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Abstract

Most of the previous studies on the well-known Gray-Scott model view it as an irreversible chemical 
reaction system. In this paper, we derive a four-species reaction-diffusion system using the energetic vari-
ational approach based on the law of mass action. This is a reversible Gray-Scott type model, which has 
a natural entropy structure. We establish the local well-posedness of this system, and justify the limit to 
the corresponding irreversible Gray-Scott type system as some backward coefficients tend to zero. Fur-
thermore, under some smallness assumption on the initial data, we obtain the global-in-time existence of 
classical solution of the reversible system.
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1. Introduction

The research of reaction-diffusion systems has been an active field, especially since Tur-
ing developed morphogenesis and instability theory for reaction–diffusion systems in [42,54]. 
The dynamic instability of the reaction and transport processes can lead to pattern formation 
and periodic oscillations. The pattern dynamics has been extensively studied from the view-
points of mathematics and experiments [25,44,45,48]. These geometrical structures consist of 
stripes and/or dots, often known as dissipative structures. Moreover, Prigogine et al. proposed 
the concept of the dissipative structures in the framework of the non-equilibrium thermodynam-
ics [29,43].

In the present paper, we study the following reversible reaction-diffusion system involving 
four chemical species: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = du�u − k+
1 uv2 + k−

1 v3 − k+
0 u + k−

0 q,

vt = dv�v + k+
1 uv2 − k−

1 v3 − k+
2 v + k−

2 p,

pt = dp�p + k+
2 v − k−

2 p,

qt = dq�q + k+
0 u − k−

0 q .

(Re-GS)

The unknowns (u , v , p , q) are molecular concentrations of reactants (or products) U, V, P and 
Q, depending on the time t ≥ 0 and the spatial position x ∈ � ⊂R3. The positive constants dα’s 
with α = u, v, p, q are diffusion coefficients of the corresponding species. Mathematically, the 
system (Re-GS) is a nonlinear parabolic system, which describes the evolution of the molecular 
concentrations with the following chemical reaction schemes:

U + 2V
k+

1−⇀↽−
k−

1

3V, V
k+

2−⇀↽−
k−

2

P, U
k+

0−⇀↽−
k−

0

Q, (1.1)

where k±
i with i = 0, 1, 2 are the forward and backward rate coefficients of the i-th reaction. It 

is assumed that the chemical rates obey the so-called law of mass action (LMA) in the chemical 
kinetics theory, which indicates that, the rate of a reaction process is proportional to the concen-
trations of the reactants. Therefore, denoting by ri (i = 0, 1, 2) the total rates for the above three 
reactions, it follows,

r1 = k+
1 uv2 − k−

1 v3, r2 = k+
2 v − k−

2 p, r0 = k+
0 u − k−

0 q . (1.2)

The system (Re-GS) can be viewed as a generalization of the classical, irreversible Gray-
Scott model [17,18], which arises originally from the study of cubic auto-catalytic reactions in 
a continuously flowing, well-stirred gel reactor. Gray-Scott model is governed by the following 
irreversible system: {

ut = du�u − k+
1 uv2 + α(1 − u),

vt = dv�v + k+
1 uv2 − k+

2 v.
(1.3)

This system is centered on a cubic auto-catalysis reaction, with the catalyst species V decays 
slowly to an inert product P . The Gray-Scott system (1.3) corresponds to the chemical reaction 
schemes:
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U + 2V
k+

1−−→ 3V, V
k+

2−−→ P, U
α−−→ Q. (1.4)

The coefficient α is also the rate of the process that feeds U . Comparing to the chemical reactions 
(1.1), the reactions in classical Gray-Scott model (1.4) are irreversible.

The four species reversible Gray-Scott type reaction-diffusion system (Re-GS) bears some 
apparent similarities to the original, irreversible Gray-Scott system. We expect fruitful analytical 
properties of the solutions to (Re-GS). The first step of the analytical study is to establish the well-
posedness of the system (Re-GS) in different domains (bounded domain with proper boundary 
conditions, periodic domain, or whole space) and in different framework of solutions (weak or 
classical solutions). Furthermore, it is interesting to justify the relation between the reversible 
Gray-Scott system (Re-GS) and the irreversible Gray-Scott system (1.3).

A motivation of studying the reversible Gray-Scott system (Re-GS) instead of the original 
Gray-Scott system (1.3) is that the reversible system possesses an energy (entropy) structure. 
Indeed, the four-species reversible Gray-Scott-like system (Re-GS) can be derived from the fol-
lowing entropy-entropy production law:

d

dt

∫
�

[
u(ln u

ū
− 1) + v(ln v

v̄
− 1) + p(ln p

p̄
− 1) + q(ln q

q̄
− 1)

]
dx

+
∫
�

(
du

u
|∇u|2 + dv

v
|∇v|2 + dp

p
|∇p|2 + dq

q
|∇q|2

)
dx (1.5)

+
∫
�

[
(k+

0 u − k−
0 q) ln

k+
0 u

k−
0 q

+ (k+
1 uv2 − k−

1 v3) ln
k+

1 u

k−
1 v

+ (k+
2 v − k−

2 p) ln
k+

2 v

k−
2 p

]
dx

= 0,

where (u, v, p, q) is the positive constant solution (equilibrium) of the system (Re-GS) satisfy-
ing the detailed balance condition, see (1.15) below. The relation (1.5) will be also referred as 
the basic energy-dissipation law in following contexts. The derivation process will be given in 
section 2, by using the energetic variational approach (EnVarA). We emphasize here that besides 
the reversible Gray-Scott system (Re-GS) is derived from the point view of energetic variation, 
so should be its boundary condition in the bounded domain (see [37]). Analytically, the entropy-
entropy production law (1.5) leads to a natural a priori estimate of the system (Re-GS). However, 
the estimate (1.5) is not enough to obtain the compactness of the weak solutions, which is unlike 
the incompressible Navier-Stokes equations. For simplicity, in this paper, we consider the classi-
cal solutions of (Re-GS) in torus or whole space. We leave the harder global weak solutions and 
the boundary condition issues to the future study.

Furthermore, we also will establish a reversible-irreversible limit from the four species re-
versible Gray-Scott-like system to an irreversible Gray-Scott-like system as some of backward 
rate coefficients k−

1 and k−
2 go to zero simultaneously. Again, we work in the classical solutions 

in the torus or whole space.

1.1. Gray-Scott model: review of mathematical studies

The Gray-Scott model is of great importance since it describes several experimentally ob-
servable autocatalytic reactions such as chloride-iodide-malonic acid reaction, arsenite-iodate 
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reaction, and some enzyme reactions in biochemistry and biology. In particular, its complex pat-
tern formation behavior associated to various range of parameters attracts many attentions of 
researchers from different disciplines. The self-replicating pulses and spots were firstly stud-
ied numerically by Pearson in [48], see also [33,51]. Doelman-Kaper-Zegeling [8] constructed 
rigorously single and multiple pulse solutions, and later the stability was studied in [7]. Hale-
Peletier-Troy [20,21] studied the existence and stability issues in the equal diffusivities case of 
du = dv . Concerning the weak interaction regime in which both of du, dv � 1 are in the same 
order, a skeleton structure of self-replicating dynamic and spatio-temporal chaos are analyzed in 
Nishiura-Ueyama [44,45]. On the other hand, there are many researches on other types of pat-
terns such as spike, stripe, ring and so on. For instance, existence, stability and pulse-splitting 
behavior are studied in Wei [57,58] and his collaborated works [30,59], based on the so-called 
semi-strong interaction regime where small diffusivity ratio dv � du = O(1) is assumed. Be-
sides, some general models are introduced and studied in [22,32] in dimensions one and two, 
concerning a general auto-catalytic scheme U + mV → (m + 1)V , V → P with reaction rates 
uvm and vn (assuming m > n > 1). Later the traveling wave solutions are studied for the general 
order model in the case of that without feeding, see [3,4,63]. More researches on other related 
models and topics can be found, for instance, in [16,19,26,27,49,50,52,60] and references therein.

Chemical reactions in reality are reversible processes [12]. However, there are only a few 
researches in this direction, to the best of our knowledge. As a modification of the original ir-
reversible Gray-Scott model, a reversible Gray-Scott model involving three reactants (U, V, P)

was introduced in [38], based on the reversible reaction scheme (1.1) in which the product P is 
not an inert substance any more. The existence and robustness of global attractor are studied later 
in [61,62], and the global attractor of a lattice reversible model is studied in [23].

The present paper focuses on the reversible chemical reactions, which are assumed to obey the 
law of mass action. Usually speaking, a chemical reaction should not be viewed as a Newtonian 
mechanics [13]. Wang-Liu-Liu-Eisenberg [55] showed recently a possible variational treatment 
on the reaction-diffusion process obeying LMA and the detailed balance condition. Their formu-
lation provides a basis of coupling chemical reactions with other mechanical effects. The core of 
their treatment is based on a generalized notion of energetic variation approach (EnVarA). The 
EnVarA is developed from seminal work of Rayleigh [53] and Onsager [46,47], and has proven to 
be a powerful tool to deal with the couplings and competitions between different mechanisms in 
different scales. This approach has been successfully applied to model many systems, especially 
those in complex fluids, such as liquid crystals, polymeric fluids, phase field and ion channels, see 
the survey [14] for more details. The EnVarA can also be used to study problems with boundary, 
especially for dynamical boundary conditions problems for the Cahn-Hilliard equation [28,37]
where chemical reactions occurring at the boundary are taken into account. Recently, a micro-
macro model for living polymeric fluids involving the reversible chemical reaction of breakage 
and reforming process is derived by EnVarA in Liu-Wang-Zhang [36,56], where the global exis-
tence near equilibrium is established.

The main reason that we consider the reversible reactions is due to the entropy-entropy pro-
duction structure exhibited in this case. Based on this entropy structure (1.5) combined with the 
corresponding kinematic relations, we can derive by a general EnVarA the reversible Gray-Scott-
like system (Re-GS). The detailed derivation can be found in §2 below.

Notice that more phenomena will arise when we consider different timescales for different 
reaction schemes in the (Re-GS) system. The limit issues of some diffusion-reaction system with 
small parameter are proved by Evans [9] and Gajewski-Sparing [11]. Chen-Gao [2] considered 
the well-posedness of a free boundary problem arising from the limit of a FitzHugh-Nagumo 
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system (a slow-diffusion fast-reaction system). Bisi-Conforto-Desvillettes [1] justified rigorously 
the quasi-steady-state approximation used in chemistry. Mielke-Peletier-Stephan [41] considered 
the nonlinear systems satisfying LMA with slow and fast reactions.

In this paper, we will study some certain scaling limit on parameters, speaking specifically, 
the reversible-irreversible limit as the backward rate coefficients k−

1 and k−
2 go to zero simulta-

neously. By employing in the (Re-GS) system the parameters k−
1 = k−

2 = ε, we get the following 
approximate system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

uε
t = du�uε − k+

1 uε(vε)2 + ε(vε)3 − k+
0 uε + k−

0 qε,

vε
t = dv�vε + k+

1 uε(vε)2 − ε(vε)3 − k+
2 vε + εpε,

pε
t = dp�pε + k+

2 vε − εpε,

qε
t = dq�qε + k+

0 uε − k−
0 qε.

(Re-GS)ε

As the small parameter ε goes to zero, we get the limit system, at least formally, that⎧⎪⎪⎪⎨⎪⎪⎪⎩
u∞

t = du�u∞ − k+
1 u∞(v∞)2 − k+

0 u∞ + k−
0 q∞,

v∞
t = dv�v∞ + k+

1 u∞(v∞)2 − k+
2 v∞,

p∞
t = dp�p∞ + k+

2 v∞,

q∞
t = dq�q∞ + k+

0 u∞ − k−
0 q∞,

(Ir-GS)

which will be referred as the irreversible Gray-Scott system in the following context.
It is worth mentioning to obtain the original Gray-Scott model (1.3), we need to take another 

limit from the irreversible Gray-Scott system (Ir-GS), which is more challenging. Formally, one 
can view the reaction

U
k+

0−⇀↽−
k−

0

Q

as a birth-death reaction, which describes the exchange of the system with the environment. We 
assume the concentration relation in (Ir-GS): q∞ 
 u∞, and define a new unknown s∞ = λq∞
with respect to a sufficiently small parameter λ. For the sake of exposition, we omit temporarily 
the molecular diffusion of p∞ and q∞, i.e., dp = dq = 0. Therefore, by assuming k−

0 = λ, the 
third and fourth equations of (Ir-GS) can be reduced to:{

p∞
t = k+

2 v∞,

s∞
t = λ(k+

0 u∞ − s∞).
(1.6)

Notice that s∞ can be easily represented as:

s∞(t) = s∞
0 e−λt + λ

t∫
0

k+
0 u∞(τ )e−λ(t−τ) dτ, (1.7)

where s∞
0 denotes the initial data of s∞. This means that when the small parameter λ goes to 

zero, it holds, formally, s∞ → s∞. By inserting this relation into the first equation of (Ir-GS), 
0
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and noticing the unknown p∞ is decoupled from the other equations, the irreversible system 
(Ir-GS) is finally reduced to the following formulation, at O(1/λ) time scale:⎧⎪⎨⎪⎩u∞

t = du�u∞ − k+
1 u∞(v∞)2 + k+

0

(
s∞
0
k+

0
− u∞

)
,

v∞
t = dv�v∞ + k+

1 u∞(v∞)2 − k+
2 v∞,

(1.8)

with a decoupled equation for product p∞. So the quantity 
s∞
0
k+

0
possesses a consistency with 

the feeding term from the external fields in the classical Gray-Scott system (1.3), by fixing its 

value 
s∞
0
k+

0
= 1. This slow-fast dynamics presentation may provide the asymptotic relation between 

our irreversible system (Ir-GS) and the classical one (1.3). In the process, the birth-death scheme 
plays a crucial role. The interested readers can find similar ideas in [10]. The rigorous justification 
of this limit is under preparation. We emphasize that the limiting procedures ε → 0 and λ → 0
are not commutative, and the scale of λ and ε may also be different.

Our goals in this paper are to establish the well-posedness of the reversible Gray-Scott-like 
system (Re-GS), and to study above reversible-irreversible limit between the approximate re-
versible system (Re-GS)ε and the corresponding irreversible limit system (Ir-GS).

1.2. Main results

Before presenting our main results, we first gather all notations and conventions used through-
out this paper. We use C to denote some positive constant that may take different values at 
different lines. For any p ∈ [1, ∞), we introduce the Banach spaces Lp equipped with the norms 

|f |Lp = (
∫
�

|f |p dx)
1
p , where � = R3 orT 3. Especially for p = 2, we use the notation 〈·, ·〉

to represent the inner product on the Hilbert space L2. The symbol ∇x stands for the gradient 
operator and �x denotes the Laplacian operator. For any multi-index k = (k1, k2, k3) ∈ N3, we 
denote the higher order derivative operators ∂k

x = ∂ |k|
∂x

k1
1 ∂x

k2
2 ∂x

k3
3

, where |k| = k1 +k2 +k3. We then 

define the Sobolev spaces Hs endowed with the norms

| · |Hs = (

s∑
|k|=0

|∂k
x · |2

L2)
1
2 .

In this paper, we mainly investigate the well-posedness of the reversible system (Re-GS) with 
initial data (1.11), including the local existence with large initial data and the local convergence 
of the asymptotic system (Re-GS)ε. Moreover, under the smallness assumption on initial data, 
the reversible system (Re-GS) will admit a global-in-time solution near the equilibrium.

Our main results are expressed respectively in Theorem 1.1 and Theorem 1.2 below.

Theorem 1.1 (Local well-posedness and convergence towards the irreversible system). Assume 
the initial data (u0, v0, p0, q0) ∈ H 1(T 3), then there exists some positive constant T > 0, de-
pending only on the initial data, such that the Cauchy problem of the reversible Gray-Scott-like 
system (Re-GS) admits a unique solution (u, v, p, q) ∈ L∞(0, T ; H 1(T 3)) ∩L2(0, T ; H 2(T 3)), 
which satisfies the following energy bound:
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sup
t∈[0,T ]

|(u, v,p, q)|2
H 1 +

T∫
0

|∇(u, v,p, q)|2
H 1 dt ≤ C, (1.9)

where the bound C only depends on the initial data, the maximum time T , and the coefficients in 
the system.

Furthermore, let (uε, vε, pε, qε) ∈ L∞(0, T ; H 1(T 3)) ∩ L2(0, T ; H 2(T 3)) be the classi-
cal solution of the asymptotic reversible system (Re-GS)ε with initial data (u0, v0, p0, q0)

∈ H 1(T 3). Then we have, as ε → 0,

(uε, vε,pε, qε) −→ (u∞, v∞,p∞, q∞) in C(0, T ;L2(T 3)) ∩ L2(0, T ;H 1(T 3)), (1.10)

where (u∞, v∞, p∞, q∞) is the solution of the irreversible system (Ir-GS) with the same initial 
data (u0, v0, p0, q0).

It should be pointed out that the local well-posedness part can also be adapted to the whole 
space case � =R3, as indicated by our proof.

We now state the global existence result of the reversible system (Re-GS) near the equilibrium 
state. For that, we firstly introduce the notion of equilibrium. We impose initial data on system 
(Re-GS),

u(0, x) = u0(x), v(0, x) = v0(x), p(0, x) = p0(x), q(0, x) = q0(x) , (1.11)

and when the domain � is finite, i.e. |�| < ∞,∫
�

(u0 + v0 + p0 + q0)dx = Z0 > 0 . (1.12)

Noticing that the system (Re-GS) satisfies the constraint of conservation of atoms, i.e., d
dt

∫
(u +

v + p + q) dx = 0, we get formally that 
∫
(u + v + p + q)(t) dx = Z0 for any t > 0.

Now we determine the constant solution (u, v, p, q) to the reversible system (Re-GS). Putting 
(u, v, p, q) into (Re-GS), we have:

k+
0 u = k−

0 q , k+
1 uv2 = k−

1 v3 , k+
2 v = k−

2 p , (1.13)

with the global conservation of mass:

u + v + p + q = Z0

|�| . (1.14)

Without loss of generality, we assume |�| = 1. From (1.13) and (1.14), we obtain two types of 
constant solutions to the reversible system (Re-GS): one is (u, v, p, q),⎧⎨⎩u = k−

0 k−
1 k−

2
K

Z0, v = k−
0 k+

1 k−
2

K
Z0,

p = k−
0 k+

1 k+
2 Z , q = k+

0 k−
1 k−

2 Z ,

(1.15)
K 0 K 0
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and K = k−
0 k−

1 k−
2 + k−

0 k+
1 k−

2 + k−
0 k+

1 k+
2 + k+

0 k−
1 k−

2 . The other constant solution is (u, 0, 0, q)

with

u = k−
0

k+
0 +k−

0
Z0, q = k+

0
k+

0 +k−
0

Z0. (1.16)

We point out that, when the domain � = R3, the constant state (u, v, p, q) only satisfies the 
system (Re-GS), but with infinite energy since the integral is infinite. In this case, we still use the 
equilibrium (1.15) and (1.16) which can be seen as the limiting case of the finite domain.

Now we introduce the global existence of system (Re-GS) near the equilibrium (u, v, p, q). 
Based on the local result in Theorem 1.1, under the further assumption on the smallness of 
initial data, the equilibrium solution (u, v, p, q) can be extended globally in time. The solution 
(u, v, p, q) can be rewritten as the following perturbation forms:

u = u + ũ, v = v + ṽ, p = p + p̃, q = q + q̃, (1.17)

where the perturbation |φ| � 1(φ = ũ, ̃v, ̃p, ̃q). Correspondingly, the perturbative system is of 
the following formulation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ũt = du�ũ − k+
1 ũṽ2 + k−

1 ṽ3 − 2k+
1 vũṽ + 2k−

1 vṽ2 − k+
1 v2ũ + k−

1 v2ṽ − k+
0 ũ + k−

0 q̃,

ṽt = dv�ṽ + k+
1 ũṽ2 − k−

1 ṽ3 + 2k+
1 vũṽ − 2k−

1 vṽ2 + k+
1 v2ũ − k−

1 v2ṽ − k+
2 ṽ + k−

2 p̃,

p̃t = dp�p̃ + k+
2 ṽ − k−

2 p̃,

q̃t = dq�q̃ + k+
0 ũ − k−

0 q̃,

(1.18)
where the relations k+

1 u = k−
1 v, k+

0 u = k−
0 q , k+

2 v = k−
2 p have been used. The corresponding 

initial data are

ũ0 = u0 − u, ṽ0 = v0 − v, p̃0 = p0 − p, q̃0 = q0 − q. (1.19)

We mention that, the (global) well-posedness of the system (Re-GS) near steady (equilibrium) 
state is converted equivalently to the problem of the (global) existence of the perturbative system 
(1.18) near zero solution.

Theorem 1.2 (Global well-posedness). Let the domain � be the whole space R3. Then there 
exists a small constant ν > 0, such that, if

Ein
g = |(̃u0, ṽ0, p̃0, q̃0)|2H 1 ≤ ν , (1.20)

the solution to the Cauchy problem of (Re-GS) constructed above can be extended globally, with 
a global-in-time energy bound, i.e.,

sup
t≥0

(k+
0 k+

1 k+
2 |̃u|2

H 1 + k+
0 k−

1 k+
2 |̃v|2

H 1 + k+
0 k−

1 k−
2 |p̃|2

H 1 + k−
0 k+

1 k+
2 |̃q|2

H 1)

+
∞∫
(duk

+
0 k+

1 k+
2 |∇xũ|2

H 1 + dvk
+
0 k−

1 k+
2 |∇x ṽ|2

H 1 + dpk+
0 k−

1 k−
2 |∇xp̃|2

H 1 + dqk−
0 k+

1 k+
2 |∇x q̃|2

H 1
0
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+k+
0 k+

2 v2|k+
1 ũ − k−

1 ṽ|2
H 1 + k+

1 k+
2 |k+

0 ũ − k−
0 q̃|2

H 1 + k+
0 k−

1 v2|k+
2 ṽ − k−

2 p̃|2
H 1)dt

≤ Cgν, (1.21)

here Cg is a constant depending only on the coefficients.

Notice that we can establish a similar global-in-time existence result near equilibrium in more 
regular space (say, Hs for any s ≥ 2), by almost the same argument. As a result, we refer this 
type of solution as classical solution due to the Sobolev embedding theorems in L∞ or in more 
regular Hölder spaces.

Due to the smallness of classical solutions near the (positive) equilibrium, the obtained solu-
tions will always be strictly positive, so that the calculations on concentrations (u, v, p, q) like 
taking logarithms make sense. Precisely speaking, our classical solutions satisfy the entropy-
entropy production identity (1.5). This ensures the consistency of the reversible Gray-Scott model 
(Re-GS) with the thermodynamics theory.

For the well-posedness of irreversible Gray-Scott system (Ir-GS), we can also use the energy 
estimate to state its well-posedness in the space L∞(0, T ; H 1(�)) ∩L2(0, T ; H 2(�)). There are 
many well-posedness results about the irreversible Gray-Scott model ([31,57,58]).

1.3. Main ideas and difficulties

We now sketch the main ideas of proving the above theorems. When we construct the lo-
cal convergence result to the system (Re-GS)ε , our main goal is to derive the uniform energy 
estimates of the system (Re-GS)ε according to the energy estimate in the previous existence 
theorem. Based on the local-in-time energy estimate uniformly in ε ∈ (0, 1), we take the limit 
from the system (Re-GS)ε to the irreversible system (Ir-GS) as ε → 0. We mainly employ the 
Aubin-Lions-Simon’s Theorem to obtain enough compactness such that the limits valid.

The second main result of this paper is to prove the global well-posedness result to the system 
(Re-GS) with small initial data around the equilibrium (u, v, p, q). The key point lies in the 
norms 

∣∣k+
1 ũ − k−

1 ṽ
∣∣2
L2 , 

∣∣k+
0 ũ − k−

0 q̃
∣∣2
L2 and 

∣∣k+
2 ṽ − k−

2 p̃
∣∣2
L2 constructed in the dissipative term. 

Due to the linear terms in the perturbation system near (u, v, p, q) can not absorbed by the 
dissipative term in the left-hand side, more precisely, the first ̃u-equation in perturbation system 
(1.18) is

ũt = du�ũ − k+
1 ũṽ2 + k−

1 ṽ3 − 2k+
1 vũṽ + 2k−

1 vṽ2 − k+
1 v2ũ + k−

1 v2ṽ − k+
0 ũ + k−

0 q̃,

in which contains the linear terms k+
0 ũ and k−

0 q̃ . The treatment of these two linear terms is crucial 
in proving the L2 estimate of proving the global well-posedness result. It is a key observation 
that we can combine all the linear terms in the perturbation system of (Re-GS). We multiply by 
some coefficients to construct the two square expressions 

∣∣k+
0 ũ − k−

0 q̃
∣∣2
L2 and 

∣∣k+
2 ṽ − k−

2 p̃
∣∣2
L2 , 

which can be designed as dissipation term. Generally speaking, in order to prove the global well-
posedness with small initial data, one often should obtain the following type energy inequality

d
dt

Eg(t) + Dg(t) ≤ P(Eg(t))Dg(t).

Thus the term P(Eg(t))Dg(t) can be absorbed by the diffusion term Dg(t) due to the small 
assumption on the initial data. Moreover, besides the linear terms k+ũ, k+ṽ, k−q̃ , k−p̃, there 
0 2 0 2
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are two linear terms k+
1 v2ũ, k−

1 v2ṽ, coming from the perturbations u = u + ũ and v = v + ṽ. 
The main obstacle to prove the global existence results comes from the linear terms in the L2

estimate, our novelty is to seek an extra elimination relationship to overcome this difficulty. To 
be more precise, we design the dissipative term 

∣∣k+
1 ũ − k−

1 ṽ
∣∣2
L2 constructed by the linear terms 

k+
1 v2ũ, k−

1 v2ṽ. According to the chemical relation k+
1 u = k−

1 v, the other term of the system 
(Re-GS) around the equilibrium state (u, v, p, q) can be constructed as P(Eg(t))Dg(t) in the L2

estimate, i.e., 〈
−2k+

1 vũṽ + 2k−
1 vṽ2, ũ

〉
L2

≤ 2v |̃v|L3 |̃u|L6

∣∣k+
1 ũ − k−

1 ṽ
∣∣
L2 ,〈

2k+
1 vũṽ − 2k−

1 vṽ2, ṽ
〉
L2

≤ 2v |̃v|L3 |̃v|L6

∣∣k+
1 ũ − k−

1 ṽ
∣∣
L2 .

Combine the Sobolev inequality and the small initial assumption, the right-hand term can be 
absorbed by the diffusion term. The above difficulties will vanish when we prove the global 
existence with small size of initial data. Then we derive the following energy inequality

d
dt

Eg(t) + Dg(t) ≤ (1 + E
1
2
g (t))E

1
2
g (t)Dg(t).

Based on the continuity arguments, one thereby verify the global well-posedness.

1.4. Organizations of current paper

The rest of this paper is as follows: a formal derivation of this four-species reaction-diffusion 
system of reversible Gray-Scott type model (Re-GS) will be given, by using the EnVarA, in the 
following section §2, containing the derivations for the mechanical and chemical reaction part.

In the next section §3, we prove the local well-posedness and the local convergence of the 
reversible Gray-Scott system (Re-GS). We first derive the a priori estimates in Lemma 3.1. Then, 
based on the a priori estimates, we prove the large local solution by continuity arguments. Fur-
thermore, we obtain the uniform bound energy estimate and derive the local convergence from 
(Re-GS)ε to (Ir-GS) by using the Aubin-Lions-Simon’s Theorem.

In Section §4, based on the local existence in the Theorem 1.1 and the assumption on the 
smallness of initial data, the local existence can be extended globally in time.

2. Derivation of the reversible Gray-Scott-like model

Our aim in this section is to derive the model (Re-GS) by using the energetic variational 
approach. Two main ingredients are included in this approach: the least action principle and 
the maximum dissipation principle, which derive the conservative force and the dissipative force 
respectively, and force balance relation will lead to the final PDE system. We split the deviation 
procedure into two steps: spatial diffusion part and chemical reaction part.

Note firstly that system (Re-GS) satisfies the following kinematics:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu + divx(uuu) = −r1 − r0,

∂t v + divx(vuv) = r1 − r2,

∂tp + divx(pup) = r2,

∂ q + div (qu ) = r ,

(2.1)
t x q 0
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where ri ’s (i = 0, 1, 2) are respectively the total reaction rates of the chemical reaction associat-
ing to the reversible chemical reaction process of cubic autocatalysis (1.1). They are defined, as 
mentioned before, through the law of mass action:

r0 = k+
0 u − k−

0 q, r1 = k+
1 uv2 − k−

1 v3, r2 = k+
2 v − k−

2 p. (2.2)

We also point out that uα is the induced velocity by the diffusion process of each species α =
u, v, p, q .

The energy-dissipation law obeyed by the reversible chemical reaction scheme (1.1) can be 
formulated as

d

dt
F(u, v, p, q) = −Dd −Dr , (2.3)

where the free energy F takes an entropy formulation:

F(u, v, p, q) =
∫
�

[
u(ln u

ū
− 1) + v(ln v

v̄
− 1) + p(ln p

p̄
− 1) + q(ln q

q̄
− 1)

]
dx, (2.4)

and the dissipation consists of two types of contributions: one comes from spatial diffusion and 
the other from chemical reaction, represented by Dd and Dr respectively,

Dd =
∫
�

(
du

u
|∇u|2 + dv

v
|∇v|2 + dp

p
|∇p|2 + dq

q
|∇q|2

)
dx,

Dr =
∫
�

(k+
0 u − k−

0 q) ln
k+

0 u

k−
0 q

dx +
∫
�

(k+
1 uv2 − k−

1 v3) ln
k+

1 u

k−
1 v

dx +
∫
�

(k+
2 v − k−

2 p) ln
k+

2 v

k−
2 p

dx.

2.1. EnVarA for the diffusion part

Associated to the velocity uα , we can define flow map x(X, t) : � → �, in which X de-
notes the Lagrangian coordinates and x denotes Eulerian coordinates, by the following ordinary 
differential equation (ODE): {

d
dt

x(X, t) = uα(x(X, t), t),

x(X, 0) = X.
(2.5)

We also define the deformation gradient by

F(X, t) = ∂x

∂X
. (2.6)

For the sake of exposition, we denote c= (cu, cv, cp, cq) = (u, v, p, q), then

F(c) =F(u, v, p, q) =
∫

t

∑
α

cα(ln
cα

c̄α

− 1)dx, (2.7)
�
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so we can infer from the least action principle (LAP) that

δx

T∫
0

F(c)dt = δx

T∫
0

∫
�0

∑
α

c0
α

detF

(
ln

c0
α

detF
− ln c̄α − 1

)
detF dX dt (2.8)

=
T∫

0

∫
�0

c0
α

(
−detF

c0
α

· c0
α

(detF)2 · detF tr(
∂X

∂x

∂δx

∂X
)

)
dX dt

= −
T∫

0

∫
�0

c0
α tr(

∂δx

∂x
)dX dt

= −
T∫

0

∫
�t

cα∇x · (δx)dx dt

=
T∫

0

∫
�t

∇xcα · δx dx dt,

where we have used the matrix equality d
dx

detA(x) = detA · tr(A−1 d
dx

A) in the second line. We 
thus get

δx

T∫
0

F(c)dt = 〈∇xcα, δx〉L2
t,x

. (2.9)

We next turn to consider the dissipation Dd due to the diffusion contribution, which often 
takes the form of

Dd = 1
2

∫
�

∑
α

cα

dα
|uα|2 dx. (2.10)

The maximum dissipation principle (MDP) gives that

δuαDd =
〈
cα

dα
uα, δuα

〉
L2

x

. (2.11)

We can get by the force balance L2
t,x−

δ
∫
E dt

δx
+ L2

x− δD
δẋ

= 0 that,

∇xcα + cα

dα
uα = 0, (2.12)

namely,

uα = −dα∇x ln cα. (2.13)
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Inserting this into the kinematic relation (2.1) yields finally the exact expression of diffusion.

2.2. EnVarA for the reaction part

As explained in the last section (see also [55]), a notion of general EnVarA is needed to deal 
with the chemical reactions. For that, noticing the conservation constraints of elements satisfied 
by the chemical reaction process (1.1), that

d

dt
(u + v + p + q)(t) = 0, (2.14)

we can employ the so-called reaction trajectories for the above reaction process, Ri(t)’s with 
i = 0, 1, 2, satisfying

d

dt
Ri(t) = Ṙi(t) = ri . (2.15)

Therefore, the concentrations of each species cα (with α = u, v, p, q) can be expressed as⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(t) = u0 − R1(t) − R0(t),

v(t) = v0 + R1(t) − R2(t),

p(t) = p0 + R2(t),

q(t) = q0 + R0(t).

(2.16)

The above relations may be regarded as the kinematics for the chemical reaction (1.1).
The new state variable of reaction trajectory enables us to rewrite the free energy F by virtue 

of R= (R0, R1, R2)(t), i.e.,

F(R) =F(c(R)). (2.17)

Meanwhile, we also write the reaction dissipation part as Dr = Dr (R, Ṙ). So the energy-
dissipation law for a pure chemical reaction process can be rewritten as

d

dt
F(R) = −Dr (R, Ṙ). (2.18)

Since chemical reactions are often far away from equilibrium states, the reaction dissipation 
may not be quadratic with respect to Ṙ. This fact is different from the quadratic dissipation 
functional in a mechanical system, which is also the reason that we need the notion of generalized 
EnVarA.

We assume that the nonnegative reaction dissipation Dr takes the form of

Dr (R, Ṙ) = 〈
Gr (R, Ṙ), Ṙ

〉
, (2.19)

this, combining with the fact d
dt
F(R) =

〈
δF
δR , Ṙ

〉
, yields that,

Gr (R, Ṙ) = −δF
. (2.20)
δR
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We refer this as a general gradient flow. The exact expression of ri’s will be revisited by choosing

Dr0(R0, Ṙ0) = Ṙ0 ln

(
Ṙ0
k−

0 q
+ 1

)
, (2.21)

Dr1(R1, Ṙ1) = Ṙ1 ln

(
Ṙ1

k−
1 v3 + 1

)
, (2.22)

Dr2(R2, Ṙ2) = Ṙ2 ln

(
Ṙ2

k−
2 p

+ 1

)
. (2.23)

Indeed, for i = 0, direct calculations imply that

δF
δR0

=
∑
α

ln
cα

c̄α

· ∂cα

∂R0
= − ln

u

ū
+ ln

q

q̄
= − ln

k+
0 u

k−
0 q

, (2.24)

where we have used the equilibrium equality k+
0 ū = k−

0 q̄ . As a result, the above general gradient 
flow (2.20) leads to the following relation:

r0 = Ṙ0 = k+
0 u − k−

0 q, (2.25)

which is exactly the same formulation as Eq. (2.2) given by the law of mass action. The other two 
rates r1 and r2 can be derived by a similar process. Inserting these expressions into the kinematic 
relation (2.1) yields the expression of reaction part.

Finally, combining diffusion contribution and reaction contribution enables us to get the par-
tial differential equations (PDEs) governing the reversible chemical reaction process of cubic 
autocatalysis, namely, system (Re-GS). Note that this is a four-species reaction-diffusion system 
of reversible Gray-Scott type.

3. Local well-posedness and convergence towards the irreversible system

In this section, we will employ the energy method to prove the local in time existence of the 
system (Re-GS) with large initial data. Moreover, according to the energy bound in the existence 
result, we obtain the uniform energy bound of (uε, vε, pε, qε) and (uε

t , v
ε
t , p

ε
t , q

ε
t ). Combining 

with the Aubin-Lions-Simon’s Theorem, we derive the reversible-irreversible limit in local time. 
Note that the domain considered in this section contains both cases of T 3 and R3.

3.1. A priori estimate to the reversible Gray-Scott system

In this subsection, the a priori estimate of the system (Re-GS) will be accurately derived from 
employing the energy method. We now introduce the following energy functional EL(t) and 
energy dissipative rate functional DL(t):

EL(t) = |u|2
H 1 + |v|2

H 1 + |p|2
H 1 + |q|2

H 1 ,

DL(t) = du

2 |∇u|2
H 1 + dv

2 |∇v|2
H 1 + dp |∇p|2

H 1 + dq |∇q|2
H 1 + k−

1

∣∣∣v2
∣∣∣2

H 1
+ k+

1 |uv|2
L2

+k+ |∂u · v|2 2 + k+ |u|2 1 + k+ |v|2 1 + k− |p|2 1 + k− |q|2 1 . (3.1)
1 L 0 H 2 H 2 H 0 H
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Now we state the priori estimate as follows:

Lemma 3.1. Assume that (u(t, x), v(t, x), p(t, x), q(t, x)) is a sufficiently smooth solution to 
system (Re-GS) on the interval [0, T ]. Then there is a positive constant CL = CL(du, dv, dp , 
dq, k+

0 , k−
0 , k+

1 , k−
1 , k+

2 , k−
2 ) > 0, such that

d
dt

EL(t) + DL(t) ≤ CL(EL(t) + E3
L(t))

holds for all t ∈ [0, T ].

Proof of Lemma 3.1. We first derive the L2-estimate, which will contain the major structures 
of the energy functionals. Then we estimate the higher order energy bound, which shall be con-
sistent with the structures of L2-estimate.

Step 1. L2 estimates.
We take L2-inner product with u(t, x) on the first equation of system (Re-GS), and integrate 

by parts over x ∈ �. We thereby have

1
2

d
dt

|u|2
L2 + du |∇u|2

L2 + k+
1 |uv|2

L2 + k+
0 |u|2

L2 ≤ k−
1 |v|3

L4 |u|L4 + k−
0 |u|L2 |q|L2 . (3.2)

Based on the integration by parts, the Hölder inequality, from taking L2-inner product with 
v(t, x) on the second equation of system (Re-GS), integrating by parts over x ∈ �, we derive

1
2

d
dt

|v|2
L2 + dv|∇v|2

L2 + k−
1

∣∣∣v2
∣∣∣2

L2
+ k+

2 |v|2
L2 ≤ k+

1 |u|L4 |v|3
L4 + k−

2 |v|L2 |p|L2 . (3.3)

We then multiply the third equation of system (Re-GS) by p(t, x), and integrate by parts over 
x ∈ �. We thereby obtain

1
2

d
dt

|p|2
L2 + dp |∇p|2

L2 + k−
2 |p|2

L2 ≤ k+
2 |v|L2 |p|L2 . (3.4)

By taking L2-inner product with q(t, x) on the fourth equation of system (Re-GS), and integrat-
ing by parts over x ∈ �, we have

1
2

d
dt

|q|2
L2 + dq |∇q|2

L2 + k−
0 |q|2

L2 ≤ k+
0 |u|L2 |q|L2 . (3.5)

Adding the inequalities (3.2), (3.3), (3.4) and (3.5), and combining the Sobolev embedding 
H 1(�) ↪→ L4(�), we see that

1
2

d
dt

(|u|2
L2 + |v|2

L2 + |p|2
L2 + |q|2

L2) + du |∇u|2
L2 + dv |∇v|2

L2 + dp |∇p|2
L2 + dq |∇q|2

L2

+k+
1 |uv|2

L2 + k−
1

∣∣∣v2
∣∣∣2

L2
+ k+

0 |u|2
L2 + k+

2 |v|2
L2 + k−

2 |p|2
L2 + k−

0 |q|2
L2

≤ k−
1 |v|3

H 1 |u|H 1 + k+
1 |u|H 1 |v|3

H 1 + k−
0 |q|L2 |u|L2 + k−

2 |v|L2 |p|L2 + k+
2 |v|L2 |p|L2

+k+
0 |q|L2 |u|L2 . (3.6)
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Step 2. H 1 estimates.
First, we act derivative on the first equation of system (Re-GS), take L2-inner product by dot 

with ∂xu and integrate by parts over x ∈ �. We thereby have

1
2

d
dt

|∂u|2
L2 + du|∂∇u|2

L2 + k+
1 |∂u · v|2

L2 + k+
0 |∂u|2

L2

≤ 2k+
1 |u|L6 |v|L6 |∂u|L6 |∂v|L2 + 3k−

1 |v|2
L6 |∂u|L6 |∂v|L2 + k−

0 |∂q|L2 |∂u|L2

≤ du

2 |∇u|2
H 1 + 4(k+

1 )2

du
|u|2

H 1 |v|4
H 1 + 9(k−

1 )2

du
|v|6

H 1 + k−
0 |∂q|L2 |∂u|L2 . (3.7)

For the second equation of system (Re-GS), act derivative and take L2-inner product by dot 
with ∂xv and integrate by parts over x ∈ �. We obtain

1
2

d
dt

|∂v|2
L2 + dv|∂∇v|2

L2 + 3k−
1 |v · ∂v|2

L2 + k+
2 |∂v|2

L2

≤ k+
1 |v|2

L6 |∂u|L2 |∂v|L6 + 2k+
1 |u|L6 |v|L6 |∂v|L6 |∂v|L2 + k−

2 |∂p|L2 |∂v|L2

≤ dv

2 |∇v|2
H 1 + (k+

1 )2

dv
|u|2

H 1 |v|4
H 1 + 4(k+

1 )2

dv
|u|2

H 1 |v|4
H 1 + k−

2 |∂p|L2 |∂v|L2 . (3.8)

We next act derivative on the third equation of system (Re-GS), take L2-inner product by dot 
with ∂xp and integrate by parts over x ∈ �. Then we have,

1
2

d
dt

|∂p|2
L2 + dp |∂∇p|2

L2 + k−
2 |∂p|2

L2 ≤ k+
2 |∂v|L2 |∂p|L2 . (3.9)

Next, from acting derivative on the fourth equation of system (Re-GS), taking L2-inner prod-
uct by dot with ∂xq and integrating by parts over x ∈ �, we deduce that

1
2

d
dt

|∂q|2
L2 + dq |∂∇q|2

L2 + k−
0 |∂q|2

L2 ≤ k+
0 |∂u|L2 |∂q|L2 . (3.10)

Due to the Sobolev embedding H 1(�) ↪→ L4(�) and H 1(�) ↪→ L6(�), combine with the 
L2 estimate, it is therefore derived from adding the inequalities (3.7), (3.8), (3.9) and (3.10),

1
2

d
dt

(|u|2
H 1 + |v|2

H 1 + |p|2
H 1 + |q|2

H 1) + du

2 |∇u|2
H 1 + dv

2 |∇v|2
H 1 + dp |∇p|2

H 1 + dq |∇q|2
H 1

+k−
1

∣∣∣v2
∣∣∣2

H 1
+ k+

1 |uv|2
L2 + k+

1 |∂u · v|2
L2 + k+

0 |u|2
H 1 + k+

2 |v|2
H 1 + k−

2 |p|2
H 1 + k−

0 |q|2
H 1

≤ k−
1 |v|3

H 1 |u|H 1 + k+
1 |u|H 1 |v|3

H 1 + 4(k+
1 )2

du
|u|2

H 1 |v|4
H 1 + 9(k−

1 )2

du
|v|6

H 1 + (k+
1 )2

dv
|u|2

H 1 |v|4
H 1

+ 4(k+
1 )2

dv
|u|2

H 1 |v|4
H 1 + k−

0 |q|H 1 |u|H 1 + k−
2 |v|H 1 |p|H 1 + k+

2 |v|H 1 |p|H 1 + k+
0 |q|H 1 |u|H 1

≤ CL(EL(t) + E3
L(t)), (3.11)

where CL = k−
0 + k+

0 + k−
1 + k+

1 + k−
2 + k+

2 + 4(k+
1 )2

du
+ 9(k−

1 )2

du
+ (k+

1 )2

dv
+ 4(k+

1 )2

dv
. Recalling the 

definitions of the energy functionals EL(t) and DL(t) in (3.1), we finish the proof of Lemma 3.1
from the inequality (3.11). �
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3.2. Local well-posedness with large initial data

The aim of this subsection is to prove the local well-posedness of the system (Re-GS) with 
large initial data, namely, prove the existence result of the Theorem 1.1. We first construct the 
linear approximate system by iteration. Then the key step is to prove the existence of the uniform 
positive time lower bound to the iterative approximate system and thereby the uniform energy 
bound will hold. Finally, by compactness arguments, we justify the local existence results.

The iteration scheme: We construct the approximate system of (Re-GS) by iteration as follows, 
for all integers n ≥ 0, that⎧⎪⎪⎪⎨⎪⎪⎪⎩

un+1
t = du�un+1 − k+

1 un+1(vn)2 + k−
1 (vn)3 − k+

0 un+1 + k−
0 qn

vn+1
t = dv�vn+1 + k+

1 unvnvn+1 − k−
1 (vn)2vn+1 − k+

2 vn+1 + k−
2 pn

pn+1
t = dp�pn+1 + k+

2 vn − k−
2 pn+1

qn+1
t = dq�qn+1 + k+

0 un − k−
0 qn+1.

(3.12)

And we start the approximating system from n = 0 with

uin(t, x) = u0(x), vin(t, x) = v0(x),

pin(t, x) = p0(x), qin(t, x) = q0(x). (3.13)

In the arguments proving the convergence (n → ∞) of the approximate solutions (3.12), it 
is essential to obtain uniform (in n ≥ 0) energy estimates of (3.12) in a uniform lower bound 
lifespan time, whose derivations are the almost same as the derivations of the a priori estimates 
for the system (Re-GS). The arguments of the uniform lower bound lifespan time can be referred 
to [24], for instance. The convergence arguments are a standard process. For simplicity, we will 
only consider the a priori estimates in Lemma 3.1 for the smooth solutions of system (Re-GS)
on some time interval.

The maximum time of existence: From Lemma 3.1, we see that

d
dt

EL(t) + DL(t) ≤ CL(1 + E2
L(t))EL(t) , (3.14)

where the energy functionals EL(t) and DL(t) are defined in (3.1). Then (3.14) implies

d

dt

[
ln

EL(t)

(1 + E2
L(t))

1
2

]
≤ CL . (3.15)

Noticing that

EL(0) = Ein
L := |uin|2

H 1 +
∣∣∣vin

∣∣∣2

H 1
+

∣∣∣pin
∣∣∣2

H 1
+ |qin|2

H 1 < ∞ ,

we derive from integrating the inequality (3.15) over [0, t] that

EL(t)[
1 + E2 (t)

] 1
2

≤ Ein
L[

1 + (Ein)2
] 1

2

eCLt = A1(t) . (3.16)
L L
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Consider the function

H(y) = y

(1 + y2)
1
2

for y ≥ 0. It is easy to see that H(0) = 0, lim
y→∞H(y) = 1, and H ′(y) > 0 is strictly decreasing 

in [0, ∞). We therefore see that if A1(t) < 1, the nonlinear inequality (3.16) on the functional 
EL(t) can be solved as

EL(t) ≤ H−1(A1(t)) = H−1

(
Ein

L[
1+(Ein

L )2] 1
2
eCLt

)
= B(t) . (3.17)

Notice that B(t) is strictly increasing on t ≥ 0. A1(t) < 1 implies that

t < 1
CL

ln
[1+(Ein

L )2] 1
2

Ein
L

.

Consequently, from (3.14) and (3.17), we derive that for any 0 < T < 1
CL

ln
[1+(Ein

L )2] 1
2

Ein
L

,

EL(t) +
t∫

0

DL(τ)dτ ≤ Ein
L + CLT B(T )(1 + B2(T )) = A(T ,Ein

L ,CL)

holds for all t ∈ [0, T ]. Consequently, we conclude the local existence of the system (Re-GS)
with large initial data.

3.3. Reversible-irreversible limit

We now in a position of proving the convergence result of Theorem 1.1, according to local 
energy bound of the existence result in Theorem 1.1, we aim at deriving the uniform estimates 
of system (Re-GS)ε . Based on the local energy bound (3.11) in Theorem 1.1, we now introduce 
the following energy functional Eε

L(t) and energy dissipative rate functional Dε
L(t) similarly:

Eε
L(t) = ∣∣uε

∣∣2
H 1 + ∣∣vε

∣∣2
H 1 + ∣∣pε

∣∣2
H 1 + ∣∣qε

∣∣2
H 1 ,

Dε
L(t) = du

2

∣∣∇uε
∣∣2
H 1 + dv

2

∣∣∇vε
∣∣2
H 1 + dp

∣∣∇pε
∣∣2
H 1 + dq

∣∣∇qε
∣∣2
H 1 + k−

1

∣∣∣(vε)2
∣∣∣2

H 1
+ k+

1

∣∣uεvε
∣∣2
L2

+ k+
1

∣∣∂uε · vε
∣∣2
L2 + k+

0

∣∣uε
∣∣2
H 1 + k+

2

∣∣vε
∣∣2
H 1 + k−

2

∣∣pε
∣∣2
H 1 + k−

0

∣∣qε
∣∣2
H 1 ,

and satisfy the following inequality:

1
2

d
dt

Eε
L(t) + Dε

L(t) ≤ Cε
L(Eε

L(t) + (Eε
L(t))3). (3.18)

We aim at deriving the system (Ir-GS) from the system (Re-GS)ε as ε → 0. Based on the defini-
tion of CL, we know that
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Cε
L ≤ CL + 1

as ε → 0, where CL = k−
0 + k+

0 + k+
1 + k+

2 + 4(k+
1 )2

du
+ (k+

1 )2

dv
+ 4(k+

1 )2

dv
. We obtain the uniform 

bound with respect to ε in the following sense, for any 0 < T < 1
CL+1

ln
[1+(Ein

L )2] 1
2

Ein
L

, 0 < ε < 1,

sup
t∈[0,T ]

(
∣∣uε

∣∣2
H 1 + ∣∣vε

∣∣2
H 1 + ∣∣pε

∣∣2
H 1 + ∣∣qε

∣∣2
H 1)

+
T∫

0

(
∣∣∇uε

∣∣2
H 1 + |∇vε|2

H 1 + ∣∣∇pε
∣∣2
H 1 + ∣∣∇qε

∣∣2
H 1)dt ≤ C(T ,Ein

L ,CL), (3.19)

where the constant C is independent of ε. Then we know that (uε, vε, pε, qε) is uniformly 
bounded in L∞(0, T ; H 1) ∩ L2(0, T ; H 2).

In order to use the compactness Aubin-Lions-Simon’s Theorem to prove the convergence 
from system (Re-GS)ε to system (Ir-GS), we have to obtain the uniform estimates for the time 
derivative of (uε, vε, pε, qε) in the following.

Uniform estimates for time derivatives. Firstly, according to the equation of uε in the system 
(Re-GS)ε , we obtain

|uε
t |L2 ≤ du

∣∣∇uε
∣∣
H 1 + k+

1

∣∣uε
∣∣
H 1

∣∣vε
∣∣2
H 1 + ε|(vε)|3

H 1 + k+
0

∣∣uε
∣∣
L2 + k−

0

∣∣qε
∣∣
L2 .

It follows that

T∫
0

|uε
t |2L2 dt ≤ d2

u

T∫
0

∣∣∇uε
∣∣2
H 1 dt + (k+

1 )2T ( sup
t∈[0,T ]

∣∣uε
∣∣
H 1)

2( sup
t∈[0,T ]

∣∣vε
∣∣
H 1)

4 + ε2T ( sup
t∈[0,T ]

∣∣vε
∣∣
H 1)

6

+ (k+
0 )2T ( sup

t∈[0,T ]
∣∣uε

∣∣
H 1)

2 + (k−
0 )2T ( sup

t∈[0,T ]
∣∣qε

∣∣
H 1)

2,

≤ C, (3.20)

where in the last inequality we have used the uniform bound obtained in (3.19). Then we obtain 
uε

t is uniformly bounded in the space L2(0, T ; L2). Specifically speaking,

|uε
t |L2(0,T ;L2) ≤ C(T ) for all 0 < ε < 1

is valid for 0 < T < 1
CL+1

ln
[1+(Ein

L )2] 1
2

Ein
L

.

One notices that,

H 2(T 3) ↪→ H 1(T 3) ↪→ L2(T 3), (3.21)

where the embedding of H 2 in H 1 is compact and the embedding of H 1 in L2 is naturally contin-
uous. Then from Aubin-Lions-Simon’s Theorem, the bounds (3.19), (3.20) and the embeddings 
(3.21), we deduce that there exists a u∞ ∈ L2(0, T ; H 1) such that
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uε → u∞

strongly in L2(0, T ; H 1) as ε → 0.
Moreover, note that

H 1(T 3) ↪→ L2(T 3) ↪→ L2(T 3) (3.22)

with the compact embedding of H 1 in L2. Then from the Aubin-Lions-Simon’s Theorem, the 
bound (3.19), (3.20) and the embeddings (3.22), we deduce that the sequence uε strongly con-
vergent to u∞ in C(0, T ; L2).

We obtain that the sequence uε
t is uniformly bounded in the space L2(0, T ; L2) and the strong 

convergence of the sequence uε in C(0, T ; L2) ∩ L2(0, T ; H 1). Similarly, we can obtain the 
same results of the sequence vε, pε, qε , and we omitted it here.

Next we have to prove that the limit (u∞, v∞, p∞, q∞) is the solution of system (Ir-GS).

Convergence. In the space L∞(0, T ; L2), due to the Sobolev embedding H 1 ↪→ L6, we have 
the uniform bounds for the (vε)3 and pε of the system (Re-GS)ε{

|(vε)3|L∞(0,T ;L2) ≤ |vε|3
L∞(0,T ;L6)

≤ |vε|3
L∞(0,T ;H 1)

≤ C,

|pε|L∞(0,T ;L2) ≤ |pε|L∞(0,T ;H 1) ≤ C,
(3.23)

where we use the uniform energy bound (3.19).
Then, in the space L2(0, T ; H 1), we obtain

|(vε)3|2
L2(0,T ;H 1)

=
T∫

0

|(vε)3|2
H 1 dt

≤
T∫

0

∣∣∣(vε)3
∣∣∣2

L2
dt + 3

T∫
0

∣∣∣(vε)2 · ∇vε
∣∣∣2

L2
dt

≤ T ( sup
t∈[0,T ]

∣∣vε
∣∣
H 1)

6 + 3( sup
t∈[0,T ]

∣∣vε
∣∣
H 1)

4

T∫
0

|∇vε|2
H 1 dt

≤ C (3.24)

and

|pε|2
L2(0,T ;H 1)

≤
T∫

0

∣∣pε
∣∣2
H 1 dt ≤ T ( sup

t∈[0,T ]
∣∣pε

∣∣
H 1)

2 ≤ C. (3.25)

Because of the fact that the solution (uε, vε, pε, qε) of system (Re-GS) is uniformly bounded 
in the space L∞(0, T ; H 1) ∩ L2(0, T ; H 2), we know that (vε)3 and pε are bounded in 
L2(0, T ; H 1). Then it follows that, taking formally ε → 0,
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ε(vε)3 → 0 in L∞(0, T ;L2) ∩ L2(0, T ;H 1),

εpε → 0 in L∞(0, T ;L2) ∩ L2(0, T ;H 1).

Moreover, according to the strong convergence result and Fatou’s Lemma, we derive that∣∣∣uε(vε)2 − u∞(v∞)2
∣∣∣
L2(0,T ;L2)

=
∣∣∣(uε − u∞)(vε)2 + u∞vε(vε − v∞) + u∞v∞(vε − v∞)

∣∣∣
L2(0,T ;L2)

≤ sup
∣∣vε

∣∣4
H 1

T∫
0

∣∣uε − u∞∣∣2
H 1 dt + sup

∣∣u∞∣∣2
H 1 sup

∣∣vε
∣∣2
H 1

T∫
0

∣∣vε − v∞∣∣2
H 1 dt

+ sup
∣∣u∞∣∣2

H 1 sup
∣∣v∞∣∣2

H 1

T∫
0

∣∣vε − v∞∣∣2
H 1 dt

→ 0, as ε → 0. (3.26)

Hence, taking formally ε → 0 in system (Re-GS)ε , one can obtain the irreversible Gray-Scott 
system (Ir-GS). We conclude (u∞, v∞, p∞, q∞) ∈ C(0, T ; L2) ∩ L2(0, T ; H 1) is indeed a so-
lution of system (Ir-GS). This completes the convergence result of Theorem 1.1.

4. Global well-posedness of the system (Re-GS) near equilibrium

In this section, we obtain the global in time existence under small size of initial data near the 
equilibrium state (u, v, p, q) of system (Re-GS). We now introduce the following global energy 
functional Eg(t) and global energy dissipative rate functional Dg(t):

Eg(t) = k+
0 k+

1 k+
2 |̃u|2

H 1 + k+
0 k−

1 k+
2 |̃v|2

H 1 + k+
0 k−

1 k−
2 |p̃|2

H 1 + k−
0 k+

1 k+
2 |̃q|2

H 1 ,

Dg(t) = duk
+
0 k+

1 k+
2 |∇ũ|2

H 1 + dvk
+
0 k−

1 k+
2 |∇ṽ|2

H 1 + dpk+
0 k−

1 k−
2 |∇p̃|2

H 1 + dqk−
0 k+

1 k+
2 |∇q̃|2

H 1

+k+
0 k+

2 v2|k+
1 ũ − k−

1 ṽ|2
H 1 + k+

1 k+
2 |k+

0 ũ − k−
0 q̃|2

H 1 + k+
0 k−

1 v2|k+
2 ṽ − k−

2 p̃|2
H 1 .

(4.1)

Now we state the main energy inequality in global time as follows.

Lemma 4.1. Assume that (̃u(t, x), ̃v(t, x), ̃p(t, x), ̃q(t, x)) is the solution to system (1.18) on 
the interval [0, T ] constructed in the Theorem 1.1. Then there are energy Eg(u, v, p, q)(t) and 
energy dissipative rate Dg(u, v, p, q)(t) such that

1
2

d
dt

Eg(t) + Dg(t) ≤ Cg(1 + E
1
2
g )E

1
2
g Dg (4.2)

for all t ∈ [0, T ], where Cg = 4k+
0 k+

1 k+
2 + 6k+

0 k+
1 k+

2 v + 4k+
0 k−

1 k+
2 + 6k+

0 k−
1 k+

2 v.

We substitute (u, v, p, q) for (̃u, ̃v, ̃p, ̃q) in what follows, for simplicity.
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Proof. We only need to modify the estimates in Lemma 3.1. More precisely, it is displayed as 
follows.

Step 1. L2 estimates.
We first consider the equality of u in system (1.18), namely,

1
2

d
dt

|u|2
L2 + du|∇u|2

L2 ≤ |v|2
L6 |k+

1 u − k−
1 v|L2 |u|L6 + 2v |u|L6 |v|L3 |k+

1 u − k−
1 v|L2 − k+

1 v2 〈u, u〉
+k−

1 v2 〈v, u〉 − k+
0 〈u, u〉 + k−

0 〈q, u〉 . (4.3)

Then based on the second equation of system (1.18), we obtain

1
2

d
dt

|v|2
L2 + dv |∇v|2

L2 ≤ |v|2
L6 |k+

1 u − k−
1 v|L2 |v|L6 + 2v |v|L6 |v|L3 |k+

1 u − k−
1 v|L2 + k+

1 v2 〈u, v〉
−k−

1 v2 〈v, v〉 − k+
2 〈v, v〉 + k−

2 〈p, v〉 . (4.4)

We next consider the equality of p, i.e.,

1
2

d
dt

|p|2
L2 + dp |∇p|2

L2 ≤ k+
2 〈p, v〉 − k−

2 〈p, p〉 . (4.5)

From the equality of q and the Hölder inequality, we deduce that

1
2

d
dt

|q|2
L2 + dq |∇q|2

L2 ≤ k+
0 〈u, q〉 − k−

0 〈q, q〉 . (4.6)

Because the fact that〈
k+

0 u, k+
0 u

〉
L2 − 2

〈
k+

1 u, k−
0 q

〉
L2 + 〈

k−
0 q, k−

0 q
〉
L2 = 〈

k+
0 u − k−

0 q, k+
0 u − k−

0 q
〉
L2

= ∣∣k+
0 u − k−

0 q
∣∣2
L2 ,〈

k+
1 u, k+

1 u
〉
L2 − 2

〈
k+

1 u, k−
1 v

〉
L2 + 〈

k−
1 v, k−

1 v
〉
L2 = 〈

k+
1 u − k−

1 v, k+
1 u − k−

1 v
〉
L2

= ∣∣k+
1 u − k−

1 v
∣∣2
L2 ,〈

k+
2 v, k+

2 v
〉
L2 − 2

〈
k+

2 v, k−
2 p

〉
L2 + 〈

k−
2 p, k−

2 p
〉
L2 = 〈

k+
2 v − k−

2 p, k+
2 v − k−

2 p
〉
L2

= ∣∣k+
2 v − k−

2 p
∣∣2
L2 .

Derived from adding the k+
0 k+

1 k+
2 times of inequalities (4.3), the k+

0 k−
1 k+

2 times of (4.4), the 
k+

0 k−
1 k−

2 times of (4.5) and the k−
0 k+

1 k+
2 times of (4.6), we thereby see that

1
2

d
dt

(k+
0 k+

1 k+
2 |u|2

L2 + k+
0 k−

1 k+
2 |v|2

L2 + k+
0 k−

1 k−
2 |p|2

L2 + k−
0 k+

1 k+
2 |q|2

L2) + duk
+
0 k+

1 k+
2 |∇u|2

L2

+dvk
+
0 k−

1 k+
2 |∇v|2

L2 + dpk+
0 k−

1 k−
2 |∇p|2

L2 + dqk−
0 k+

1 k+
2 |∇q|2

L2 + k+
0 k+

2 v2|k+
1 u − k−

1 v|2
L2

+k+
1 k+

2 |k+
0 u − k−

0 q|2
L2 + k+

0 k−
1 |k+

2 v − k−
2 p|2

L2

≤ k+
0 k+

1 k+
2 |v|2

H 1 |∇u|L2 |k+
1 u − k−

1 v|L2 + 2k+
0 k+

1 k+
2 v |v|H 1 |∇u|L2 |k+

1 u − k−
1 v|L2

+k+k−k+ |v|2 1 |∇v|L2 |k+u − k−v|L2 + 2k+k−k+v |v|H 1 |∇v|L2 |k+u − k−v|L2 . (4.7)
0 1 2 H 1 1 0 1 2 1 1
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Step 2. H 1 estimates.
Before our estimate, we know that

∂(−k+
1 uv2 + k−

1 v3 − 2k+
1 vuv + 2k−

1 vv2)

= v2(−k+
1 ∂u + k−

1 ∂v) + 2v·∂v(−k+
1 u + k−

1 v) + 2vv(−k+
1 ∂u + k−

1 ∂v) + 2v∂v(−k+
1 u + k−

1 v).

We first combine the inequality (4.3) and take derivative to the first equation of system (1.18), 
we obtain

1
2

d
dt

|∂u|2
L2 + du|∂∇u|2

L2 ≤ |v|2
L6 |k+

1 ∂u − k−
1 ∂v|L2 |∂u|L6 + 2 |v|L6 |∂v|L2 |k+

1 u − k−
1 v|L6 |∂u|L6

+2v |v|L4 |k+
1 ∂u − k−

1 ∂v|L2 |∂u|L4 + 2v|∂v|L2 |k+
1 u − k−

1 v|L4 |∂u|L4

−k+
1 v2 〈∂u, ∂u〉 + k−

1 v2 〈∂v, ∂u〉 − k+
0 〈∂u, ∂u〉 + k−

0 〈∂q, ∂u〉 .

(4.8)

Next we consider the H 1 estimate of v, based on the relation (4.4), we see that

1
2

d
dt

|∂v|2
L2 + dv|∂∇v|2

L2 ≤ |v|2
L6 |k+

1 ∂u − k−
1 ∂v|L2 |∂v|L6 + 2 |v|L6 |∂v|L2 |k+

1 u − k−
1 v|L6 |∂v|L6

+2v |v|L4 |k+
1 ∂u − k−

1 ∂v|L2 |∂v|L4 + 2v|∂v|L2 |k+
1 u − k−

1 v|L4 |∂v|L4

+k+
1 v2 〈∂u, ∂v〉 − k−

1 v2 〈∂v, ∂v〉 − k+
2 〈∂v, ∂v〉 + k−

2 〈∂p, ∂v〉 .

(4.9)

For the equation of p, combine with the inequality (4.5), namely,

1
2

d
dt

|∂p|2
L2 + dp|∂∇p|2

L2 ≤ k+
2 〈∂v, ∂p〉 − k−

2 〈∂p, ∂p〉 . (4.10)

Finally, we consider the inequality (4.6),

1
2

d
dt

|∂q|2
L2 + dq |∂∇q|2

L2 ≤ k+
0 〈∂u, ∂q〉 − k−

0 〈∂q, ∂q〉 . (4.11)

Now we will close the energy estimates, it is consequently derived from summing the k+
0 k+

1 k+
2

times of inequality (4.8), the k+
0 k−

1 k+
2 times of inequality (4.9), the k+

0 k−
1 k−

2 times of inequality 
(4.10) and the k−

0 k+
1 k+

2 times of inequality (4.11), we have

1
2

d
dt

(k+
0 k+

1 k+
2 |∂u|2

L2 + k+
0 k−

1 k+
2 |∂v|2

L2 + k+
0 k−

1 k−
2 |∂p|2

L2 + k−
0 k+

1 k+
2 |∂q|2

L2)

+ duk
+
0 k+

1 k+
2 |∂∇u|2

L2 + dvk
+
0 k−

1 k+
2 |∂∇v|2

L2 + dpk+
0 k−

1 k−
2 |∂∇p|2

L2 + dqk−
0 k+

1 k+
2 |∂∇q|2

L2

+ k+
0 k+

2 v2|k+
1 ∂u − k−

1 ∂v|2
L2 + k+

1 k+
2 |k+

0 ∂u − k−
0 ∂q|2

L2 + k+
0 k−

1 |k+
2 ∂v − k−

2 ∂p|2
L2

≤ 3k+
0 k+

1 k+
2 |v|2

H 1 |∇u|H 1 |k+
1 u − k−

1 v|H 1 + 4k+
0 k+

1 k+
2 v |v|H 1 |∇u|H 1 |k+

1 u − k−
1 v|H 1

+ 3k+
0 k−

1 k+
2 |v|2

H 1 |∇v|H 1 |k+
1 u − k−

1 v|H 1 + 4k+
0 k−

1 k+
2 v |v|H 1 |∇v|H 1 |k+

1 u − k−
1 v|H 1 .
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Step 3. Close the energy inequality.
Combine with the L2 estimate and the H 1 estimate, we obtain

1
2

d
dt

(k+
0 k+

1 k+
2 |u|2

H 1 + k+
0 k−

1 k+
2 |v|2

H 1 + k+
0 k−

1 k−
2 |p|2

H 1 + k−
0 k+

1 k+
2 |q|2

H 1)

+duk
+
0 k+

1 k+
2 |∇u|2

H 1 + dvk
+
0 k−

1 k+
2 |∇v|2

H 1 + dpk+
0 k−

1 k−
2 |∇p|2

H 1 + dqk−
0 k+

1 k+
2 |∇q|2

H 1

+k+
0 k+

2 v2|k+
1 u − k−

1 v|2
H 1 + k+

1 k+
2 |k+

0 u − k−
0 q|2

H 1 + k+
0 k−

1 |k+
2 v − k−

2 p|2
H 1

≤ 4k+
0 k+

1 k+
2 |v|2

H 1 |∇u|H 1 |k+
1 u − k−

1 v|H 1 + 6k+
0 k+

1 k+
2 v |v|H 1 |∇u|H 1 |k+

1 u − k−
1 v|H 1

+4k+
0 k−

1 k+
2 |v|2

H 1 |∇v|H 1 |k+
1 u − k−

1 v|H 1 + 6k+
0 k−

1 k+
2 v |v|H 1 |∇v|H 1 |k+

1 u − k−
1 v|H 1

≤ Cg(1 + E
1
2
g )E

1
2
g Dg, (4.12)

where Cg = 4k+
0 k+

1 k+
2 + 6k+

0 k+
1 k+

2 v + 4k+
0 k−

1 k+
2 + 6k+

0 k−
1 k+

2 v. Consequently, the inequality 
(4.12) concludes Lemma 4.1. �
Proof of Theorem 1.2. Based on Lemma 4.1 and the local-in-time existence to the system 
(Re-GS), we can prove the global-in-time existence to the system (Re-GS) with small size initial 
data near the equilibrium (u, v, p, q).

Based on Lemma 4.1, we now start to prove the global-in-time existence to the system 
(Re-GS) with small size initial data. We directly deduce

1
2

d
dt

Eg(u, v,p, q)(t) + Dg(u, v,p, q)(t) ≤ Cg(1 + E
1
2
g )E

1
2
g Dg (4.13)

where

Cg = 4k+
0 k+

1 k+
2 + 6k+

0 k+
1 k+

2 v + 4k+
0 k−

1 k+
2 + 6k+

0 k−
1 k+

2 v. (4.14)

We observe that

Eg(0) = k+
0 k+

1 k+
2 |u0|2H 1 + k+

0 k−
1 k+

2 |v0|2H 1 + k+
0 k−

1 k−
2 |p0|2H 1 + k−

0 k+
1 k+

2 |q0|2H 1 .

We now take ν = min{1, 1
64C2

g
} ∈ (0, 1] such that if Eg(0) ≤ ν, then

Cg(1 + E
1
2
g (0))E

1
2
g (0) ≤ 1

4 . (4.15)

Now we define

T = sup{τ ≥ 0; sup
t∈[0,τ ]

Cg(1 + E
1
2
g (t))E

1
2
g (t) ≤ 1

2 } ≥ 0. (4.16)

By the continuity of Eg(t) and the small initial bound (4.15), that we have T > 0. We further 
claim that T = +∞. Indeed, if T < +∞, then the energy inequality in Lemma 4.1 implies that 
for all t ∈ [0, T ],

d
dt

Eg(t) + Dg(t) ≤ 0,
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which means

sup
t∈[0,T ]

Eg(t) +
T∫

0

Dg(t)dt ≤ Eg(0).

Then the above bound reduces to

sup
t∈[0,T ]

Cg(1 + E
1
2
g (t))E

1
2
g (t) ≤ Cg(1 + E

1
2
g (0))E

1
2
g (0) ≤ 1

4 < 1
2 .

By the continuity of Eg(t), there is a t∗ > 0 such that for all t ∈ [0, T + t∗],

Cg(1 + E
1
2
g (t))E

1
2
g (t) < 1

2 ,

which contradict to the definition of T in (4.16). Thus T = +∞, consequently, we have

sup
t≥0

Eg(t) +
∞∫

0

Dg(t)dt ≤ Eg(0),

which finish proof of the first part of Theorem 1.2. �
5. Conclusion

Gray-Scott model is an important reaction-diffusion system, especially in the study of Turing 
pattern and related issues such as stability/instability, bifurcation and phase transitions. In this 
paper, we derived by the EnVarA a new reversible Gray-Scott type model. This reversible model 
possesses a natural entropy structure, and is thus thermodynamically consistent. In physics, our 
work links non-equilibrium thermodynamics theory on chemical reaction away from equilib-
rium. From a mathematical viewpoint, this indicates a new possible way to study those chemical 
reaction-diffusion process from perspectives of modeling, analysis and simulations.

Notice that the spatial domain we work with is the torus or the whole space, in order to avoid 
more discussions on boundary. Meanwhile a chemical reaction in reality usually occurs in a 
bounded domain. As mentioned before, it could be the first natural problem for us to derive the 
corresponding system with proper boundary conditions, by the EnVarA. It is addressed not only 
for modeling, but also for rigorous analysis, say, to consider the global weak solutions for the 
initial boundary value problems (IBVP).

The second aspect concerns the long time behavior of the obtained solutions, in classical or 
weak sense and in a bounded or unbounded domain. This is important in studying the stability 
issues of steady states. Many researches discussed the trend to equilibrium and the convergence 
rate, see [1,6,40,42] for instance.

The next aspect is with the asymptotic relationship between our reversible Gray-Scott-like 
model (Re-GS) and the classical Gray-Scott model (1.3). Recall that on one hand, we have ob-
tained the convergence from reversible system (Re-GS) towards the irreversible system (Ir-GS)
(in Theorem 1.1), and on the other hand, we also have provided formally a asymptotic consis-
tency between the irreversible model (Ir-GS) and the classical Gray-Scott model (1.3) (on page 4 
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in §1.1). Combining the two process together, we actually have addressed a two-step convergence 
scheme from the reversible system (Re-GS) towards the classical irreversible system (1.3). Rig-
orous justification for the limit will involve a slow-fast dynamics perspective and some singular 
limits. This work is under preparation.

However, we note that as pointed out in [5,15], not all irreversible reactions can be regarded 
as a limiting case of reversible reactions. This requires more discussions with law of mass action 
and detailed balance.

The last but not the least important issue is with the numerical simulation viewpoint, which is 
very useful in studying the patterns and stability/instability problems, and some coupling effects 
with other different mechanics such as temperature and electric fields [34,35,39,55,56]. This 
could in turn raise more research topics in mathematical analysis.
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