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Abstract

We derive a model for the non-isothermal reaction-diffusion equation. Combining ideas from non-
equilibrium thermodynamics with the energetic variational approach we obtain a general system modeling 
the evolution of a non-isothermal chemical reaction with general mass kinetics. From this we recover a 
linearized model for a system close to equilibrium and we analyze the global-in-time well-posedness of the 
system for small initial data for a critical Besov space.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Overview

Reaction-diffusion systems are a crucial part in science; from chemical reactions and predator-
prey models to the spread of diseases. These are just a few examples of the applications of 
reaction-diffusion systems. Many of these systems have been studied over the last decades at 
a constant temperature or the equivalent in the respective field. In recent years however, the 

* Corresponding author.
E-mail address: jsulzbach@hawk.iit.edu (J.-E. Sulzbach).
https://doi.org/10.1016/j.jde.2022.04.009
0022-0396/© 2022 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2022.04.009&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2022.04.009
http://www.elsevier.com/locate/jde
mailto:jsulzbach@hawk.iit.edu
https://doi.org/10.1016/j.jde.2022.04.009


C. Liu and J.-E. Sulzbach Journal of Differential Equations 325 (2022) 119–149
focus shifted towards the analysis of non-isothermal models, that is systems with a non-constant 
temperature, leading to an additional non-linear equation to govern the temperature evolution.

For the chemical reaction-diffusion equation, the addition of a heat term not only adds an 
equation to the system, but also the material properties are affected, e.g. with different local 
temperatures the viscosity and the heat conductivity can change. For the chemical reaction in 
particular, the heat term also changes the reaction rate in the reaction. These thermal effects in 
the chemical reaction equation have been studied from a chemical and engineering point in [1], 
[6] and [34] or more recently [39] and [10].

In the mathematical theory of non-isothermal fluid mechanics there are two different ways to 
find and prove the existence of solutions. One method is to study the existence of weak solutions. 
We refer to [14] for dealing with a general Navier-Stokes-Fourier system and to [5] and [12] for 
some applications of the general theory. Whereas the other method is to study the well-posedness 
of global solutions of the system [8], [9] and [2]. In this paper we follow the later approach study-
ing the well-posedness of the reaction-diffusion system with temperature in a critical function 
space. In addition, we present a new approach in the derivation of non-isothermal models in fluid 
mechanics. This approach follows the theory of classical irreversible thermodynamics [22] and 
[27] and adds a variational structure to it, see [28] and [26] for the application of this approach to 
the ideal gas system. Other works that follow this idea but in a different setting or with a different 
variational structure are detailed in the book by Frémond [15] and the articles by Gay-Balmaz & 
Yoshimura [16,17] for example.

We consider the following system for the chemical reaction-diffusion system close to equilib-
rium, where we denote the concentration for each chemical species by ci for i = A, B, C and the 
absolute temperature by θ . Further, we denote the equilibrium state by (c̃A, c̃B, c̃C, θ̃ ) and the 
system then reads

∂t ci − kc�ci = −σiRt + kc∇ · (ci∇ ln θ
)
, for i = A,B,C (1.1)

∑
i

kθ ci

[
∂t θ − kθ

(∇ci · ∇θ

ci

+ |∇θ |2
θ

)]
= κ�θ +

∑
i

σik
θ θRt

+ (kc)2
∑

i

[
(ηi − 1)

|∇(ciθ)|2
ciθ

+ �(ciθ)

] (1.2)

where

Rt = kc ln

(
cAcB

cC

)
− kθ ln θ + kc

The goal of this paper is to show the well-posedness of the above system in a critical Besov 
space. By a critical space we mean a function space that has the same invariance with respect 
to scaling in time and space as the system itself. The scaling we consider is (ci, θ) → (cλ

i , θλ)

where

cλ
i (t, x) = ci(λ

2t, λx) and θλ(t, x) = θ(λ2t, λx).

A natural function space to consider would be the Sobolev homogeneous space Ḣ d/2 but for the 
initial data in this space we cannot state the well-posedness result due to the lack of an algebraic 
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structure. This can be overcome by considering the initial data of the problem in the critical 
Besov space Ḃd/2

2,1 .

This paper is structured as follows. In the next section, we present an overview of non-
equilibrium thermodynamics and the framework of our result. This is followed by the derivation 
of the general model of a chemical reaction-diffusion system using these new ideas in Section 2. 
In Section 3 we state the main definitions and theorems of the theory of Besov spaces that are 
used to show the well-posedness of the system. The main result, i.e. the well-posedness of the 
non-isothermal chemical reaction-diffusion system close to equilibrium, and its proof can be 
found in Section 4.

1.2. Non-equilibrium thermodynamics

The theory of non-equilibrium thermodynamics derived from irreversible processes has been 
developed almost 100 years ago. Starting from the 1930s seminal work by Onsager ([31], [32]) 
formulating his principles of irreversible thermodynamics with some underlying assumptions. 
The idea is to extend the concept of state from continuum thermostatics to a local description 
of material point in the continuum, i.e. every material point that constructs the continuum is as-
sumed to be close to a local thermodynamic equilibrium state at any given instant. Therefore, 
we can define the state variables and state functions such as temperature and entropy past their 
definition in equilibrium thermostatics. This theory is known as Classical Irreversible Thermo-
dynamics (CIT) ([22]). Besides the classical set of state variables, thermodynamic fluxes are 
introduced to describe irreversible processes. In particular, the rate of change of entropy within a 
region is contributed by an entropy flux through the boundary of that region and entropy produc-
tion inside the region. In CIT the entropy flux only depends on the heat flux. The non-negativity 
of the entropy production rate grants the irreversibility of the dissipative process and states the 
second law of thermodynamics. The introduction of the local equilibrium hypothesis led to an 
impressive production of scientific research, but it is also the breaking point of the theory. For 
systems far from equilibrium the CIT does no longer hold.

To extend the scope of the applications of non-equilibrium thermodynamics beyond the CIT, 
Truesdall, Coleman and Noll among others introduced Rational Thermodynamics (RT) ([37], 
[7], [24]). The main assumption of RT is that materials have memory, i.e. at any given time, 
dependent variables cannot be determined by only instantaneous values of independent variables, 
but by their entire history. Thus speaking, the concept of state as known in CIT is modified and 
extended. One drawback of RT is that temperature and entropy remain undefined objects.

In both CIT and RT, limitations of the possible form of the state and constitutive equations 
are obtained as a consequence of the application of the second law. No restrictions however, are 
placed on the reversible parts, since they do not contribute to the entropy production. By using a 
Hamiltonian structure restrictions on the reversible dynamics are provided. An early version of 
a Hamiltonian framework for non-equilibrium thermodynamics was proposed by Grmela ([19]), 
based on a single generator. This approach however was superseded by the work of Grmela and 
Öttinger ([20], [21]) proposing the so called GENERIC formalism (General Equation for the 
Non-Equilibrium Reversible-Irreversible Coupling) and further developed by Öttinger ([33]). 
The GENERIC formalism relays on the generators, E the total energy and S the entropy. This 
gives the theory more flexibility and emphasizes the central role played by the thermodynamic 
potentials. The main achievement of GENERIC is its compact, abstract and general framework. 
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In this level of abstraction lies also the main difficulty of the formalism, its application to specific 
problems.

1.3. Framework of this work

The approach to non-equilibrium thermodynamics in this paper follows some of the ideas 
of the classical irreversible thermodynamics (CIT) and extends it to a variational framework. 
The main assumption in this framework is that outside of equilibrium, there exists an extensive 
quantity S called entropy which is a sole function of the state variables.

The structure of the derivation of the thermodynamic model is the following. We introduce 
the free energy 	 as a basic quantity to define the material/fluid properties. From here, we derive 
the thermodynamic state function of the system. In the second step, we define the kinematics of 
the state variables. Next, we derive the conservative and dissipative forces by using the Energetic 
Variational Approach (EnVarA) [23], [18], [29] inspired by the work of Ericksen [13] and com-
bine them with Newton’s force balance. In the last step, we apply the laws of thermodynamics to 
the state functions and obtain the full model system.

We recall the following definitions from thermodynamics [30], [35].

Free energy: The free energy 	 is a thermodynamic function depending on the state variables. 
The change in the free energy is the maximum amount of work that a system can per-
form.

Entropy: The entropy given by s = −∂θ	 is an extensive state function. By the second law of 
thermodynamics the entropy of an isolated system increases and tends to the equilibrium 
state.

Internal energy: The internal energy e = 	 + sθ is an extensive state function. It is a thermo-
dynamic potential that can be analyzed in terms of microscopic motions and forces.

In addition to the state functions we recall the laws of thermodynamics [4].
The first law of thermodynamics relates the change in the internal energy with dissipation and 
heat

d e

dt
= ∇ · (
 · u) − ∇ · q, (1.3)

where 
 denotes the stress tensor of the material and u its velocity; this part expresses the work 
done by the system; and where q denotes the heat flux. We note that every total derivative can be 
written as follows

d s

dt
= ∇ · j + �, (1.4)

where in case for the entropy j denotes the entropy flux and δ is the entropy production rate. The 
second law of thermodynamics states that the entropy production rate is non-negative:

� ≥ 0. (1.5)
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2. Derivation

In this section we derive a thermodynamic consistent model for the chemical reaction-
diffusion equation with temperature. For more details on chemical reactions we refer to the book 
by Kondepudi & Prigogine [25] and for a general chemical reaction equation derived by the 
energetic variational approach we refer to Wang et al. [38].

We consider the chemical reaction

αA + βB � γC

and denote the concentration of each species by ci , where i = A, B, C.
The kinematics of the concentration ci for each species is given by

∂t ci + div(ciui) = r(c, θ) (x, t) ∈ � × (0, T ) for i = A,B,C (2.1)

where ui : � → Rn is the effective microscopic velocity for the i-th species and r(c, θ) denotes 
the reaction rate and we assume that r(c, θ) = 0 at equilibrium, i.e. the concentration of A and B
lost in the forward reaction equals the amount gained in the backward reaction and the same for 
the concentration of C. In addition, we assume that u satisfies the non-flux boundary condition

ui · n = 0 (x, T ) ∈ ∂� × (0, T ). (2.2)

Moreover, we assume that the temperature moves along the trajectories of the flow map.
For the free energy we have the following equation

ψ(c, θ) =
∑

i

ψi(ci, θ) =
∑

i

kc
i ciθ ln ci − kθ

i ciθ ln θ (2.3)

where for each species we consider the free energy of the ideal gas and we set the stoichiometric 
numbers to be one.

From the free energy we obtain the following thermodynamic quantities. The entropy is given 
by

s(c, θ) =
∑

i

si(ci , θ) = −∂ψ

∂θ
= −

∑
i

ci

(
kc
i ln ci − kθ

i (ln θ + 1)
)
. (2.4)

Remark 2.1. We note that the free energy is convex in the temperature variable θ . This allows 
us to apply the implicit function theorem and solve the entropy equation (2.4) for θ , i.e. θ =
θ(φ, ∇φ, s).

Next, we can define the internal energy as follows

e(c, θ) =
∑

i

ei(ci, θ) := ψ + θs = ψ − ψθθ

=
∑

i

kθ
i ciθ =: e1(c, s)

(2.5)
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where we have used the convexity of the free energy ψ with respect to θ to write the internal 
energy in terms of c and s.

Next, we define the chemical potential as

μi := ∂ci
ψi(ci, θ) = kc

i θ(ln ci + 1) − kθ
i θ ln θ. (2.6)

We observe that at equilibrium we have

μA + μB = μC (2.7)

and by using the definition of the chemical potential we obtain

ln

(
c
kc
A

A c
kc
B

B

c
kc
C

C

)
= ln θ

(
kθ
A + kθ

B − kθ
C

) − (
kc
A + kc

B − kc
C

)
(2.8)

and

c
kc
A

A c
kc
B

B

c
kc
C

C

= θkθ
A+kθ

B−kθ
C

ekc
A+kc

B−kc
C

=: Keq(θ) (2.9)

where Keq(θ) is the equilibrium constant for a fixed temperature θ of the reaction equation.

Remark 2.2. The quantity μA +μB −μC is known as affinity of a chemical reaction, introduced 
by De Donder as a new state variable of the system. Its sign shows the direction of the chemical
reaction and can be considered as the driving force of the reaction.

Now, we return to the chemical reaction and write it as the following system of ordinary 
differential equations.

r = 1

σi

d

dt
ci, for i = A,B,C (2.10)

and σ = (α, β, −γ ). We observe that if we subtract two of the equations we end up with two 
constraints

γ
dcA

dt
+ α

dcC

dt
= 0, γ

dcB

dt
+ β

dcC

dt
= 0

and as a consequence we obtain

γ cA + αcC = Z0, γ cB + βcC = Z1,

where the constants Z0 and Z1 are obtained by the initial concentrations. Thus we only have one 
independent free parameter left, which we will call reaction coordinate R(t) and we can write

ci(t) = ci,0 − σiR(t), for i = A,B,C. (2.11)
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Moreover we have that the reaction rate r is given by r = ∂tR(t) = Rt(t).
This allows us to rewrite the free energy in terms of the reaction coordinate and temperature, 

i.e.

ψ(R, θ) =
∑

i

ψi(ci(R), θ). (2.12)

Next, we introduce the dissipation due to the reaction D(R, Rt). Applying the principle of virtual 
work we obtain that

δF (R, θ)

δR
= −D(R,Rt )

Rt

(2.13)

where

δF (R, θ)

δR
= −μA − μB + μC

= θ ln θ
(
kθ
A + kθ

B − kθ
C

) − θ ln

(
c
kc
A

A c
kc
B

B

c
kc
C

C

)
− θ

(
kc
A + kc

B − kc
C

)

The law of mass action determines the choice of the dissipation function. The general form of 
the dissipation in the reaction we consider is the following

D(R,Rt ) = η1(R, θ)Rt ln(η2(R, θ)Rt + 1), (2.14)

where η1 and η2 are positive functions in R and θ . Details of the derivation can be found in e.g. 
[22].

In chemical reactions a linear response function is considered as a simplified function of the 
general dissipation term. We obtain

D(R,Rt ) = η(R, θ)|Rt |2 (2.15)

again with η being a positive function. Using the principle of virtual work with these two dissi-
pation terms yields the following reaction rates

r1 := Rt =
(

cAcB

cC

)kc

θkθ

exp(kc)
− 1 (2.16)

for the choice η1(R, θ) = θ and η2(R, θ) = 1 which we can write as the usual law of mass action

r1 := Rt = kf (cc, θ)cAcB − kr(cC, θ)cC, (2.17)

where

kf ∼ θkθ /kc

cC

and kr ∼ 1

cC

.
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Similar, for the linear response theory we obtain

r2 :=Rt = kc ln

(
cAcB

cC

)
+ kθ ln θ − kc (2.18)

where we assume that kc
i = kc and kθ

i = kθ for i = A, B, C. The above observations can be 
summarized in the following ODE system, where the derivation of the temperature part can be 
found at the end of this section.

In addition to the reaction part we also consider a diffusion part in the concentration. To this 
end we introduce the dissipation due to diffusion

DD =
∑

i

ηi(ci, θ)u2
i + ν|∇ui |2.

Remark 2.3. Note that the dissipation depends on both the velocity of the flow map u and its gra-
dient ∇u. Thus the parameters in front of the two terms can be seen as an interpolation between 
a Darcy-type and a Stokes-type of dissipation.

Applying the principle of virtual work for the concentration part we obtain

∇Pi = ∇(
ciψci

− ψi

) = ci∇μi, (2.19)

where Pi denotes the pressure and has the form

Pi = ciψci
− ψi = kcciθ. (2.20)

Lemma 2.4. The pressure satisfies

∇Pi = ci∇ψci
+ s∇θ.

Proof. From the definition of the pressure we have Pi(ci, θ) = ψci
ci − ψ and thus we compute

∇Pi(ci, θ) = ∇(ψci
ρ − ψ) = ci∇ψci

+ ψci
∇ci − ∇ψ

= ci∇ψci
+ ψci

∇ci − ψci
∇ci − ψθ∇θ = ci∇ψci

+ s∇θ. �
Next, we apply the MDL and compute the variation of the dissipation with respect to the 

microscopic velocity u. This yields

δu

1

2
Dtot = 2

∫
�

ηi(ci, θ)ui · ũ + ν∇ui · ∇ũdx

= 2
∫
�

ηi(ci, θ)ui · ũ − ν�∇ui · ũdx

and hence the dissipative forces are
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fdiss = ηi(ci, θ)ui − ν�ui

From the classical Newton’s force law for the concentration we deduce that the sum of the con-
servative and dissipative forces equals the change in the momentum, i.e.

fcons + fdiss = d

dt
(ciui)

Thus we obtain

ν�ui − ηi(ci, θ)ui − ∇Pi = d

dt
(ciui) = ∂t (ciui) + div(ciui ⊗ ui) (2.21)

Remark 2.5. This is the momentum equation for the compressible Navier-Stokes equation with 
the addition of a Brinkman-type contribution in the dissipation.

Before taking a closer look at the laws of thermodynamics we provide to useful Lemmas.

Lemma 2.6. e1,s(c, s) = ∂se1(c, s) = θ(c, s).

Proof. Applying the chain rule to the left-hand side of the equation yields

∂se1(c, s) = ∂s

[
ψ(c, θ(c, s)) + θ(c, s)s

]
= ψθθs + θss + θ(c, s) = θ(c, s),

where we used that s = −ψθ . �
Lemma 2.7. ψi,θ (ci, θ(ci, s)) = e1i ,ci

(ci , s).

Proof. By the chain rule applied to e1i ,ci
(ci , s) we have

∂ci
e1i

(ci , s) = ∂ci

[
ψi(ci, θ(c, s)) + θ(c, s)s

]
= ψci

+ ψθθci
+ θci

s = ψφ. �
We note that we have a weak duality of the time evolution of the temperature and the total 

derivative of the entropy in the following way.

Remark 2.8. If θ evolves as d
dt

θ = θt + u · ∇θ then by testing this equation with the entropy s
in the weak form yields

∫
�

θt s + u · ∇θs dx = −
∫
�

st θ + div(su)θ dx. (2.22)

Thus s satisfies d
dt

s = st + div(su).

In the computations of the laws of thermodynamics we use the following constitutive relations 
and assumptions
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• the Durhem equation q = jθ ;
• Fourier’s law q = −κ∇θ ;
• the positivity of ηi , i.e. ηi(ci, θ) ≥ 0.

The general form of the first law of thermodynamics reads

d

dt

∫
�

(
K + e1

) = work + heat,

where in our case the kinetic energy K = ∑
i ci |ui |2. Then we compute

d

dt

∫
�

e1(c, s)dx =
∫
�

[∑
i

e1,ci
ci,t + e1,sst

]
dx (2.23)

Using the kinematics for the density ci from equation (2.1) we obtain

=
∫
�

[∑
i

e1,ci

( − ∇ · (ciui) − σiRt

) + e1,sst
]
dx

Applying Lemma 2.7 yields

=
∫
�

[ −
∑

i

∇ · (e1,ci
ciui

) +
∑

i

∇ψci
ci · ui −

∑
i

ψci
σiRt + e1,sst

]
dx

In order to have the full expression for the gradient of the pressure we have to incorporate the term 
s∇θ which can only occur if the kinematics for the entropy are as in Remark 2.8 and equation 
(2.22). Moreover by equation (1.4) we have

=
∫
�

[ − ∇ · (∑
i

e1,ci
ciui + e1,ssu

) + ∇
∑

i

ψci
ci · ui + s∇e1,s · u

−
∑

i

ψci
σiRt + e1,s

(∇ · j + �
)]

dx

By Lemma 2.6 and the Duhem equation we have

=
∫
�

[ − ∇ · (∑
i

e1,ci
ciui + e1,ssu

) + ∇
∑

i

ψci
ci · ui + s∇e1,s · u

−
∑

i

ψci
σiRt + ∇ · q − q · ∇θ

θ
+ θ�

]
dx

Now, we can apply Lemma 2.4 to obtain
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=
∫
�

[ − ∇ · (∑
i

e1,ci
ciui + e1,ssu

) + ∇ · q +
∑

i

∇(ψci
ρ − ci) · ui

−
∑

i

ψci
σiRt − q · ∇θ

θ
+ θ�

]
dx

From the definition of the pressure and the absence of external forces and heat sources we have 
that

=
∫
�

[∑
i

∇Pi · ui −
∑

i

ψci
σiRt − q · ∇θ

θ
+ θ�

]
dx

where we used that the divergence terms equal to zero under the boundary conditions u · n = 0
and ∇θ · n = 0. Thus we have

=
∫
�

∑
i

(
ν�ui − η(ci, θ)ui + ∂t (ciui) + div(ciui ⊗ ui)

) · uidx

−
∫
�

∑
i

μiσiRt − q · ∇θ

θ
+ θ�dx

and integration by parts yields

=
∫
�

[∑
i

( − ν|∇ui |2 − η(ci, θ)u2
i − σiRt |ui |2 − μiσiRt

)]
dx

−
∫
�

[q · ∇θ

θ
+ θ�

]
dx

− 1

2

∑
i

(
d

dt

∫
�

ci |ui |2dx +
∫
�

div(ci |ui |2ui)dx

)
(2.24)

where we used the reaction equation and the momentum equation to express the pressure term. 
Since there are no external forces or heat sources in our system the total internal energy must be 
conserved and we obtain that

� = 1

θ

(∑
i

ν|∇ui |2 +
∑

i

(
σiRt + η(ci, θ)

)|ui |2 +
∑

i

μiσiRt + κ|∇θ |2
θ

)
. (2.25)

We observe that we have to restrict the function ηi(ci, θ) and the reaction rate Rt such that

∑
i

(
σiRt + ηi(ci, θ)

)|ui |2 ≥ 0.

Thus, we note that the second law of thermodynamics � ≥ 0 is satisfied as long as θ > 0.
In addition, we have shown that the total energy, i.e. the sum of the kinetic energy and internal 

energy is conserved
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d

dt

∫
�

K(c,u) + e1(c, s)dx =
∫
�

work + heat dx = 0 (2.26)

since we assume that there are no external forces and no heat flux through the boundary.
Moreover, we have that the total entropy is increasing in time, i.e.

d

dt

∫
�

s(c, θ)dx =
∫
�

st + div(su)dx =
∫
�

div j + � ≥ 0, (2.27)

where we assume that there is no entropy flux through the boundary.

The above derivation can be summarized in the following general model for the chemical 
reaction with temperature

∂t ci + div(ciui) = −σRt , for i = A,B,C (2.28)

∂t (ciui) + div(ciui ⊗ ui) − ν�ui + ηi(ci, θ)ui = kc∇ciθ (2.29)

∂t s + div(
∑

i

siui) = div

(
κ∇θ

θ

)
+ � (2.30)

where

Rt = r1 = kf (cc, θ)cAcB − kr(cC, θ)cC (2.31)

for the general law of mass action or

Rt = r2 = kc ln

(
cAcB

cC

)
+ kθ ln θ − kc (2.32)

for the linear response theory. In addition, we have that the entropy production rate is given by

� = 1

θ

(∑
i

ν|∇ui |2 +
∑

i

(
σiRt + η(ci, θ)

)|ui |2 +
∑

i

μiσiRt + κ|∇θ |2
θ

)
(2.33)

where the chemical potential is defined as

μi = kcθ(ln ci + 1) − kθ θ ln θ (2.34)

and the entropy is defined by

s =
∑

i

si = −
∑

i

ci

(
kc ln ci − kθ (ln θ + 1)

)
(2.35)

After deriving the general model for the reaction-diffusion equation with temperature we con-
sider a simplified version. To this end, we make several assumptions.
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• First, we assume that the dissipation D depends only on the velocity u and not on its deriva-
tive, i.e. the dissipation we consider is of Darcy type.

• Second, we assume that Newton’s force law reduces to a force balance between conservative 
and dissipative forces, i.e. fcons + fdiss = 0. This yields a Darcy type law for the velocity 
η(ci, θ)ui = −∇Pi .

• Finally, as a consequence of the above we assume that we can neglect the influence of 
the kinetic energy and set it equal to zero. Thus the conservation of internal energy holds 
d
dt

∫
�

e1(ρ, s)dx = 0.

Hence, we obtain the reaction-diffusion equation with temperature for a Darcy type velocity.

∂t ci + div(ciui) = −σRt , for i = A,B,C (2.36)

ηi(ci, θ)ui = −kc∇ciθ (2.37)

∂t s + div(
∑

i

siui) = div

(
κ∇θ

θ

)
+ � (2.38)

where

Rt = r1 = kf (cc, θ)cAcB − kr(cC, θ)cC

for the general law of mass action

Rt = r2 = kc ln

(
cAcB

cC

)
+ kθ ln θ − kc

and for the linear response theory. In addition, we have

� = 1

θ

(∑
i

ν|∇ui |2 +
∑

i

(
σiRt + η(ci, θ)

)|ui |2 +
∑

i

μiσiRt + κ|∇θ |2
θ

)

μi = kcθ(ln ci + 1) − kθ θ ln θ

s =
∑

i

si = −
∑

i

ci

(
kc ln ci − kθ (ln θ + 1)

)

This system of equations can be written in a condensed form by eliminating the velocity in the 
reaction and entropy equation. Moreover we take a closer look at the temperature. To this end, 
we explicitly compute the left-hand side of equation (2.38).

∂t s = −
∑

i

(
kc∂t ci ln ci + kc∂t ci − kθ∂ci(ln θ + 1) − kθci

∂t θ

θ

)
(2.39)

and
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div(
∑

i

siui) = −div

(∑
i

ci

(
kc ln ci − kθ (ln θ + 1)

)
ui

)

= −
∑

i

[
kc ln ci div

(
ciu) + kcui∇ci − kθ

(
ln θ + 1

)
div

(
ciui

) − kθciui

∇θ

θ

]

(2.40)

Adding these two equations and using the reaction equation for the concentration we obtain

∂t s + div(
∑

i

siui) =
∑

i

(
kc ln ci + kc − kθ (ln θ + 1)

)
σiRt +

∑
i

kcci divui

+
∑

i

kθ ci

θ

(
∂t θ + ui∇θ

)

Thus multiplying the entropy equation by θ yields

θ
(
∂t s + div(

∑
i

siui)
) =

∑
i

kθ ci(∂t θ + ui∇θ) +
∑

i

kcciθ divui

+
∑

i

(μi + kθθ)σiRt

and the temperature equations reads

∑
i

kθ ci

(
∂t θ + div(θui)

) = κ�θ +
∑

i

σik
θ θRt +

∑
i

(
ν|∇ui |2 + ηi(ci, θ)|ui |2

)
. (2.41)

This yields the following system of equations for the reaction-diffusion system

∂t ci − kc�ci = −σiRt + kc∇ · (ci∇ ln θ
)
, for i = A,B,C (2.42)

∑
i

kθ ci

[
∂t θ − kθ

(∇ci · ∇θ

ci

+ |∇θ |2
θ

)]
= κ�θ +

∑
i

σik
θ θRt

+ (kc)2
∑

i

[
(ηi − 1)

|∇(ciθ)|2
ciθ

+ �(ciθ)

] (2.43)

where we have the two different reaction rates derived from the general law of mass action and 
the linear response theory

Rt = r1 = kf (cc, θ)cAcB − kr(cC, θ)cC,

Rt = r2 = kc ln

(
cAcB

)
+ kθ ln θ − kc.
cC
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3. Besov spaces

In this section we will present the theory behind the well-posedness problem for the reaction-
diffusion system with temperature. In order to so, we introduce the Besov spaces by using the 
Littlewood-Paley decomposition. For the details in the Theorems and Definitions presented in 
this section, we refer to [3] and [36].

We first define the building blocks of the theory of Besov spaces, the dyadic partition of unity. 
Let C be the annulus {ξ ∈ Rd : 3/4 ≤ |ξ | ≤ 8/3}, and let φ be a radial function with values in 
the interval [0, 1] belonging to the space D(C) with the following partition of unity

∀ξ ∈ Rd \ {0},
∑
j∈Z

φ
(
2−j ξ

) = 1.

We observe that for |j − i| ≥ 2 we have suppφ
(
2−j ·)∩ suppφ

(
2−i ·) = ∅. In addition, we define 

the Fourier transform F of the whole space Rd . Then we can define the homogeneous dyadic 
block �̇j and the homogeneous low-frequency cut-off operator Ṡj for all j

�̇ju =F−1(φ(2−j ξ)Fu
)

Ṡj u =
∑

i≤j−1

�̇iu.

Hence, we can write the formal Littlewood-Paley decomposition

Id =
∑
j

�̇j .

This allows us to define the homogeneous Besov spaces.

Definition 3.1. The homogeneous Besov spaces Ḃs
p,r with s ∈ R, p, r ∈ [1, ∞]2 and

s <
d

2
if r > 1, s ≤ d

2
if r = 1

consist of all homogeneous tempered distributions u such that

‖u‖Ḃs
p,r

:=
( ∑

j∈Z
2rjs‖�̇ju‖r

Lp

)1/r

< ∞.

We remark that the (semi-)norms ‖ · ‖Ḣ s and ‖ · ‖Ḃs
2,2,

are equivalent. Furthermore, we observe 

that Ḣ s ⊂ Ḃs
2,2 and equality holds if s < d/2.

We have the following remark:

Remark 3.2. Let (s1, s2) ∈ R2 and 1 ≤ p1, p2, r1, r2 ≤ ∞ with s < d/p or s = d/p if r = 1. 
Then the space Ḃs1

p1,r1 ∩ Ḃ
s2
p2,r2 is endowed with the norm ‖ · ‖

Ḃ
s1
p1,r1

+ ‖ · ‖
Ḃ

s2
p2,r2

is a complete 

normed space.
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One special feature of homogeneous Besov spaces is their scaling property. Next, we have 
some useful embeddings.

Proposition 3.3. For p ∈ [1, ∞) the space Ḃd/p

p,1 is continuously embedded in the space C0, i.e. 
the space of continuous functions vanishing at infinity.

Proposition 3.4. Let 1 ≤ p1 ≤ p2 ≤ ∞ and let 1 ≤ r1 ≤ r2 ≤ ∞. Then for any s ∈ R the space 
Ḃs

p1,r1
is continuously embedded in Ḃs−d(1/p1−1/p2)

p2,r2 .

Remark 3.5. From this point on we work with the Besov spaces Ḃs
2,1 and by the above Proposi-

tion we have that it is continuously embedded into Ḣ s .

The following product rule is the key in the well-posedness result for the reaction-diffusion 
system.

Proposition 3.6. Let u ∈ Ḃ
s1
2,1 and let v ∈ Ḃ

s2
2,1 with s1, s2 ≤ d/2. If s1 + s2 > 0 then the product 

uv belongs to Ḃs1+s2−d/2
2,1 and the following inequality holds

‖uv‖
Ḃ

s1+s2−d/2
2,1

≤ C‖u‖
Ḃ

s1
2,1

‖v‖
Ḃ

s2
2,1

,

where the constant C depends on s1, s2 and the dimension d .

We observe that for s = d/2 fixed we obtain an algebra structure for the space Ḃd/2
2,1 , i.e.

Ḃ
d/2
2,1 × Ḃ

d/2
2,1 → Ḃ

d/2
2,1 .

Next, we define the time-space Besov spaces, where the idea is to bound each dyadic block in 
Lq

([0, T ]; Lp
)

than to estimate directly the solution of the whole partial differential equation in 
Lq

([0, T ]; Ḃs
p,r

)
.

Definition 3.7. For T > 0 and s ∈ R let 1 ≤ r, p ≤ ∞ and let the assumptions of Definition 3.1
hold. Then we set

‖u‖Lq
T

(
Ḃs

p,r

) =
( ∑

j∈Z
2rjs‖�̇ju‖L

q
T

(
Lp

)
)1/r

.

The spaces Lq
T

(
Ḃs

p,r

)
can be linked with the more classical spaces Lq

([0, T ]; Ḃs
p,r

)
via the 

Minkowski inequality and we obtain

‖u‖Lq
T

(
Ḃs

p,r

) ≤ ‖u‖Lq
([0,T ];Ḃs

p,r

) if r ≥ p,

and

‖u‖ q ( ˙ s
) ≤ ‖u‖Lq

([0,T ];Ḃs
) if r ≤ p.
LT Bp,r p,r
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Remark 3.8. The general principle is that all properties of continuity of the product, composi-
tion, etc. remain true in these time-space Besov spaces too. The exponent q just has to behave 
according to Hölder’s inequality for the time variable.

The following result is the key in the existence proof later on.

Theorem 3.9. Let u0 ∈ Ḃs
2,1 be the initial data with regularity s ≤ d/2. In addition, let f ∈

L1
T

(
Ḃs

2,1

)
be the driving force, and we denote by u the unique solution to the following linear 

parabolic PDE

∂tu − �u = f in R+ ×Rd, (3.1)

u
∣∣
t=0 = u0 in Rd, (3.2)

where � is a linear second order strongly elliptic operator. Then the solution u belongs to the 
space L∞

T

(
Ḃs

2,1

)
and the pair 

(
∂tu, �u

)
to L1

T

(
Ḃs

2,1

)
. Furthermore the following inequality holds

‖u‖L∞
T (Ḃs

2,1)
+ ‖∂tu‖L1

T (Ḃs
2,1)

+ ‖�u‖L1
T (Ḃs

2,1)
≤ C

[‖u0‖Ḃs
2,1

+ ‖f ‖L1
T (Ḃs

2,1)

]
.

In addition, the following Corollary is used frequently in the later part.

Corollary 3.10. Let 1 ≤ q, r ≤ ∞, 2 ≤ p < ∞ and s ∈ R and let I = [0, T ) for any T > 0. 
Suppose u is a solution to the system (3.1)-(3.2). Then there exists a constant C > 0 depending 
on q, p, r, n such that

‖u‖Lq
T

(
Ḃ

s+2/q
p,r

) ≤ C
(‖u‖Ḃs

p,r
+ ‖f ‖L1

T

(
Ḃs

p,r

)

for 0 < T ≤ ∞.

The following result considers the action of smooth functions on the Besov space Ḃd/2
2,1 .

Lemma 3.11. Let f be a smooth function on R which vanishes at 0. Then for any function 
u ∈ Ḃ

d/2
2,1 the function f (u) is still element of Ḃd/2

2,1 and the following inequality holds

‖f (u)‖
Ḃ

d/2
2,1

≤ Q
(
f,‖u‖L∞

)‖u‖
Ḃ

d/2
2,1

,

where Q is a smooth function depending on the value of f and its derivative.

The above Lemma can also be applied to a product of two functions in the following way.

Corollary 3.12. Let u ∈ Ḃ
d/2
2,1 and v ∈ Ḃs

2,1 such that the product is continuous in Ḃd/2
2,1 × Ḃs

2,1 →
Ḃs

2,1. Let f be a smooth function on R, then f (u)v ∈ Ḃs
2,1 and the following inequality holds

‖f (u)v‖Ḃs � Q
(
f,‖u‖L∞

)‖u‖
Ḃ

d/2‖v‖Ḃs .

2,1 2,1 2,1
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4. Well-posedness result

Now, we have all the necessary tools together to show the existence of solutions. We recall 
the Darcy-type model for which we introduce perturbations close to equilibrium, where we set 
ci(t, x) for i = A, B, C to be the concentration of the i-th species and θ(t, x) the temperature of 
the system for (t, x) ∈ [0, T ] ×Rd for d = 2, 3. The system then reads

∂t ci − kc�ci = −σiRt + kc∇ · (ci∇ ln θ
)
, for i = A,B,C (4.1)

∑
i

kθ ci

[
∂t θ − kθ

(∇ci · ∇θ

ci

+ |∇θ |2
θ

)]
= κ�θ +

∑
i

σik
θ θRt

+ (kc)2
∑

i

[
(ηi − 1)

|∇(ciθ)|2
ciθ

+ �(ciθ)

] (4.2)

with

Rt = kc ln

(
cAcB

cC

)
− kθ ln θ + kc

Remark 4.1. The equilibrium state is defined such that Rt(c̃A, c̃B, c̃C, θ̃ ) = 0, where we observe 
that if (c̃A, c̃B, c̃C, θ̃ ) is at equilibrium then (λc̃A, λc̃B, λc̃C, λkc/kθ

θ̃ ) is also an equilibrium state. 
Thus, we can assume that without loss of generality c̃i ≥ 1/h2 for i = A, B, C and θ̃ ≥ 1/h2 for 
any 0 < h < 1.

Next, we rewrite the system as perturbation to the equilibrium state (c̃A, c̃B, c̃C, θ̃ ) by setting

ci = c̃i + zi for i = A,B,C and θ = θ̃ + ω.

In the nest step we linearize the reaction rate Rt by doing a first order Taylor expansion around 
the equilibrium state Rt = 0 and obtain

Rt = r = kc
∑
j

σj

zj

c̃j

− kθ ω

θ̃

The perturbed system now reads

∂t zi − kc�zi = −σi

[
kc

∑
j

σj

zj

c̃j

− kθ ω

θ̃

]

+ kc

[
∇zk

i · ∇ω

ω + θ̃
+ zi

�ω

ω + θ̃
− (zi + c̃i )

|∇ω|2
(ω + θ̃ )2

]
,

(4.3)

for i = A, B, C
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∑
i

kθ (zi + c̃i )

[
∂tω − kθ

(∇zi · ∇ω

zi + c̃i

+ |∇ω|2
ω + θ̃

)]
= κ�ω

+
∑

i

σik
θ (ω + θ̃ )

(
kc

∑
j

σj

zj

c̃j

− kθ ω

θ̃

)

+ (kc)2
∑

i

[
(ηi − 1)

|(z +i +c̃i )∇ω + (ω + θ̃ )∇zi |2
(zi + c̃i )(ω + θ̃ )

]

+ (kc)2
∑

i

[
(zi + c̃i )�ω + ∇zi · ∇ω + ω�zi

]

(4.4)

Remark 4.2. We note that we modified the concentration equation and temperature equation 
slightly by subtracting the term c̃i�ω and θ̃�zi respectively. This regularization of the equations 
ensures that for constant concentration or constant temperature, i.e. the perturbation of the con-
centration zi = 0 and perturbation of the temperature ω = 0, we obtain that the perturbation in 
the state variables goes to zero, and thus the system returns to equilibrium.

We now state the well-posed result for the reaction-diffusion system with temperature

Theorem 4.3 (Well-posedness for the R-D system with temperature). Let there be a small positive 
number h > 0 and let the initial data satisfy the following condition

ci,0 − c̃i = zi,0 ∈ Ḃ
d/2
2,1 for i = A,B,C and θ0 − θ̃ = ω0 ∈ Ḃ

d/2
2,1

and let the initial data fulfill the smallness condition

∑
i

‖zi,0‖Ḃ
d/2
2,1

+ ‖ω0‖Ḃ
d/2
2,1

≤ h4. (4.5)

Then the reaction-diffusion system with temperature close to equilibrium admits a unique global-
in-time strong solution belonging to the following function spaces

ci − c̃i =: zi ∈ L∞
T

(
Ḃ

d/2
2,1

)
and ∂t ci ,�ci ∈ L1

T

(
Ḃ

d/2
2,1

)
for i = A,B,C (4.6)

θ − θ̃ =: ω ∈ L∞
T

(
Ḃ

d/2
2,1

)
and ∂t θ,�θ ∈ L1

T

(
Ḃ

d/2
2,1

)
. (4.7)

In addition, the solution satisfies the following the inequality

∑
i

‖ci − c̃i‖B + ‖θ − θ̃‖B ≤ h2, (4.8)

where we define the space B is defined as follows

‖u‖B := ‖u‖L∞(
Ḃ

d/2) + ‖∂tu‖L1 (
Ḃ

d/2) + ‖�u‖L1 (
Ḃ

d/2). (4.9)

T 2,1 T 2,1 T 2,1
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The idea of the proof is to construct an iterative scheme of the following form

∂tf
k+1 + �f k+1 = Fk

where we show that this yields a bounded sequence in some Besov space and where the difference 
between two iterations forms a null sequence. From this we can follow that the iterative sequence 
convergences.

4.1. Proof of Theorem 4.3

As mentioned before, the idea of the proof of the theorem is to use an approximate scheme 
to construct the solution to the perturbed system of equations (4.3)-(4.4). We set the first term 
in the sequence (z0

i (t, x), ω0(t, x)) is set to be zero everywhere in R+ × Rd . Then, we set 
(zk

i (t, x), ωk(t, x)) to be the solution of the following linear approximate system.

∂t z
k+1
i − kc�zk+1

i = Fk
i for i = A,B,C (4.10)

∂tω
k+1 −

(
(kc)2

kθ
+ κ

kθ
∑

i c̃i

)
�ωk+1 = Gk (4.11)

where

Fk
i = −σi

[
kc

∑
j

σj

zk
j

c̃j

− kθ ωk

θ̃

]
+ kc

(
1

θ̃
+ f (ωk)

)
∇zk

i · ∇ωk

+ kc

[
zk
i (

1

θ̃
+ f (ωk))�ωk − (zk

i + c̃i )(
1

θ̃2
+ g(ωk))|∇ωk|2

)] (4.12)

Gk = kθ
∑

i

∇zk
i · ∇ωk

(
1∑
i c̃i

+ f (
∑

i

zk
i )

)
+ kθ |∇ωk|2

(
1

θ̃
+ f (ωk)

)
+ κf (c)�ωk

+
(

1∑
i k

θ c̃i

+ f (
∑

i

zk
i )

)∑
i

σik
θ (ωk + θ̃ )

(
kc

∑
j

σj

zk
j

c̃j

− kθ ωk

θ̃

)

+
(

1∑
i k

θ c̃i

+ f (
∑

i

zk
i )

)
(kc)2

∑
i

[
(ηi − 1)

|(zk
i + c̃i )∇ωk + (ωk + θ̃ )∇zk

i |2
(zk

i + c̃i )(ωk + θ̃ )

]

+
(

1∑
i k

θ c̃i

+ f (
∑

i

zk
i )

)
(kc)2

∑
i

[
∇zk

i · ∇ωk + ωk�zk
i

]

(4.13)

and where we define

f (x) := 1

x̃ + x
− 1

x̃
and g(x) := 1

(x + x̃)2 − 1

x̃2

We note that for x > −x̃ f and g are smooth functions and in addition for |x|/x̃ � 1 the function 
f is O(x) and g is O(x2) respectively.
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Proposition 4.4 (Iterative scheme). Let (zk
A, zk

B, zk
C, ωk) be a unique global-in-time classical so-

lution to the perturbed system (4.3)-(4.4). Then the solution belongs to the space L∞
T

(
Ḃ

d/2
2,1

)
fulfilling the following inequalities

‖zk
i ‖B ≤ h2 for i = A,B,C ‖ωk‖B ≤ h2. (4.14)

Furthermore, the difference between two consecutive solutions satisfies

‖δzk
i ‖B ≤ h2 for i = A,B,C ‖δωk‖B ≤ h2. (4.15)

From this proposition the proof of Theorem 4.3 can be proven as follows. Let (zk
A, zk

B, zk
C, ωk)

be an approximate solution satisfying the estimate of Proposition 4.4. Then the following series 
converges

∞∑
k=1

∑
i

‖δzk
i ‖B + ‖δωk‖B < ∞.

Thus we conclude that the sequence 
(
zk
A, zk

B, zk
C, ωk

)
k∈N forms a Cauchy sequence in the space 

B and the limit (zA, zB, zC, ω) is a strong solution of the perturbed system (4.3)-(4.4).

The proof of this proposition is split up into several steps. The first one is to show the approx-
imate solutions are bounded in the Besov space B.

Concentration equation: We consider an approximate solution zk
i and aim to show that the 

next level in the approximation is bounded by ‖zk+1
i ‖B ≤ h2. Then, by Theorem 3.9 we have 

that the norm of ‖zk+1
i ‖B is bounded by

‖zk+1
i ‖L∞

T (Ḃ
d/2
2,1 )

+ ‖∂t z
k+1
i ‖L1

T (Ḃ
d/2
2,1 )

+ kc‖�zk+1
i ‖L1

T (Ḃ
d/2
2,1 )

≤ C
[‖zi,0‖Ḃ

d/2
2,1

+ ‖Fk
i ‖L1

T (Ḃ
d/2
2,1 )

]

By the smallness assumption on the initial data we obtain

‖zk+1
i ‖L∞

T (Ḃ
d/2
2,1 )

+ ‖∂t z
k+1
i ‖L1

T (Ḃ
d/2
2,1 )

+ kc‖�zk+1
i ‖L1

T (Ḃ
d/2
2,1 )

≤ C
[
h4 + ‖Fk

i ‖L1
T (Ḃ

d/2
2,1 )

] (4.16)

We claim that the forcing term is bounded by

‖Fk
i ‖L1

T (Ḃ
d/2
2,1 )

� kc
∑
j

‖zk
j‖L1

T (Ḃ
d/2
2,1 )

c̃j

+ kθ
‖ωk‖L1

T (Ḃ
d/2
2,1 )

θ̃

+ kc
(1 + ‖f (ωk)‖L∞(Ḃ

d/2
)

)‖∇zk
i ‖L2 (Ḃ

d/2
)
‖∇ωk‖L2 (Ḃ

d/2
)
θ̃ T 2,1 T 2,1 T 2,1
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+ kc‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

(1

θ̃
+ ‖f (ωk)‖L∞

T (Ḃ
d/2
2,1 )

)‖�ωk‖L1
T (Ḃ

d/2
2,1 )

+ kc(c̃i + ‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

)
( 1

θ̃2
+ ‖g(ωk)‖L∞

T (Ḃ
d/2
2,1 )

)‖∇ωk‖2
L2

T (Ḃ
d/2
2,1 )

Then the assumption on the equilibrium state we estimate

‖Fk
i ‖L1

T (Ḃ
d/2
2,1 )

� kc
∑
j

h2‖zk
j‖L1

T (Ḃ
d/2
2,1 )

+ kθh2‖ωk‖L1
T (Ḃ

d/2
2,1 )

+ kc
(
h2 + ‖f (ωk)‖L∞

T (Ḃ
d/2
2,1 )

)‖∇zk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

+ kc‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

(
h2 + ‖f (ωk)‖L∞

T (Ḃ
d/2
2,1 )

)‖�ωk‖L1
T (Ḃ

d/2
2,1 )

+ (h−2 + ‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

)
(
h4 + ‖g(ωk)‖L∞

T (Ḃ
d/2
2,1 )

)‖∇ωk‖2
L2

T (Ḃ
d/2
2,1 )

and using Lemma 3.11 yields

‖Fk
i ‖L1

T (Ḃ
d/2
2,1 )

� kc
∑
j

h2‖zk
j‖L1

T (Ḃ
d/2
2,1 )

+ h2‖ωk‖L1
T (Ḃ

d/2
2,1 )

+ kc
(
h2 + Q(f,ωk)‖ωk‖L∞

T (Ḃ
d/2
2,1 )

)‖∇zk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

+ kc‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

(
h2 + Q(f,ωk)‖ωk‖L∞

T (Ḃ
d/2
2,1 )

)‖�ωk‖L1
T (Ḃ

d/2
2,1 )

+ (h−2 + ‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

)
(
h4 + Q(g,ωk)‖ωk‖L∞

T (Ḃ
d/2
2,1 )

)‖∇ωk‖2
L2

T (Ḃ
d/2
2,1 )

We observe that by the assumption on zk
i and ωk for any fixed k we have

‖Fk
i ‖L1

T (Ḃ
d/2
2,1 )

� kch2h2 + kc
(
h2 + Q(f,ωk)h2)h2h2 + h2h2

+ kch2(h2 + Q(f,ωk)h2)h2 + (h−2 + h2)
(
h4 + Q(g,ωk)h2)h4

Thus we obtain that

‖Fk
i ‖L1

T (Ḃ
d/2
2,1 )

� h4 (4.17)

Combining the estimate from equation (4.16) with the estimate in equation (4.17) yields

‖zk+1
i ‖L∞

T (Ḃ
d/2
2,1 )

+ ‖∂t z
k+1
i ‖L1

T (Ḃ
d/2
2,1 )

+ kc‖�zk+1
i ‖L1

T (Ḃ
d/2
2,1 )

≤ Ch4 (4.18)

and thus ‖zk+1
i ‖B ≤ h2 which concludes the proof of the first estimate in (4.14).

Now, we consider the difference between two solutions δzk+1
i = zk+2

i − zk+1
i . Then δzk+1

i is a 
solution to

∂t δz
k+1
i − kc�δzk+1

i = δF k
i
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where

δF k
i = −σi

[
kc

∑
j

σj

δzk
j

c̃j

− kθ δωk

θ̃

]
− kcδzk

i

|∇ωk+1|2
(ωk+1 + θ̃ )2

+ kc

[
∇δzk

i · ∇ωk+1

ωk+1 + θ̃
− ∇zk

i ·
( ∇δωk

ωk+1 + θ̃
+ ∇ωkδωk

(ωk+1 + θ̃ )(ωk + θ̃ )

)]

+ kc

[
δzk

i

�ωk+1

ωk+1 + θ̃
+ zk

i

(
�δωk

ωk+1 + θ̃
+ �ωkδωk

(ωk+1 + θ̃ )(ωk + θ̃ )

)]

− kc(zk
i + c̃i )

(∇δωk+1 · (∇ωk+1 + ∇ωk)

(ωk+1 + θ̃ )2
− |∇ωk|2(2θ̃ + ωk+1 + ωk)

(ωk+1 + θ̃ )2(ωk + θ̃ )2
δωk

)

This can be rewritten as follows

δF k
i = − σi

[
kc

∑
j

σj

δzk
j

c̃j

− kθ δωk

θ̃

]
+ kc∇δzk

i · ∇ωk+1(
1

θ̃
+ f (ωk+1))

− kc∇zk
i ·

(
∇δωk(

1

θ̃
+ f (ωk+1)) + ∇ωkδωk(

1

θ̃
+ g(ωk+1,ωk))

)

+ kcδzk
i �ωk+1(

1

θ̃
+ f (ωk+1))

+ kczk
i

(
�δωk(

1

θ̃
+ f (ωk+1)) + �ωkδωk(

1

θ̃2
+ g(ωk+1,ωk))

)

− kcδzk
i |∇ωk+1|2( 1

θ̃2
+ g(ωk+1)

)

− kc(zk
i + c̃i )

(
∇δωk · (∇ωk+1 + ∇ωk)

( 1

θ̃2
+ g(ωk+1)

)

− kc(zk
i + c̃i )|∇ωk|2(2θ̃ + ωk+1 + ωk)

( 1

θ̃2
+ g(ωk+1)

)( 1

θ̃2
+ g(ωk1)

)
δωk

Again applying Theorem 3.9 yields

‖δzk+1
i ‖L∞

T (Ḃ
d/2
2,1 )

+ ‖∂t δz
k+1
i ‖L1

T (Ḃ
d/2
2,1 )

+ kc‖�δzk+1
i ‖L1

T (Ḃ
d/2
2,1 )

≤ C‖δF k
i ‖L1

T (Ḃ
d/2
2,1 )

(4.19)

where we can estimate further

‖δF k
i ‖L1

T (Ḃ
d/2
2,1 )

�
∑
j

σj

‖δzk
j‖L1

T (Ḃ
d/2
2,1 )

c̃j

+
‖δωk‖L1

T (Ḃ
d/2
2,1 )

θ̃

+ ‖∇δzk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇ωk+1‖L2
T (Ḃ

d/2
2,1 )

(
1

θ̃
+ ‖f (ωk+1)‖L∞

T (Ḃ
d/2
2,1 )

)

+ ‖∇zk
i ‖L2 (Ḃ

d/2
)
‖∇δωk‖L2 (Ḃ

d/2
)
(

1 + ‖f (ωk+1)‖L∞(Ḃ
d/2

)
)

T 2,1 T 2,1 θ̃ T 2,1

141



C. Liu and J.-E. Sulzbach Journal of Differential Equations 325 (2022) 119–149
+ ‖∇zk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

‖δωk‖L∞
T (Ḃ

d/2
2,1 )

× (
1

θ̃
+ ‖g(ωk+1,ωk)‖L∞

T (Ḃ
d/2
2,1 )

)

+ ‖δzk
i ‖L∞

T (Ḃ
d/2
2,1 )

‖�ωk+1‖L1
T (Ḃ

d/2
2,1 )

(
1

θ̃
+ ‖f (ωk+1)‖L∞

T (Ḃ
d/2
2,1 )

)

+ ‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

‖�δωk‖L1
T (Ḃ

d/2
2,1 )

(
1

θ̃
+ ‖f (ωk+1)‖L∞

T (Ḃ
d/2
2,1 )

)

+ (‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

+ c̃i )‖�ωk‖L1
T (Ḃ

d/2
2,1 )

‖δωk‖L∞
T (Ḃ

d/2
2,1 )

× (
1

θ̃2
+ ‖g(ωk+1,ωk)‖L∞

T (Ḃ
d/2
2,1 )

)

+ ‖δzk
i ‖L∞

T (Ḃ
d/2
2,1 )

‖∇ωk+1‖2
L2

T (Ḃ
d/2
2,1 )

( 1

θ̃2
+ ‖g(ωk+1)‖L∞

T (Ḃ
d/2
2,1 )

)

+ (‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

+ c̃i )(‖∇ωk+1‖L2
T (Ḃ

d/2
2,1 )

+ ‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

)

× ‖∇δωk‖L2
T (Ḃ

d/2
2,1 )

( 1

θ̃2
+ ‖g(ωk+1)‖L∞

T (Ḃ
d/2
2,1 )

))

+ (‖zk
i ‖L∞

T (Ḃ
d/2
2,1 )

+ c̃i (2θ̃ + ‖ωk+1‖L∞
T (Ḃ

d/2
2,1 )

+ ‖ωk‖L∞
T (Ḃ

d/2
2,1 )

)

× ( 1

θ̃2
+ ‖g(ωk+1)‖L∞

T (Ḃ
d/2
2,1 )

)
)‖∇ωk‖2

L2
T (Ḃ

d/2
2,1 )

× ( 1

θ̃2
+ ‖g(ωk+1)‖L∞

T (Ḃ
d/2
2,1 )

)‖δωk‖L∞
T (Ḃ

d/2
2,1 )

By using the assumptions on the equilibrium state and by applying the previous estimates we 
obtain

‖δF k
i ‖L1

T (Ḃ
d/2
2,1 )

� (h2 + h5 + h7)
∑
j

‖δzk
j‖L1

T (Ḃ
d/2
2,1 )

+ h5‖∇δzk
i ‖L2

T (Ḃ
d/2
2,1 )

+ ‖∇δωk‖L2
T (Ḃ

d/2
2,1 )

(h3 + h4 + h5 + h7) + ‖�δωk‖L1
T (Ḃ

d/2
2,1 )

h4

+ (h2 + h3 + h5 + h6)‖δωk‖L1
T (Ḃ

d/2
2,1 )

Now, taking into account the induction assumption yields the following

‖δF k
i ‖L1

T (Ḃ
d/2
2,1 )

� hk+2 (4.20)

Combining the above estimates yields

‖δzk+1
i ‖L∞

T (Ḃ
d/2
2,1 )

+ ‖∂t δz
k+1
i ‖L1

T (Ḃ
d/2
2,1 )

+ kc‖�δzk+1
i ‖L1

T (Ḃ
d/2
2,1 )

≤ hk+1 (4.21)

which concludes the proof of the induction.
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Temperature equation: We proceed in a similar fashion as for the concentration equation. Let 
ωk be the approximate solution to the previous step. Then by Theorem 3.9 we have that the 
solution to the next step ωk+1 in the approximate temperature equation exists and that the norm 
of ‖ωk+1‖B is bounded by

‖ωk+1‖L∞
T (Ḃ

d/2
2,1 )

+ ‖∂tω
k+1‖L1

T (Ḃ
d/2
2,1 )

+ ‖�ωk+1‖L1
T (Ḃ

d/2
2,1 )

≤ C
[‖ω0‖Ḃ

d/2
2,1

+ ‖Gk‖L1
T (Ḃ

d/2
2,1 )

]
.

By the assumption on the initial perturbation in the temperature we obtain

‖ωk+1‖L∞
T (Ḃ

d/2
2,1 )

+ ‖∂tω
k+1‖L1

T (Ḃ
d/2
2,1 )

+ ‖�ωk+1‖L1
T (Ḃ

d/2
2,1 )

≤ C
[
h4 + ‖Gk‖L1

T (Ḃ
d/2
2,1 )

]
.

(4.22)

Next, we claim that the forcing term can be bounded as follows

‖Gk‖L1
T (Ḃ

d/2
2,1 )

≤
∑

i

‖∇zk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

(
c̃−1 + ‖f (ck)‖L∞

T (Ḃ
d/2
2,1 )

)

+ ‖∇ωk‖2
L2

T (Ḃ
d/2
2,1 )

(
θ̃−1 + ‖f (ωk)‖L∞

T (Ḃ
d/2
2,1 )

)

+ ‖f (ck)‖L∞
T (Ḃ

d/2
2,1 )

‖�ωk‖L1
T (Ḃ

d/2
2,1 )

+
(

1

c̃
+ ‖f (ck)‖L∞

T (Ḃ
d/2
2,1 )

)
(‖ωk‖L∞

T (Ḃ
d/2
2,1 )

+ θ̃ )

×
(∑

j

‖zk
j‖L1

T (Ḃ
d/2
2,1 )

c̃j

+
‖ωk‖L1

T (Ḃ
d/2
2,1 )

θ̃

)

+
(

1

c̃
+ ‖f (ck)‖L∞

T (Ḃ
d/2
2,1 )

)∑
i

‖∇zk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

+
(

1

c̃
+ ‖f (ck)‖L∞

T (Ḃ
d/2
2,1 )

)∑
i

‖ωk‖L∞
T (Ḃ

d/2
2,1 )

‖�zk
i ‖L1

T (Ḃ
d/2
2,1 )

,

where we assume that ηi = 1 and thus the additional term can be dropped. The assumptions on 
the equilibrium state and applying Lemma 3.11 then yield

‖Gk‖L1
T (Ḃ

d/2
2,1 )

�
∑

i

‖∇zk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

(
h2 + Q(f, ck)‖ck‖L∞

T (Ḃ
d/2
2,1 )

)

+ ‖∇ωk‖2
L2

T (Ḃ
d/2
2,1 )

(
h2 + Q(f,ωk)‖ωk‖L∞

T (Ḃ
d/2
2,1 )

)

+ Q(f, ck)‖ck‖L∞(Ḃ
d/2

)
‖�ωk‖L1 (Ḃ

d/2
)
T 2,1 T 2,1
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+
(

h2 + Q(f, ck)‖ck‖L∞
T (Ḃ

d/2
2,1 )

)
(‖ωk‖L∞

T (Ḃ
d/2
2,1 )

+ h−2)

× h2
(∑

j

‖zk
j‖L1

T (Ḃ
d/2
2,1 )

+ ‖ωk‖L1
T (Ḃ

d/2
2,1 )

)

+
(

h2 + Q(f, ck)‖ck‖L∞
T (Ḃ

d/2
2,1 )

)∑
i

‖∇zk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

+
(

h2 + Q(f, ck)‖ck‖L∞
T (Ḃ

d/2
2,1 )

)∑
i

‖ωk‖L∞
T (Ḃ

d/2
2,1 )

‖�zk
i ‖L1

T (Ḃ
d/2
2,1 )

Using the control of zk
i and ωk we have

‖Gk‖L1
T (Ḃ

d/2
2,1 )

≤ h4 (4.23)

Hence we obtain

‖ωk+1‖L∞
T (Ḃ

d/2
2,1 )

+ ‖∂tω
k+1‖L1

T (Ḃ
d/2
2,1 )

+ ‖�ωk+1‖L1
T (Ḃ

d/2
2,1 )

≤ Ch4, (4.24)

and thus

‖ωk+1‖B ≤ h2 (4.25)

which completes the proof of the second estimate in (4.14).
Finally, we consider the difference between two approximate solutions and set δωk+1 = ωk+2 −
ωk+1. Then δωk+1 is a solution to

∂t δω
k+1 − κ̃�δωk+1 = δGk,

where

δGk =kθ
(
c̃−1 + f (ck+1)

)∑
i

(
∇δzk

i · ∇ωk+1 + ∇zk
i · ∇δωk

)

+ kθ
∑

i

∇zk
i · ∇ωkδωk

(
c̃−2 + g(ck+1, ck)

)

+ kθ∇δωk · (∇ωk+1 + ∇ωk
)(

θ̃−1 + f (ωk+1)
)

+ |∇ωk|2δωk
(
θ̃−1 + g(ωk+1,ωk)

)
+ κf (ck+1)�δωk + κ�ωk

∑
i

δzk
i g(ck+1, ck)

+ (ωk+1 + θ̃ )
(
c̃−1 + f (ck+1)

)(∑
σj

δzk
j

c̃j

− δωk

θ̃

)

j
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+
(∑

j

σj

zk
j

c̃j

− ωk

θ̃

)(
δωk

(
c̃−1 + f (ck+1)

)

+ (ωk + θ̃ )
∑

i

δzk
i

(
c̃−2 + g(ck+1, ck)

))

+
∑

i

(
ωk+1�δzk

i + δωk�zk
i

)(
c̃−1 + f (ck+1)

)

+ ωk
∑

i

�zk
i

∑
δzk

i

(
c̃−2 + g(ck+1, ck)

)

Then by applying Theorem 3.9 we have the following estimate

‖δωk+1‖L∞
T (Ḃ

d/2
2,1 )

+ ‖∂t δω
k+1‖L1

T (Ḃ
d/2
2,1 )

+ ‖κ̃�δωk+1‖L1
T (Ḃ

d/2
2,1 )

≤ C‖δGk‖L1
T (Ḃ

d/2
2,1 )

, (4.26)

where we estimate the last term as follows

‖δGk‖L1
T (Ḃ

d/2
2,1 )

�
(
c̃−1 + ‖f (ck+1)‖L∞

T (Ḃ
d/2
2,1 )

)∑
i

‖∇δzk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇ωk+1‖L2
T (Ḃ

d/2
2,1 )

+ (
c̃−1 + ‖f (ck+1)‖L1

T (Ḃ
d/2
2,1 )

)∑
i

‖∇zk
i ‖L2

T (Ḃ
d/2
2,1 )

‖∇δωk‖L2
T (Ḃ

d/2
2,1 )

+ (
c̃−2 + ‖g(ck+1, ck)‖L∞

T (Ḃ
d/2
2,1 )

)∑
i

‖∇zk
i ‖L2

T (Ḃ
d/2
2,1 )

× ‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

‖δωk‖L∞
T (Ḃ

d/2
2,1 )

+ (
θ̃−1 + ‖f (ωk+1)‖L∞

T (Ḃ
d/2
2,1 )

)‖∇δωk‖L2
T (Ḃ

d/2
2,1 )

× (‖∇ωk+1‖L2
T (Ḃ

d/2
2,1 )

+ ‖∇ωk‖L2
T (Ḃ

d/2
2,1 )

)

+ (
θ̃−1 + ‖g(ωk+1,ωk)‖L∞

T (Ḃ
d/2
2,1 )

)‖∇ωk‖2
L2

T (Ḃ
d/2
2,1 )

‖δωk‖L∞
T (Ḃ

d/2
2,1 )

+ κ‖f (ck+1)‖L∞
T (Ḃ

d/2
2,1 )

‖�δωk‖L1
T (Ḃ

d/2
2,1 )

+ κ‖�ωk‖L∞
T (Ḃ

d/2
2,1 )

∑
i

‖δzk
i ‖L∞

T (Ḃ
d/2
2,1 )

‖g(ck+1, ck)‖L∞
T (Ḃ

d/2
2,1 )

+ (‖ωk+1‖L∞
T (Ḃ

d/2
2,1 )

+ θ̃ )
(
c̃−1 + ‖f (ck+1)‖L∞

T (Ḃ
d/2
2,1 )

)

×
(∑

j

‖δzk
j‖L1

T (Ḃ
d/2
2,1 )

c̃j

+
‖δωk‖L1

T (Ḃ
d/2
2,1 )

θ̃

)

+
(∑ ‖zk

j‖L∞
T (Ḃ

d/2
2,1 )

c̃j

+
‖ωk‖L∞

T (Ḃ
d/2
2,1 )

θ̃

)

j
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×
[
‖δωk‖L1

T (Ḃ
d/2
2,1 )

(
c̃−1 + ‖f (ck+1)‖L∞

T (Ḃ
d/2
2,1 )

) + (‖ωk‖L∞
T (Ḃ

d/2
2,1 )

+ θ̃ )

×
∑

i

‖δzk
i ‖L1

T (Ḃ
d/2
2,1 )

(
c̃−2 + ‖g(ck+1, ck)‖L∞

T (Ḃ
d/2
2,1 )

)]

+ (
c̃−1 + ‖f (ck+1)‖L∞

T (Ḃ
d/2
2,1 )

)∑
i

‖ωk+1‖L∞
T (Ḃ

d/2
2,1 )

‖�δzk
i ‖L1

T (Ḃ
d/2
2,1 )

+ (
c̃−1 + ‖f (ck+1)‖L∞

T (Ḃ
d/2
2,1 )

)∑
i

‖δωk‖L∞
T (Ḃ

d/2
2,1 )

‖�zk
i ‖L1

T (Ḃ
d/2
2,1 )

+ (
c̃−2 + ‖g(ck+1, ck)‖L∞

T (Ḃ
d/2
2,1 )

)‖ωk‖L∞
T (Ḃ

d/2
2,1 )

×
∑

i

‖�zk
i ‖L1

T (Ḃ
d/2
2,1 )

∑
i

‖δzk
i ‖L∞

T (Ḃ
d/2
2,1 )

Using the assumptions on the equilibrium state and the previous estimates yields

‖δGk‖L1
T (Ḃ

d/2
2,1 )

� (h2 + h4)
∑

i

(
‖�δzk

i ‖L1
T (Ḃ

d/2
2,1 )

+ ‖∇δzk
i ‖L2

T (Ḃ
d/2
2,1 )

+ ‖δzk
i ‖L∞

T (Ḃ
d/2
2,1 )

)

+ (h2 + h4)

(
‖�δωk‖L1

T (Ḃ
d/2
2,1 )

+ ‖∇δωk‖L2
T (Ḃ

d/2
2,1 )

+ ‖δωk‖L∞
T (Ḃ

d/2
2,1 )

)

By combining this inequality with the induction assumption we obtain

‖δGk‖L1
T (Ḃ

d/2
2,1 )

� hk+2 (4.27)

and therefore this results in the final estimate

‖δωk+1‖L∞
T (Ḃ

d/2
2,1 )

+ ‖∂t δω
k+1‖L1

T (Ḃ
d/2
2,1 )

+ ‖κ̃�δωk+1‖L1
T (Ḃ

d/2
2,1 )

≤ hk+1 (4.28)

which concludes the proof of the proposition.

The next step in the proof of Theorem 4.3 is to pass to the limit. From the uniform estimates 
obtained in Proposition 4.4 we can take the limit as k goes to ∞. Since 

(
zk
A, zk

B, zk
C, ωk

)
k∈N is a 

Cauchy sequence the following convergence result holds:

zk
i → zi in L∞

T

(
Ḃ

d/2
2,1

)
, (∂t z

k
i ,�zk

i ) → (∂t zi ,�zi) ∈ L1
T

(
Ḃ

d/2
2,1

)
for i = A,B,C (4.29)

ωk → ω in L∞
T

(
Ḃ

d/2
2,1

)
, (∂tω

k,�ωk) → (∂tω,�ω) ∈ L1
T

(
Ḃ

d/2
2,1

)
(4.30)

Therefore, by passing to the limit as k → ∞ we obtain that

(
zA, zB, zC,ω

) = (
cA − c̃A, cB − c̃B, cC − c̃C, θ − θ̃

)

is a classical solution to the reaction-diffusion system with temperature close to equilibrium 
(4.1)-(4.2).
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The final step in the proof of Theorem 4.3 is to show the uniqueness of solutions.

Proposition 4.5. Let the initial data 
(
zA,0, zB,0, zC,0, ω0

)
satisfy the assumptions of Theorem 4.3

and let 
(
z
j
A, zj

B, zj
C, ωj

)
for j = 1, 2 be two classical solutions to the same initial data belonging 

to the space B defined in (4.9). Setting δzi = z1
i − z2

i for i = A, B, C and δω = ω1 − ω2 the 
difference between the two solutions it follows that

∑
i

‖δzi‖B + ‖δω‖B � h2
(∑

i

‖δzi‖B + ‖δω‖B
)

. (4.31)

This implies that for h > 0 small enough we have

∑
i

‖δzi‖B + ‖δω‖B = 0

and therefore the two solutions coincide.
The proof of the proposition follows by repeating the arguments used to bound the differences of 
two approximate solutions in equations (4.1) and (4.2).
This concludes the proof of the well-posedness result for the chemical reaction-diffusion system 
with temperature.

4.2. Conclusion and remarks

From the general model of the non-isothermal reaction-diffusion system we can obtain the 
ideal gas model by considering only one species with density ρ and by setting the reaction rate 
to zero, see [28] for more details in the derivation. Thus the system has the following form

∂tρ − kρ�ρ = kρ∇ · (ρ∇ ln θ)

kθρ

(
∂t θ − kθ ∇ρ · ∇θ

ρ
− kθ |∇θ |2

θ

)
= κ�θ + (kρ)2(η − 1)

∇(ρθ)

ρθ
+ (kρ)2�(ρθ).

Similar, by using a different constitutive relation in the dissipation we can obtain the ideal gas 
system discussed in [26]

∂tρ = �(ρθ)

kθ∂t (ρθ) − kρ(kρ + kθ )∇ ·
(

θ∇(ρθ)

)
= ∇ · (κ∇θ).

We observe that the well-posedness result for the reaction-diffusion systems (Theorem 4.3) can 
be applied to both systems, yielding the existence of solutions to a system with small perturba-
tions.

For a different approach to these systems we refer to [28], where the existence of weak solu-
tions to the Brinkman-Fourier system on a bounded domain is proven by using energy estimates 
rather than scaling arguments.
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As for future work we want to extend the derivation of non-isothermal fluid mechanics to non-
local systems with the porous media equation and the Poisson-Nerst-Plank equation as examples, 
see [11] for the case without temperature.
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