.22) and (3.25), we have

_ & _ _
(3.28) AP +pllAa®)|? < exp {p (Ilpoll: +p ||C10||?{1)} (IApol* + o[l Ago]?) -
Therefore, we can realize the fourth a priori assumption in (3.18) by choosing

_ C _ _
N3 = (1+1/p)exp {p (Ilpollz: + quHfm)} (1Apoll* + P | Aqo||?) + 1.
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In addition, by plugging (3.28) into (3.27), we can show that

(3.29) /0 (IVAp(n)I? + B IA(Y - q)|?) dr
3.29

c N3 _
— (Ilpoll7r + PllaollF) »

< (IApol® + P | Aqol*) +
where the constant on the right hand side is independent of ¢ and e.

3.2.5. Uniform Temporal Integrability for q. From previous estimates (3.22), (3.25) and (3.29),
we see that the temporal integral of the spatial derivatives of q is inversely proportional to €.
In this section, we derive the e-independent temporal integrability for the spatial derivatives of
q, which will be used later for proving the zero chemical diffusion limit result. For this purpose,
we take the divergence of the second equation of (3.1), and combine the result with the first
equation to get

(3.30) H(V-q)+pV-q=eA(V-q)+p—cA(ld?) — V- (pq).
Taking the L? inner product of (3.30) with V - q, we have
1d
2 dt
— [ n)(¥ - @ax—< [ AGaHT - aax- [ (T (p0) (V- ax
R3 R3 R3

IV -all? + 5[V - al? + ¢ [|Agl?
(3.31)

We note that

d
v aax =5 [ p(V-aix= [ o0 - ax

:% Rgp(V‘q)dX—/RSp(Ap)dx—/Rsp(eA(V‘q) —eA(la)) dx
=& [ oV x4 [Vl [ (AT @) - 2A(a?) dx,
R3 R3

where we have used the second equation of (3.1). Then we update (3.31) as

d (1
4 (519 -alP = [ 7 aax) + 17 -al +<[Aal?

dt
_ 2 _ 2)(V . q)dx — : o) dx—
= 1917 = [ APV - adx— [ (7 (pa) (V- )
(3.32) [ p(ea(v-a) - ca(aP) dx
R3
_ 2 2y . < — . . X
= IVplP+ [ VllaP) Aaydx— [ (Vo) (V- a)ixs
. Vp- (eV(V - q) —eV(|gl*)) dx.

For the second term on the RHS of (3.32), according to (3.23), we have the following estimate

1 1 1
< cellallz[IV - a2 [Aq]® < ce (82N2) 1 [ Agl*.

[ V0aP)- (sayix
RZS
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Using similar arguments as in (3.23), we estimate the third term on the RHS of (3.32) as

- [ 6a) (7 aax

1 1 1 1
< (Il 129121V - al* + lall 21V - all 2 |1 Ap] |V - all)

IA

P
Vel APV - all* + [AplPlalllV - all) + 5 1V - al?

IN

INA
[Vl Bl Blo

P
(MIVlApl + VENs [ap)?) + £ v - q?
P
(MUIPI? + Nl ApI? + V5 N: [8p]12) + 211V - a1
For the fourth term on the RHS of (3.32), we can show that

V- (eV(V-a) —eV(al)) dx| < < [[VpllIV(V - a)ll + 2 [IVplllalls | Val s

]R3
g
<2¢|Vp|? + 1 1AqQ|? + ¢ [|lal35 [ VallZe
g
< 2e[|Vp* + 7 | Aql* + ce all|V - all| Ag|®
g
<2¢|Vp|® + 1 |Aq||? + ce (52N2) || Aq]?.

Hence, when 02Ny is smaller than some absolute constant, we update (3.32) as

i 1 2 E 2, € 2
i (317 -al = [ o7 @ax) + 519 -al + 5 2a)

(3.33)
C
< |IVpl? + 7 (N[IVpl* + Nil|Apl? + |Ap[*) + 26 [|Vpl*.

Multiplying (3.21) by 2, then adding the result to (3.33), we find

D € _
; [EGO]+ 51V qll” + B 1Aq|* + [|Vpl* +2ep IV - ql?
(3.34)

< — (N1[[Vp[* + Ni[lApll* + [Apl*) +2¢ | Vpl*.

o

where

1 _
E(t)=5V- qll” - /RSP(V ~q)dx +2[pl* +2p||ql|?

1 1 2 _
11Vl [ (59 a-p) dxs P+ 2plal’

Integrating (3.34) with respect to time and using (3.22) and (3.25), we get, in particular, that
——
p
LIV an)Par
0
e
339 <0+ [ (£ MIARE + |Al?) + 2219512 ) dr
0

CN1 _ C _
< 50+ (2 22) (Iol? + plaol?) + i +1) (Il -+ llolf).
where the bound on the RHS is independent of ¢, and is finite for any fixed € > 0. In a similar
fashion, we can show that the temporal integral of [|V(V - q)||?
is independent of ¢, and is finite for any fixed ¢ > 0. The results obtained in this subsection
allow us to take the zero chemical diffusion limit of the solution.

is bounded by a constant which
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3.3. Long-time Behavior. In this section, we derive the long-time behavior of the solution
obtained from previous sections. First, we would like to recall a fact: if f(t) € W1(0, 00), then
f(t) — 0 as t — oo. In what follows, we use such a fact, together with the energy estimates
obtained in the previous subsections, to establish the decay estimate stated in Theorem 2.1.
For brevity, we only present the proof for the decay of the first order spatial derivatives of the
solution, in order to illustrate the main idea. The proof for the second order derivatives is in a
completely similar fashion and we omit the details. In addition, we only present the proof for
the 2D case, and the 3D case follows exactly in the same fashion.
First, we note that for any fixed € > 0, it follows from (3.6) that

(3.36) Vo)1 + IV - a®)[* € L0, 00).

Second, by following the arguments in the previous section, cf. (3.11), we can show that
d
It \v4 2 51V - 2
7 (IVpl* + 211V -al)

S 1AplP +epllAal® + (IVpI* +ep IV -al®) (IVPI* + IV - al®)
S 1ApIP +epllAgl® + [IVpl* + e[V - all?,

(3.37)

where we have applied (3.12) for the uniform-in-time estimates of || Vp||? and ||V-q||?. Integrating
(3.37) with respect to t and applying (3.6) and (3.13), we see that

L (Ip012 451V - a@)?) € £(0.00).
Combining (3.36) and (3.37), we conclude that
IVp@®I1? + 511V -a(®)]* € WH(0,00),
which implies
Tim (IVp(t)]2 + 519 - a(®)[?) = 0.
By the same argument, we can use (3.13), (3.16) and (3.17) to show that

Jim (| 2p(1) | + 5| Aa(t)?) = 0.

1 1
By the Gagliardo-Nirenberg inequality || f ||z 2y S Hf||22(R2) ||Af||zg(R2), and noting that p is a
perturbation of the original variable around p, we get (2.5) for the two dimensional case (n = 2).
Using the results in Section 3.2 for the three dimensional case (n = 3), and the same argument
as above for the two dimensional case, we can obtain the same result for the 3D case for ¢ > 0.

3.4. Diffusion Limit in 3D. In the last part of Section 3, we prove the chemical diffusion
limit and identify the convergence rate for the solution obtained in Theorem 2.1 when n = 3.
For this purpose, we let (p°, q°) and (p°, @) be the solutions to (3.1) with ¢ > 0 and £ = 0,
respectively, for the same initial data, and set p = p° —p® and q = q° —q°. Then (5, q) satisfies

Op—V-aqa=A7p+V- (g +p°q),
(3.38) 0,8 — Vi =eAq” — eV (|q°]?) ;
(ﬁOadO) = (07 0)7

where for simplicity, we took p = 1. We begin with the zeroth frequency estimate.
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Step 1. Taking the L? inner products, we find

1d ,, . - .
5= (1817 + lall®) + [Iv]?
(3.39)
= ‘}/ @n?+4PQ)-Vﬁdx+1/TeAqE—sﬂ7Gqﬂ%]~de.
R3
For the first term on the RHS of (3.39), by applying Young’s inequality, we have

. - . 1 . . .
[ 5% Tiax| < LIVAP + Q1512 + 1Ll

(3.40)

IN

1, _ _
5 IVBI* + e (I lIZ= 1117 + [1°17- lal®)

A

1, _ _
< S IVBI* + Ly (161 + lal®)

where we applied Sobolev embedding and the constant L; is independent of ¢ and € according
to Lemma 3.3. The second term on the RHS of (3.39) is estimated as

- 1. -
‘/ [eAq® =V (la*)] - adx| < o llal* + & [|Aa®|* + 4&” [l 7= Vel
(3.41) :
<5 llal+ Lz e,

where again we applied Sobolev embedding and the constant Ls is independent of ¢ and &
according to Lemma 3.3. Plugging (3.40) and (3.41) into (3.39), we have

d , . _ _ - -
(3.42) p (8117 + llall®) + V5l < 2L (1817 + 1alf*) + 2Lz €.
Applying Gronwall’s inequality to (3.42), we have
1B + lla®)* < (2Late 1) &2,

Next, we consider the convergence of the first order spatial derivatives of the perturbation.
Step 2. Taking the L? inner products of the first two equations in (3.38) with the —A of the
targeting functions, we deduce

1d

3t

= —/ (V- (a® +p°q)] Aﬁdx+e/
R3 R

For the first term on the right hand side of (3.43), by applying the Young’s inequality, we have

V|1 + IV - all?) + | Ap|?

(3.43)

(AV - ) (V - q)dx — 5/ A (1) (V - @)dx.
R3

3

11 i i
(3.44) <5 1857 + S IV - (oa® + P @)1,

—/RB [V - (pa” + p°@)] Apdx

where the second term on the RHS can be estimated as
LIV (a5 P

<2(IVe- &P+ 15V - a)* + [Vp” - al® + [Ip°(V - @)|1?)

< 2 (IVBIPlllZe + 18176V - aCll7s + VR 7 lal e + [10° 12 1V - &)

< c(IValPlla iz + IV - all?[l°l7=)

< Ly (IVBII* + 11V - al) ,
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where we applied various Gagliardo-Nirenberg and Sobolev inequalities and the constant L3 is
independent of ¢ and ¢ according to Lemma 3.3. So we update (3.44) as

- - . . . .
349 |- [ 4] Apax| < G IR + Lo (19512 + 9.

For the second and third terms on the RHS of (3.43), in a similar fashion, we can show that

AV @ix = [ A () (V@i
R3 R3

IN

1
5 IV-al? + AV - a2+ A (a7

(3.46)

IN

1,
5 IV-al® + AV - o[* + ce® (| Aa”||laf|[~ + [Va7)

IN

1 -

5 IV-al® + e AV - o[ + e [|a7 32
1o

< S IV-all* + AV - af|* + La g,

where the constant L, is independent of ¢t and e according to Lemma 3.3. Plugging (3.45) and
(3.46) into (3.43), we find

d . . _ _ -

pn (VB2 + 11V -all?) + 1A8]1* < 2Ls (IVBI1* + [V - alf*) +2€* [AV - | + 2La €.
Applying Gronwall’s inequality to (3.42), we deduce

t
IVHOIE + 17 G017 < 0t (22 [ e lav-arolPar + 28 ee?)
0
< Ly e?lst (1+te)e,

where the constant Ls is independent of ¢ and ¢ according to Lemma 3.3.

3.5. Proof of Theorem 2.1 and Theorem 2.2. Collecting the results obtained in Sections
3.1-3.3, we prove Theorem 2.1. Theorem 2.2 is a consequence of results in Section 3.4.

4. SMALL ENERGETIC SOLUTIONS

In this section, we are devoted to proving Theorem 2.3. Similarly, we first assume for some
finite time T" > 0 that:

sup ([l + lla(®)]®) < 4,
0<t<T
(4.1) sup ([[Vp(®)[* + [V -a(t)]?) < K,
0<t<T
sup ([lAp()]* + [Aa(t)[*) < Kz,
0<t<T
where 03, K1, Ko > 0 are constants to be determined later.

Then we have the following a priori estimates for the solutions of (3.1).
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Lemma 4.1. Let the solution (p,q) of (3.1) with n = 2 satisfy (4.1), and the initial energy
(2.4) be sufficiently small. Then for any given constants K; (i = 1,2) > 0, if 03 is suitably small,
there are positive constants ; (i = 5,6,7) which are independent of t and €, such that

* ||p(t)|§p+||q(t)||§{1+/0 (Vo) +eplIV -a(n)lizn) <.
* \\Ap(t)\2+\AQ(t)\\2+/ (IVAD(T)|? +ep AV - a(7)]?) < (1 +¢),

t
« [V amlEs <1 +e)
0
and s, v6 and y7 depend only on ||po|| g2, ol z2 and p.

In the following subsections, we prove Lemma 4.1 and realize a priori assumption (4.1) where
appropriate along the proof.

4.1. L*>-Estimate. Testing the equations in (3.1) by the targeting functions, we have
1d (
2dt
— [ pla-Voyixsep [ jaPY-aix
R2 R2

We remark that at the current stage of energy estimates if one directly works on the RHS of
(4.2) as in deriving (3.5), then the inverse of ¢ will inevitably enter the energy bound, which
is not desirable for the study of zero chemical diffusion limit. This is due to the Gagliardo-
Nirenberg interpolation inequality in 2D: || f||2, < |||V f], does not generate enough powers
of || Vp|| such that the first term on the RHS of (4.2) can be absorbed by the dissipation term
on the LHS under the smallness assumption on ||q||2. On the other hand, since the smallness of
lp||? is assumed in (4.1), we can improve the energy estimate by taking advantage of such an
assumption. The idea is to cancel the “bad” term and create higher order nonlinearities through
carrying out LP (p > 2) level energy estimates. We begin the process by taking the L? inner

Ipll”> + 2 llal?) + IVpl* + 5V - al®
(4.2)

product of the first equation in (3.1) with —p? to get

1d
(4.3) - /p3dx —/ p!Vplde—/ p(q-Vp)dX+/ p*(q- Vp)dx.
6dt ]RZ ]RZ RQ ]RZ

Taking the L? inner product of the first equation in (3.1) with p?, we have

1 d
(4.4) —— /p4dx +/ pQ!Vplde——/ pQ(q'Vp)dX—/ p*(q- Vp)dx.
12 dt R2 R2 R2 R2

Summing up (4.2), (4.3) and (4.4), we obtain

d P v P

el LAN 4 dx + ¥

dt </Rz<2 6 +12 x+5 lall” )+
(15) [, (90 = oIV + #195f) dx + 51V -al

— [ 1@ Voixtep [ 1oV qax
R2 R2

where

2 3 4
p p 2, 5 1 4
T dx = —|3 =

/RQ <2 6 12) x H p— I + HpH + gllpllza,



22 DEHUA WANG, ZHIAN WANG, AND KUN ZHAO

and
1 1 1
/RQ (IVPI* = oIVl + p*|VpI*) dx = S[Vp|* + S1IVD = pVpl* + SlpPVIl*,
In addition, by applying the Gagliardo-Nirenberg interpolation inequalities in 2D:
3 1 1 1
(4.6) [Fllzs S IVE[a|F(l5, [[Fllza S IVE2|F]|2,

we can show that

'—/Rzp?’(qu)dX

< llplZslall zallp Vel

< clIVpllzIpllz IV - all [lal Vo]
< c|VpllplIIVpl? + <)V - alllalllpVp|?
< c(6551)7 (IIVpl)? + IpVpl?) |

and

<eplalza]V-ql

o5 [ 4PV -q dx
RQ

<cepllalllV-alf
1
< cep(83)2[IV-al*.
Hence, when 63K is smaller than some absolute constant, we update (4.5) as
d (1 1 1 D
—( = I13p — 2112 4 = 2, — 4 ' 2
(3 130 =712+ 1012+ g Dol + 5 hal?) +

(4.7)
1 1 1 ep
i IVpl|* + 5 VP = pVp|® + 1 IpVp? + 5 IV ql]> <o0.

By integrating (4.7) with respect to time, we obtain

1 1 1 P

3 — 0212 & = l12 + — Il p 2) (¢
(35 130 = 2217 + W12 + 35 Il + 2 1al?) )+
(4.8) ¢ /e )
(G190 + 5 190 =00+ W0l + 5F 19 -al? ) (i < o

where
1
Ey = %Il3po—p§||2 HJ.DoHQJr*Hpollyﬁrfllqoll2

Since Ey = |[poll* + [lpoll74 + llqol|?, the smallness of 63 can be realized by choosing ||po||? +
pol|%s + ||aol|? to be sufficiently small. Next, we deal with the estimate of the first order spatial
L
derivatives of the solution.

4.2. H'-Estimate. Testing the equations in (3.1) by the —A of the targeting functions, we
have

d _
2 VPl + 51V -al?) + [Apl* +ep [ Adl?

LT
“Jube

| =

(pa Ade+6p/ V(la®) - (Aq) dx

Q)+ Vol Apdx +ep / V(q? - (Aq) dx,
R2
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which is equivalent to
d _ _
— (IVpI* + 51V -al) + 2| Ap|* + 265 Aql?

(4.9)
= _/R2 2p(V-q)+2Vp-q]Ap dx+2€p/RQV(‘q‘2).(Aq) dx.

We remark that the first term on the RHS of (4.9) is again a “trouble maker”, due to the
deficiency of the Gagliardo-Nirenberg interpolation inequalities in 2D. To terminate such a term,
we multiply the first equation in (3.1) by pAp to get

(4.10) %@(p?) =p(Ap) [Ap+V - (pq) +pV -q].

Taking A to the first equation in (3.1), then multiplying the resulting equation by p?/2, we get

2 2

(4.11) Eoap) = £

SAAP+V - (pa) +pV - q].

Summing up (4.10) and (4.11), then integrating the resulting equation over R?, we have

—— 2Ap d

:/pAp[Ap+v-<pq>+pv'q]dx+/
R2 R2

(4.12) ,
%A [Ap+ V- (pq) +pV - qdx.

After integrating the second integral on the RHS of (4.12) by parts twice, we get

2
/Rz CA[Ap+V - (pa) + PV - gl dx = /R (pAp+|VPP*) [Ap+V - (pa) + 5V - gl dx.

Then we update (4.12) as

d _
(4.13) % R2p|Vp|2 dx = /R2 (2pAp + |Vp|?) [Ap+ V- (pa) + PV - g dx,
where we have integrated the LHS by parts.

In a completely same fashion, we can show that

Ld

4.14 —
( ) pdt Jr2

2 .
p?|Vp|?dx = - /R2 (p*Ap+p|Vp?) [Ap+ V- (pq) + PV - q dx.

Multiplying (4.9) by p, then adding the result with (4.13) and (4.14), we can show that

d 1
o <15|Vp||2 — /RQP\VPI2 dx + /R2 p*|VplPdx + (p)* |V - qll2> +
(4.15)

2
251891 =2 | p(ApPix+ > [paplP + 22 ()71Aal? = H (D),
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where

H(t) = —2p/ (Vp-q)Ap dx + 2/ pApV - (pq) dx—i—/ \Vp|2Ap dx+
R2 R2 R2
_ 2
/ VDIV - (pq) dx+p/ VP’V - q dx — _/ p*ApV - (pq) dx—
R2 R2 D JRr2
2 2
2/ p*ApV - q dx — _/ p|Vp|*Ap dx — _/ p|Vp*V - (pq) dx—
R2 P Jr2 D JRr2

2 [ VPV adxr2:0)* [ V(aP): (M) dx

Next, we carry out energy estimates for H(t). For I1(t), by using the second interpolation

inequality in (4.6), we can show that

) =25 | [ (9 @)ap ax
< 2p|Vplzallallza | Apll

_ 1 3 1 1
(4.16) <cp||Vpl2||Ap|2lallz]|V - g2
p B
1 1Ap|? + cp | Vo lall?V - al?

p _
12 1AD|* + ep a3 K1 || Vo).

IN

N

For I5(t), by using the second interpolation inequality in (4.6) and the following

1 1
(4.17) [ElL S TEIZIAE]?,

we can show that

)] =2 [ 807 - () dx

=2‘/RQpAp(pV-q+q-Vp) dx
(4.18)
<2 (1aplIpIE~ 1V - all + 1 ApHIpl < llal VP o)
1 1 1 1
< (I2pIPIpI1¥ - all + 18] 1pll% a2 - a2 V] #)

1
< ¢ (83K1)2 || Ap*.
For I3(t), by using (4.17) and the interpolation inequality:

1 1
IVE|s S IFlIZ [AF]2
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we can show that

1) = | [ 192 dx
< |[Vpl3slAp|
(4.19) < ¢pllz= | Ap]?
< c|lpllz [ Aplz ]| Ap|®
< ¢ (03K2) 1| Ap||.

For 1,(t), using similar arguments as those in (4.18) and using (4.17), we can show that

1) = | [ 19529 - G ax

=2

/R2 (Vp-H(p)) - (pq) dx
< 2(|Ap]l[lpll 2= 1Vl 1+ 1l 1
< e AplPlIpl 2 I Vol lallZ 1V - a2
< ¢ (03K1)2 || Ap|?,

(4.20)

where H(p) denotes the Hessian matrix of p. For I5(¢), by using the second interpolation
inequality in (4.6), we can show that

(4.21) = L
< cpl|Vplll[AplV - q|
D
<15 | Ap||® + cp Ky || Vp|%.

For Is(t), similar to the estimate of I5(t), we can show that

16(t) ‘/ p*ApV - (pq) dx

:‘/ p*Ap(pV -q+q- Vp) dx
D |JRr2

2
(4.22) < — (IpApllplE 19 - all + lpAplipl< lal e 9] £2)

Cc 1 1 1 1
<3 (HPAPIIIIAPIIIIPHIIV ~all + [lpAplllAp[lpl=lal> [V - al> ||VP||2)

Cc

1
< 5 (0351)2 (|lpAp|® + || Ap|?) -
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For I7(t), we can show that

|17(t)] = 2 ‘/QpQApV -q dx
R

(4.23) < 2|plli=2p[[IV -
<c|plllIV - alll Ap|®

< ¢ (63K1)7 || Ap|>.

For Ig(t), similar to the estimate of I3(t), we can show that

2
\fs(t)\:‘ [ ool ap ax
D |JRr2

9
< 2 ||Vp|34|pAp]|

(4.24) < —llpllze= | Aplll[pApl]

1 1
P2 | Apllz [ Apll[[pApl|

IN

AN
RVloaBloVlo

1
(63K2) 7 ([ Apll* + pAp]?) .

For Ig(t), similar to the estimate of I4(t), we can show that

9
[Io(t)] = = ‘/ pIVpI°V - (pq) dx
D |JRr2

= 22? ‘/Rz IVp|*Vp - (pq)dX+2/R2p(Vp-H(p)) - (pq) dx

(4.25) (IVplZsllpliz<llall zs + IplZ< 1 API VD] Lllal 1)

A

IN

1 3 1 1 1 1 1 1
(IIAp||2Hp||2||Vp||2 lallz[IV - allz + [|Ap|2[pll I VpllZ | Ap] 2 lallZ ]|V - qll?)

IA
[iloVilaoBlo

1 3
(69 K + (3)F (K1) 3 (K2) | | Ap]
For For I1((t), similar to the estimate of I5(t), we can show that

|T10(t)] = 2 ’/R2p|Vp|2V .q dx
< 2||pll L= [|Vp||74]IV - q]

1 3
(4.26) < cllpll | Vplllapl 3|V - qf
p 2 c 2 4 4
< — |IA N .
< 13 1881 + 55 12192l V -l
< 2 ap)? + S 65K V.
=12 TE
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For I11(t), by using the second interpolation inequality in (4.6), we can show that

(0] =22 (? | [ V(laP)- (Aa) dx

<2¢()?|lallp | Vallza | Adl|
4.27 _ 1 3
(4.27) <ce(@?]lal} |V - all|Aq]?
<e

ce
() 1Aa))? + ce () [al*IV - q|*
e(p)* | Aall* + ce () 65 K1 |V - afl*.

Combining (4.16), (4.18)—(4.27), we can show that when d3K7, d3K> and d3(K1)? are smaller
than some absolute constants, it holds that

(K1)?
(p)?

P _
HOI< S 1A+ 5 IoAnl? e [p (4 50+ ] 1901P+

(4.28)
e(p)? IIAq||2+8() IV - al®.

Plugging (4.28) into (4.15), we obtain

d 1
& (1501 = [ 1w s 1 [ 2VpPax+ 79 -al?) +
.
(4.29) 2 apl -2 [ plapraxt lndol? + e 3P1aal
Ky
< e o+ 500+ CT 9l 426719 - gl

We observe that in (4.29),
1
X1(t) = 5| Vpl|? - / P Vp[? dx + & / P2 Vpl2dx + (5)° |V -
R2 P Jr2

P _ 1
> DI+ P19 al + 5 [ #IVplax
(4.30) R’

"Ul

Yi(t)

3
32 Ap|? — 2 / p(apPdx -+ 2 A

1Ap||* + *IlpApH2

w\’m b

After integrating (4.29) with respect to time, we find that

Xt + /0 (Yi(7) + = (02| Aa(m)?) dr

2 t t
(4.31) gxl<o>+c[ﬁ<1+m>+( “) ] [ IvpEar 45 [ <519 - ato|Par

< X1(0) + 4 B, (c [p(l + K+ (%ﬂ +17> ,

where we have used (4.8). In view of (4.30), we see that

5 2
EIVPIE + @19 - al < X000+ 4 Bo (¢ |1+ k) + U5 4 p)
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which implies

[Vp|?+ |V -ql® < (12) + (pl)z) {Xl(O) +4E, (c [p(l + K)) + (g;ﬂ +p> } .

Hence, we can fulfill the second line of (4.1) by choosing

2 1
Ky = (15 + W) (X1(0) + 1) +1,

and FEjy to be sufficiently small, such that

_ (K1)*] |
(4.32) 4Ey(c|p(1+Kyp)+ 5 +p) <L
In addition, we see from (4.30), (4.31) and (4.32) that

[ B1apole + < @r1aamiP) ar < 50 +1
0

which implies

(1.33 | (18001 + p18amI) dr < 2 (X2(0) + 1)

Thus the H'-estimate is completed.

4.3. H?-Estimate. We proceed to estimate the second order spatial derivatives of the solution.
Applying A to the equations in (3.1), then taking the L? inner products of the resulting equations
with A of the targeting functions, we obtain

&‘g‘

- (120]° + 5[l Aal®) + VAP +ep AV - @)

N | —

(4.34) / V (V- (pa)) - (VAp) dX+€p/ A(la)A(V - q) dx
(Ipllze= |Aall + VPl 4l Val s + [ Apll zallallza) [V Apl+
2ep (I[Vallzs +llall+ [ V2al z+) [A(V - Q).

Note that, by Gagliardo-Nirenberg and Young inequalities, it holds that

1 1 1 1
Vol allVallLa[VAp|| < c||[Vpll2[|Ap||2 ||V - dl|2[|Aq||2 | VAp]|

C
SHRIVENE qHuQHAqH v ap|

o

(K) 2 2 2
< A A — VA2
5 |Apl|© + 4H qll +12 IV Ap||
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Similarly, we can show that

1 1 1 3
o [Aplrallal s IVAPI < cllApl=llall2 IV - allz[VAp]=
1
<claplPllal®lIV-al® + o VAP

1
< cd3 Ky || Ap||* + B IV Ap|?;

o 2ep||VA|Z AV - Q)| < cep||V-all|Agl|AY - q)
.
<cep||V-q|?|Adq]?+ Ip AV - q)

_ Ep
< cepKi||Aq|® + - AV a)ll*

1 1 1 3
o 2¢epllallzelVial AV - @)l < cepllal2]|V - allzl|AqlZ[|AV - q)|2
_ Ep
<cep|alP’V-al*|Adl* + - IAV - a)|*

_ Ep
<cepdz K| Aal” + S AV - Q).
When 3K is smaller than some absolute constant, we update (4.34) as

d _ 5) ED
7 (1Al + 511 Adl?) + S [VAPI® + =~ AV - @)

DO | =

(4.35)

P Ky)? _
< Ipllo=aalIVapl + 2 laalP + | C25 1] japl? + (i + Deplaal®

In order to control the terms involving ||Aq|? on the RHS of (4.35), we refer to (3.30):
(4.36) (V) +pV-q=eA(V-q)+p—cAla®) - V- (pq).
By working with (4.36), we can show that

d 2 2 2
7 ||AQ|| VP Aadx ) +p [1Aq]” + | AV - q)]
(1.37) —AplE = [ V(T () Aadxot [ A(aP) AT @i

< [ ApAT adx—= [ ApA(aPyix
R2 R2
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where the RHS can be estimated as follows. First of all, we have

‘—/RQV(V'(pq))'Aqu

< (Ipllz=llAall + IVpllLa[[Val za + [|Apl zlallze) | Adl]
1 1 1 3 1 1 1 1
< lpllz~l1aal? + ¢ (Il 1201319 -l [ Aal? + | Al [ V0] lal# 1V - al 3| Aal])
< (] D Al + - 2| Ap|? 2, ¢ Aplll|A
< (Pl + o5 ) 1Aall” + —5 VRlP [ ApIPIV -all” + = lallIV - all[[VAp|[[| Ap]|
24 (P) p
< <”p||L°° + 513) 1Aql? + —L3 IVl ApI*|V - al® + % 1Ap)1* + llall®[IV - al*[[VAp|®
24 (p) (p)
5p 2 (K1) 1 2 2
< w4 22 A —)A Ky | VAp|?.
< (Moll+ 58 ) 18al e (S0 + ) 11?4 6 K [V 801

Secondly, similar to the last line of (4.35), we can show that

: /R AlaP) AV - q)dx

€
<c(Ki+d3Ki)e | Adl® + 5 AV - ).
Thirdly, by using the Young’s inequality, we can show that

’—E ApA(V - q)dx
R2

€
<= AplF+ S AT - @)
Lastly, we can show that

< [ AvAlaPix
-

< 2¢ (| Apl sl lAa] + 1 Ap] [ Val3:)

< ce (1 ap]3 IV APIE a1V - all [ Adll + | Ap] 1V - all|Adl))

1AV 2pNIallIV - all + APV - alf? + c< | Ag?

A

1
< 35 IVADIP + 3 1al* [V - al®1Ap]* + [ApI*IV - al® + ce® | Aql?

A

1
B IVAP|? + (803 + 1) K1 | Ap|? + c& || Adlf,

Plugging the above estimates into (4.37), we have

d (1 19p £
— [ =||Aq|? - A —Z|Aq? + = [|A(V - q)?
dt<2|! q /R2Vp qu>+ 51 1Adll”+ 5 1AV - q)|

1
439 < Iplo=laal + (35 +6a0 ) Va9l

2
[C <($i)” * (191)2> +et (38 +1) Kl} 1Ap]* + ¢ (K1 + 83 K1 +€) & [ Aq]|*.
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Combining (4.35) and (4.38), we find that

LX(1) + Yalt) <lplle (6@l IVAP] + |Aal?) + (112 + 3y Kl) IV Ap|*+
2
(4.39) [c <(g)) (pl) ) +e+303+1)K1+c¢ <(Kpl) + 1)} | Ap||*+

(p (Ky + 0 K1 +2) + ¢ (K + 1>) <5l Aq)?,
where

1 P 1
Xa(t) = 5 8wl + 2 HAqH2 +518af = [ Vp-aqix,
(4.40)

5
Yz(t):gHVAPHQ HAQH2 (p+1) AV - q)|%.

Since ||p||p~ < c(égKg)i due to (4.17), when 03K2 and 03K are smaller than some absolute
constants, we update (4.39) and (4.40) as

< c (K1) 1 . (K1)? )
a0 (G o) v e (B 1) s
(E(K1+1+5)+C(K1—|—1)>5]§||Aq|2’
b
where

1 p €, _
Ya(t) = 5 1980l + 2 Aal? + = (04 1) [A(T - @)%

We note that by definition, X2(f) may not be positive (cf. (4.40)). However, by combining
(4.41) with (4.29)><%, we obtain

%Xg()—Fn(t)S [c( eE )+s+1+K1+c((Kp1)2+1>] 1Ap]+
(4.42) (; (K1 4+1+¢) + ¢ (K +1)) ep[|Aglf®+
K 2
e[14 g+ S| I98IE 4519 -,

where

2 2
Xs(t) = Xat) +2 | Vpl? — 2 / PV dx + — / P Vpl2dx + 25|V - g
D JRr2 (p) R2
1 p 1 _
>3 | Ap|| + 3 |Aql* + 3 IVpl>+ 25|V - ql?,
4
Yilt) = Ya(t) + 3| Ap|® — = / p(Ap)2dx + > [[pAp]?
D Jr2 ( )
1 g, _
SIVApI2+ 2 agl? + £ (5 1) AT - @) + | Ap]>

\V)
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Integrating (4.42) with respect to time and using (4.8) and (4.33), we obtain

18001 + E1aal? + [ (51980 + 5 6+ D IAT - @I ) ar

(FK1)* | 1 (K1) 2
< X3(0) + [c( 7t (p)2> +6+1+K1+c<p +1>] 5()(1(())+1)+
2
<; (K1 +1+4¢)+c(K; +1)> ;(X1(0)+1)+20E0 [1—1—[(1 + (gi ] = K>,

which yields
1Ap®)|1? + [Aa®)]* < 2(1+1/p) Ko = K.

Thus, the H?-estimate is completed.

4.4. Proof of Theorem 2.3. First we obtain Lemma 4.1 by combining the results in Sections
4.1-4.3. Then the global existence of solutions to (3.1) with n = 2 asserted in Theorem 2.3

results from Lemma 3.1 and Lemma 4.1. In addition, by working with (4.36) and arguing in a

2
H1
to time. Then, by repeating the arguments in Section 3.3 and Section 3.4, we can establish the

long-time behavior and diffusion limit results for solutions with small initial energy in 2D. We
omit the details for brevity. This completes the proof for Theorem 2.3.

similar way as in Section 3.2.5, we can show that ||V - ql|5,; is uniformly integrable with respect

5. CONCLUSION

We have studied the qualitative behavior of solutions to the Cauchy problem of a system of
parabolic conservation laws (1.4) in multiple space dimensions. Utilizing energy methods, we
first showed that for any fixed value of € > 0, the Cauchy problem is globally (with respect to
time) well-posed provided that either the initial entropy or initial energy around a constant state
is sufficiently small, and the smallness of the specific frequency depends on the other components
in the energy spectrum. Moreover, the solution converges to the constant state as time goes to
infinity. Second, we showed that similar results hold in 3D for small initial entropy and in 2D
for small initial energy when ¢ = 0. Based on this, we established the convergence of solutions
with € > 0 toward those with ¢ = 0 and identified the convergence rate for each case. Finally we
note that the questions of global well-posedness and long-time behavior of solutions in 2D for
small initial entropy when € = 0 are still open at the present time. We leave the investigation
for the future.

APPENDIX A. EXPLICIT EXAMPLES

In this appendix, we provide some explicit examples of initial data that fulfill the requirements
of the main results in this paper.

A.1. Small Entropy in 2D. First, we recall the a priori assumptions made in Section 3.1:
sup [la(t)[|* < 41,
0<t<T

sup_[|p(t) — pl* < M.
0<t<T
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As the proof proceeded, we obtained the following estimates and choices of constants (see Sec-
tions 3.1.1-3.1.2):

e sup o) <2 / [(po1n(po) — po) — (B1n(p) — ) — In(8) (po — P)) dx + o],
0<t<T R2
o M =|pol*+pllaol®+1,

and we required that d; and 61 M7 to be smaller than some absolute constants.
Now, let us consider the following initial data:

po(a) = m [sin (r — 5) + 1} + f(m), 27 <r <Am,
f(m), r € (—o0,2m) U (47, 00);
- [Sin (f(m) - %) + 1] X 2 <r <d4mw
qo(x) = f(m) reo T T
0, r € (—o0,2m) U (4, 00),

where m € N, r = |x| and m < f(m) = p € N is to be determined later. It is straightforward to
check that (pg, qo) € H2(R?) and V x qo = 0. By direct calculations, we can show that

lpo — Bl = m?, |ao|

|2 o~ L
f(m)

In addition, we can show that

[, o) = po) = (310(7) = )~ ) o — )] dx

1 B 1 _
_ / o 0 = P)Pdx < 5o —

where p* is between py and p. Hence, by taking
01 = 2/9 [(po In(po) — po) — (PIn(p) — p) — (p)(po — p)] dx + [,

we have that 6; < m?/f(m). Moreover, there holds that 6;M; < m*/f(m). Then it is easy to
see that §1 — 0 and ;M7 — 0 as m — oo, provided that f(m) = O(m**) for some € > 0.
Therefore, the smallness of §; and ¢&;M; can be realized as long as m > mg for some mgy € N.
Furthermore, from (A.1) we can show that |[pg — pl|32 = O(m?) and ||V - qo||* = O(f(m)) and
|Aqol|? = O(f3(m)) for large m.

A.2. Small Entropy in 3D. First, we recall the a priori assumptions made in Section 3.2:
sup [la(t)[|* < éa,
0<t<T
sup_[p(t) — p* < N1,
0<t<T
sup ([Ve)[” + IV - a(t)]?) < Ne,
0<t<T

sup ([[Ap(t)|* + |Aa(t)[?) < Ns.
0<t<T
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As the proof proceeded, we got the following estimates and choices of constants (see Sections
3.2.1-3.2.4):

o sw la@I? <2 [ [poino) — )~ @In(p) )~ )0 — )+ ol
0<t<T R3
o No=(1+1/p) (Ipoll%n + B llaollr) + 1,
_ C _ _
. m=meW{Hm%ﬁmw@&mmw+mmwww

and we required that 09Ny and (52(]\73)3 to be smaller than some absolute constants.
Now, let us consider the following initial functions:

pox) =4 {Sin (7“ - 5) + 1} +g(m), 2m <r <A,
g(m), r € (—00,2m) U (4, 00);
m [sin (r—5) +1]

qo(x) = vV g(m)
0,

%\x

, 2w < r <A4m,

r € (—o0,2m) U (47, 00),

where m € N, r = |x| and p = g(m) > m is to be determined later. It is straightforward to
check that (po,qo) € H*(R?) and V x qo = 0. By direct calculations, we can show that

1
2~ 2 2~ 2
® |[Po—Pp| =m, Qoll = m-
I | lqoll )
1
A2 [ ] vpozg V.q02g7m2;
(A.2) Vol | I o)
1
o |Apo|* =m? 1Aqo|® & ——m?,
g(m)
which imply
1
Ny = <1+> n?>+1=g(m)+1,
g(m)
sz 1 2 (m)
N3 = exp 1+ ——=)m“+1=go(m)eP" + 1.
g(m) g(m)

In addition, we can show that

[, o) = o) = (310(7) = )~ 5) o — )] dx

1 2 1 12
— —5)2d -
[, g = 9P < sl —
where p* is between py and p. Hence, by taking
=2 [ [lpotnion) = o) = (p1n(p) = 7) = n(p) o — )} dx -+

we have that § = m?/f(m). Moreover, there hold that
2

52]\72 = g(m . (gl(m) + 1) = g4(m),
6AN93%923-(wxmn%@wm+3wﬂmﬂ%%“m+:mxmw%““+1):gamx
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from which we see that g4(m) — 0 and g5(m) — 0 as m — oo, provided that g(m) = O(m8+°)
for some € > 0. Therefore, the smallness of d9 Ny and 52(N3)3 can be realized as long as m > mg
for some mo € N. Furthermore, from (A.2) we see that ||po — p|| gz = O(m) for large m, while
llaollzz — 0 as m — oo.

A.3. Small Energy in 2D. First, let us recall the a priori assumptions made at the beginning
of Section 4.1:

sup (|lp(t) = BlI* + la(®)[|?) < 4,
0<t<T

sup ([IVp(@)[I* + IV - a(®)|*) < K,
o<t<T

sup ([lAp(®)[1* + [[Aq(®)[?) < K.
0<t<T
During the proof of Theorem 2.3, we required d3 K1, 63, 03K, d3(K1)? and d3(K7)? to be smaller
than some absolute constants.

Next, let us consider the following initial functions

m=3 [sin (mr — E) + 1] + A, 27 <r <dnr,
po(x) = 2

A, r € (—o0,2m) U (47, 00);
3. T b
m~ 2 {sm(mr——)—i—l} =, 2 < r <Am,
qo(x) = 2 r
0, r € (—00,27) U (47, 00),
where A > 0 is any fixed constant, m € N and r = |x|. Then direct calculations show that

(po,qo0) € H*(R?), V x qp = 0, and

HPO - AH2 = me, ”qOH2 = mi?’?

HVPO||2 gm717 Hv'qOHngilv

1Apo]* = m, 1A 2= m.

(A.3)

As the proof of Theorem 2.3 proceeded, we obtained the following qualitative relations:

o 3= Ey=|po— Al* + llpo — All74 + llaol?,
o X1(0) = [IVpoll* + [l(po — D) Vpol* + IV - qol?,
(A.4) o K= X(0)+1,
o LEyK,+1?<«1,
o Ko |Apol® + [|Aqol? + X1(0) + (K1 + 1)*(X1(0) + Eo + 1).

From (A.3) we see that
32 Eg = m™?, K =1, Ky =m+1,

from which we see that when m € N is sufficiently large, the quantities 63K71, &3, d3Ko, d3(K1)?
and 03(K1)? are all small, and the fourth inequality in (A.4) can be realized.
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