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LARGE TIME BEHAVIOR AND DIFFUSION LIMIT FOR A SYSTEM
OF BALANCE LAWS FROM CHEMOTAXIS IN MULTI-DIMENSIONS∗

TONG LI† , DEHUA WANG‡ , FANG WANG§ , ZHI-AN WANG¶, AND KUN ZHAO‖

Abstract. We consider the Cauchy problem for a system of balance laws derived from a chemotaxis
model with singular sensitivity in multiple space dimensions. Utilizing energy methods, we first prove
the global well-posedness of classical solutions to the Cauchy problem when only the energy of the first
order spatial derivatives of the initial data is sufficiently small, and the solutions are shown to converge
to the prescribed constant equilibrium states as time goes to infinity. Then we prove that the solutions
of the fully dissipative model converge to those of the corresponding partially dissipative model when
the chemical diffusion coefficient tends to zero.
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1. Introduction
In this paper, we consider the system of balance laws:{

∂tp−∇·(pv)=Δp,

∂tv−∇
(
p−ε|v|2)=εΔv,

x∈Rn, t>0, (1.1)

where p(x,t)∈R and v(x,t)∈Rn are unknown functions, n=2,3, and ε≥0 is a constant.
The purpose of this paper is to study the qualitative behavior, such as global well-
posedness, long-time behavior, and zero diffusion limit (as ε→0), of classical solutions
to the Cauchy problem of (1.1) in multiple space dimensions.

1.1. Background. System (1.1) can be derived from the following chemotaxis
model with logarithmic sensitivity:{

∂tu=DΔu−χ∇·(u∇ log(c)) ,

∂tc=εΔc−μuc−σc,
x∈Rn, t>0. (1.2)

The chemotaxis model (1.2) was proposed in [23,37] to describe the movement of chemo-
tactic populations, such as myxobacteria, that deposit little- or non-diffusive chemical
signals that modify the local environment for succeeding passages. System (1.2) with
σ=0 also appeared as a sub-model in [24] to understand the underlying mechanism of
tumor angiogenesis, and in particular the role of protease inhibitors in stopping angio-
genesis.

System (1.2) belongs to a family of nonlinear reaction-diffusion models, which are
nowadays called the Keller-Segel type chemotaxis models. The canonical form of the
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Keller-Segel model reads: {
∂tu=DΔu−χ∇·(u∇Φ(c)) ,

∂tc=εΔc+f(u,c).
(1.3)

Inspired by the existence of traveling bands in the chemotactic movement of E. Coli
produced by Adler [1], in the pioneering work [22] Keller and Segel successfully repro-
duced such an experimental result through developing their original model by taking
Φ(c)= log(c), f(u,c)=−μucm (0≤m<1) with χ,μ>0. The model’s capability of de-
scribing fundamental phenomena in chemotactic movement, such as aggregation and
uniform distribution (leveling out), inspired much of the later works investigating chemo-
taxis.

Biologically, the model (1.3) describes the movement of biological organisms in re-
sponse to the chemical signals that they release in the local environment for succeeding
passages, while both entities are naturally diffusing and reacting (producing, consum-
ing, degrading, et al.). Because of the biological background and analytical difficulties
stemming from nonlinear advection (chemotaxis), the mathematical study of (1.3) also
attracted considerable attention from the community of nonlinear partial differential
equations in recent decades. We refer the reader to the review papers [4,14,15,44] and
the references therein for more information.

System (1.2) is a special case of (1.3) when Φ(c)= log(c) and f(u,c)=−μuc−σc.
The unknown functions and system parameters appearing in (1.2) are interpreted as fol-
lows: u(x,t) denotes the density of cellular population at position x and time t, c(x,t)
the concentration of chemical signal at position x and time t, D>0 the diffusion coeffi-
cient of cellular density, χ �=0 the coefficient of chemotactic sensitivity, ε≥0 the diffusion
coefficient of chemical signal, μ �=0 the density-dependent production/degradation rate
of chemical signal, and σ>0 denotes the natural degradation rate of chemical signal.

One of the most important parameters in (1.2) is χ. The sign of χ dictates whether
the chemotaxis is attractive (χ>0) or repulsive (χ<0), and |χ| measures the strength of
chemotactic response. The introduction of the nonlinear advection term in (1.3) is the
major contribution of the Keller-Segel type model, which captures the intrinsic features
elucidating the underlying mechanisms of chemotactic movements.

Another important feature of (1.2) is the logarithmic (singular) sensitivity function
in the first equation. The logarithmic sensitivity entails that the chemotactic response
of cellular population to chemical signal follows the Weber-Fechner’s law which is a
fundamental hypothesis in psychophysics. The law states that subjective sensation is
proportional to the logarithm of the stimulus intensity. It has played important roles in
the modeling of biological processes (cf. [2,3,8,20]). The significance of the logarithmic
sensitivity was exemplified in the original Keller-Segel model through demonstrating the
existence of traveling wave solutions which corroborates the experimental result of [1].

On the other hand, despite its importance in biological modeling, the possible singu-
larity emanating from the logarithmic sensitivity function brings significant challenges
to the analytical and numerical analyses of (1.2). Following the initiation of (1.2), it
was observed that the possible singularity might be removed by taking the Cole-Hopf
transformation [23]: V=∇x (log(e

σtc(x,t))). This results in a system of balance laws
(also denoting P ≡u):

{
∂tP +∇·(χPV)=DΔP,

∂tV+∇(
μP −ε|V|2)=ε∇(∇·V).

(1.4)
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Since ΔV=∇(∇·V)−∇×(∇×V) and V is a gradient field, for classical solutions,
the system (1.4) is equivalent to the following system of equations:{

∂tP +∇·(χPV)=DΔP,

∂tV+∇(
μP −ε|V|2)=εΔV.

(1.5)

The sign of χμ plays an indispensable role in the qualitative study of the model. To see
this, by applying the following re-scalings:

t→ |χμ|
D

t, x→
√|χμ|
D

x, V→−sign(χ)
√
|χ|
|μ|V,

to the transformed system (1.5), one obtains a clean version of the model:⎧⎪⎨
⎪⎩
∂tP −∇·(PV)=ΔP,

∂tV−∇
(
sign(χμ)P − ε

χ
|V|2

)
=

ε

D
ΔV.

(1.6)

In the one-dimensional case, we can show that the characteristics associated with the
flux on the left-hand sides of the equations in (1.6) are

λ±=

(
2ε

χ
−1

)
V ±

√(
2ε

χ
−1

)2

V 2+4sign(χμ)P

2
.

Hence, the principle part of (1.6) is hyperbolic when χμ>0 in biologically relevant
regimes where P (x,t)>0; while the system may change type when χμ<0 (cf. [23]). We
refer the readers to [26] for a recent study of the mixed type case, where the oscillatory
traveling waves are investigated.

In this paper, we consider the case when χμ>0, since otherwise the possible change
of type may bring intractable difficulties to the underlying analysis. Formally, when
χ>0, the associated chemotactic flux in the first equation of (1.2) states that the
chemical will attract cells to regions of high concentration of the chemical and hence
drive a possible aggregation. This is in contrast to the homogenizing process driven
diffusion. On the other hand, the (exponentially) rapid degradation (due to μ>0) in
the second equation of (1.2) illustrates that the force driving the cellular population to
aggregate is diminishing as time goes on. Hence, one may expect that the system will
enter into an equilibrium state in the long time run due to the balance between cellular
aggregation and chemical degradation. Similarly, when χ<0 and μ<0, because of the
interaction between chemotactic repulsion and chemical production, the system is also
expected to reach into a steady state as time goes on.

Collectively, we do not anticipate the development of finite time singularities in (1.2)
when χμ>0. In this case, the synergy of diffusion, chemotactic attraction/repulsion,
and chemical degradation/production makes the dynamics of the model an intriguing
problem to pursue.

In this paper, we aim to understand the dynamics of the model (1.2) through study-
ing the qualitative behavior of solutions to the transformed system (1.6) for fixed values
of χ,μ and D when χμ>0. Hence for brevity, we assume χ=μ=D=1 throughout the
paper. This leads to the following system of equations:{

∂tP −∇·(PV)=ΔP,

∂tV−∇
(
P −ε|V|2)=εΔV.

(1.7)
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We remark that the model (1.7) is formally identical to the system (1.1). However,
the system of balance laws (1.1) is more general than the system (1.7), since the solution
component V in the latter one is a gradient field (hence curl free). In this paper, we
consider the general model (1.1) and specify the conditions under which the model
automatically generates curl-free solutions V, from which one can recover the solutions
to the original chemotaxis model (1.2).

1.2. Literature review and motivations. To put things into perspective,
now we would like to point out the existing results that are related to this work. When
the spatial dimension is one, the following results for (1.1) are available in the literature:
global well-posedness and large-time behavior with small or large data in [10,13,27–29,
36, 39, 42, 47, 49], local stability of traveling waves in [7, 19, 31–35, 38], boundary layer
formation and characterization in [16, 17, 28, 39], shock wave formation in [45], explicit
and numerical solutions in [23], and so on. In particular, the results in [27–29, 36, 39,
42, 47] indicate that when χμ>0, no matter how strong the chemotactic sensitivity is
and how large the energy of initial data is, the cellular population always distributes
uniformly over space as time evolves.

One of the main ingredients of the proofs constructed in [27–29,36,39,42,47] is the
implementation of the free energy (weak Lyapunov functional) associated with (1.1):

d

dt

(∫
E(p,p̄)dx+‖v‖2L2

)
+

∫
(px)

2

p
dx+ε‖vx‖2L2 =0, (1.8)

where p̄>0 is a constant equilibrium state and the “entropy expansion” is defined by

E(p,p̄)= [p ln(p)−p]− [p̄ ln(p̄)− p̄]− ln(p̄)(p− p̄). (1.9)

The entropy type estimate (1.8) lays down a foundation for the subsequent energy
estimates that lead to the global stability of constant equilibrium states associated with
the one-dimensional version of (1.1).

On the other hand, when the space dimension is greater than one, (1.8) takes a
different form:

d

dt

(∫
E(p,p̄)dx+‖v‖2L2

)
+

∫ |∇p|2
p

dx+ε‖∇v‖2L2 =ε

∫
|v|2∇·v dx. (1.10)

Note that the integral on the right-hand side does not vanish, and is not sign-preserving
either. Moreover, we can show that (1.1) is invariant under the scaling

(p,v)→ (pξ,vξ) :=
(
ξ2p

(
ξx,ξ2t

)
,ξv

(
ξx,ξ2t

))
.

Under the scaling, when the initial data are perturbed around the zero ground state, it
holds that

‖pξ0‖2L2 = ξ4−n‖p0‖2L2 and ‖vξ
0‖2L2 = ξ2−n‖v0‖2L2 .

This reveals that norm-inflation (especially for the v-component) is not possible when
n≥2.

The aforementioned (unfavorable) features of the multi-dimensional version of (1.1)
brings substantial difficulties to the rigorous analysis of the fundamental properties of
the model, such as global well-posedness of large data classical solutions. Unlike the
one-dimensional case, most of the results obtained in the multi-dimensional case assume
certain smallness on the initial data. Here we mention some of the results that are mostly
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relevant to the present work. All of the results are concerned with global existence and
large-time behavior of solutions to the initial value problem of (1.1) under smallness
assumptions on initial data. We list the assumptions as follows:

• (p0− p̄,v0)∈Hs(Rn) when ‖p0− p̄‖Hs +‖v0‖Hs is small, where s> n
2 +1, see

[25],

• global existence when (p0− p̄)∈L2(R3), v0∈H1(R3), and ‖p0− p̄‖L2 +‖v0‖H1

is small; large-time behavior when (p0− p̄)∈H2(R3), v0∈H1(R3), and ‖p0−
p̄‖H2 +‖v0‖H1 is small, see [9],

• global existence when (p0− p̄,v0)∈Hk(Rn) and only ‖(p0− p̄,v0)‖H1 is small,
where n=2,3 and k≥2; large-time behavior when additionally (p0− p̄,v0)∈
Ḣ−s(Rn), where s∈ (0, n2 ), see [46],

• (p0− p̄,v0)∈H3(R3) when only ‖(p0− p̄,v0)‖L2 is small, see [40],

• (p0− p̄,v0)∈H2(R2) when only ‖(p0− p̄,v0)‖L2 is small, see [43],

• (p0− p̄,v0)∈H2(Rn) when only
∫
RnE(p0, p̄)dx+‖v0‖2L2 is small (cf. (1.9)),

where n=2,3, see [43].

There are also results for the initial-boundary value problems of the model in [5, 6, 18,
30,41,48]. Since these results are less relevant, we do not explain them in detail here.

We note that all the results listed above have assumed at least one of the norms
‖p0− p̄‖L2(Rn) and ‖v0‖L2(Rn) is small. None of them gives a positive answer to the
question of global well-posedness and large-time behavior of classical solutions to the
Cauchy problem of (1.1) when both the norms ‖p0− p̄‖L2(Rn) and ‖v0‖L2(Rn) are po-
tentially large. The analytic techniques utilized in the above previous works are not
sufficient for handling such a situation. The novelty of the current work is that we give
a positive answer to the above question, namely, we show the global well-posedness of
classical solutions to the Cauchy problem when only the energy of the first order spatial
derivatives of the initial data is sufficiently small, see Subsection 1.4 for the novelty in
our proof.

The zero-diffusion limit problem in the current work is motivated by that in certain
chemotactic processes, the chemical signals deposited by the organisms that modify
the local environment for succeeding passages are little- or non-diffusive (cf. [24, 37]).
Hence, it is desirable to know whether the chemically diffusive (realistic) model can be
approximated by the non-diffusive (ideal) one when ε is small. Equivalently, the question
is “Does the solution of the slightly diffusive model converge to the solution of the non-
diffusive model, as ε→0?” Such a topic has been investigated in [16, 28, 35, 36, 39, 47]
for the one-dimensional case, and in [18, 40, 41, 43, 46] for the multi-dimensional case.
Nevertheless, the question is open when n≥2 and ‖(p0− p̄,v0)‖L2(Rn) is large.

1.3. Statement of results. Motivated by the above facts, we study the
global well-posedness, long-time behavior, and zero chemical diffusion limit of multi-
dimensional classical solutions to the initial value problem of (1.1) when ‖(p0−
p̄,v0)‖L2(Rn) is potentially large. The point of study is the following Cauchy problem:

⎧⎪⎨
⎪⎩
∂tp−∇·(pv)− p̄∇·v=Δp,

∂tv−∇
(
p−ε|v|2)=εΔv,

(p0,v0)∈H3(Rn), p0+ p̄>0, ∇×v0=0,

(1.11)

where p̄>0 is a constant, and (p,v) denotes the perturbation of the original solution
around the constant state (p̄,0). The main results are stated in the following theorems.
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Notation 1.1. Throughout the rest part of this paper, we use ‖·‖ to denote ‖·‖L2 .

Theorem 1.1. Let n=3, and consider the Cauchy problem (1.11). Define

κ≡2(1+1/p̄)
(‖∇p0‖2+ p̄‖∇·v0‖2

)
, N1≡ (1+1/p̄)

(‖p0‖2+ p̄‖v0‖2
)
+1. (1.12)

If

N1κ≤min
{
(16c1c2)

−4, (8c1c2)
−1, (54c43)

−1, 1
}
, (1.13)

where c1 and c2 are generic constants appearing in the Gagliardo-Nirenberg interpolation
inequalities (cf. (2.1)–(2.2)), then there exists a unique solution to the Cauchy problem
(1.11) for any ε≥0, such that it holds that

‖(p,v)(t)‖2H3 +

∫ t

0

(‖(∇p,
√
ε∇·v)(τ)‖2H3 +‖∇·v(τ)‖2H2

)
dτ ≤C, ∀t>0, (1.14)

where the positive constant C is independent of t and remains bounded as ε→0. In
addition, the following decay estimate holds:

lim
t→∞

(‖(p,v)(t)‖2W 1,∞ +‖(∇p,∇·v)(t)‖2H2

)
=0, (1.15)

for any ε≥0. Furthermore, let (pε,vε) and (p0,v0) be the solutions to the Cauchy
problem with ε>0 and ε=0, respectively, for the same initial data. Then for any t>0,
it holds that

‖(pε−p0,vε−v0)(t)‖2H1 ≤D1e
tε2,

‖(Δpε−Δp0,Δvε−Δv0)(t)‖2≤D2e
t(1+ε)ε,

(1.16)

where the positive constants D1 and D2 are independent of t and remain bounded as
ε→0.

Theorem 1.2. Let n=2, and consider the Cauchy problem (1.11). Let

H1≡ 1

4
‖p0‖2+

∥∥∥∥p02 − 2ε+1

6
p20

∥∥∥∥
2

+

(
2(2ε+1)2

9
+

8ε2+8ε3

12p̄

)
‖p0‖4L4 +

p̄

4
‖v0‖2

+
p̄

4

∥∥∥∥
(
1− 2ε

p̄
p0

)
v0

∥∥∥∥
2

+
ε2

p̄
‖p0v0‖2+ 1

12

(
4ε+4ε2

p̄
+9ε+32ε3

)
‖v0‖4L4 ,

H2≡ p̄2

2
‖∇p0‖2+ p̄3‖∇·v0‖2+ 1

2
‖p̄∇p0−p0∇p0‖2+ 1

2
‖p0∇p0‖2,

(1.17)

and define

M1≡4(1+1/p̄)H1+1,

δ≡ 2(2p̄+1)

p̄3
exp

{
4

p̄

(
2916d81p̄

2M1+3d41p̄
2+27d81M1p̄

2+2916d81d
4
5(p̄)

−1
)
H1

}
H2,

(1.18)
where d1 and d5 are generic constants appearing in the Gagliardo-Nirenberg interpolation
inequalities (cf. (3.1), (3.5)). If

max{M1δ, M1δ
2, δ}≤�, (1.19)
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for some positive constant � which is sufficiently small such that (3.43) and (3.67) are
fulfilled, then there exists a unique solution to the Cauchy problem (1.11) for any ε≥0,
such that the solution obeys similar estimates as (1.14), (1.15) and (1.16).

Remark 1.1. We see from (1.12) and (1.17)–(1.18) that the smallness assumptions,
(1.13) and (1.19), can be realized by taking the L2-norm of the first order spatial
derivatives of the initial perturbations to be sufficiently small, while the L2-norm of
the initial perturbations can be potentially large. We provide explicit examples in the
Appendix, which fulfill such requirements.

Remark 1.2. In Theorems 1.1 and 1.2, we assumed that v0 is curl free. This is
a natural assumption since (1.1) reduces to (1.7) when v is curl free, and the latter
one originates from (1.2) through the transformation V=∇x (log(e

σtc(x,t))). Since
(∇×v)t=εΔ(∇×v), the second equation in (1.1) automatically generates curl-free
solutions when∇×v0=0. Hence, one may recover the solution to (1.2) from the solution
to (1.1) under the initial curl-free condition.

1.4. Difficulties and idea of proof. We prove Theorems 1.1 and 1.2 by devel-
oping Lp-based energy methods. Since we only assume the smallness of a fraction of the
total Sobolev norm of the initial perturbation, the major technical difficulty consists in
closing the energy estimate for each individual frequency of the solution. Unlike the case
when the total Sobolev norm of the perturbation is small, one can not combine energy
estimates of low and high frequencies for the problem considered in this paper. Because
the energy of the zeroth frequency part of the perturbation is allowed to be potentially
large, the estimation of the zeroth frequency part is challenging due to the lack of the
Poincaré inequality in the whole space case. Moreover, because the Gagliardo-Nirenberg
interpolation inequalities generate less powers of high frequencies of a function in R

2

than in R
3, the proof of the two-dimensional case is considerably more involved than

the three-dimensional case.
In the three-dimensional case, we get over the barrier by taking full advantage of

the dissipation mechanisms and the smallness assumption on L2-norm of the first order
spatial derivatives of the initial perturbation. The Gagliardo-Nirenberg interpolation
inequality plays an important role in our analysis. For the two-dimensional problem, we
overcome the additional difficulty (deficiency in interpolation inequalities) by terminat-
ing low frequencies through creating higher order nonlinearities. Furthermore, since we
also aim to establish the zero chemical diffusion limit, it is vital to obtain the uniform
ε-independent energy estimates of the chemically diffusive solution. We reach the goal
by deriving a linear and inhomogeneous damping equation for the spatial divergence of
v and taking advantage of the dissipative structures of the system.

The rest of the paper is organized as follows. In Section 2 we give a complete proof
of Theorem 1.1. Since the proof of Theorem 1.2 is involved, we present the main steps
of the proof in Section 3, while leaving some tedious calculations to the Appendix.

2. Proof of Theorem 1.1
In this section we prove the Theorem 1.1. First of all, the local well-posedness

of (1.11) can be established by applying Kawashima’s theory on a general system of
balance laws [21], see also [11, 25]. Moreover, it follows from the maximum principle
(cf. [12]) that the local solution satisfies p+ p̄>0 within its lifespan. We collect the
results in the following:

Lemma 2.1 (Local Well-posedness). Consider the Cauchy problem (1.11). For any
ε≥0, there exists a unique local-in-time solution such that p+ p̄>0 and for some T0∈
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(0,∞), it holds that (p− p̄,v)∈L∞([0,T0];H
3(R3))∩L2([0,T0];H

4(R3)) when ε>0, and
(p− p̄)∈L∞([0,T0];H

3(R3))∩L2([0,T0];H
4(R3)) and v∈L∞([0,T0];H

3(R3)) when ε=
0.

We now establish a priori estimates for the local solution, in order to obtain a global
solution. First we recall the following Gagliardo-Nirenberg interpolation inequalities:

‖f‖L3 ≤ c1‖∇f‖ 1
2 ‖f‖ 1

2 , ∀ f ∈H1(R3), (2.1)

‖f‖L6 ≤ c2‖∇f‖, ∀ f ∈H1(R3), (2.2)

‖f‖L∞ ≤ c3‖Δf‖ 1
2 ‖∇f‖ 1

2 , ∀ f ∈H2(R3). (2.3)

Secondly, in addition to κ and N1 defined in (1.12), we let

N2≡ (1+1/p̄)exp

{
3c4
2p̄

(‖p0‖2H1 + p̄‖v0‖2H1

)}(‖Δp0‖2+ p̄‖Δv0‖2
)
+1,

N̂ ≡ 3c4
2(p̄+1)

(‖p0‖2H1 + p̄‖v0‖2H1

)
(N2−1)+

(‖Δp0‖2+ p̄‖Δv0‖2
)
,

N3≡ (1+1/p̄)exp

{
3c5
2p̄

(‖p0‖2H1 + p̄‖v0‖2H1

)}(
‖∇Δp0‖2+ p̄‖Δ(∇·v0)‖2

+c5(1+N2)N̂
)
+1,

(2.4)

where c4 and c5 are defined below by (2.23) and (2.29), respectively. Then we observe
that

‖p0‖2+‖v0‖2<N1−1, ‖∇p0‖2+‖∇·v0‖2< κ

2
,

‖Δp0‖2+‖Δv0‖2<N2−1, ‖∇Δp0‖2+‖Δ∇·v0‖2<N3−1.
(2.5)

Then it follows from Lemma 2.1 that there exists T1∈ (0,T0], such that

sup
0≤t≤T1

(‖p(t)‖2+‖v(t)‖2)≤N1, sup
0≤t≤T1

(‖∇p(t)‖2+‖∇·v(t)‖2)≤κ,

sup
0≤t≤T1

(‖Δp(t)‖2+‖Δv(t)‖2)≤N2, sup
0≤t≤T1

(‖∇Δp(t)‖2+‖Δ∇·v(t)‖2)≤N3.
(2.6)

Next, we derive a priori estimates for the local solution within the time interval [0,T1].

2.1. L2-estimate.
Proof. By testing the equations in (1.11) with the targeting functions, and using

(2.1)–(2.2), we can show that

1

2

d

dt

(‖p‖2+ p̄‖v‖2)+‖∇p‖2+εp̄‖∇·v‖2

= −
∫
R3

p(v ·∇p)dx+εp̄

∫
R3

|v|2∇·v dx

≤ ‖p‖L6‖v‖L3‖∇p‖+εp̄‖v‖L3‖v‖L6‖∇·v‖
≤ c1c2

(
‖∇p‖‖∇·v‖ 1

2 ‖v‖ 1
2 ‖∇p‖+εp̄‖∇·v‖ 1

2 ‖v‖ 1
2 ‖∇·v‖2

)
≤ c1c2 (N1κ)

1
4

(‖∇p‖2+εp̄‖∇·v‖2) , (2.7)

where we applied (2.6) in the last inequality. Hence, when

N1κ≤ (2c1c2)
−4, (2.8)
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it holds that

d

dt

(‖p‖2+ p̄‖v‖2)+‖∇p‖2+εp̄‖∇·v‖2≤0, (2.9)

which yields

‖p(t)‖2+ p̄‖v(t)‖2+
∫ t

0

(‖∇p(τ)‖2+εp̄‖∇·v(τ)‖2)dτ ≤‖p0‖2+ p̄‖v0‖2. (2.10)

Therefore, in view of (1.12), we see that

‖p(t)‖2+‖v(t)‖2≤N1−1. (2.11)

This completes the proof for the L2-estimate.

Next, we make estimates on the first order spatial derivatives of the solution.

2.2. H1-estimate.
Proof. Testing the equations in (1.11) by the −Δ of the targeting functions, and

using (2.3), we can show that

1

2

d

dt

(‖∇p‖2+ p̄‖∇·v‖2)+‖Δp‖2+εp̄‖Δv‖2

= −
∫
R3

∇·(pv)Δp dx+εp̄

∫
R3

∇(|v|2)Δv dx

≤ ‖p‖L∞‖∇·v‖‖Δp‖+‖∇p‖L6‖v‖L3‖Δp‖+2εp̄‖v‖L3‖∇v‖L6‖Δv‖
≤ c3‖∇p‖ 1

2 ‖Δp‖ 1
2 ‖∇·v‖‖Δp‖+c1c2‖v‖ 1

2 ‖∇·v‖ 1
2 ‖Δp‖2+c1c2εp̄‖∇·v‖ 1

2 ‖v‖ 1
2 ‖Δv‖2

≤
(
1

4
+c1c2‖v‖ 1

2 ‖∇·v‖ 1
2

)
‖Δp‖2+ 27

4
c43‖∇p‖2‖∇·v‖4+c1c2εp̄‖∇·v‖ 1

2 ‖v‖ 1
2 ‖Δv‖2

≤
(
1

4
+c1c2 (N1κ)

1
4

)
‖Δp‖2+ 27

4
c43κ

2‖∇p‖2+c1c2εp̄(N1κ)
1
4 ‖Δv‖2, (2.12)

where we applied Young’s inequality. Hence, when

N1κ≤ (4c1c2)
−4, (2.13)

it holds that

d

dt

(‖∇p‖2+ p̄‖∇·v‖2)+‖Δp‖2+εp̄‖Δv‖2≤ 27

2
c43κ

2‖∇p‖2. (2.14)

Integrating (2.14) with respect to time and using (2.10), we obtain

‖∇p(t)‖2+ p̄‖∇·v(t)‖2+
∫ t

0

(‖Δp(τ)‖2+εp̄‖Δv(τ)‖2)dτ
≤ ‖∇p0‖2+ p̄‖∇·v0‖2+ 27

2
c43κ

2
(‖p0‖2+ p̄‖v0‖2

)
, (2.15)

which implies

‖∇p(t)‖2+‖∇·v(t)‖2≤ (1+1/p̄)

[
‖∇p0‖2+ p̄‖∇·v0‖2+ 27

2
c43κ

2
(‖p0‖2+ p̄‖v0‖2

)]
.

(2.16)
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In view of (1.12), we see that

27

2
c43κ

2
(‖p0‖2+ p̄‖v0‖2

)
=54c43(1+1/p̄)2

[‖∇p0‖2+ p̄‖∇·v0‖2
]2(‖p0‖2+ p̄‖v0‖2

)
≤27c43κN1

[‖∇p0‖2+ p̄‖∇·v0‖2
]≤ 1

2

[‖∇p0‖2+ p̄‖∇·v0‖2
]
,

provided that

N1κ≤ (54 c43)
−1. (2.17)

Hence, we update (2.16) as

‖∇p(t)‖2+‖∇·v(t)‖2≤ 3

2
(1+1/p̄)

[‖∇p0‖2+ p̄‖∇·v0‖2
]
=

3

4
κ. (2.18)

In addition, we deduce from (2.15) that∫ t

0

(‖Δp(τ)‖2+εp̄‖Δv(τ)‖2)dτ ≤ 3

2

(‖∇p0‖2+ p̄‖∇·v0‖2
)
, (2.19)

which will be utilized in the subsequent section. This completes the proof for the H1-
estimate.

2.3. H2-estimate.
Proof. By computing the second order L2 inner products, we can show that

1

2

d

dt

(‖Δp‖2+ p̄‖Δv‖2)+‖∇Δp‖2+εp̄‖Δ(∇·v)‖2

=−
∫
R3

∇(∇·(pv)) ·∇(Δp) dx+εp̄

∫
R3

Δ(|v|2)Δ(∇·v) dx. (2.20)

For the first term on the RHS of (2.20), by using Hölder, Gagliardo-Nirenberg and
Young inequalities, we can show that∣∣∣∣−

∫
R3

∇(∇·(pv)) ·∇(Δp) dx

∣∣∣∣
≤ (‖p‖L∞‖Δv‖+‖∇p‖L3‖∇v‖L6 +‖Δp‖L6‖v‖L3)‖∇Δp‖
≤

(
c3‖∇p‖ 1

2 ‖Δp‖ 1
2 ‖Δv‖+c1c2‖∇p‖ 1

2 ‖Δp‖ 1
2 ‖Δv‖+c1c2‖∇Δp‖‖v‖ 1

2 ‖∇·v‖ 1
2

)
‖∇Δp‖

≤
(
1

4
+c1c2 (N1κ)

1
4

)
‖∇Δp‖2+(c3+c1c2)

2 ‖∇p‖‖Δp‖‖Δv‖2

≤
(
1

4
+c1c2 (N1κ)

1
4

)
‖∇Δp‖2+ (c3+c1c2)

2

2

(‖∇p‖2+‖Δp‖2)‖Δv‖2.

In a similar fashion, we can show that∣∣∣∣εp̄
∫
R3

Δ(|v|2)Δ(∇·v) dx
∣∣∣∣

≤ 2εp̄
(‖∇v‖L3‖∇v‖L6 +‖v‖L3‖∇2v‖L6

)‖Δ(∇·v)‖
≤ 2c1c2εp̄

(
‖∇·v‖ 1

2 ‖Δv‖ 3
2 +‖v‖ 1

2 ‖∇·v‖ 1
2 ‖Δ(∇·v)‖

)
‖Δ(∇·v)‖

≤ εp̄

(
1

4
+2c1c2 (N1κ)

1
4

)
‖Δ(∇·v)‖2+4c21c

2
2εp̄‖∇·v‖‖Δv‖‖Δv‖2

≤ εp̄

(
1

4
+2c1c2 (N1κ)

1
4

)
‖Δ(∇·v)‖2+2c21c

2
2

(
εp̄‖∇·v‖2+εp̄‖Δv‖2)‖Δv‖2.
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Hence, when

N1κ≤ (8c1c2)
−4, (2.21)

it holds that

d

dt

(‖Δp‖2+ p̄‖Δv‖2)+‖∇Δp‖2+εp̄‖Δ(∇·v)‖2

≤ c4
p̄

(‖∇p‖2+‖Δp‖2+εp̄‖∇·v‖2+εp̄‖Δv‖2)(‖Δp‖2+ p̄‖Δv‖2) , (2.22)

where

c4=max
{
(c3+c1c2)

2,4c21c
2
2

}
. (2.23)

Applying the Grönwall inequality to (2.22) and using (2.10) and (2.19), we have

‖Δp(t)‖2+ p̄‖Δv(t)‖2

≤ exp

{
c4
p̄

∫ t

0

(‖∇p‖2+‖Δp‖2+εp̄‖∇·v‖2+εp̄‖Δv‖2)dτ}(‖Δp0‖2+ p̄‖Δv0‖2
)

≤ exp

{
3c4
2p̄

(‖p0‖2H1 + p̄‖v0‖2H1

)}(‖Δp0‖2+ p̄‖Δv0‖2
)
=

p̄

p̄+1
(N2−1), (2.24)

where we used the definition in (2.4). From (2.24) we deduce that

‖Δp(t)‖2+‖Δv(t)‖2≤N2−1. (2.25)

In addition, by plugging (2.24) into (2.22), then integrating with respect to t, we can
show that∫ t

0

(‖∇Δp(τ)‖2+εp̄‖Δ(∇·v)(τ)‖2)dτ
≤ 3c4

2(p̄+1)

(‖p0‖2H1 + p̄‖v0‖2H1

)
(N2−1)+

(‖Δp0‖2+ p̄‖Δv0‖2
)
= N̂ . (2.26)

We note that the constant N̂ depends only on p̄, the initial data and Gagliardo-Nirenberg
constants. This completes the proof for the H2-estimate.

2.4. H3-estimate.
Proof. For the third order estimate, we can show that

1

2

d

dt

(‖∇Δp‖2+ p̄‖Δ(∇·v)‖2)+‖Δ2p‖2+εp̄‖Δ2v‖2

≤ (‖p‖L∞‖Δ(∇·v)‖+3‖∇p‖L3‖Δv‖L6 +3‖Δp‖L6‖∇·v‖L3 +‖∇Δp‖‖v‖L∞)‖Δ2p‖
+εp̄(2‖Δ(∇·v)‖‖v‖L∞ +6‖∇·v‖L3‖Δv‖L6)‖Δ2v‖, (2.27)

where the terms on the right-hand side are estimated by applying Gagliardo-Nirenberg
inequalities and Sobolev embeddings as follows:

• ‖p‖L∞‖Δ(∇·v)‖·‖Δ2p‖≤ c3‖∇p‖ 1
2 ‖Δp‖ 1

2 ‖Δ(∇·v)‖·‖Δ2p‖
≤2c23‖∇p‖·‖Δp‖·‖Δ(∇·v)‖2+ 1

8
‖Δ2p‖2
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≤ c23(‖∇p‖2+‖Δp‖2)‖Δ(∇·v)‖2+ 1

8
‖Δ2p‖2,

• 3‖∇p‖L3‖Δv‖L6‖Δ2p‖≤3c1c2‖∇p‖ 1
2 ‖Δp‖ 1

2 ‖Δ(∇·v)‖·‖Δ2p‖
≤18c21c

2
2‖∇p‖·‖Δp‖·‖Δ(∇·v)‖2+ 1

8
‖Δ2p‖2

≤9c21c
2
2(‖∇p‖2+‖Δp‖2)‖Δ(∇·v)‖2+ 1

8
‖Δ2p‖2,

• 3‖Δp‖L6‖∇·v‖L3‖Δ2p‖≤3c1c2‖∇Δp‖·‖∇·v‖ 1
2 ‖Δv‖ 1

2 ‖Δ2p‖
≤18c21c

2
2‖∇·v‖·‖Δv‖·‖∇Δp‖2+ 1

8
‖Δ2p‖2,

≤9c21c
2
2(‖∇·v‖2+‖Δv‖2)‖∇Δp‖2+ 1

8
‖Δ2p‖2,

• ‖∇Δp‖·‖v‖L∞‖Δ2p‖≤ c3‖∇Δp‖·‖∇·v‖ 1
2 ‖Δv‖ 1

2 ‖Δ2p‖
≤2c23‖∇·v‖·‖Δv‖·‖∇Δp‖2+ 1

8
‖Δ2p‖2,

≤ c23(‖∇·v‖2+‖Δv‖2)‖∇Δp‖2+ 1

8
‖Δ2p‖2,

• 2εp̄‖Δ(∇·v)‖·‖v‖L∞‖Δ2v‖≤2c3εp̄‖∇·v‖ 1
2 ‖Δv‖ 1

2 ‖Δ(∇·v)‖·‖Δ2v‖
≤4c23εp̄‖∇·v‖·‖Δv‖·‖Δ(∇·v)‖2+ 1

4
εp̄‖Δ2v‖2

≤2c23εp̄(‖∇·v‖2+‖Δv‖2)‖Δ(∇·v)‖2+ 1

4
εp̄‖Δ2v‖2,

• 6εp̄‖∇·v‖L3‖Δv‖L6‖Δ2v‖≤6c1c2εp̄‖∇·v‖ 1
2 ‖Δv‖ 1

2 ‖Δ(∇·v)‖·‖Δ2v‖
≤36c21c22εp̄‖∇·v‖·‖Δv‖·‖Δ(∇·v)‖2+ 1

4
εp̄‖Δ2v‖2

≤18c21c22εp̄(‖∇·v‖2+‖Δv‖2)‖Δ(∇·v)‖2+ 1

4
εp̄‖Δ2v‖2.

By substituting the above estimates into (2.27), we get

d

dt

(‖∇Δp‖2+ p̄‖Δ(∇·v)‖2)+‖Δ2p‖2+εp̄‖Δ2v‖2

≤ c5(‖∇p‖2+‖Δp‖2)‖Δ(∇·v)‖2+2c5(‖∇·v‖2+‖Δv‖2)×(‖∇Δp‖2+εp̄‖Δ(∇·v)‖2)
≤ c5

p̄
(‖∇p‖2+‖Δp‖2)(‖∇Δp‖2+ p̄‖Δ(∇·v)‖2)+c5(κ+N2)

×(‖∇Δp‖2+εp̄‖Δ(∇·v)‖2), (2.28)

where

c5=9c21c
2
2+c23. (2.29)

By applying the Grönwall inequality to (2.28) and using (2.10), (2.19) and (2.26), we
have

‖∇Δp(t)‖2+ p̄‖Δ(∇·v)(t)‖2
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≤ exp

{
c5
p̄

∫ t

0

(‖∇p(τ)‖2+‖Δp(τ)‖2)dτ
}(

‖∇Δp0‖2+ p̄‖Δ(∇·v0)‖2

+c5(κ+N2)

∫ t

0

(‖∇Δp(τ)‖2+εp̄‖Δ(∇·v)(τ)‖2)dτ)

≤ exp

{
3c5
2p̄

(‖p0‖2H1 + p̄‖v0‖2H1

)}(
‖∇Δp0‖2+ p̄‖Δ(∇·v0)‖2+c5(κ+N2)N̂

)
. (2.30)

Since κ<1 (cf. (1.12)–(1.13)), in view of (2.30) and (2.4), we see that

‖∇Δp(t)‖2+‖Δ(∇·v)(t)‖2

≤ (1+1/p̄)exp

{
3c5
2p̄

(‖p0‖2H1 + p̄‖v0‖2H1

)}(
‖∇Δp0‖2+ p̄‖Δ(∇·v0)‖2+c5(κ+N2)N̂

)
≤ N3−1. (2.31)

This completes the proof for the H3-estimate.

2.5. Further Estimate for v.
Proof. From previous sections, we see that the temporal integral of ‖∇·v‖2H2 is

inversely proportional to ε (cf. (2.10), (2.19), (2.26)). Now we improve the estimate of
such a quantity to be proportional to ε, which is used later to prove the zero chemical
diffusion limit. For this purpose, by combining the equations in (1.11), we get

∂t(∇·v)+ p̄∇·v=εΔ(∇·v)+∂tp−εΔ(|v|2)−∇·(pv). (2.32)

Taking the L2 inner product of (2.32) with ∇·v, we have

1

2

d

dt
‖∇·v‖2+ p̄‖∇·v‖2+ε‖Δv‖2

=

∫
R3

(∂tp)(∇·v)dx−ε

∫
R3

Δ(|v|2)(∇·v)dx−
∫
R3

(∇·(pv))(∇·v)dx. (2.33)

We note that∫
R3

(∂tp)(∇·v)dx= d

dt

∫
R3

p(∇·v)dx−
∫
R3

p(∂t∇·v)dx

=
d

dt

∫
R3

p(∇·v)dx+‖∇p‖2−
∫
R3

p
(
εΔ(∇·v)−εΔ(|v|2))dx,

where we used the second equation of (1.11). Then we update (2.33) as

d

dt

(
1

2
‖∇·v‖2−

∫
R3

p(∇·v)dx
)
+ p̄‖∇·v‖2+ε‖Δv‖2

= ‖∇p‖2+ε

∫
R3

∇(|v|2) ·(Δv)dx−
∫
R3

(∇·(pv))(∇·v)dx

+

∫
R3

∇p ·(ε∇(∇·v)−ε∇(|v|2))dx. (2.34)

For the second term on the RHS of (2.34), according to (2.1) and (2.2), we have∣∣∣∣ε
∫
R3

∇(|v|2) ·(Δv)dx

∣∣∣∣≤2ε‖v‖L3‖∇·v‖L6‖Δv‖

≤2c1c2ε‖v‖ 1
2 ‖∇·v‖ 1

2 ‖Δv‖2≤2c1c2ε(N1κ)
1
4 ‖Δv‖2.
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For the third term on the RHS of (2.34), by using similar arguments as in (2.12), we
can show that∣∣∣∣−

∫
R3

(∇·(pv))(∇·v)dx
∣∣∣∣≤ (‖∇p‖L3‖v‖L6 +‖p‖L∞‖‖∇·v‖‖)‖∇·v‖

≤ (c1c2+c3)‖∇p‖ 1
2 ‖Δp‖ 1

2 ‖∇·v‖2

≤ (c1c2+c3)
2

2p̄
‖∇p‖‖Δp‖‖∇·v‖2+ p̄

2
‖∇·v‖2

≤ (c1c2+c3)
2

p̄

(‖∇p‖2+‖Δp‖2)κ+ p̄

2
‖∇·v‖2

≤ (c1c2+c3)
2

p̄

(‖∇p‖2+‖Δp‖2)+ p̄

2
‖∇·v‖2,

provided that κ≤1. For the fourth term on the RHS of (2.34), we can show that∣∣∣∣
∫
R3

∇p ·(ε∇(∇·v)−ε∇(|v|2))dx∣∣∣∣≤ε‖∇p‖‖∇(∇·v)‖+2ε‖∇p‖‖v‖L3‖∇v‖L6

≤2ε‖∇p‖2+ ε

4
‖Δv‖2+ε‖v‖2L3‖∇v‖2L6

≤2ε‖∇p‖2+ ε

4
‖Δv‖2+c1c2ε‖v‖‖∇·v‖‖Δv‖2

≤2ε‖∇p‖2+ ε

4
‖Δv‖2+c1c2ε(N1κ)‖Δv‖2.

Hence, when

N1κ≤min
{
(16c1c2)

−4,(8c1c2)
−1

}
, (2.35)

we update (2.34) as

d

dt

(
1

2
‖∇·v‖2−

∫
R3

p(∇·v)dx
)
+

p̄

2
‖∇·v‖2+ ε

2
‖Δv‖2

≤ (1+2ε)‖∇p‖2+ (c1c2+c3)
2

p̄

(‖∇p‖2+‖Δp‖2) . (2.36)

By multiplying (2.9) by 2, then adding the result to (2.36), we have

d

dt
E(t)+

p̄

2
‖∇·v‖2+ ε

2
‖Δv‖2+‖∇p‖2+2εp̄‖∇·v‖2

≤
(
2ε+

(c1c2+c3)
2

p̄

)
‖∇p‖2+ (c1c2+c3)

2

p̄
‖Δp‖2, (2.37)

where

E(t)=
1

2
‖∇·v‖2−

∫
R3

p(∇·v)dx+2‖p‖2+2 p̄‖v‖2

=
1

4
‖∇·v‖2+

∥∥∥∥12∇·v−p

∥∥∥∥
2

+‖p‖2+2 p̄‖v‖2.

Integrating (2.37) with respect to time and using (2.10) and (2.19) then yield, in par-
ticular,

p̄

2

∫ t

0

‖∇·v(τ)‖2dτ ≤E(0)+

(
2ε+

(c1c2+c3)
2

p̄

)(‖p0‖2+ p̄‖v0‖2
)
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+
3(c1c2+c3)

2

2p̄

(‖∇p0‖2+ p̄‖∇·v0‖2
)
, (2.38)

where the constant on the RHS is independent of t and remains bounded as ε→0. In
a completely similar fashion, by working on the non-homogeneous damped Equation
(2.32) and using the H1-, H2- and H3-estimates established in the previous sections,
we can show that∫ t

0

(‖∇(∇·v)(τ)‖2+‖Δ(∇·v)(τ)‖2)dτ ≤C(c1,c2,c3, p̄,p0,v0,ε).

We omit the technical details to simplify the presentation.

We remark that the constants appearing in the energy estimates in Sections 2.1–2.5
remain bounded as ε→0. This allows us to establish the global well-posedness of (1.11)
when ε=0. Indeed, by repeating the arguments in Sections 2.1–2.5, one can establish
similar energy estimates for the solution to (1.11) when ε=0, and the solution satisfies
(1.14) with ε=0. More importantly, the energy estimates derived in Sections 2.1–2.5
allow us to take the zero chemical diffusion limit of the solution. Furthermore, in view
of (2.8), (2.13), (2.17), (2.21), (2.35) and the derivation of (2.31), we see that all of the
energy estimates derived in Sections 2.1–2.4 are valid when

N1κ≤min
{
(16c1c2)

−4, (8c1c2)
−1, (54c43)

−1, 1
}
. (2.39)

Note that (2.39) is the same smallness condition as stated in Theorem 1.1.

2.6. Global well-posedness. We now prove the global well-posedness of (1.11).
First, from (2.11), (2.18), (2.25) and (2.31), we see that for ∀ t∈ [0,T1],

‖p(t)‖2+‖v(t)‖2≤N1−1, ‖∇p(t)‖2+‖∇·v(t)‖2≤ 3

4
κ,

‖Δp(t)‖2+‖Δv(t)‖2≤N2−1, ‖∇Δp(t)‖2+‖Δ(∇·v)(t)‖2≤N3−1,
(2.40)

which, in particular, imply that

‖p(T1)‖2+‖v(T1)‖2≤N1−1, ‖∇p(T1)‖2+‖∇·v(T1)‖2≤ 3

4
κ,

‖Δp(T1)‖2+‖Δv(T1)‖2≤N2−1, ‖∇Δp(T1)‖2+‖Δ(∇·v)(T1)‖2≤N3−1.
(2.41)

From the local existence in Lemma 2.1, for some T̂ ∈ (0,∞) there exists a unique classical
solution to (1.11) on the time interval [T1,T1+ T̂ ] satisfying for ∀t∈ [T1,T1+ T̂ ],

‖p(t)‖2+‖v(t)‖2≤N1, ‖∇p(t)‖2+‖∇·v(t)‖2≤κ,

‖Δp(t)‖2+‖Δv(t)‖2≤N2, ‖∇Δp(t)‖2+‖Δ(∇·v)(t)‖2≤N3,
(2.42)

In view of (2.6) and (2.42), we see that for ∀t∈ [0,T1+ T̂ ],

‖p(t)‖2+‖v(t)‖2≤N1, ‖∇p(t)‖2+‖∇·v(t)‖2≤κ,

‖Δp(t)‖2+‖Δv(t)‖2≤N2, ‖∇Δp(t)‖2+‖Δ(∇·v)(t)‖2≤N3.
(2.43)

From the standard procedure as in [41], we conclude that the solution exists globally in
time. This completes the proof of the global well-posedness result recorded in Theorem
1.1.
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2.7. Long-time behavior. In this section, we derive the long-time behavior
of the solution. We combine the previous energy estimates with the fact that any
function f(t), belonging toW 1,1(0,∞), converges to zero as t→∞, to establish the decay
estimate. For brevity, we only present the proof for the first order spatial derivatives of
the solution. We note that according to (2.10) and (2.38), it holds that

‖∇p(t)‖2+‖∇·v(t)‖2∈L1(0,∞), (2.44)

which is valid for any ε≥0. Next, by using similar arguments as in deriving (2.12), we
can show that

1

2

∣∣∣∣ ddt (‖∇p‖2+ p̄‖∇·v‖2)∣∣∣∣≤
(
1

4
+c1c2 (N1κ)

1
4

)
‖Δp‖2+ 27

4
c43κ

2‖∇p‖2

+c1c2εp̄(N1κ)
1
4 ‖Δv‖2+‖Δp‖2+εp̄‖Δv‖2,

which, together with (2.8) and (2.13), implies∣∣∣∣ ddt (‖∇p‖2+ p̄‖∇·v‖2)∣∣∣∣≤3‖Δp‖2+ 27

2
c43κ

2‖∇p‖2+3εp̄‖Δv‖2. (2.45)

By integrating (2.45) with respect to t and applying (2.10) and (2.19), we have

d

dt

(‖(∇p)(t)‖2+ p̄‖(∇·v)(t)‖2)∈L1(0,∞).

By combining (2.44) and (2.45), we conclude that ‖(∇p)(t)‖2+ p̄‖(∇·v)(t)‖2∈
W 1,1(0,∞), which implies limt→∞

(‖(∇p)(t)‖2+ p̄‖(∇·v)(t)‖2)=0. Furthermore, by
working with (2.20) and (2.27) we can obtain the similar result for the second and third
order derivatives of the solution.

2.8. Diffusion limit. Now we study the zero chemical diffusion limit and quan-
tify the convergence rate in terms of ε. Let (pε,vε) and (p0,v0) be the solutions to
(1.11) with ε>0 and ε=0, respectively, for the same initial data, and set p̃=pε−p0

and ṽ=vε−v0. Then (p̃,ṽ) satisfies⎧⎪⎨
⎪⎩
∂tp̃−∇· ṽ=Δp̃+∇·(p̃vε+p0ṽ),

∂tṽ−∇p̃=εΔvε−ε∇(|vε|2) ;
(p̃0,ṽ0)=(0,0),

(2.46)

where for simplicity, we took p̄=1. We begin with the zeroth frequency estimate.

Step 1. By taking the L2 inner products, we find

1

2

d

dt

(‖p̃‖2+‖ṽ‖2)+‖∇p̃‖2=−
∫
R3

(p̃vε+p0ṽ) ·∇p̃dx+

∫
R3

[
εΔvε−ε∇(|vε|2)] · ṽdx.

(2.47)
For the first term on the RHS of (2.47), by applying (2.3), we have∣∣∣∣−

∫
R3

(p̃vε+p0ṽ) ·∇p̃dx

∣∣∣∣
≤ 1

2
‖∇p̃‖2+‖vε‖2L∞‖p̃‖2+‖p0‖2L∞‖ṽ‖2

≤ 1

2
‖∇p̃‖2+c23

(‖∇·vε‖·‖Δvε‖·‖p̃‖2+‖∇p0‖·‖Δp0‖·‖ṽ‖2)
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≤ 1

2
‖∇p̃‖2+ c23

2

[
(‖∇·vε‖2+‖Δvε‖2)‖p̃‖2+(‖∇p0‖2+‖Δp0‖2)‖ṽ‖2] . (2.48)

For the second term on the RHS of (2.47), again by applying (2.3), we have∣∣∣∣
∫
R3

[
εΔvε−ε∇(|vε|2)] · ṽdx∣∣∣∣

≤ 1

2
‖ṽ‖2+ε2‖Δvε‖2+4ε2‖vε‖2L∞‖∇·vε‖2

≤ 1

2
‖ṽ‖2+ε2‖Δvε‖2+4c23ε

2‖∇·vε‖·‖Δvε‖·‖∇·vε‖2

≤ 1

2
‖ṽ‖2+ε2‖Δvε‖2+2c23

√
3κ(N2−1)ε2‖∇·vε‖2. (2.49)

where we applied (2.18) and (2.25). By substituting (2.48) and (2.49) into (2.47) then
multiplying through by 2, we have

d

dt

(‖p̃‖2+‖ṽ‖2)+‖∇p̃‖2

≤ [
c23

(‖∇·vε‖2+‖Δvε‖2+‖∇p0‖2+‖Δp0‖2)+1
](‖p̃‖2+‖ṽ‖2)

+ 2ε2‖Δvε‖2+4c23
√
3κ(N2−1)ε2‖∇·vε‖2. (2.50)

By applying the Grönwall inequality to (2.50), we have

‖p̃(t)‖2+‖ṽ(t)‖2

≤ exp

{
c23

∫ t

0

(‖∇·vε(τ)‖2+‖Δvε(τ)‖2+‖∇p0(τ)‖2+‖Δp0(τ)‖2)dτ+ t

}

×
(
2

∫ t

0

‖Δvε(τ)‖2dτ+4c23
√
3κ(N2−1)

∫ t

0

‖∇·vε(τ)‖2dτ
)
ε2.

We note that according to the energy estimates recorded in Theorem 1.1, see (1.14),
the integrals on the RHS of the above inequality are bounded by some constants that
are independent of t and remain bounded as ε→0. We rewrite the above estimate by
using short notations as

‖p̃(t)‖2+‖ṽ(t)‖2≤ eC1+tC2ε
2. (2.51)

Next, we consider the convergence of the first order derivatives of the perturbation.

Step 2. By taking the L2 inner products of the first two equations in (2.46) with
the −Δ of the targeting functions, we deduce

1

2

d

dt

(‖∇p̃‖2+‖∇· ṽ‖2)+‖Δp̃‖2

=−
∫
R3

[∇·(p̃vε+p0ṽ)
]
Δp̃dx+ε

∫
R3

(Δ∇·vε)(∇· ṽ)dx−ε

∫
R3

Δ
(|vε|2)(∇· ṽ)dx.

(2.52)

For the first term on the RHS of (2.52), we have∣∣∣∣−
∫
R3

[∇·(p̃vε+p0ṽ)
]
Δp̃dx

∣∣∣∣≤ 1

2
‖Δp̃‖2+ 1

2
‖∇·(p̃vε+p0ṽ)‖2, (2.53)
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where the second term on the RHS can be estimated as

1

2
‖∇·(p̃vε+p0ṽ)‖2

≤2
(‖∇p̃ ·vε‖2+‖p̃(∇·vε)‖2+‖∇p0 · ṽ‖2+‖p0(∇· ṽ)‖2)

≤2
(‖∇p̃‖2‖vε‖2L∞ +‖p̃‖2L6‖∇·vε‖2L3 +‖∇p0‖2L3‖ṽ‖2L6 +‖p0‖2L∞‖∇· ṽ‖2)

≤2
(
c23‖∇p̃‖2‖∇·vε‖·‖Δvε‖+c21c

2
2‖∇p̃‖2‖∇·vε‖·‖Δvε‖+

c21c
2
2‖∇p0‖·‖Δp0‖·‖∇· ṽ‖2+c23‖∇p0‖·‖Δp0‖·‖∇· ṽ‖2)

≤ (c23+c21c
2
2)
(‖∇·vε‖2+‖Δvε‖2+‖∇p0‖2+‖Δp0‖2)(‖∇p̃‖2+‖∇· ṽ‖2) .

So we can update (2.53) as∣∣∣∣−
∫
R3

[∇·(p̃vε+p0ṽ)
]
Δp̃dx

∣∣∣∣
≤ 1

2
‖Δp̃‖2+(c23+c21c

2
2)
(‖∇·vε‖2+‖Δvε‖2+‖∇p0‖2+‖Δp0‖2)(‖∇p̃‖2+‖∇· ṽ‖2) .

(2.54)

For the second and third terms on the RHS of (2.52), in a similar fashion, we can show
that ∣∣∣∣ε

∫
R3

(Δ∇·vε)(∇· ṽ)dx−ε

∫
R3

Δ
(|vε|2)(∇· ṽ)dx∣∣∣∣

≤ 1

2
‖∇· ṽ‖2+ε2‖Δ∇·vε‖2+ε2

∥∥Δ(|vε|2)∥∥2

≤ 1

2
‖∇· ṽ‖2+ε2‖Δ∇·vε‖2+8ε2

(‖Δvε‖2‖vε‖2L∞ +‖∇·vε‖2L3‖∇vε‖2L6

)
≤ 1

2
‖∇· ṽ‖2+ε2‖Δ∇·vε‖2+8

(
c23+c21c

2
2

)
ε2‖∇·vε‖·‖Δvε‖·‖Δvε‖2

≤ 1

2
‖∇· ṽ‖2+ε2‖Δ∇·vε‖2+4

(
c23+c21c

2
2

)√
3κ(N2−1)‖Δvε‖2ε2. (2.55)

By feeding (2.54) and (2.55) into (2.52), we find

d

dt

(‖∇p̃‖2+‖∇· ṽ‖2)+‖Δp̃‖2

≤ [
2(c23+c21c

2
2)
(‖∇·vε‖2+‖Δvε‖2+‖∇p0‖2+‖Δp0‖2)+1

](‖∇p̃‖2+‖∇· ṽ‖2)
+2ε2‖Δ∇·vε‖2+8

(
c23+c21c

2
2

)√
3κ(N2−1)‖Δvε‖2ε2. (2.56)

By applying the Grönwall inequality to (2.56), we deduce

‖∇p̃(t)‖2+‖∇· ṽ(t)‖2

≤ exp

{
2(c23+c21c

2
2)

∫ t

0

(‖∇·vε(τ)‖2+‖Δvε(τ)‖2+‖∇p0(τ)‖2+‖Δp0(τ)‖2)dτ+ t

}

×
(
2

∫ t

0

‖Δ∇·vε(τ)‖2dτ+8
(
c23+c21c

2
2

)√
3κ(N2−1)

∫ t

0

‖Δvε(τ)‖2dτ
)
ε2. (2.57)
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We note again that the integrals on the RHS of the above inequality are bounded by
some constants that are independent of t and remain bounded as ε→0. We rewrite the
above estimate as

‖∇p̃(t)‖2+‖∇· ṽ(t)‖2≤ eC3+tC4ε
2. (2.58)

Step 3. The convergence of the second order derivatives of the solution can be
established in a similar fashion, except that the term ε2‖Δ2vε(t)‖2 will appear in
the energy estimates. According to (1.14), the temporal integral of such term, i.e.,∫ t

0
ε2‖Δ2vε(τ)‖2dτ , has the order of O(ε), instead of O(ε2), as ε→0. The final energy

estimate takes the form

‖Δp̃(t)‖2+‖Δṽ(t)‖2≤ eC5+tC6 (1+ε)ε.

We omit the technical details. This completes the proof for Theorem 1.1.

3. Proof of Theorem 1.2
In this section we prove Theorem 1.2. Comparing with the 3D case, the proof of

the 2D case is much lengthier, as the Gagliardo-Nirenberg inequalities generate less
powers of high frequencies of a function in R

2 than in R
3. Such a deficiency has a

substantial impact on the energy estimates for all the individual frequencies of the
solution, especially when ‖p‖ and ‖v‖ are potentially large. We overcome the difficulty
by creating higher order nonlinearities.

We recall the following Gagliardo-Nirenberg inequalities in 2D:

‖f‖L4 ≤d1‖∇f‖ 1
2 ‖f‖ 1

2 , (3.1)

‖f‖L6 ≤d2‖∇f‖ 2
3 ‖f‖ 1

3 , (3.2)

‖f‖L8 ≤d3‖∇f‖ 3
4 ‖f‖ 1

4 , (3.3)

‖f‖L12 ≤d4‖∇f‖ 5
6 ‖f‖ 1

6 , (3.4)

‖f‖L∞ ≤d5‖f‖ 1
2 ‖Δf‖ 1

2 . (3.5)

In what follows, we assume that for a local existence time T >0 the following hold:

sup
0≤t≤T

(‖p(t)‖2L2 +‖v(t)‖2L2

)≤M1, sup
0≤t≤T

(‖∇p(t)‖2L2 +‖∇·v(t)‖2L2

)≤ δ, (3.6)

where M1 and δ are defined in Theorem 1.2.

3.1. L2-estimate. By testing the equations in (1.11) with the targeting func-
tions, we have

1

2

d

dt

(‖p‖2+ p̄‖v‖2)+‖∇p‖2+εp̄‖∇·v‖2=−
∫
R2

pv ·∇p dx+εp̄

∫
R2

|v|2∇·v dx. (3.7)

We remark that the two terms on the RHS of (3.7) can not be estimated as in the
3D case, as the interpolation inequalities in 2D do not generate enough powers of the
higher frequencies of a function. We eliminate those terms through performing higher
order energy estimates. During such a process, the higher order nonlinearities can
be controlled by using the smallness of the L2 norm of ∇p and ∇·v. We divide the
subsequent proof into six steps.
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Step 1. Taking the L2 inner product of the first equation in (1.11) with −ε |v|2,
we have

−
∫
R2

ε |v|2∂tp dx=−ε
∫
R2

|v|2∇·(pv) dx−ε p̄

∫
R2

|v|2∇·v dx−ε

∫
R2

|v|2Δp dx. (3.8)

Taking the L2 inner product of the second equation in (1.11) with −2εpv, we have

−
∫
R2

εp∂t(|v|2) dx=−2ε
∫
R2

pv ·∇p dx−2ε2
∫
R2

pv ·Δv dx+2ε2
∫
R2

pv ·∇(|v|2) dx.
(3.9)

Adding (3.8) and (3.9), we find

− d

dt

(
ε

∫
R2

p|v|2dx
)
=−ε

∫
R2

|v|2∇·(pv) dx−εp̄

∫
R2

|v|2∇·v dx−ε

∫
R2

|v|2Δp dx

−2ε

∫
R2

pv ·∇p dx−2ε2
∫
R2

pv ·Δv dx+2ε2
∫
R2

pv ·∇(|v|2) dx.
(3.10)

Adding (3.10) to (3.7), we have

d

dt

(
1

2
‖p‖2+ p̄

2
‖v‖2−ε

∫
R2

p|v|2dx
)
+‖∇p‖2+εp̄‖∇·v‖2

=−(2ε+1)

∫
R2

pv ·∇p dx+ε(2ε+1)

∫
R2

pv ·∇(|v|2) dx

−ε

∫
R2

|v|2Δp dx−2ε2
∫
R2

pv ·Δv dx. (3.11)

Taking the L2 inner product of the first equation in (1.11) with −(2ε+1)p2, we have

− d

dt

(
2ε+1

6

∫
R2

p3dx

)
−(2ε+1)

∫
R2

p|∇p|2dx

= (2ε+1)

∫
R2

pv ·∇p dx+(2ε+1) p̄

∫
R2

p2v ·∇p dx, (3.12)

where the first term on the RHS terminates the first term on the RHS of (3.11) upon
addition. Adding (3.12) to (3.11), we find

d

dt

(
1

2
‖p‖2+ p̄

2
‖v‖2−ε

∫
R2

p|v|2dx− 2ε+1

6

∫
R2

p3dx

)

+‖∇p‖2+εp̄‖∇·v‖2−(2ε+1)

∫
R2

p|∇p|2dx

= (2ε+1) p̄

∫
R2

p2v ·∇p dx+ε(2ε+1)

∫
R2

pv ·∇(|v|2) dx

−ε

∫
R2

|v|2Δp dx−2ε2
∫
R2

pv ·Δv dx. (3.13)

We note that the expression inside the parenthesis on the LHS of (3.13) is not necessarily
positive. Hence, we need to supply terms in order to gain the positivity of the quantity.

Step 2. First, for any positive constant k1, taking the L2 inner product of the first
equation in (1.11) with k1p

3, we have

d

dt

(
k1

∫
R2

p4dx

)
+12k1

∫
R2

p2|∇p|2dx=−12k1 p̄
∫
R2

p2v ·∇p dx−12k1

∫
R2

p3v ·∇p dx.

(3.14)
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Adding (3.14) to (3.13), we have

d

dt
E1(t)+D1(t)= (2ε+1−12k1) p̄

∫
R2

p2v ·∇p dx+ε(2ε+1)

∫
R2

pv ·∇(|v|2) dx

−ε

∫
R2

|v|2Δp dx−2ε2
∫
R2

pv ·Δv dx−12k1

∫
R2

p3v ·∇p dx, (3.15)

where

E1(t)≡ 1

2
‖p‖2+ p̄

2
‖v‖2−ε

∫
R2

p|v|2dx− 2ε+1

6

∫
R2

p3dx+k1

∫
R2

p4dx,

D1(t)≡‖∇p‖2+εp̄‖∇·v‖2−(2ε+1)

∫
R2

p|∇p|2dx+12k1

∫
R2

p2|∇p|2dx.

Second, by taking the L2 inner product of the first equation in (1.11) with 2ε2|v|2p, we
have∫

R2

ε2|v|2∂t(p2)=2ε2
∫
R2

|v|2p∇·(pv) dx+2ε2 p̄

∫
R2

|v|2p∇·v dx+2ε2
∫
R2

|v|2pΔp dx.

(3.16)
Taking the L2 inner product of the second equation in (1.11) with 2ε2p2v, we have∫

R2

ε2p2∂t(|v|2)=2ε2
∫
R2

p2v ·∇p dx+2ε3
∫
R2

p2v ·Δv dx−2ε3
∫
R2

p2v ·∇(|v|2) dx.
(3.17)

Adding (3.16) and (3.17), we find

d

dt

(∫
R2

ε2p2|v|2dx
)

= 2ε2
∫
R2

|v|2p∇·(pv) dx+2ε2 p̄

∫
R2

|v|2p∇·v dx+2ε2
∫
R2

|v|2pΔp dx

+2ε2
∫
R2

p2v ·∇p dx+2ε3
∫
R2

p2v ·Δv dx−2ε3
∫
R2

p2v ·∇(|v|2) dx. (3.18)

We note that the third term on the RHS of (3.18):

2ε2
∫
R2

|v|2pΔp dx=−2ε2
∫
R2

|v|2|∇p|2dx−2ε2
∫
R2

p∇(|v|2) ·∇p dx, (3.19)

and the fifth term:

2ε3
∫
R2

p2v ·Δv dx

=−2ε3
∫
R2

p2
(|∇v1|2+ |∇v2|2

)
dx−4ε3

∫
R2

(pv1∇p ·∇v1+pv2∇p ·∇v2)dx. (3.20)

Plugging (3.19) and (3.20) into (3.18), then multiplying the result by 2, we have

d

dt

(∫
R2

2ε2p2 |v|2dx
)
+4ε2

∫
R2

|v|2|∇p|2dx+4ε3
∫
R2

p2
(|∇v1|2+ |∇v2|2

)
dx

= 4ε2
∫
R2

|v|2p∇·(pv) dx+4ε2 p̄

∫
R2

|v|2p∇·v dx−4ε2
∫
R2

p∇(|v|2) ·∇p dx
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+4ε2
∫
R2

p2v ·∇p dx−4ε3
∫
R2

p2v ·∇(|v|2) dx−8ε3
∫
R2

(pv1∇p ·∇v1+pv2∇p ·∇v2)dx.

(3.21)

Next, we carry out some preliminary energy estimates for both the RHS of (3.15) and
(3.21).

Step 3. For the third term on the RHS of (3.15), we have∣∣∣∣ε
∫
R2

|v|2Δp dx

∣∣∣∣=
∣∣∣∣ε
∫
R2

∇(|v|2) ·∇p dx

∣∣∣∣
≤ 1

4
‖∇p‖2+8ε2

∫
R2

(
(v1)

2|∇v1|2+(v2)
2|∇v2|2

)
dx. (3.22)

For the fourth term on the RHS of (3.15), we have∣∣∣∣2ε2
∫
R2

pv ·Δv dx

∣∣∣∣
=

∣∣∣∣2ε2
∫
R2

p
(|∇v1|2+ |∇v2|2

)
dx+4ε2

∫
R2

(v1∇p ·∇v1+v2∇p ·∇v2)dx

∣∣∣∣
≤ εp̄

2
‖∇·v‖2+ 2ε3

p̄

∫
R2

p2
(|∇v1|2+ |∇v2|2

)
dx+

1

4
‖∇p‖2

+32ε4
∫
R2

(
(v1)

2|∇v1|2+(v2)
2|∇v2|2

)
dx. (3.23)

Similarly, for the third term on the RHS of (3.21), we can show that∣∣∣∣4ε2
∫
R2

p∇(|v|2) ·∇p dx

∣∣∣∣=
∣∣∣∣8ε2

∫
R2

(pv1∇p ·∇v1+pv2∇p ·∇v2)dx

∣∣∣∣
≤ 8ε2

∫
R2

p2|∇p|2dx+4ε2
∫
R2

(
(v1)

2|∇v1|2+(v2)
2|∇v2|2

)
dx.

(3.24)

In the same way, for the sixth term on the RHS of (3.21), we have∣∣∣∣8ε3
∫
R2

(pv1∇p ·∇v1+pv2∇p ·∇v2)dx

∣∣∣∣
≤ 8ε3

∫
R2

p2|∇p|2dx+4ε3
∫
R2

(
(v1)

2|∇v1|2+(v2)
2|∇v2|2

)
dx. (3.25)

By feeding (3.22) and (3.23) into (3.15), we have

d

dt
E1(t)+D1(t)≤(2ε+1−12k1)

∫
R2

p2v ·∇p dx+ε(2ε+1)

∫
R2

pv ·∇(|v|2) dx

−12k1

∫
R2

p3v ·∇p dx+
εp̄

2
‖∇·v‖2+ 2ε3

p̄

∫
R2

p2
(|∇v1|2+ |∇v2|2

)
dx

+
1

2
‖∇p‖2+(

8ε2+32ε4
)∫

R2

(
(v1)

2|∇v1|2+(v2)
2|∇v2|2

)
dx. (3.26)

By feeding (3.24) and (3.25) into (3.21), we have

d

dt

(∫
R2

2ε2p2 |v|2dx
)
+4ε2

∫
R2

|v|2|∇p|2dx+4ε3
∫
R2

p2
(|∇v1|2+ |∇v2|2

)
dx
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≤ 4ε2
∫
R2

|v|2p∇·(pv) dx+4ε2
∫
R2

|v|2p∇·v dx+4ε2
∫
R2

p2v ·∇p dx

−4ε3
∫
R2

p2v ·∇(|v|2) dx+(
8ε2+8ε3

)∫
R2

p2|∇p|2dx

+
(
4ε2+4ε3

)∫
R2

(
(v1)

2|∇v1|2+(v2)
2|∇v2|2

)
dx. (3.27)

By adding (3.27)× 1
p̄ to (3.26), we find

d

dt
E2(t)+D2(t)≤ (2ε+1−12k1)

∫
R2

p2v ·∇p dx+ε(2ε+1)

∫
R2

pv ·∇(|v|2) dx

−12k1

∫
R2

p3v ·∇p dx+
4ε2

p̄

∫
R2

|v|2p∇·(pv) dx+ 4ε2

p̄

∫
R2

|v|2p∇·v dx

+
4ε2

p̄

∫
R2

p2v ·∇p dx− 4ε3

p̄

∫
R2

p2v ·∇(|v|2) dx+
(
8ε2+8ε3

)
p̄

∫
R2

p2|∇p|2dx

+

((
4ε2+4ε3

)
p̄

+8ε2+32ε4

)∫
R2

(
(v1)

2|∇v1|2+(v2)
2|∇v2|2

)
dx, (3.28)

where

E2(t)≡ 1

2
‖p‖2+ p̄

2
‖v‖2−

∫
R2

(
εp|v|2+ 2ε+1

6
p3

)
dx+k1

∫
R2

p4dx+
2ε2

p̄

∫
R2

p2|v|2dx,

D2(t)≡ 1

2
‖∇p‖2+ εp̄

2
‖∇·v‖2−(2ε+1)

∫
R2

p|∇p|2dx+12k1

∫
R2

p2|∇p|2dx

+
4ε2

p̄

∫
R2

|v|2|∇p|2dx+ 2ε3

p̄

∫
R2

p2
(|∇v1|2+ |∇v2|2

)
dx.

We observe that the last term on the RHS of (3.28) is troublesome, as the expression of
D2(t) contains only the square of ∇v. Next, we cook up a quantity to dominate such a
bad term.

Step 4. We write the second equation in (1.11) in the component form as

∂tv1−∂xp=εΔv1−ε∂x(|v|2),
∂tv2−∂yp=εΔv2−ε∂y(|v|2).

(3.29)

For any positive constant k2, taking the L2 inner product of the first equation of (3.29)
with 4k2(v1)

3, the second equation with 4k2(v2)
3, then adding the results, we can show

that

d

dt

(
k2

∫
R2

(v1)
4+(v2)

4dx

)
+12k2ε

∫
R2

(
(v1)

2|∇v1|2+(v2)
2|∇v2|2

)
dx

= 4k2

∫
R2

(
(v1)

3∂xp+(v2)
3∂yp

)
dx−4k2ε

∫
R2

(
(v1)

3∂x(|v|2)+(v2)
3∂y(|v|2)

)
dx. (3.30)

By adding (3.30) to (3.28), we have

d

dt
E3(t)+D3(t)≤

(
2ε+1−12k1+

4ε2

p̄

)∫
R2

p2v ·∇p dx+ε(2ε+1)

∫
R2

pv ·∇(|v|2) dx
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−12k1

∫
R2

p3v ·∇p dx+
4ε2

p̄

∫
R2

|v|2p∇·(pv) dx+ 4ε2

p̄

∫
R2

|v|2p∇·v dx

− 4ε3

p̄

∫
R2

p2v ·∇(|v|2) dx+4k2

∫
R2

(
(v1)

3∂xp+(v2)
3∂yp

)
dx

−4k2ε

∫
R2

(
(v1)

3∂x(|v|2)+(v2)
3∂y(|v|2)

)
dx ≡

8∑
k=1

Ik(t), (3.31)

where

E3(t)≡ 1

2
‖p‖2+ p̄

2
‖v‖2−ε

∫
R2

p|v|2dx− 2ε+1

6

∫
R2

p3dx+k1

∫
R2

p4dx

+
2ε2

p̄

∫
R2

p2|v|2dx+k2

∫
R2

(v1)
4+(v2)

4dx,

D3(t)≡ 1

2
‖∇p‖2+ εp̄

2
‖∇·v‖2−(2ε+1)

∫
R2

p|∇p|2dx+ 4ε2

p̄

∫
R2

|v|2|∇p|2dx

+

(
12k1− (8ε2+8ε3)

p̄

)∫
R2

p2|∇p|2dx+ 2ε3

p̄

∫
R2

p2
(|∇v1|2+ |∇v2|2

)
dx

+

(
12k2ε−

[(
4ε2+4ε3

)
p̄

+8ε2+32ε4

])∫
R2

(
(v1)

2|∇v1|2+(v2)
2|∇v2|2

)
dx.

By choosing

12k1=
8ε2+8ε3

p̄
+3(2ε+1)2, 12k2=

4ε+4ε2

p̄
+9ε+32ε3, (3.32)

we have

E3(t)=
1

4
‖p‖2+

∥∥∥∥p2− 2ε+1

6
p2

∥∥∥∥
2

+

(
2(2ε+1)2

9
+

8ε2+8ε3

12p̄

)
‖p‖4L4

+
p̄

4
‖v‖2+ p̄

4

∥∥∥∥
(
1− 2ε

p̄
p

)
v

∥∥∥∥
2

+
ε2

p̄
‖pv‖2+ 1

12

(
4ε+4ε2

p̄
+9ε+32ε3

)
‖v‖4L4 ,

D3(t)=
3

8
‖∇p‖2+ 1

8
‖(1−4(2ε+1)p)∇p‖2+(2ε+1)2‖p∇p‖2

+
εp̄

2
‖∇·v‖2+ 4ε2

p̄
‖|v||∇p|‖2+ 2ε3

p̄
‖p∇v‖2+ε2

(‖v1∇v1‖2+‖v2∇v2‖2
)
.

(3.33)
Note that k1=

1
4 ,k2=0 when ε=0, and E3(0) is the same as H1 in the statement of

Theorem 1.2. Next, we carry out energy estimates for the RHS of (3.31) by applying
(3.1)–(3.5).

Step 5. By using (3.1), (3.3) and (3.6), we can show that

|I1(t)|=
∣∣∣∣
(
2ε+1−12k1+

4ε2

p̄

)∫
R2

p2v ·∇p dx

∣∣∣∣
≤
(
2ε+1+12k1+

4ε2

p̄

)
‖p‖2L8‖v‖L4‖∇p‖

≤d1d
2
3

(
2ε+1+12k1+

4ε2

p̄

)
‖∇p‖ 3

2 ‖p‖ 1
2 ‖∇·v‖ 1

2 ‖v‖ 1
2 ‖∇p‖
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≤d1d
2
3

(
2ε+1+12k1+

4ε2

p̄

)
(M1δ)

1
2 ‖∇p‖2. (3.34)

Similarly, we can show that

|I2(t)|=
∣∣∣∣ε(2ε+1)

∫
R2

pv ·∇(|v|2) dx
∣∣∣∣≤2(2ε+1)ε‖p‖L4‖v‖2L8‖∇·v‖

≤2d1d
2
3 (2ε+1)ε‖∇p‖ 1

2 ‖p‖ 1
2 ‖∇·v‖ 3

2 ‖v‖ 1
2 ‖∇·v‖

≤2d1d
2
3 (2ε+1)(M1δ)

1
2 (ε‖∇·v‖2). (3.35)

By using (3.4), we can show that

|I3(t)|=
∣∣∣∣12k1

∫
R2

p3v ·∇p dx

∣∣∣∣≤12k1‖p‖3L12‖v‖L4‖∇p‖

≤12d1d
2
4k1‖∇p‖ 5

2 ‖p‖ 1
2 ‖∇·v‖ 1

2 ‖v‖ 1
2 ‖∇p‖

≤12d1d
2
4k1 (M1δ

2)
1
2 ‖∇p‖2=d1d

2
4

(
8ε2+8ε3

p̄
+3(2ε+1)2

)
(M1δ

2)
1
2 ‖∇p‖2.

(3.36)
In a similar fashion, we can show that

|I4(t)|=
∣∣∣∣4ε2p̄

∫
R2

|v|2p∇·(pv) dx
∣∣∣∣≤ 4ε2

p̄

(‖v‖2L8‖p‖2L8‖∇·v‖+‖v‖3L12‖p‖L4‖∇p‖)
≤ 4ε2

p̄

(
d43‖∇·v‖

3
2 ‖v‖ 1

2 ‖∇p‖ 3
2 ‖p‖ 1

2 ‖∇·v‖+d1d
3
4‖∇·v‖

5
2 ‖v‖ 1

2 ‖∇p‖ 1
2 ‖p‖ 1

2 ‖∇p‖
)

≤ 4(d43+d1d
3
4)ε

p̄
(M1δ

2)
1
2 (ε‖∇·v‖2). (3.37)

Similar to (3.34), we can show that

|I5(t)|=
∣∣∣∣4ε2p̄

∫
R2

|v|2p∇·v dx

∣∣∣∣≤ 4d1d
2
3ε

p̄
(M1δ)

1
2 (ε‖∇·v‖2). (3.38)

Similar to (3.37), we can show that

|I6(t)|=
∣∣∣∣4ε3p̄

∫
R2

p2v ·∇(|v|2) dx
∣∣∣∣≤ 8d43ε

2

p̄
(M1δ

2)
1
2 (ε‖∇·v‖2). (3.39)

By using (3.2), we can show that

|I7(t)|=
∣∣∣∣4k2

∫
R2

(
(v1)

3∂xp+(v2)
3∂yp

)
dx

∣∣∣∣≤8k2‖v‖3L6‖∇p‖

≤8d32k2‖∇·v‖2‖v‖‖∇p‖≤ 2

3
d32

(
4+4ε

p̄
+9+32ε2

)
(M1δ)

1
2 (ε‖∇·v‖2). (3.40)

Similarly, we have

|I8(t)|=
∣∣∣∣4k2ε

∫
R2

(
(v1)

3∂x(|v|2)+(v2)
3∂y(|v|2)

)
dx

∣∣∣∣≤32k2ε‖v‖4L8‖∇·v‖

≤32d43k2ε‖∇·v‖3‖v‖‖∇·v‖≤32d43k2(M1δ
2)

1
2 (ε‖∇·v‖2). (3.41)
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This completes the energy estimation for the entire RHS of (3.31).

Step 6. By substituting (3.34)–(3.41) into (3.31), we obtain

d

dt
E3(t)+D3(t)≤ (B1+B3)‖∇p‖2+(B2+B4+B5+B6+B7+B8)(ε‖∇·v‖2), (3.42)

where

B1=d1d
2
3

(
2ε+1+12k1+

4ε2

p̄

)
(M1δ)

1
2 , B2=2d1d

2
3 (2ε+1)(M1δ)

1
2 ,

B3=d1d
2
4

(
8ε2+8ε3

p̄
+3(2ε+1)2

)
(M1δ

2)
1
2 , B4=

4(d43+d1d
3
4)ε

p̄
(M1δ

2)
1
2 ,

B5=
4d1d

2
3ε

p̄
(M1δ)

1
2 , B6=

8d43ε
2

p̄
(M1δ

2)
1
2 ,

B7=
2

3
d32

(
4+4ε

p̄
+9+32ε2

)
(M1δ)

1
2 , B8=32d43k2(M1δ

2)
1
2 .

Hence, when

Bi≤ 1

16
, i=1,3, Bi ≤ p̄

24
, i=2,4,5,6,7,8, (3.43)

we get from (3.42) that

d

dt
E3(t)+

(
D3(t)− 1

8
‖∇p‖2− εp̄

4
‖∇·v‖2

)
≤0. (3.44)

In view of (3.33) we see that

D3(t)− 1

8
‖∇p‖2− εp̄

4
‖∇·v‖2≥ 1

4
‖∇p‖2+ εp̄

4
‖∇·v‖2. (3.45)

By integrating (3.44) with respect to time and using the definition of E3(t) (cf. (3.33)),
we find in particular that

1

4
‖p(t)‖2+ p̄

4
‖v(t)‖2+

∫ t

0

(
1

4
‖∇p(τ)‖2+ εp̄

4
‖∇·v(τ)‖2

)
dτ ≤E3(0).

This implies that

‖p(t)‖2+‖v(t)‖2≤4(1+1/p̄)E3(0),

and ∫ t

0

(‖∇p(τ)‖2+εp̄‖∇·v(τ)‖2)dτ ≤4E3(0). (3.46)

In view of (1.18) we see that

‖p(t)‖2+‖v(t)‖2≤M1−1. (3.47)

Next, we estimate the first order derivatives of the solution.
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3.2. H1-estimate. We remark that the estimates of the first order derivatives
of the solution bear the same level of difficulty as those for the zeroth frequency. Hence,
we shall continue with the process of cancellation and coupling through higher order
estimates.

Step 1. By testing the equations in (1.11) with the −Δ of the targeting functions,
we can show that

d

dt

(‖∇p‖2+ p̄‖∇·v‖2)+2‖Δp‖2+2εp̄‖Δv‖2

= −
∫
R2

[2p(∇·v)+2∇p ·v]Δp dx+2εp̄

∫
R2

∇(|v|2) ·(Δv) dx. (3.48)

A direct calculation by using the first equation in (1.11) shows that

1

2

d

dt

∫
R2

p2Δp dx

=

∫
R2

pΔp [Δp+∇·(pv)+ p̄∇·v]dx+
∫
R2

p2

2
Δ[Δp+∇·(pv)+ p̄∇·v]dx. (3.49)

We note that the second term on the RHS of (3.49)∫
R2

p2

2
Δ[Δp+∇·(pv)+ p̄∇·v]dx=

∫
R2

(
pΔp+ |∇p|2) [Δp+∇·(pv)+ p̄∇·v]dx.

So we update (3.49), after integrating by parts, as

− d

dt

∫
R2

p|∇p|2 dx=

∫
R2

(
2pΔp+ |∇p|2) [Δp+∇·(pv)+ p̄∇·v]dx. (3.50)

By summing up (3.48)×p̄ and (3.50), we have

d

dt

(
p̄‖∇p‖2+ p̄2‖∇·v‖2−

∫
R2

p|∇p|2 dx

)

+2 p̄‖Δp‖2−2

∫
R2

p(Δp)2dx+2εp̄2‖Δv‖2=N1(t), (3.51)

where

N1(t)=−2 p̄

∫
R2

(∇p ·v)Δp dx+2

∫
R2

pΔp∇·(pv) dx+
∫
R2

|∇p|2Δp dx

+

∫
R2

|∇p|2∇·(pv) dx+ p̄

∫
R2

|∇p|2∇·v dx+2εp̄2
∫
R2

∇(|v|2) ·(Δv) dx. (3.52)

We note that the expression inside the parenthesis on the LHS of (3.51) is not necessarily
positive. Hence, we need to supply a positive term in order to gain the positivity of
the quantity. For this purpose, a direct calculation by using the first equation in (1.11)
shows that

d

dt

∫
R2

p2|∇p|2 dx+2

∫
R2

p2|Δp|2dx

= −2

∫
R2

p2Δp [∇·(pv)+ p̄∇·v]dx−2

∫
R2

p|∇p|2 [Δp+∇·(pv)+ p̄∇·v]dx. (3.53)
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By adding (3.53) to (3.51)×p̄, we find

d

dt

(
p̄2‖∇p‖2+ p̄3‖∇·v‖2− p̄

∫
R2

p|∇p|2 dx+

∫
R2

p2|∇p|2 dx

)

+2 p̄2‖Δp‖2−2 p̄

∫
R2

p(Δp)2dx+2εp̄3‖Δv‖2+2

∫
R2

p2|Δp|2dx=N2(t), (3.54)

where

N2(t)= p̄N1(t)−2

∫
R2

p2Δp∇·(pv)dx−2 p̄

∫
R2

p2Δp∇·v dx−2

∫
R2

p|∇p|2Δp dx

−2

∫
R2

p|∇p|2∇·(pv)dx−2 p̄

∫
R2

p|∇p|2∇·v dx≡
11∑
k=1

Jk(t).

Next, we carry out energy estimates for N2(t).

Step 2. By using (3.1) and Young’s inequality, we can show that

|J1(t)|=2 p̄2
∣∣∣∣
∫
R2

(∇p ·v)Δp dx

∣∣∣∣≤2 p̄2‖∇p‖L4‖v‖L4‖Δp‖

≤2d21 p̄
2‖∇p‖ 1

2 ‖Δp‖ 3
2 ‖v‖ 1

2 ‖∇·v‖ 1
2 ≤ p̄2

12
‖Δp‖2+2916d81 p̄

2‖∇p‖2‖v‖2‖∇·v‖2

≤ p̄2

12
‖Δp‖2+2916d81 p̄

2M1‖∇p‖2‖∇·v‖2. (3.55)

By using (3.1) and (3.5), we can show that

|J2(t)|=2 p̄

∣∣∣∣
∫
R2

pΔp∇·(pv) dx
∣∣∣∣=2 p̄

∣∣∣∣
∫
R2

pΔp(p∇·v+v ·∇p) dx

∣∣∣∣
≤2 p̄

(‖Δp‖‖p‖2L∞‖∇·v‖+‖Δp‖‖p‖L∞‖v‖L4‖∇p‖L4

)
≤2 p̄

(
d25‖Δp‖2‖p‖‖∇·v‖+d21d5‖Δp‖2‖p‖ 1

2 ‖v‖ 1
2 ‖∇·v‖ 1

2 ‖∇p‖ 1
2

)
≤2(d25+d21d5) p̄(M1δ)

1
2 ‖Δp‖2. (3.56)

By using (3.1), we can show that

|J3(t)|= p̄

∣∣∣∣
∫
R2

|∇p|2Δp dx

∣∣∣∣≤ p̄‖∇p‖2L4‖Δp‖≤d21 p̄‖∇p‖‖Δp‖2≤d21 p̄δ
1
2 ‖Δp‖2.

(3.57)
By using similar arguments as in (3.56), we can show that

|J4(t)|= p̄

∣∣∣∣
∫
R2

|∇p|2∇·(pv)dx
∣∣∣∣=2 p̄

∣∣∣∣
∫
R2

(∇p ·H(p)) ·(pv)dx
∣∣∣∣

≤2 p̄‖Δp‖‖p‖L∞‖∇p‖L4‖v‖L4 ≤2d21d5 p̄‖Δp‖2‖p‖ 1
2 ‖∇p‖ 1

2 ‖v‖ 1
2 ‖∇·v‖ 1

2

≤2d21d5 p̄(M1δ)
1
2 ‖Δp‖2, (3.58)

where H(p) denotes the Hessian matrix of p. Similar to (3.57), we can show that

|J5(t)|= p̄2
∣∣∣∣
∫
R2

|∇p|2∇·v dx

∣∣∣∣≤ p̄2‖∇p‖2L4‖∇·v‖
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≤d21 p̄
2‖∇p‖‖Δp‖‖∇·v‖≤ p̄2

12
‖Δp‖2+3d41 p̄

2‖∇p‖2‖∇·v‖2. (3.59)

Again, by using (3.1), we can show that

|J6(t)|=2εp̄3
∣∣∣∣
∫
R2

∇(|v|2) ·(Δv) dx

∣∣∣∣≤4εp̄3‖v‖L4‖∇v‖L4‖Δv‖

≤4d21εp̄
3‖v‖ 1

2 ‖∇·v‖‖Δv‖ 3
2 ≤εp̄3‖Δv‖2+27d81εp̄

3‖v‖2‖∇·v‖4
≤εp̄3‖Δv‖2+27d81M1 p̄

2 (εp̄‖∇·v‖2)‖∇·v‖2. (3.60)

Similar to (3.56), we can show that

|J7(t)|=2

∣∣∣∣
∫
R2

p2Δp∇·(pv)dx
∣∣∣∣≤2

(‖pΔp‖‖p‖2L∞‖∇·v‖+‖pΔp‖‖p‖L∞‖∇p‖L4‖v‖L4

)
≤2

(
d25‖pΔp‖‖p‖‖Δp‖‖∇·v‖+d21d5‖pΔp‖‖p‖ 1

2 ‖Δp‖‖∇p‖ 1
2 ‖v‖ 1

2 ‖∇·v‖ 1
2

)
≤2(d25+d21d5)(M1δ)

1
2 ‖pΔp‖‖Δp‖≤ (d25+d21d5)(M1δ)

1
2

(‖pΔp‖2+‖Δp‖2) .
(3.61)

By using (3.5), we can show that

|J8(t)|=2 p̄

∣∣∣∣
∫
R2

p2Δp∇·v dx

∣∣∣∣≤2 p̄‖Δp‖‖p‖2L∞‖∇·v‖

≤2d25 p̄‖Δp‖‖p‖‖Δp‖‖∇·v‖≤2d25 p̄(M1δ)
1
2 ‖Δp‖2. (3.62)

By using (3.1), we can show that

|J9(t)|=2

∣∣∣∣
∫
R2

p|∇p|2Δp dx

∣∣∣∣≤2‖pΔp‖‖∇p‖2L4

≤2d21‖pΔp‖‖∇p‖‖Δp‖≤d21 δ
1
2

(‖pΔp‖2+‖Δp‖2) . (3.63)

By using (3.1) and (3.5), we can show that

|J10(t)|=2

∣∣∣∣
∫
R2

p|∇p|2∇·(pv)dx
∣∣∣∣

≤ 2
(‖p‖2L∞‖∇p‖2L4‖∇·v‖+‖p‖L∞‖∇p‖3L4‖v‖L4

)
≤ 2

(
d21d

2
5‖p‖‖Δp‖‖∇p‖‖Δp‖‖∇·v‖+d41d5‖p‖

1
2 ‖Δp‖ 1

2 ‖∇p‖ 3
2 ‖Δp‖ 3

2 ‖v‖ 1
2 ‖∇·v‖ 1

2

)
≤ 2(d21d

2
5+d41d5)(M1δ

2)
1
2 ‖Δp‖2. (3.64)

Again, by using (3.1) and (3.5), we can show that

|J11(t)|=2 p̄

∣∣∣∣
∫
R2

p|∇p|2∇·v dx

∣∣∣∣≤2 p̄‖p‖L∞‖∇p‖2L4‖∇·v‖

≤2d21d5 p̄‖p‖
1
2 ‖Δp‖ 1

2 ‖∇p‖‖Δp‖‖∇·v‖

≤ p̄2

12
‖Δp‖2+2916d81d

4
5(p̄)

−1‖p‖2‖∇p‖4‖∇·v‖4

≤ p̄2

12
‖Δp‖2+2916d81d

4
5(p̄)

−1(M1δ
2)‖∇p‖2‖∇·v‖2. (3.65)
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This completes the estimate for the entire RHS of (3.54).

Step 3. By assembling, (3.55)–(3.65), we find

|N2(t)|≤ εp̄3‖Δv‖2+[
(C1+C2+D1)‖∇p‖2+C3(εp̄‖∇·v‖2)

]‖∇·v‖2( p̄
4
+D2+D3+D4+D5+D6+D7+D8

)
‖Δp‖2+(D5+D7)‖pΔp‖2,

where

C1=2916d81 p̄
2M1, C2=3d41 p̄

2, C3=27d81M1 p̄
2,

D1=2916d81d
4
5(p̄)

−1(M1δ
2), D2=2(d25+d21d5) p̄(M1δ)

1
2 , D3=d21 p̄δ

1
2 ,

D4=2d21d5 p̄(M1δ)
1
2 , D5=(d25+d21d5)(M1δ)

1
2 , D6=2d25 p̄(M1δ)

1
2 ,

D7=d21 δ
1
2 , D8=2(d21d

2
5+d41d5)(M1δ

2)
1
2 .

(3.66)
Hence, when

M1δ
2≤1, Dj≤ p̄

28
, j=2, ...,8, and Dj ≤min

{
p̄

28
,
1

4

}
, j=5,7, (3.67)

it holds that

|N2(t)|≤ εp̄3‖Δv‖2+ p̄

2
‖Δp‖2+ 1

2
‖pΔp‖2

+
[
(C1+C2+2916d81d

4
5(p̄)

−1)‖∇p‖2+C3(εp̄‖∇·v‖2)
]‖∇·v‖2. (3.68)

By substituting (3.68) into (3.54), we obtain

d

dt
E4(t)+D4(t)≤

[
(C1+C2+2916d81d

4
5(p̄)

−1)‖∇p‖2+C3(εp̄‖∇·v‖2)
]‖∇·v‖2, (3.69)

where

E4(t)≡ p̄2‖∇p‖2+ p̄3‖∇·v‖2− p̄

∫
R2

p|∇p|2 dx+

∫
R2

p2|∇p|2 dx

=
p̄2

2
‖∇p‖2+ p̄3‖∇·v‖2+ 1

2
‖p̄∇p−p∇p‖2+ 1

2
‖p∇p‖2,

D4(t)≡ 3 p̄2

2
‖Δp‖2−2 p̄

∫
R2

p(Δp)2dx+εp̄3‖Δv‖2+ 3

2

∫
R2

p2|Δp|2dx

=
p̄2

2
‖Δp‖2+‖p̄Δp−pΔp‖2+εp̄3‖Δv‖2+ 1

2
‖pΔp‖2.

(3.70)

We note that E4(0) is the same as H2 in the statement of Theorem 1.2. We also note
that p̄3‖∇·v‖2≤E4(t). Hence, we update (3.69) as

d

dt
E4(t)+D4(t)≤ 1

p̄

[
(C1+C2+2916d81d

4
5(p̄)

−1)‖∇p‖2+C3(εp̄‖∇·v‖2)
]
E4(t). (3.71)

By applying the Grönwall inequality to (3.71) and using (3.46), we find

E4(t)≤E4(0)exp

{
4

p̄
(C1+C2+C3+2916d81d

4
5(p̄)

−1)E3(0)

}
≡C4. (3.72)
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Therefore, by the definition of E4(t), it holds that

‖∇p(t)‖2+‖∇·v(t)‖2≤ 2 p̄+1

p̄3
C4. (3.73)

In view of (1.18) and (3.73) we see that

‖∇p(t)‖2+‖∇·v(t)‖2≤ δ

2
. (3.74)

In addition, by substituting (3.72) into (3.71) then integrating with respect to t, we
have ∫ t

0

D4(τ)dτ ≤E4(0)+
4

p̄
(C1+C2+C3+2916d81d

4
5(p̄)

−1)E3(0)C4.

According to (3.70), we have∫ t

0

(‖Δp(τ)(t)‖2+εp̄‖Δv(τ)‖2)dτ
≤ 3

p̄3

(
E4(0)+

4

p̄
(C1+C2+C3+2916d81d

4
5(p̄)

−1)E3(0)C4
)
≡C5, (3.75)

where the constant C5 is independent of t and remains bounded as ε→0. Next, we
estimate the second order spatial derivatives of the solution.

3.3. H2-estimate. By applying Δ to the equations in (1.11), then taking the L2

inner products of the resulting equations with Δ of the targeting functions, we obtain

d

dt

(‖Δp‖2+ p̄‖Δv‖2)+2‖∇Δp‖2+2εp̄‖Δ(∇·v)‖2

=−2

∫
R2

∇(∇·(pv)) ·(∇Δp) dx+2εp̄

∫
R2

Δ(|v|2)Δ(∇·v)dx

=−2

∫
R2

(∇(∇p ·v)+(∇·v)∇p) ·(∇Δp) dx−2

∫
R2

p∇(∇·v) ·(∇Δp) dx

+4εp̄

∫
R2

(
v ·Δv+ |∇v1|2+ |∇v2|2

)
Δ(∇·v)dx. (3.76)

By direct calculations, we can show that

− d

dt

∫
R2

p(Δp)2dx−2

∫
R2

p|∇Δp|2dx

= 2

∫
R2

Δp∇p ·∇(∇·(pv))dx+2

∫
R2

p∇Δp ·∇(∇·(pv))dx

+2 p̄

∫
R2

Δp∇p ·∇(∇·v)dx+2 p̄

∫
R2

p∇Δp ·∇(∇·v)dx

+2

∫
R2

Δp∇p ·∇Δp dx−
∫
R2

(Δp)2∇·(pv)dx

− p̄

∫
R2

(Δp)2∇·v dx−
∫
R2

(Δp)3dx, (3.77)

and

d

dt

∫
R2

p2(Δp)2dx+2

∫
R2

p2|∇Δp|2dx
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= −4

∫
R2

pΔp∇p ·∇(∇·(pv))dx−2

∫
R2

p2∇Δp ·∇(∇·(pv))dx

−4 p̄

∫
R2

pΔp∇p ·∇(∇·v)dx−2 p̄

∫
R2

p2∇Δp ·∇(∇·v)dx

−4

∫
R2

pΔp∇p ·∇Δp dx+2

∫
R2

p(Δp)2∇·(pv)dx

+2 p̄

∫
R2

p(Δp)2∇·v dx+2

∫
R2

p(Δp)3dx. (3.78)

The operation: (3.76)×p̄ + (3.77) + (3.78)×1/p̄ then yields

d

dt

(
p̄‖Δp‖2+ p̄2‖Δv‖2−

∫
R2

p(Δp)2dx+
1

p̄
‖pΔp‖2

)

+2 p̄‖∇Δp‖2−2

∫
R2

p|∇Δp|2dx+ 2

p̄
‖p∇Δp‖2+2εp̄2‖Δ(∇·v)‖2=

19∑
k=1

Rk(t), (3.79)

where

R1(t)=−2 p̄
∫
R2

(∇(∇p ·v)) ·(∇Δp) dx, R2(t)=−2 p̄
∫
R2

((∇·v)∇p) ·(∇Δp) dx,

R3(t)=4εp̄2
∫
R2

(v ·Δv)Δ(∇·v)dx, R4(t)=4εp̄2
∫
R2

(|∇v|2)Δ(∇·v)dx,

R5(t)=2

∫
R2

Δp∇p ·∇(∇·(pv))dx, R6(t)=2

∫
R2

p∇Δp ·∇(∇·(pv))dx,

R7(t)=2 p̄

∫
R2

Δp∇p ·∇(∇·v)dx, R8(t)=2

∫
R2

Δp∇p ·∇Δp dx,

R9(t)=−
∫
R2

(Δp)2∇·(pv)dx, R10(t)=−p̄
∫
R2

(Δp)2∇·v dx,

R11(t)=−
∫
R2

(Δp)3dx, R12(t)=−4

p̄

∫
R2

pΔp∇p ·∇(∇·(pv))dx,

R13(t)=−2

p̄

∫
R2

p2∇Δp ·∇(∇·(pv))dx, R14(t)=−4
∫
R2

pΔp∇p ·∇(∇·v)dx,

R15(t)=−2
∫
R2

p2∇Δp ·∇(∇·v)dx, R16(t)=−4

p̄

∫
R2

pΔp∇p ·∇Δp dx,

R17(t)=
2

p̄

∫
R2

p(Δp)2∇·(pv)dx, R18(t)=2

∫
R2

p(Δp)2∇·v dx,

R19(t)=
2

p̄

∫
R2

p(Δp)3dx.

Next, we shall estimate the RHS of (3.79) term by term. However, due to a large
number of terms to be estimated, the detailed analysis is long and not reader-friendly.
To simplify the presentation, we only present the resulting estimate, while the detailed
arguments are left to the Appendix. Indeed, after a series of energy estimates by using
(3.1)–(3.5), we can show that

19∑
k=1

|Rk(t)|≤ p̄

2
‖∇Δp‖2+ 1

2p̄
‖p∇Δp‖2+εp̄2‖Δ(∇·v)‖2+K1

(‖∇p‖2+‖Δp‖2)



TONG LI, DEHUA WANG, FANG WANG, ZHI-AN WANG, AND KUN ZHAO 261

+K2

(‖∇p‖2+‖Δp‖2+εp̄‖∇·v‖2)(p̄‖Δp‖2+ p̄2‖Δv‖2) , (3.80)

for some constants K1 and K2 which depend only on M1,δ,p̄ and the constants in (3.1)–
(3.5), and remain bounded as ε→0. By substituting (3.80) into (3.79), we have

d

dt

(
p̄‖Δp‖2+ p̄2‖Δv‖2−

∫
R2

p(Δp)2dx+
1

p̄
‖pΔp‖2

)

+2 p̄‖∇Δp‖2−2

∫
R2

p|∇Δp|2dx+ 2

p̄
‖p∇Δp‖2+2εp̄2‖Δ(∇·v)‖2

≤ p̄

2
‖∇Δp‖2+ 1

2p̄
‖p∇Δp‖2+εp̄2‖Δ(∇·v)‖2+K1

(‖∇p‖2+‖Δp‖2)
+K2

(‖∇p‖2+‖Δp‖2+εp̄‖∇·v‖2)(p̄‖Δp‖2+ p̄2‖Δv‖2) ,
which yields

d

dt
E5(t)+D5(t)

≤ K1

(‖∇p‖2+‖Δp‖2)+K2

(‖∇p‖2+‖Δp‖2+εp̄‖∇·v‖2)(p̄‖Δp‖2+ p̄2‖Δv‖2) ,
(3.81)

where

E5(t)=
p̄

2
‖Δp‖2+ p̄2‖Δv‖2+ 1

2 p̄
‖p̄Δp−pΔp‖2+ 1

2 p̄
‖pΔp‖2,

D5(t)=
p̄

2
‖∇Δp‖2+ 1

p̄
‖∇Δp−p∇Δp‖2+ 1

2 p̄
‖p∇Δp‖2+εp̄2‖Δ(∇·v)‖2.

Note that p̄‖Δp‖2+ p̄2‖Δv‖2≤2E5(t). Hence, we update (3.81) as

d

dt
E5(t)+D5(t)≤K1

(‖∇p‖2+‖Δp‖2)+K2

(‖∇p‖2+‖Δp‖2+εp̄‖∇·v‖2)E5(t).

(3.82)
Applying the Grönwall inequality to (3.82), we find

E5(t)≤exp

{
K2

∫ t

0

(‖∇p‖2+‖Δp‖2+εp̄‖∇·v‖2)dτ}

×
(
E5(0)+K1

∫ t

0

(‖∇p‖2+‖Δp‖2)dτ) .

In view of the uniform-in-time integrability of ‖∇p‖2, ‖Δp‖2 and εp̄‖∇·v‖2 (cf. (3.46),
(3.75)), we see that E5(t)≤K3, for some constant K3 which is independent of t and
remains bounded as ε→0. This implies that

‖Δp(t)‖2+‖Δv(t)‖2≤2

(
1

p̄
+

1

p̄2

)
K3. (3.83)

By substituting the upper bound of E5(t) into (3.82), then integrating the result with
respect to t, we have, in particular,

∫ t

0

(‖∇Δp(τ)‖2+εp̄‖Δ(∇·v(τ))‖2)dτ ≤K4
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for some constant which is independent of t and remains bounded as ε→0.
Next, we shall work on the third order spatial derivatives of the solution, in order

to gain the desired energy estimates stated in Theorem 1.2. The proof is in exactly
the same spirit as the H1- and H2-estimates. However, the detailed arguments involve
the estimation of more than 50 nonlinear terms, whose presentation is not reader
friendly. For the sake of brevity, we omit the technical details. Moreover, by applying
similar arguments as in Sections 2.5–2.8 for the 3D case, we can improve the temporal
integrability of ‖∇·v‖2H2 , and establish the global well-posedness, long-time behavior
and zero chemical diffusion limit results for the 2D case. The detailed proofs are
omitted to simplify the presentation. This completes the proof for Theorem 1.2.
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Appendix A. Derivation of (3.80). In this appendix, we first provide the detailed
derivation of (3.80). The proof involves the estimates of more than 30 nonlinear terms,
which is achieved by using (3.1)–(3.5), Cauchy-Schwarz and Young’s inequalities. In the
subsequent energy estimates, a generic constant, denoted by η, which is to be specified
at the end of the proof, will appear frequently. To simplify the presentation, we use
d to denote a generic constant which has sole dependence on η and the constants in
(3.1)–(3.5).

For R1(t), we have

|R1(t)|=2 p̄

∣∣∣∣
∫
R2

(∇(∇p ·v)) ·(∇Δp) dx

∣∣∣∣=2 p̄

∣∣∣∣
∫
R2

[
H(p) ·v+(∇v)T ·∇p

] ·(∇Δp) dx

∣∣∣∣
≡
∣∣∣R̃11+R̃12

∣∣∣ .
For R̃11, we have

∣∣∣R̃11

∣∣∣=2 p̄

∣∣∣∣
∫
R2

[H(p) ·v] ·(∇Δp) dx

∣∣∣∣
≤2 p̄‖H(p)‖L4‖v‖L4‖∇Δp‖≤dp̄‖Δp‖ 1

2 ‖∇Δp‖ 3
2 ‖v‖ 1

2 ‖∇·v‖ 1
2

≤η‖∇Δp‖2+dp̄4‖Δp‖2‖v‖2‖∇·v‖2≤η‖∇Δp‖2+dp̄4M1δ‖Δp‖2,
for some positive generic constant η which will be specified later.

For R̃12, we have

∣∣∣R̃12

∣∣∣=2 p̄

∣∣∣∣
∫
R2

[
(∇v)T ·∇p

] ·(∇Δp) dx

∣∣∣∣
≤2 p̄‖∇v‖L4‖∇p‖L4‖∇Δp‖≤dp̄‖∇·v‖ 1

2 ‖Δv‖ 1
2 ‖∇p‖ 1

2 ‖Δp‖ 1
2 ‖∇Δp‖
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≤η‖∇Δp‖2+dp̄2‖∇·v‖‖Δv‖‖∇p‖‖Δp‖≤η‖∇Δp‖2+dp̄2 δ
(‖Δv‖2+‖Δp‖2) .

For R2(t), similar to the estimate of R12, we have

|R2(t)|=2 p̄

∣∣∣∣
∫
R2

(∇·v)∇p ·(∇Δp) dx

∣∣∣∣≤η‖∇Δp‖2+dp̄2 δ
(‖Δv‖2+‖Δp‖2) .

For R3(t), we have

|R3(t)|=4εp̄2
∣∣∣∣
∫
R2

(v ·Δv)Δ(∇·v)dx
∣∣∣∣

≤4εp̄2‖v‖L4‖Δv‖L4‖Δ(∇·v)‖≤dεp̄2‖v‖ 1
2 ‖∇·v‖ 1

2 ‖Δv‖ 1
2 ‖Δ(∇·v)‖ 3

2

≤ εp̄2

2
‖Δ(∇·v)‖2+dεp̄2‖v‖2‖∇·v‖2‖Δv‖2

≤ εp̄2

2
‖Δ(∇·v)‖2+dM1 p̄(εp̄‖∇·v‖2)‖Δv‖2.

For R4(t), we have

|R4(t)|=4εp̄2
∣∣∣∣
∫
R2

(|∇v|2)Δ(∇·v)dx
∣∣∣∣≤4εp̄2‖∇v‖2L4‖Δ(∇·v)‖

≤dεp̄2‖∇·v‖‖Δv‖‖Δ(∇·v)‖≤ εp̄2

2
‖Δ(∇·v)‖2+dp̄(εp̄‖∇·v‖2)‖Δv‖2.

For R5(t), we have

|R5(t)|=2

∣∣∣∣
∫
R2

Δp∇p ·∇(∇·(pv))dx
∣∣∣∣

=2

∣∣∣∣
∫
R2

Δp∇p ·[H(p) ·v+(∇v)T ·∇p+(∇·v)∇p+pΔv
]
dx

∣∣∣∣
≡2 |R51+R52+R53+R54| .

For R51, we have

|R51|=2

∣∣∣∣
∫
R2

Δp∇p · [H(p) ·v]dx
∣∣∣∣≤2‖Δp‖L4‖∇p‖L4‖H(p)‖L4‖v‖L4

≤d‖∇Δp‖‖Δp‖ 3
2 ‖∇p‖ 1

2 ‖v‖ 1
2 ‖∇·v‖ 1

2 ≤η‖∇Δp‖2+d‖Δp‖2‖∇p‖‖Δp‖‖v‖‖∇·v‖
≤η‖∇Δp‖2+d(M1δ)

1
2

(‖∇p‖2+‖Δp‖2)‖Δp‖2.

For R52, we have

|R52|=2

∣∣∣∣
∫
R2

Δp∇p ·[(∇v)T ·∇p
]
dx

∣∣∣∣≤2‖∇p‖2L4‖Δp‖L4‖∇v‖L4

≤d‖∇p‖‖Δp‖ 3
2 ‖∇Δp‖ 1

2 ‖∇·v‖ 1
2 ‖Δv‖ 1

2

≤η‖∇Δp‖2+d‖∇p‖ 4
3 ‖Δp‖2‖∇·v‖ 2

3 ‖Δv‖ 2
3

≤η‖∇Δp‖2+dδ
1
3 ‖∇p‖ 4

3 ‖Δp‖ 4
3 ‖Δp‖ 2

3 ‖Δv‖ 2
3

≤η‖∇Δp‖2+dδ
1
3

(‖∇p‖2‖Δp‖2+‖Δp‖2‖Δv‖2) .
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For R53, we have

|R53|=2

∣∣∣∣
∫
R2

Δp∇p · [(∇·v)∇p]dx

∣∣∣∣≤2‖∇p‖2L4‖Δp‖L4‖∇·v‖L4

≤η‖∇Δp‖2+dδ
1
3

(‖∇p‖2‖Δp‖2+‖Δp‖2‖Δv‖2) .
For R54, we have

|R54|=2

∣∣∣∣
∫
R2

Δp∇p · [pΔv]dx

∣∣∣∣≤2‖p‖L∞‖∇p‖L4‖Δp‖L4‖Δv‖

≤d‖p‖ 1
2 ‖∇p‖ 1

2 ‖Δp‖ 3
2 ‖∇Δp‖ 1

2 ‖Δv‖≤η‖∇Δp‖2+d‖p‖ 2
3 ‖∇p‖ 2

3 ‖Δp‖2‖Δv‖ 4
3

≤η‖∇Δp‖2+d(M1δ)
1
3 ‖Δp‖ 2

3 ‖Δp‖ 4
3 ‖Δv‖ 4

3

≤η‖∇Δp‖2+d(M1δ)
1
3

(‖Δp‖2+‖Δp‖2‖Δv‖2) .
For R6(t), we have

|R6(t)|=2

∣∣∣∣
∫
R2

p∇Δp ·[H(p) ·v+(∇v)T ·∇p+(∇·v)∇p+pΔv
]
dx

∣∣∣∣
≡2 |R61+R62+R63+R64| .

For R61, we have

|R61|=2

∣∣∣∣
∫
R2

p∇Δp · [H(p) ·v]dx
∣∣∣∣≤2‖p‖L∞‖∇Δp‖‖H(p)‖L4‖v‖L4

≤d‖p‖ 1
2 ‖Δp‖‖∇Δp‖ 3

2 ‖v‖ 1
2 ‖∇·v‖ 1

2 ≤η‖∇Δp‖2+d‖p‖2‖Δp‖4‖v‖2‖∇·v‖2
≤η‖∇Δp‖2+dM2

1 δ‖Δp‖2‖Δp‖2.

For R62, we have

|R62|=2

∣∣∣∣
∫
R2

p∇Δp ·[(∇v)T ·∇p
]
dx

∣∣∣∣≤2‖p‖L∞‖∇Δp‖‖∇p‖L4‖∇v‖L4

≤d‖p‖ 1
2 ‖∇p‖ 1

2 ‖∇Δp‖‖Δp‖‖∇·v‖ 1
2 ‖Δv‖ 1

2 ≤η‖∇Δp‖2+c‖p‖‖∇p‖‖Δp‖2‖∇·v‖‖Δv‖
≤η‖∇Δp‖2+d(M1δ

2)
1
2 ‖Δp‖2‖Δv‖≤η‖∇Δp‖2+d(M1δ

2)
1
2

(‖Δp‖2+‖Δp‖2‖Δv‖2) .
For R63, we have

|R63|=2

∣∣∣∣
∫
R2

p∇Δp · [(∇·v)∇p]dx

∣∣∣∣≤2‖p‖L∞‖∇Δp‖‖∇p‖L4‖∇·v‖L4

≤η‖∇Δp‖2+d(M1δ
2)

1
2

(‖Δp‖2+‖Δp‖2‖Δv‖2) .
For R64, we have

|R64|=2

∣∣∣∣
∫
R2

p∇Δp · [pΔv]dx

∣∣∣∣≤2‖p‖2L∞‖∇Δp‖‖Δv‖≤d‖p‖‖Δp‖‖∇Δp‖‖Δv‖

≤η‖∇Δp‖2+d‖p‖2‖Δp‖2‖Δv‖2≤η‖∇Δp‖2+dM1‖Δp‖2‖Δv‖2.
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For R7(t), we have

|R7(t)|=2 p̄

∣∣∣∣
∫
R2

Δp∇p ·∇(∇·v)dx
∣∣∣∣≤2 p̄‖Δv‖‖∇p‖L4‖Δp‖L4

≤dp̄‖Δv‖‖∇p‖ 1
2 ‖Δp‖‖∇Δp‖ 1

2 ≤η‖∇Δp‖2+dp̄
4
3 ‖Δv‖ 4

3 ‖∇p‖ 2
3 ‖Δp‖ 4

3

≤η‖∇Δp‖2+dp̄
4
3

(‖Δp‖2‖Δv‖2+‖∇p‖2) .
For R8(t), we have

|R8(t)|=2

∣∣∣∣
∫
R2

Δp∇p ·∇Δp dx

∣∣∣∣≤2‖Δp‖L4‖∇p‖L4‖∇Δp‖≤d‖∇Δp‖ 3
2 ‖∇p‖ 1

2 ‖Δp‖

≤η‖∇Δp‖2+d‖∇p‖2‖Δp‖4≤η‖∇Δp‖2+dδ‖Δp‖2‖Δp‖2.

For R9(t), we have

|R9(t)|=
∣∣∣∣
∫
R2

(Δp)2 [p∇·v+∇p ·v]dx
∣∣∣∣≡|R91+R92| .

For R91, we have

|R91|=
∣∣∣∣
∫
R2

(Δp)2 [p∇·v]dx
∣∣∣∣≤‖Δp‖2L4‖p‖L4‖∇·v‖L4

≤d‖Δp‖‖∇Δp‖‖p‖ 1
2 ‖∇p‖ 1

2 ‖∇·v‖ 1
2 ‖Δv‖ 1

2 ≤η‖∇Δp‖2+d‖Δp‖2‖p‖‖∇p‖‖∇·v‖‖Δv‖
≤η‖∇Δp‖2+d(M1δ

2)
1
2 ‖Δp‖2‖Δv‖≤η‖∇Δp‖2+d(M1δ

2)
1
2

(‖Δp‖2+‖Δp‖2‖Δv‖2) .
For R92, we have

|R92|=
∣∣∣∣
∫
R2

(Δp)2 [∇p ·v]dx
∣∣∣∣≤‖Δp‖2L4‖∇p‖L4‖v‖L4

≤d‖Δp‖‖∇Δp‖‖∇p‖ 1
2 ‖Δp‖ 1

2 ‖v‖ 1
2 ‖∇·v‖ 1

2 ≤η‖∇Δp‖2+d‖Δp‖3‖∇p‖‖v‖‖∇·v‖
≤η‖∇Δp‖2+d(M1δ

2)
1
2 ‖Δp‖3≤η‖∇Δp‖2+d(M1δ

2)
1
2

(‖Δp‖2+‖Δp‖2‖Δp‖2) .
For R10(t), we have

|R10(t)|= p̄

∣∣∣∣
∫
R2

(Δp)2∇·v dx

∣∣∣∣≤ p̄‖Δp‖2L4‖∇·v‖≤dp̄‖Δp‖‖∇Δp‖‖∇·v‖

≤η‖∇Δp‖2+dp̄2‖Δp‖2‖∇·v‖2≤η‖∇Δp‖2+dp̄2 δ‖Δp‖2.

For R11(t), we have

|R11(t)|=
∣∣∣∣
∫
R2

(Δp)3dx

∣∣∣∣≤‖Δp‖2L4‖Δp‖≤d‖Δp‖2‖∇Δp‖

≤η‖∇Δp‖2+d‖Δp‖2‖Δp‖2.
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For R12(t), we have

|R12(t)|= 4

p̄

∣∣∣∣
∫
R2

pΔp∇p ·[H(p) ·v+(∇v)T ·∇p+(∇·v)∇p+pΔv
]
dx

∣∣∣∣
≡ 4

p̄
|R121+R122+R123+R124| .

For R121, we have

|R121|= 4

p̄

∣∣∣∣
∫
R2

pΔp∇p · [H(p) ·v]dx
∣∣∣∣

≤ 4

p̄
‖p‖L∞‖Δp‖L4‖∇p‖L4‖H(p)‖L4‖v‖L4 ≤ 4

p̄
‖p‖ 1

2 ‖∇Δp‖‖Δp‖2‖∇p‖ 1
2 ‖v‖ 1

2 ‖∇·v‖ 1
2

≤η‖∇Δp‖2+ d

p̄2
‖p‖‖Δp‖4‖∇p‖‖v‖‖∇·v‖≤η‖∇Δp‖2+ d

p̄2
M1δ‖Δp‖2‖Δp‖2.

For R122, we have

|R122|= 4

p̄

∣∣∣∣
∫
R2

pΔp∇p ·[(∇v)T ·∇p
]
dx

∣∣∣∣≤ 4

p̄
‖p‖L∞‖∇p‖2L∞‖Δp‖‖∇·v‖

≤ d

p̄
‖p‖ 1

2 ‖∇p‖‖Δp‖ 3
2 ‖∇Δp‖‖∇·v‖≤η‖∇Δp‖2+ d

p̄2
‖p‖‖∇p‖2‖Δp‖3‖∇·v‖2

≤η‖∇Δp‖2+ d

p̄2
(M1δ

4)
1
2

(‖Δp‖2‖Δp‖2+‖Δp‖2) .
For R123, we have

|R123|= 4

p̄

∣∣∣∣
∫
R2

pΔp∇p · [(∇·v)∇p]dx

∣∣∣∣≤ 4

p̄
‖p‖L∞‖∇p‖2L∞‖Δp‖‖∇·v‖

≤η‖∇Δp‖2+ d

p̄2
(M1δ

4)
1
2

(‖Δp‖2‖Δp‖2+‖Δp‖2) .
For R124, we have

|R124|= 4

p̄

∣∣∣∣
∫
R2

pΔp∇p · [pΔv]dx

∣∣∣∣≤ 4

p̄
‖p‖2L∞‖∇p‖L∞‖Δp‖‖Δv‖

≤ d

p̄
‖p‖‖∇p‖ 1

2 ‖Δp‖2‖∇Δp‖ 1
2 ‖Δv‖≤η‖∇Δp‖2+ d

p̄
4
3

‖p‖ 4
3 ‖∇p‖ 2

3 ‖Δp‖ 8
3 ‖Δv‖ 4

3

≤η‖∇Δp‖2+ d

p̄
4
3

(M2
1 δ)

1
3 ‖Δp‖ 4

3 ‖Δp‖ 4
3 ‖Δv‖ 4

3

≤η‖∇Δp‖2+ d

p̄
4
3

(M2
1 δ)

1
3

(‖Δp‖2‖Δp‖2+‖Δp‖2‖Δv‖2) .
For R13(t), we have

|R13(t)|= 2

p̄

∣∣∣∣
∫
R2

p2∇Δp ·[H(p) ·v+(∇v)T ·∇p+(∇·v)∇p+pΔv
]
dx

∣∣∣∣
≡ 2

p̄
|R131+R132+R133+R134| .
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For R131, we have

|R131|= 2

p̄

∣∣∣∣
∫
R2

p2∇Δp · [H(p) ·v]dx
∣∣∣∣≤ 2

p̄
‖p‖L∞‖p∇Δp‖‖∇2p‖L4‖v‖L4

≤ d

p̄
‖p‖ 1

2 ‖Δp‖‖p∇Δp‖∇Δp‖ 1
2 ‖v‖ 1

2 ‖∇·v‖ 1
2

≤3η‖p∇Δp‖ 4
3 ‖∇Δp‖ 2

3 +
d

p̄4
‖p‖2‖Δp‖4‖v‖2‖∇·v‖2

≤η‖∇Δp‖2+2η‖p∇Δp‖2+ d

p̄4
M2

1 δ‖Δp‖2‖Δp‖2.

For R132, we have

|R132|= 2

p̄

∣∣∣∣
∫
R2

p2∇Δp ·[(∇v)T ·∇p
]
dx

∣∣∣∣
≤ 2

p̄
‖p‖L∞‖p∇Δp‖‖∇p‖L4‖∇v‖L4 ≤ d

p̄
‖p‖ 1

2 ‖∇p‖ 1
2 ‖p∇Δp‖‖Δp‖‖∇·v‖ 1

2 ‖Δv‖ 1
2

≤η‖p∇Δp‖2+ d

p̄2
‖p‖‖∇p‖‖Δp‖2‖∇·v‖‖Δv‖≤η‖p∇Δp‖2+ d

p̄2
(M1δ

2)
1
2 ‖Δp‖2‖Δv‖

≤η‖p∇Δp‖2+ d

p̄2
(M1δ

2)
1
2

(‖Δp‖2+‖Δp‖2‖Δv‖2) .
For R133, we have

|R133|= 2

p̄

∣∣∣∣
∫
R2

p2∇Δp · [(∇·v)∇p]dx

∣∣∣∣≤ 2

p̄
‖p‖L∞‖p∇Δp‖‖∇p‖L4‖∇·v‖L4

≤η‖p∇Δp‖2+ d

p̄2
(M1δ

2)
1
2

(‖Δp‖2+‖Δp‖2‖Δv‖2) .
For R134, we have

|R134|= 2

p̄

∣∣∣∣
∫
R2

p2∇Δp · [pΔv]dx

∣∣∣∣≤ 2

p̄
‖p‖2L∞‖p∇Δp‖‖Δv‖≤ d

p̄
‖p‖‖Δp‖‖p∇Δp‖‖Δv‖

≤η‖p∇Δp‖2+ d

p̄2
‖p‖2‖Δp‖2‖Δv‖2≤η‖p∇Δp‖2+ d

p̄2
M1‖Δp‖2‖Δv‖2.

For R14(t), we have

|R14(t)|=4

∣∣∣∣
∫
R2

pΔp∇p ·∇(∇·v)dx
∣∣∣∣≤4‖p‖L∞‖∇p‖L∞‖Δp‖‖Δv‖

≤d‖p‖ 1
2 ‖Δp‖ 1

2 ‖∇p‖ 1
2 ‖∇Δp‖ 1

2 ‖Δp‖‖Δv‖
≤η‖∇Δp‖2+d‖p‖ 2

3 ‖Δp‖ 2
3 ‖∇p‖ 2

3 ‖Δp‖ 4
3 ‖Δv‖ 4

3

≤η‖∇Δp‖2+d(M1δ)
1
3 ‖Δp‖ 2

3 ‖Δp‖ 4
3 ‖Δv‖ 4

3

≤η‖∇Δp‖2+d(M1δ)
1
3

(‖Δp‖2+‖Δp‖2‖Δv‖2) .
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For R15(t), we have

|R15(t)|=2

∣∣∣∣
∫
R2

p2∇Δp ·∇(∇·v)dx
∣∣∣∣≤2‖p‖2L∞‖∇Δp‖‖Δv‖≤d‖p‖‖Δp‖‖∇Δp‖‖Δv‖

≤η‖∇Δp‖2+d‖p‖2‖Δp‖2‖Δv‖2≤η‖∇Δp‖2+dM1‖Δp‖2‖Δv‖2.

For R16(t), we have

|R16(t)|= 4

p̄

∣∣∣∣
∫
R2

pΔp∇p ·∇Δp dx

∣∣∣∣≤ 4

p̄
‖p∇Δp‖‖∇p‖L4‖Δp‖L4

≤ d

p̄
‖p∇Δp‖‖∇p‖ 1

2 ‖Δp‖ 1
2 ‖Δp‖ 1

2 ‖∇Δp‖ 1
2

≤3η‖p∇Δp‖ 4
3 ‖∇Δp‖ 3

2 +
d

p̄4
‖∇p‖2‖Δp‖2‖Δp‖2

≤η‖∇Δp‖2+2η‖p∇Δp‖2+ d

p̄4
δ‖Δp‖2‖Δp‖2.

For R17(t), we have

|R17(t)|= 2

p̄

∣∣∣∣
∫
R2

p(Δp)2 [p∇·v+∇p ·v]dx
∣∣∣∣≡ 2

p̄
|R171+R172| .

For R171, we have

|R171|= 2

p̄

∣∣∣∣
∫
R2

p(Δp)2 [p∇·v]dx
∣∣∣∣≤ 2

p̄
‖p‖2L∞‖Δp‖2L4‖∇·v‖

≤ d

p̄
‖p‖‖Δp‖2‖∇Δp‖‖∇·v‖≤η‖∇Δp‖2+ d

p̄2
M1δ‖Δp‖2‖Δp‖2.

For R172, we have

|R172|= 2

p̄

∣∣∣∣
∫
R2

p(Δp)2 [∇p ·v]dx
∣∣∣∣≤ 2

p̄
‖p‖L∞‖Δp‖2L4‖∇p‖L4‖v‖L4

≤ d

p̄
‖p‖ 1

2 ‖Δp‖2‖∇Δp‖‖∇p‖ 1
2 ‖v‖ 1

2 ‖∇·v‖ 1
2 ≤η‖∇Δp‖2+ d

p̄2
M1δ‖Δp‖2‖Δp‖2.

For R18(t), we have

|R18(t)|=2

∣∣∣∣
∫
R2

p(Δp)2∇·v dx

∣∣∣∣≤2‖p‖L∞‖Δp‖2L4‖∇·v‖

≤d‖p‖ 1
2 ‖Δp‖ 3

2 ‖∇Δp‖‖∇·v‖≤η‖∇Δp‖2+d(M1δ
2)

1
2 ‖Δp‖3

≤η‖∇Δp‖2+d(M1δ
2)

1
2

(‖Δp‖2+‖Δp‖2‖Δp‖2) .
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For R19(t), we have

|R19(t)|= 2

p̄

∣∣∣∣
∫
R2

p(Δp)3dx

∣∣∣∣= 2

p̄

∣∣∣∣−
∫
R2

(Δp)2|∇p|2dx−2

∫
R2

pΔp∇p ·∇Δp dx

∣∣∣∣
≤ 2

p̄
‖Δp‖2L4‖∇p‖2L4 +η‖∇Δp‖2+2η‖p∇Δp‖2+ d

p̄4
δ‖Δp‖2‖Δp‖2

≤ d

p̄
‖∇p‖‖Δp‖2‖∇Δp‖+η‖∇Δp‖2+2η‖p∇Δp‖2+ d

p̄4
δ‖Δp‖2‖Δp‖2

≤2η‖∇Δp‖2+2η‖p∇Δp‖2+d

(
1

p̄2
+

1

p̄4

)
δ‖Δp‖2‖Δp‖2.

By assembling the above estimates, we find that the RHS of (3.79) is controlled by

30η‖∇Δp‖2+7η‖p∇Δp‖2+εp̄2‖Δ(∇·v)‖2+K1

(‖∇p‖2+‖Δp‖2)
+K2

(‖∇p‖2+‖Δp‖2+εp̄‖∇·v‖2)(p̄‖Δp‖2+ p̄2‖Δv‖2) ,
where the constants K1 and K2 depend only on η,M1,δ,p̄ and the constants in (3.1)–
(3.5), and therefore are independent of t and remain bounded as ε→0. By choosing
η=min{p̄/60,1/(14p̄)}, we arrive at (3.80).

Appendix B. Explicit examples. Next, we provide explicit examples of initial
data which fulfill the requirements of Theorems 1.1–1.2. In the three-dimensional
case, let us consider the following functions

p0(x)=

⎧⎨
⎩n− 5

4

[
sin

( r

n
− π

2

)
+1

]
+B, 2nπ≤ r≤4nπ,

B, r∈ (−∞,2nπ)∪(4nπ,∞);

v0(x)=

⎧⎨
⎩n− 5

4

[
sin

( r

n
− π

2

)
+1

]
· x
r
, 2nπ≤ r≤4nπ,

0, r∈ (−∞,2nπ)∪(4nπ,∞),

where B>0 is any fixed constant, n∈N and r= |x|. Then there hold that ∇×v0=0,
and

‖p0−B‖2∼=n
1
2 , ‖v0‖2∼=n

1
2 , ‖∇p0‖2∼=n− 3

2 , ‖∇·v0‖2∼=n− 3
2 . (B.1)

At the beginning of Section 2, we assumed that

sup
0≤t≤T

(‖p(t)−B‖2+‖v(t)‖2)≤N1, sup
0≤t≤T

(‖∇p(t)‖2+‖∇·v(t)‖2)≤κ.

As the proof proceeded, we required that N1κ be smaller than some absolute constant
and obtained the following

N1=(1+1/B)
(‖p1−B‖2+B‖v0‖2

)
+1, κ=2(1+1/B)

[‖∇p0‖2+B‖∇·v0‖2
]
.

From (B.1) we see that N1
∼=n

1
2 , κ∼=n− 3

2 , from which we see that when n∈N is suffi-
ciently large, there holds that N1κ∼=n−1. Hence, the smallness of N1κ can be realized
by choosing n∈N to be sufficiently large.
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In the two-dimensional case, let us consider the following functions

p0(x)=

⎧⎪⎨
⎪⎩

n

f(n)

[
sin

(
r

f(n)
− π

2

)
+1

]
+A, 2f(n)π≤ r≤4f(n)π,

A, r∈ (−∞,2f(n)π)∪(4f(n)π,∞);

v0(x)=

⎧⎪⎨
⎪⎩

n

f(n)

[
sin

(
r

f(n)
− π

2

)
+1

]
· x
r
, 2f(n)π≤ r≤4f(n)π,

0, r∈ (−∞,2f(n)π)∪(4f(n)π,∞),

(B.2)

where A>0 is any fixed constant, n∈N, r= |x| and f(n)>0 is to be determined. Then
there holds that ∇×v0=0. As the proof in Section 3 proceeded, we obtained the
following qualitative relations:

• M1=4(1+1/A) E3(0)+1,

• ‖∇p(t)‖2+‖∇·v(t)‖2≤ 2(1+1/A)

A2
E4(0) exp

{ c

A
(2M1+1)E3(0)

}
,

where

• E3(0)=
1

2
‖p0−A‖2+ A

2
‖v‖2−ε

∫
R2

(p0−A)|v0|2dx− 2ε+1

6

∫
R2

(p0−A)3dx+

k1

∫
R2

(p0−A)4dx+
2ε2

A

∫
R2

(p0−A)2|v0|2dx+k2

∫
R2

(v01)
4+(v02)

4dx

∼= ‖p0−A‖2+‖v0‖2+‖p0−A‖4L4 +ε2‖(p0−A)v0‖2+‖v0‖4L4 ,

• E4(0)=
A

2
‖∇p0‖2+A3‖∇·v0‖2+ 1

2
‖A∇p0−(p0−A)∇p0‖2+ 1

2
‖(p0−A)∇p0‖2

∼= ‖∇p0‖2+‖∇·v0‖2+‖(p0−A)∇p0‖2.
For the functions in (B.2), direct calculations show that

E3(0)∼=n2+
n4

[f(n)]2
, E4(0)∼= n2

[f(n)]2
+

n4

[f(n)]4
, (B.3)

which imply

M1
∼=n2+

n4

[f(n)]2
. (B.4)

Let

δ=
2(1+1/A)

A2
E4(0) exp

{ c

A
(2M1+1)E3(0)

}
.

According to (B.3), we see that

δ∼= 1

[f(n)]2

(
n2+

n4

[f(n)]2

)
exp

{(
n2+

n4

[f(n)]2

)2

+

(
n2+

n4

[f(n)]2

)}
. (B.5)
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In the proof in Section 3, we required that δ, M1δ and M1δ
2 are smaller than some

absolute constants. From (B.4) and (B.5) we see that

M1δ∼= 1

[f(n)]2

(
n2+

n4

[f(n)]2

)2

exp

{(
n2+

n4

[f(n)]2

)2

+

(
n2+

n4

[f(n)]2

)}
.

Hence, the smallness of δ, M1δ and M1δ
2 can be realized by choosing f(n)∼= en

5

and
n∈N to be sufficiently large. In addition, by direct calculations, we can show that
‖p0−A‖2L2

∼=n2 and ‖v0‖2L2
∼=n2. Therefore, the L2-norm of the zeroth frequency of

the initial perturbation can be potentially large.
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